
A Parallel Model for Multimedia Database on Cluster System Environment

Punpiti Piamsa-nga, Sanan Srakaew,
Nikitas A. Alexandridis, and George Blankenship
Department of Electrical Engineering and Computer Science

George Washington University, Washington D.C. 20052,
USA

{punpiti, srakaew, alexan, blankeng}@seas.gwu.edu

Abstract – In this paper, we propose a parallel model for
content-based retrieval form a multimedia database using a
heterogeneous cluster system. The proposed parallel unified
model [6] was used to represent multimedia data. All types of
multimedia data in the unified model are represented by k-
dimensional signals. Each dimension of k-d data is separated
into small blocks and then formed into a hierarchical
multidimensional tree structure, called a k-tree. The parallel
version of k-tree model was introduced in [7][8]. The previous
experimental results show the huge reduction of retrieval time
on a cluster of homogeneous workstations. In this paper, we
extend our parallel model to a heterogeneous cluster system
environment. We demonstrate the experimental results of
using a parallel retrieval algorithm for the k-tree unified
model on a cluster of heterogeneous system connected via a
network. We use system characteristics to balance the loads of
the processors. The experiments of the model with load
balancing shows a significant reduction of retrieval time while
maintaining the quality of perceptual results.

I. INTRODUCTION

Multimedia databases have become more important
since conventional databases cannot provide the necessary
efficiency and performance. Multimedia databases
encounter three major difficulties. First, the content is
subjective information; that is, intelligence is required to
characterize the data. The data recognition requires prior
knowledge and special techniques in Computer Vision and
Pattern Recognition; the problems are NP-hard. Second, if
a method or processing technique is designed and
developed for one type of data or feature, it usually not
appropriate for others. For instance, a technique designed
for indexing audio data may not be usable for image data;
or, a technique developed for a color feature may not be
useful for a texture feature in image and video data. Third,
the usual huge size of multimedia data and the requirement
for a similarity search affect the computation. A similarity
search is desirable for a multimedia database system. If a
picture of a house is used as a query to an image database,
we expect to retrieve pictures that contain similar houses in
them. The comparison is not pixel by pixel between a
query and the records in a database; but rather, closeness to
the query. Similarity matching requires the computation of
the distance between a query and each record in the
database; the best match is chosen from the data set with
the smallest distances. To solve these three problems, we
use a mathematical model to represent the features; a k-tree
model to represent the data structures of the multimedia
data; and exploit parallelism to reduce the retrieval time
[7][8].

In this paper, color and texture are the features of
interest; they represent the subjective information of the

multimedia data. We use a normalization technique to
generate the indices. The domain of a feature is reduced to
a set of selected values from a universe of potential values
for the feature. We use an identification number for each
element in the reduced set [7]. When data is inserted into
the system, it is converted to the selected domain. The
feature is represented by a histogram. For color feature, a
few colors are picked from the whole infinite universe of
colors. A finite number indexes each color. The color
feature of an image or a video is represented by a
histogram using the indexed color. For texture feature, we
selected a set of textures and assigned an identification
number to each texture. The feature of a texture is
represented by the histogram of texture identification,
which is the same method that was used for the color
feature. The comparison of two features is based upon the
distance between the histograms that define the features.

To reduce the response time, we proposed a parallel
model of a homogeneous system to perform a content-
based multimedia retrieval. The experimental results were
very positive in both qualitative and quantitative metrics.
However, in the real world, we do not have dedicated
machines that always have the same configurations. The
homogeneous model may be not used efficiently enough in
the real-life heterogeneous environment. In this paper, we
investigate a parallel model for multimedia database
retrieval using a heterogeneous cluster system. We use
system characteristics, such as processor speed, to divide
tasks among the processors in the systems. Our computer
system environment is composed of Sun Sparc and
Pentium-Linux machines, which are connected via a
10Mbit local area network. We evaluate the model by
comparing the retrieval results with the previous
homogeneous parallel retrieval. The experimental results
show the heterogeneous model produces a significant
reduction of the retrieval time of an image from a 30,000-
record image database.

This paper is organized as follow. Section II describes
our k-tree parallel model. Section III has the details of our
cluster system environment and its heterogeneity. The
experiment and its results are described in Section IV. The
last section concludes our works and proposes future
directions.

II. THE K-TREE PARALLEL MODEL

A k-tree is a directed graph; each node has 2k incoming
edges and one outgoing edge with a balanced structure. [6]
A k-tree is a binary tree for 1-dimensional data and a
quadtree for 2-dimensional data. Exploiting a k-tree
brings three main benefits. First, the k-tree holds the

IEEE International Symposium on Industrial Electronics (ISIE98), Pretoria, South Africa, July 7-10, 1998.

information of spatio-temporal data on the tree structure
itself. It reduces distance computation time to a comparison
between two tree nodes. Second, a k-tree can accelerate
multiresolution processing by calculating small, global
information first and then large, local information when
precise resolution is needed. Third, the data on a k-tree is
unified since only the degree of the tree changes, while the
processing algorithm and data structure remain invariant.
Therefore, an algorithm for a particular type of feature can
be reused for a feature of another media type.

Content-based retrieval of multidimensional signals is
done by comparing features extracted from the input query
with features extracted from every record in the database.
The features of a multidimensional signal are subjective
information. They are characteristics that are used to
distinguish one signal from others. A 2-dimensional signal,
such as an image, is characterized by features such as color,
texture, and intensity. The basic algorithms for the
searching of data in each of the different domains are quite
similar. A matching search requires that the index key
(defining feature) be unique and matched to the query.
Exactly matched searching requires exhaustive
comparisons that are inefficient and unsuitable for
multidimensional signals; similarity searching is more
appropriate. A similarity-search re-orders the database by
distance between each record and the query; the result is
selected from the ranking.

Multimedia data retrieval requires similarity searching;
exact matching, which is used in conventional database, is
not appropriate for this type of application. Similarity
searching generally can be done in two steps; 1) finding
distances between a query and all records in the database
and then 2) sorting the distances and returning the results –
the set of data items that have shortest distances. We also
call this process “ranking.” The details of regular weighted
ranking are discussed in [7]. In Fig. 1, we show a parallel
searching using multi-feature scheme. Prior to the search
the database is distributed among processors. Each
processor performs the comparison between the query and
its portion of the database. The search results based on
those features are sorted in parallel to create the final
ranking. The pseudo code of parallel “ranking” is shown in
Algorithm 1.

FIG. 1. PARALLEL MODEL MULTI-FEATURE SEARCHING.

ALGORITHM 1: DATAPARALLELSEARCH

DataParallelSearch(IN Query,
IN FeaturesInDatabase[N],
IN NumberOfProcessors,
OUT Record(Distances[N], DataNumber[N]))

1) Begin

2) Extract the interest Feature from the Query.

3) Distribute the data on to all processors in the system evenly.

4) PortionSize = N / NumberOfProcessors.

5) At all processors: For

each i in 1..PortionSize of FeatureInDatabase do

6) Find the Distances[i] between Feature and

FeatureInDatabase[i]

7) DataNumber[N]=i

8) End For

9) Parallel sort all the records of (distance[N],feature[N]) in ascending

order of Distance[N]

10) End

III. CLUSTER SYSTEM ENVIRONMENT

In this section, we give the details of our experimental
platforms, evaluated multimedia database systems, and our
proposed load-balancing algorithm for the k-tree model.

A. Computational platform

A cluster system environment plays an important role in
a distributed multimedia database. A simple model of a
distributed environment is a homogeneous system, where
each workstation is identical and communication links
between the workstations are also comparable. In such a
system, data partitioning can be evenly subdivided. A static
load-balancing scheme can be applied. A system
environment is usually heterogeneous; the workstations are
different in terms of computational power, storage space,
hardware architecture, and so on. In this paper, we
establish a uniform framework for content-based

F1

Ranking
Results

Sp
at

ia
l

T1 T2

Temporal

Parallel Sorting
and Merging

Database: D = D1+D2+…+DN
Processors: Set1, Set2,…, SetK
 Set1: P1, P2,…, Pm
 Set2: Pm+1, Pm+2,…, P2m
 SetK: PN-m, PN-m+1,…, PN

Feature: F1, F2,…, FK

Distance Computation

List of
Distances

List of
Distances

List of
Distances

SetK

Set2

Set1

D

SetK

SetK

Set1

F2

FK

w1

w2

wK

Extracted
Features
of Query

multimedia data retrievalon a cluster system environment.
In our experiment, one of the workstation serves as a host
while others are assigned to be slave nodes. The system is
composed of seven machines, which include two models of
Sun workstations and Pentium/Linux PCs connected via
local area network and use the Message Passing Interface
(MPI) library as a message-passing interconnection
mechanism [8].

B. Multimedia database system

In this paper, we use an image database which uses
histogram-based features as indices. Two types of
histogram-based feature (colors and textures) have been
examined.

Before beginning the extraction of features, all images
are normalized, scaled down to 128x128 pixels. The color
feature extraction is performed in two steps. The first step
transforms the number of colors of the scaled images to a
pre-selected 166-color set [5]. The second step stores the
transformed image in a quad tree structure. Texture feature
extraction requires three steps. The first step transforms the
64 blocks of 16x16 pixels in to 64 sets of wavelet data
using a Quadratic Mirror Filter (QMF) (2 iterations, 7 sub-
bands). [7][8] Each wavelet data produces seven subbands
of means and variances; i.e. a 14-element vector. In the
second step, the texture vectors are then compared to 162-
reference textures from VisTex [7] in the known texture
table to generate 64 texture indices representing textures
for blocked data. The third step constructs and stores the
texture features in a quad tree structure.

The steps of the quad tree generation are the same for
both features. The transformed color images and texture-
identification (texture-id) matrices are mapped onto the
leaves of a quad tree structure. The leaves represent a
single pixel of the normalized image. Histograms of the
leaves, which share the same parent nodes, are summed and
the results are stored at their parent nodes. The process
continues iteratively for each level until the root has been
reached.

C. Data Partitioning and Load Balancing

To exploit heterogeneous parallelism, we use task and
machine characteristics to decide which processors the
tasks should be allocated to. The heterogeneity in the task
level is the differences of the searching into the feature
indices and the heterogeneity of the machines includes
processor power and communication speed. We can
generalize the load distribution in a mathematical model as
follows

Let W be the processing requirements; N be the number
of processors; and Si be the speed of processor i, then the
work share of processor i (Li) is defined by:

In the experiment, we do not allow task and data
migrations. Since the data size of the index table is very
large, any feature-index transfers causes a significant
increase in the computation time. We have measured the

communication during periods of low system utilization.
The average communication time per record is 1.05
second, which is just slightly less than the computation of
the slowest machine in the system. Since the physical
connection of the system uses a bus topology, the
communication is always performed sequentially. Since the
data movement would be less than optimal, we decided to
avoid all data migrations. The network was used for
gathering the results from each node to the host before
summarizing final results.

IV. EXPERIMENTS AND RESULTS

The cluster environment consists of seven Unix-based
machines; two Pentium/Linux-based PCs, two Sun Sparc-
20 workstations, and three Sun Ultrasparc I workstations.
One of Sun Ultrasparc is designated as the host. The MPI
library is used as the interconnection mechanism. We use
comparative computational power to classify workstation
types. Table 1 shows the computational power ratios; the
ratios are based on the results similarity searching a
database of 500 images using single- and multi- feature
storage algorithms. The computational power ratio of a Sun
Ultrasparc I to a Pentium II PC to a Sun Sparc-20 is
3:2:1.8.

TABLE I: COMPUTATIONAL POWER RATIO OF WORKSTATIONS

 Sun

Ultra-
Sparc I

Pentium
II

Sun
Sparc
20

Color 1.05 1.37 1.54
Texture 0.51 0.73 0.81

I/O time
 (seconds) Color&

Texture 1.35 1.85 1.55

Color 0.15 0.35 0.45
Texture 0.09 0.21 0.24

Computational
time (seconds) Color&

Texture 0.20 0.50 1.0

Computational
power ratio

 3 2 1.8

Average
communica-
tion time

1.05

In this experiment, image retrieval is performed using

two features; color and texture. The extracted features are
derived from database images of 128x128 pixels; each is
evenly divided into 64 blocks. The quadtree of the
histograms for each image is made up of 3 levels; 64 leaf
nodes. We perform two data partitioning schemes based on
the database of 30,000 images. In the first scheme, the
database of color and texture histograms is evenly divided
among workstations, without considering the heterogeneity
of cluster environment. In the second approach, data
partitioning is based on the ratio of computational power of
the workstations. Table 2 shows a data distribution profile
as a function of the number of processors.

∑
=

=
N
k kii SSWLi 1/

TABLE II: DATA DISTRIBUTION ACROSS WORKSTATIONS

of image records distributed on each processor in thesystem # of
proces
-sors Ultra P-II Sparc Ultra P-II Ultra Sparc

1 30K - - - - - -

2 18K 12K - - - - -

3 13.2K 8.8K 8K - - - -

4 9.2K 6.1K 5.5K 9.2K - - -

5 7.6K 5K 4.5K 7.6K 5K - -

6 6.1K 4K 3.7K 6.1K 4K 6.1K

7 5.4K 3.6K 3.3K 5.4K 3.6K 5.4K 3.3K

The results shown in Fig. 2(a) depicts the response time

of the system as a function of the number of processors
used to perform the ranking; the selection features are both
color and texture. Fig. 2(b) shows as a function of the
number of processors. As the number of processors used to
perform the computation increases, the computation time
decreases significantly. Moreover, the data partitioning
based on heterogeneity information achieves a higher
speedup than an even distribution approach. Fig. 3 depicts
the top-twenty output images on the sorted list when both
color and texture are used as selection features.

FIG. 2(A): RESPONSE TIMES

FIG. 2(B): SPEEDUPS

FIG. 3: PERCEPTION OUTPUT; THE SELECTION FEATURES

ARECOLOR AND TEXTURE.

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7

Number of Processors

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

Without load balancing
With load balancing

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Number of Processors

Sp
ee

du
p

Without load balancing
With load balancing

V. CONCLUSTIONS AND FUTURE DIRECTIONS

We introduced a parallel model for multimedia database

content-based retrievals on a cluster of heterogeneous
workstations. The model allows the extension of the system
for the new types of data, new techniques, and new types of
interest contents with less effort. The experimental results
show that heterogeneous processing with load balancing
can reduce retrieval time over a homogeneous approach.
Data partitioning based on system heterogeneity achieves a
better response time in comparison with uniform
distribution of database over a cluster of workstations. Our
future work will focus mainly on classification technique
based on multi-resolution structure of the k-tree at different
levels. Some load balancing and process migration
techniques are also in our future work.

VI. REFERENCES

[1] P. Chalermwat, N. Alexandridis, P. Piamsa-nga, and
M. O'Connell, Parallel image processing on
heterogeneous computing network systems,
International Conference on Image Processing, 1996.

[2] T. El-Ghazawi, P. Chalermwat, P. Piamsa-nga, A.
Ozkaya, N. Speciale, and D. Wilson, PACET: PC-
parallel architecture for cost-efficient telemetry
processing, IEEE Aerospace Conference, 1998.

[3] V. Gudivada and V. Raghavan, “Special issue on
content-based image retrieval systems,” in IEEE
Computers, Vol. 28, No. 9, September 1995.

[4] Z. Kemp, “Multimedia and spatial information
systems,” IEEE Multimedia, 2(4), 1995.

[5] J. R. Smith and S.-F. Chang, SaFe: “A General
Framework for Integrated Spatial and Feature Image
Search,” IEEE Workshop on Multimedia Signal
Processing, 1997.

[6] P. Piamsa-nga, N. Alexandridis, G. Blankenship, G.
Papakonstantinou, P. Tsanakas, and S. Tzafestas, “A
Unified Model for Multimedia Retrieval by Content,”
International Conference on Computer and Their
Application (CATA98), 1998.

[7] P. Piamsa-nga, N. Alexandridis, S. Srakaew, and G.
Blankenship, “A parallel algorithm for multi-feature
content-based multimedia retrieval,” Seventh
International Conference on Intelligent Systems
(ICIS98), Paris, France, July 1-3, 1998.

[8] S. Srakaew, N. A. Alexandridis, P. Piamsa-nga, and G.
Blankenship, “A parallel model for multimedia
retrieval based on multidimensional signal structure,”
in International workshop on systems, signal and
image processing (IWSSIP98), Zagreb, Croatia, June
3-5, 1998.

