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Abstract – In this paper, we propose a parallel model for 
content-based retrieval form a multimedia database using a 
heterogeneous cluster system. The proposed parallel unified 
model [6] was used to represent multimedia data. All types of 
multimedia data in the unified model are represented by k-
dimensional signals. Each dimension of k-d data is separated 
into small blocks and then formed into a hierarchical 
multidimensional tree structure, called a k-tree. The parallel 
version of k-tree model was introduced in [7][8]. The previous 
experimental results show the huge reduction of retrieval time 
on a cluster of homogeneous workstations.  In this paper, we 
extend our parallel model to a heterogeneous cluster system 
environment. We demonstrate the experimental results of 
using a parallel retrieval algorithm for the k-tree unified 
model on a cluster of heterogeneous system connected via a 
network. We use system characteristics to balance the loads of 
the processors. The experiments of the model with load 
balancing shows a significant reduction of retrieval time while 
maintaining the quality of perceptual results. 

I. INTRODUCTION 

Multimedia databases have become more important 
since conventional databases cannot provide the necessary 
efficiency and performance. Multimedia databases 
encounter three major difficulties. First, the content is 
subjective information; that is, intelligence is required to 
characterize the data. The data recognition requires prior 
knowledge and special techniques in Computer Vision and 
Pattern Recognition; the problems are NP-hard. Second, if 
a method or processing technique is designed and 
developed for one type of data or feature, it usually not 
appropriate for others. For instance, a technique designed 
for indexing audio data may not be usable for image data; 
or, a technique developed for a color feature may not be 
useful for a texture feature in image and video data. Third, 
the usual huge size of multimedia data and the requirement 
for a similarity search affect the computation. A similarity 
search is desirable for a multimedia database system. If a 
picture of a house is used as a query to an image database, 
we expect to retrieve pictures that contain similar houses in 
them. The comparison is not  pixel by pixel between a 
query and the records in a database; but rather, closeness to 
the query. Similarity matching requires the computation of 
the distance between a query and each record in the 
database; the best match is chosen from the data set with 
the smallest distances. To solve these three problems, we 
use a mathematical model to represent the features; a k-tree 
model to represent the data structures of the multimedia 
data; and exploit parallelism to reduce the retrieval time 
[7][8].  

In this paper, color and texture are the features of 
interest; they represent the subjective information of the 

multimedia data. We use a normalization technique to 
generate the indices. The domain of a feature is reduced to 
a set of selected values from a universe of potential values 
for the feature. We use an identification number for each 
element in the reduced set [7]. When data is inserted into 
the system, it is converted to the selected domain. The 
feature is represented by a histogram. For color feature, a 
few colors are picked from the whole infinite universe of 
colors. A finite number indexes each color. The color 
feature of an image or a video is represented by a 
histogram using the indexed color. For texture feature, we 
selected a set of textures and assigned an identification 
number to each texture. The feature of a texture is 
represented by the histogram of texture identification, 
which is the same method that was used for the color 
feature. The comparison of two features is based upon the 
distance between the histograms that define the features. 

To reduce the response time, we proposed a parallel 
model of a homogeneous system to perform a content-
based multimedia retrieval. The experimental results were 
very positive in both qualitative and quantitative metrics. 
However, in the real world, we do not have dedicated 
machines that always have the same configurations. The 
homogeneous model may be not used efficiently enough in 
the real-life heterogeneous environment. In this paper, we 
investigate a parallel model for multimedia database 
retrieval using a heterogeneous cluster system. We use 
system characteristics, such as processor speed, to divide 
tasks among the processors in the systems. Our computer 
system environment is composed of Sun Sparc and 
Pentium-Linux machines, which are connected via a 
10Mbit local area network. We evaluate the model by 
comparing the retrieval results with the previous 
homogeneous parallel retrieval. The experimental results 
show the heterogeneous model produces a significant 
reduction of the retrieval time of an image from a 30,000-
record image database. 

This paper is organized as follow. Section II describes 
our k-tree parallel model. Section III has the details of our 
cluster system environment and its heterogeneity. The 
experiment and its results are described in Section IV. The 
last section concludes our works and proposes future 
directions. 

II. THE K-TREE PARALLEL MODEL 

A k-tree is a directed graph; each node has 2k incoming 
edges and one outgoing edge with a balanced structure. [6] 
A k-tree is a binary tree for 1-dimensional data and a 
quadtree for 2-dimensional data.   Exploiting a k-tree 
brings three main benefits. First, the k-tree holds the 
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information of spatio-temporal data on the tree structure 
itself. It reduces distance computation time to a comparison 
between two tree nodes. Second, a k-tree can accelerate 
multiresolution processing by calculating small, global 
information first and then large, local information when 
precise resolution is needed. Third, the data on a k-tree is 
unified since only the degree of the tree changes, while the 
processing algorithm and data structure remain invariant. 
Therefore, an algorithm for a particular type of feature can 
be reused for a feature of another media type. 

Content-based retrieval of multidimensional signals is 
done by comparing features extracted from the input query 
with features extracted from every record in the database. 
The features of a multidimensional signal are subjective 
information. They are characteristics that are used to 
distinguish one signal from others. A 2-dimensional signal, 
such as an image, is characterized by features such as color, 
texture, and intensity. The basic algorithms for the 
searching of data in each of the different domains are quite 
similar. A matching search requires that the index key 
(defining feature) be unique and matched to the query. 
Exactly matched searching requires exhaustive 
comparisons that are inefficient and unsuitable for 
multidimensional signals; similarity searching is more 
appropriate. A similarity-search re-orders the database by 
distance between each record and the query; the result is 
selected from the ranking. 

Multimedia data retrieval requires similarity searching; 
exact matching, which is used in conventional database, is 
not appropriate for this type of application. Similarity 
searching generally can be done in two steps; 1) finding 
distances between a query and all records in the database 
and then 2) sorting the distances and returning the results – 
the set of data items that have shortest distances. We also 
call this process “ranking.” The details of regular weighted 
ranking are discussed in [7]. In Fig. 1, we show a parallel 
searching using multi-feature scheme. Prior to the search 
the database is distributed among processors. Each 
processor performs the comparison between the query and 
its portion of the database. The search results based on 
those features are sorted in parallel to create the final 
ranking. The pseudo code of parallel “ranking” is shown in 
Algorithm 1. 

 

 
FIG. 1. PARALLEL MODEL MULTI-FEATURE SEARCHING. 

 
ALGORITHM 1: DATAPARALLELSEARCH 

DataParallelSearch(IN Query,  
IN FeaturesInDatabase[N],  
IN NumberOfProcessors,  
OUT Record(Distances[N], DataNumber[N])) 

1) Begin 

2) Extract the interest Feature from the Query. 

3) Distribute the data on to all processors in the system evenly.  

4) PortionSize = N / NumberOfProcessors. 

5) At all processors: For  

each  i in 1..PortionSize of FeatureInDatabase do 

6) Find the Distances[i] between Feature and 

FeatureInDatabase[i] 

7) DataNumber[N]=i 

8) End For 

9) Parallel sort all the records of (distance[N],feature[N]) in ascending 

order of Distance[N] 

10) End 

 

III. CLUSTER SYSTEM ENVIRONMENT 

In this section, we give the details of our experimental 
platforms, evaluated multimedia database systems, and our 
proposed load-balancing algorithm for the k-tree model. 

A. Computational platform 

A cluster system environment plays an important role in 
a distributed multimedia database. A simple model of a 
distributed environment is a homogeneous system, where 
each workstation is identical and communication links 
between the workstations are also comparable. In such a 
system, data partitioning can be evenly subdivided. A static 
load-balancing scheme can be applied. A system 
environment is usually heterogeneous; the workstations are 
different in terms of computational power, storage space, 
hardware architecture, and so on. In this paper, we 
establish a uniform framework for content-based 
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multimedia data retrievalon a cluster system environment. 
In our experiment, one of the workstation serves as a host 
while others are assigned to be slave nodes. The system is 
composed of seven machines, which include two models of 
Sun workstations and Pentium/Linux PCs connected via 
local area network and use the Message Passing Interface 
(MPI) library as a message-passing interconnection 
mechanism [8]. 

B. Multimedia database system 

In this paper, we use an image database which uses 
histogram-based features as indices. Two types of 
histogram-based feature (colors and textures) have been 
examined.  

Before beginning the extraction of features, all images 
are normalized, scaled down to 128x128 pixels. The color 
feature extraction is performed in two steps. The first step 
transforms the number of colors of the scaled images to a 
pre-selected 166-color set [5]. The second step stores the 
transformed image in a quad tree structure. Texture feature 
extraction requires three steps. The first step transforms the 
64 blocks of 16x16 pixels in to 64 sets of wavelet data 
using a Quadratic Mirror Filter (QMF) (2 iterations, 7 sub-
bands). [7][8] Each wavelet data produces seven subbands 
of means and variances; i.e. a 14-element vector. In the 
second step, the texture vectors are then compared to 162-
reference textures from VisTex [7] in the known texture 
table to generate 64 texture indices representing textures 
for blocked data. The third step constructs and stores the 
texture features in a quad tree structure. 

The steps of the quad tree generation are the same for 
both features. The transformed color images and texture-
identification (texture-id) matrices are mapped onto the 
leaves of a quad tree structure. The leaves represent a 
single pixel of the normalized image. Histograms of the 
leaves, which share the same parent nodes, are summed and 
the results are stored at their parent nodes. The process 
continues iteratively for each level until the root has been 
reached. 

C. Data Partitioning and Load Balancing 

To exploit heterogeneous parallelism, we use task and 
machine characteristics to decide which processors the 
tasks should be allocated to. The heterogeneity in the task 
level is the differences of the searching into the feature 
indices and the heterogeneity of the machines includes 
processor power and communication speed. We can 
generalize the load distribution in a mathematical model as 
follows 

Let W be the processing requirements; N be the number 
of processors; and Si be the speed of processor i, then the 
work share of processor i (Li) is defined by: 

In the experiment, we do not allow task and data 
migrations. Since the data size of the index table is very 
large, any feature-index transfers causes a significant 
increase in the computation time. We have measured the 

communication during  periods of low system utilization. 
The average communication time per record is 1.05 
second, which is just slightly less than the computation of 
the slowest machine in the system. Since the physical 
connection of the system uses a bus topology, the 
communication is always performed sequentially. Since the 
data movement would be less than optimal, we decided to 
avoid all data migrations. The network was used for 
gathering the results from each node to the host before 
summarizing final results.  

IV. EXPERIMENTS AND RESULTS 

The cluster environment consists of seven Unix-based 
machines; two Pentium/Linux-based PCs, two Sun Sparc-
20 workstations, and three Sun Ultrasparc I workstations. 
One of Sun Ultrasparc is designated as the host. The MPI 
library is used as the interconnection mechanism. We use 
comparative computational power to classify workstation 
types. Table 1 shows the computational power ratios; the 
ratios are based on the results similarity searching a 
database of 500 images using single- and multi- feature 
storage algorithms. The computational power ratio of a Sun 
Ultrasparc I to a Pentium II PC to a  Sun Sparc-20 is 
3:2:1.8. 

 
TABLE I: COMPUTATIONAL POWER RATIO OF WORKSTATIONS 

 
 Sun 

Ultra-
Sparc I 

Pentium 
II 

Sun 
Sparc 
20 

Color 1.05 1.37 1.54 
Texture 0.51 0.73 0.81 

 
I/O time 
 (seconds) Color& 

Texture 1.35 1.85 1.55 

Color 0.15 0.35 0.45 
Texture 0.09 0.21 0.24 

 
Computational 
time (seconds) Color& 

Texture 0.20 0.50 1.0 

Computational 
power ratio 

 3 2 1.8 

Average 
communica-
tion time 

1.05 

 
In this experiment, image retrieval is performed using 

two features; color and texture. The extracted features are 
derived from database images of 128x128 pixels; each is 
evenly divided into 64 blocks. The quadtree of the 
histograms for each image is made up of 3 levels; 64 leaf 
nodes. We perform two data partitioning schemes based on 
the database of 30,000 images. In the first scheme, the 
database of color and texture histograms is evenly divided 
among workstations, without considering the heterogeneity 
of cluster environment. In the second approach, data 
partitioning is based on the ratio of computational power of 
the workstations. Table 2 shows a data distribution profile 
as a function of the number of processors.  

∑
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TABLE II: DATA DISTRIBUTION ACROSS WORKSTATIONS 

# of image records distributed on each processor  in thesystem  # of 
proces
-sors Ultra P-II Sparc Ultra P-II Ultra Sparc 

1 30K - - - - - - 

2 18K 12K - - - - - 

3 13.2K 8.8K 8K - - - - 

4 9.2K 6.1K 5.5K 9.2K - - - 

5 7.6K 5K 4.5K 7.6K 5K - - 

6 6.1K 4K 3.7K 6.1K 4K 6.1K  

7 5.4K 3.6K 3.3K 5.4K 3.6K 5.4K 3.3K 

 
The results shown in Fig. 2(a) depicts the response time 

of the system as a function of the number of processors 
used to perform the ranking; the selection features are both 
color and texture.  Fig. 2(b) shows as a function of the 
number of processors. As the number of processors used to 
perform the computation increases, the computation time 
decreases significantly. Moreover, the data partitioning 
based on heterogeneity information achieves a higher 
speedup than an even distribution approach. Fig. 3 depicts 
the top-twenty output images on the sorted list when both 
color and texture are used as selection features. 

 
FIG. 2(A): RESPONSE TIMES 

 

 
 

FIG. 2(B): SPEEDUPS  

 
 

 
 
FIG. 3: PERCEPTION OUTPUT; THE SELECTION FEATURES 

ARECOLOR AND TEXTURE. 
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V. CONCLUSTIONS AND FUTURE DIRECTIONS 

 
We introduced a parallel model for multimedia database 

content-based retrievals on a cluster of heterogeneous 
workstations. The model allows the extension of the system 
for the new types of data, new techniques, and new types of 
interest contents with less effort. The experimental results 
show that heterogeneous processing with load balancing 
can reduce retrieval time over a homogeneous approach. 
Data partitioning based on system heterogeneity achieves a 
better response time in comparison with uniform 
distribution of database over a cluster of workstations. Our 
future work will focus mainly on classification technique 
based on multi-resolution structure of the k-tree at different 
levels. Some load balancing and process migration 
techniques are also in our future work. 
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