
A Parallel MPI I/O Solution Supported by
Byte-addressable Non-volatile RAM Distributed

Cache

Artur Malinowski∗, Paweł Czarnul∗, Piotr Dorożyński∗,
Krzysztof Czuryło†, Łukasz Dorau†, Maciej Maciejewski† and Paweł Skowron†

∗Gdansk University of Technology, Gdansk, Poland

Email: artur.malinowski@pg.gda.pl, pczarnul@eti.pg.gda.pl, piotr.dorozynski@pg.gda.pl
†Intel Technology Poland Sp. z o.o., Gdansk, Poland

Email: {krzysztof.czurylo, lukasz.dorau, maciej.maciejewski, pawel.skowron}@intel.com

Abstract—While many scientific, large-scale applications are
data-intensive, fast and efficient I/O operations have become of
key importance for HPC environments. We propose an MPI I/O
extension based on in-system distributed cache with data located
in Non-volatile Random Access Memory (NVRAM) available in
each cluster node. The presented architecture makes effective
use of NVRAM properties such as persistence and byte-level
access behind the MPI I/O API. Another advantage of the
proposed solution is making development of a parallel application
easy and efficient as a programmer just needs to use the well
known MPI I/O data model and API while efficient file access
is automatically provided without a need for application level
optimizations like avoiding frequent operations on a small data.
Results of experiments obtained with three different applications
suggest, that the extension significantly reduces file access time,
especially for small I/O operations. By locating cache facilities
on computing nodes, the extension decreases load of file system
servers and makes I/O scalable.

I. INTRODUCTION

S
IZES of high performance computing systems are steadily

growing. The currently most powerful cluster Tianhe-2

on the TOP5001 list features 3120000 cores and 1,024,000

GB total memory. It should also be noted that while clusters

are larger and larger and potentially allow for higher speed-

ups, there are more and more cores and nodes involved in

processing and the probability of failure increases. From this

point of view, especially in terms of data processed by such

applications, there is a need for reliable and large storage so-

lutions that would support execution of such applications. The

Message Passing Interface (MPI) standard [1], [2] includes an

MPI I/O part that specifies an API for a parallel application

to read and write a single file from many processes. Firstly,

the API allows both reading/writing data from individual

processes or in a collective manner. Secondly, it allows using

explicit offsets, individual or shared file pointers.

Within this paper, motivated by possibility of better I/O

performance thanks to NVRAM in HPC environments, we

propose wrappers over selected MPI I/O API functions using

The research in the paper was supported by a Grant from Intel Technology
Poland.

1http://top500.org/system/177999

distributed persistent memories in cluster nodes and then com-

pare the performance of the proposed solution with hardware-

based simulation of persistent memory to performance of

the same MPI application using OrangeFS in a real cluster

environment.

II. RELATED WORK

While great effort is put into increasing computational

power of supercomputers, many data-intensive applications

suffer from insufficient I/O operations performance. Speeding

up access to storage devices by applying best practices widely

proposed in data centers [3], [4], [5] introduces additional

overhead for development process, connected with tuning

up the application both for each MPI implementation and

Parallel File System (PFS). This leads to the conclusion, that

a reasonable way would be to apply a generic solution that is

suitable for many applications.

Many performance oriented MPI I/O solutions base on

the idea of sieving, prefetching and caching data in RAM.

ROMIO, a popular MPI I/O implementation, introduces Two-

Phase I/O – an algorithm that attempts to merge non-

contiguous requests into larger and more contiguous [6]. Tsu-

jita, Y. et al. obtained remarkable improvements by extending

Two-Phase I/O even further, by using multiple threads [7].

Other researchers are focused on new MPI I/O implementa-

tions [8] or improvements in PFS [9][10]. The extensions of

this kind, however, do not consider possibilities offered by

emerging hardware technologies.

A significant group of proposed PFS improvement ideas,

that could be easily customized to benefit from NVRAM

properties, concerns, among other things, cooperative caching.

In 1994, Michael D. Dahlin et. al. prepared a survey of

different cooperative caching algorithms and showed perfor-

mance impact of their incorporation into file systems [11]. The

described caching strategies are the base for many modern

approaches. Our solution differs from others e.g. zFS file

system [12] or Novel Distributed Memory File System [13] in

management strategy, as we want to avoid central management

because of its poor scalability while increasing the number of

Position Papers of the Federated Conference on Computer

Science and Information Systems pp. 133–140

DOI: 10.15439/2016F52

ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 133

cluster nodes. Several papers have proposed extending MPI

I/O with cooperative caching algorithms that do not rely on

central entity. AHPIOS [14] is an ad-hoc file system, that

can be used alternatively to popular PFS implementations. Its

main features are tight integration with an MPI application

(the client application communicates with a file system using

an MPI communicator), minimal configuration and a single

instance of global registry with size reduced by keeping

metadata minimal. On the other hand, there is no easy method

to access created files outside of MPI. Our solution may

seem to have a lot in common with another research project,

with the mechanism described by Wei-keng Liao et. al. [15],

but partially different assumptions (mainly limited amount of

memory dedicated to cache storage) led to other technical

details. Differences particularly involve splitting cache into

pages replaced in our approach by using constant blocks, a

complex mechanism of locking unnecessary in our architecture

because of request queuing, and a single thread responsible

for handling multiple files – our solution serves multiple files

simultaneously by taking advantage of a single thread per file.

Another topic, that is also important for parallel, especially

long running, applications is checkpointing [16][17]. An appli-

cation can save its work on a disk or in persistent memory and

consequently it can restart from the last known state in case

of a failure. I/O bandwidth is an important factor in reducing

execution time. In 2013, Rajachandrasekar et. al. proposed

CRUISE – in memory file system that speeds up checkpoint-

ing [18]. In this system, each write request data is initially

stored in a pre-allocated persistent memory region, and after

flushed to a PFS or a local file system asynchronously. Perfor-

mance results presented by the authors were really promising,

nevertheless, checkpointing has different characteristics than

operating on a file while performing computations, therefore

it cannot be applied to our solution. In many cases, the main

disparity is connected to a single process operating on a

single file, what reduces complexity of routines responsible for

simultaneous accesses. Other differences in assumptions, that

make checkpointing optimizations inadequate in our solution,

are: strong spatial locality of requests (accessed data is rather

continuous), usually central management of a checkpoint and

focusing much more on optimizations of output operations.

I/O operations are strongly related to storage hardware. In

2009, Mark H. Kryder and Chang Soo Kim evaluated several

memory technologies that are expected to be an alternative

for hard disk drives (HDD) in 2020 [19]. Some investigated

solutions have interesting properties such as non-volatility

and random access (NVRAM), fast read/write access time

and high density (which affects final capacity of a device)

while the price could be still reasonable compared to HDD.

In 2015, Intel Corp. and Micron Technology unveiled 3D

XPoint – non-volatile memory technology expected to be up to

1,000 times faster than NAND, 10 times denser than DRAM

with latency of tens of nanoseconds and possible to be used

as system memory [20], [21]. With declared relatively low

price and expected market release in 2016 [22], 3D XPoint

announcements show, that NVRAM has a potential to be a

true alternative for existing storage technologies soon.

Many MPI I/O extensions benefit from particular stor-

age hardware properties. Shuibing He et al. implemented

Solid State Drive (SSD) cache that improved throughput of

PFS [23][24], however, block data access and long latency of

SSDs cause, that the solution is not able to benefit from all

properties available in NVRAM. Evaluation of NVRAM role

in data-intensive scientific applications was presented by Dong

Li et al. [25] and – independently – Brian Van Essen et al [26],

but papers are based on single node analysis and are focused

rather on extending system memory (heap, stack, global data

segments) than speeding up I/O operations in a distributed

environment. Active NVRAM for I/O staging proposed by

S. Kannan et al. [27], [28] benefits from NVRAM located

within each computing node speeding access to PFS up. While

this solution could be useful in the case considered in this

paper, it does not fulfill our requirement of minimal application

modification understood as keeping the proposed extension

compatible with MPI I/O API. Moreover, the presented exper-

imental results suggest, that this solution is not beneficial for

small data sizes – we assume, that our extension is convenient

for developers in the way it allows to access even very small

data efficiently.

III. MOTIVATIONS

In view of the existing solutions and recent developments

in the area of non-volatile RAM, new solutions could be pro-

posed for parallel applications that could potentially increase

both performance and ease of development of applications

processing potentially large data sets. Specifically:

1) Performance. It is possible to use a collection of dis-

tributed persistent memories in cluster nodes as an ad-

ditional layer of cache between an underlying file system

and an application. It can serve as an intermediate layer

able to store large data sets (larger than in the combined

RAM of cluster nodes) with persistence and possibility

to recover from persistent memory should a failure

occur. Thanks to the relatively low latency of persistent

memory, this should allow a solution with better per-

formance than traditional file systems, especially if an

application would perform reads or writes to far away

spaced locations in a file.

2) Ease of development/programming/data model. Such a

solution with a proper API could in fact be regarded as

a shared (distributed in the underlying implementation),

large memory with persistence and, what is important,

byte level access which is a property of persistent

memory. While block level access would still yield

better performance, even accesses using small blocks or

even bytes could yield much better performance than

traditionally used file systems for parallel applications.

IV. PROPOSED SOLUTION

A. Design

This solution is not another MPI I/O implementation – the

contribution of the paper is a set of wrappers over MPI I/O

134 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

API functions that creates in-app distributed cache between

application and particular MPI I/O implementation. Source

code is written in C using MPI, POSIX Threads API and the

libpmem library responsible for low level NVRAM memory

support [29]. Wrappers incorporate NVRAM usage behind the

MPI I/O API.
The extension requires a specific architecture as shown in

Fig. 1. We assume a cluster with interconnected nodes each

of which allow running processes of an application in parallel.

Each node must be equipped with its own NVRAM storage,

where the cache data is stored. All computing nodes, as in the

regular MPI I/O, must have access to a remote file using a

distributed file system.
A considered file to be accessed using the MPI I/O API is

split into n continuous parts, where n is the number of nodes.

Each part is managed by a single, independent cache manager

running on a dedicated thread as presented in Fig. 2. Cache

managers are mainly responsible for:

• prefetching whole data part – prefetching all of the

required data is possible due to the assumption that the

size of a file is limited to the sum of all NVRAM

capacities in a cluster;

• synchronizing data between cache and file system –

occurs only when the file is being opened, closed or the

synchronization is called explicitly by the application;

• serving read/write requests from all of the processes in

application. Each process is able to determine which

cache manager it should contact. Same file locations can

be accessed by all processes, which, in case of write

requests may require synchronization at the application

level.

The proposed solution has no central management. Each

process knows exactly which cache manager holds the data, so

no additional entity, like dispatcher, is required. Because each

cache part is continuous – instead of being split into blocks

– metadata is kept to a minimum. The cache manager does

not perform any staging optimization – each request is served

as fast as possible by making use of NVRAM byte-addressing

and low latency compared to HDD or SSD. Processing without

a central entity allows to avoid potential bottlenecks, while

simplifying data access, and, rather than introducing smart but

costly data management, it saves CPU time, reduces latency

and makes the solution more independent of specific data

patterns.
Although the proposed extension is not a file system, it

can serve multiple files simultaneously. Each opened file has

its own part of allocated NVRAM, a dedicated thread for a

cache manager and an MPI communicator. Required metadata

(e.g. file path, file size, communicator handler) is stored

within a separate file handler that is returned by a call to the

MPI_File_open function.
A natural advantage of using NVRAM as a cache storage

is its persistent character which is directly linked to the

possibility to recover data after failure, but guaranteeing full

data consistency in a distributed environment requires further

investigation and will be the subject of our next research.

B. Target applications

As presented in Fig. 3a, the solution should be most

beneficial in applications that access small data chunks (gain

from byte addressing) from spread file locations (no drawback

from omitting staging phase). Improved performance is a result

of fast read and write accesses, but prefetching a large amount

of data in the beginning and the need for writing the whole

cache back at the time of closing file introduce overhead

associated with initialization and de-initialization. This leads

to the conclusion, that in order to perform better than the

regular MPI I/O, an application has to access data frequently.

As shown in Fig. 3b, it could be achieved either in very

data-intensive applications, or in long running applications.

However, many scientific applications meet these criteria.

Introducing the file size limitation is not an issue, because

NVRAM capacity multiplied by number of nodes in modern

clusters is expected to be enough for handling files of the sizes

comparable to the SSD based solutions. Our extension is also

scalable, so it is expected to perform well while increasing the

number of processes or nodes. On the other hand, it should

be kept in mind that the total number of processes in an

application results in a certain number of processed served,

on average, by each cache manager in a cluster node.

C. Implementation

Making use of proposed extension in an MPI application

requires two minor changes in source code. The first one

is including file_io_pmem_wrappers.h header that al-

lows to transform each native MPI I/O function call into its

NVRAM cache counterpart. Due to compatibility of function

signatures, calls do not need modifications.

Configuration of the solution is prepared with MPI_Info

parameters passed to MPI_File_open. A minimal configu-

ration requires only one parameter, pmem_path, that points to

an NVRAM device mounted in a local file system. MPI_Info

parameters unrecognized by MPI I/O are ignored, so the cache

could be switched on and off using an include directive.

The extension spawns additional POSIX threads (cache

managers) that use MPI to communicate with the applica-

tion. Therefore, initialization with MPI_Init_thread and

MPI_THREAD_MULTIPLE support are needed. Algorithm 1

shows the idea behind implementation of the cache manager

thread. The listing contains all MPI and NVRAM cache related

calls. The thread is created within MPI_File_open.

An object, that represents a file opened with MPI I/O, is

called a file handler. In our solution, the handler is considered

as a pointer to MPI_File_pmem_structure. Although

the object-oriented programming (OOP) paradigm is not na-

tively provided in the C programming language, we used it

by incorporating into structure both data together with a set

of pointers to functions. Data stored in the structure includes:

• information about the file e.g. name and size,

• handlers responsible for communication with the cache

(MPI communicator),

• cache metadata (number of cache nodes, file offsets

handled by each cache manager),

ARTUR MALINOWSKI ET AL.: A PARALLEL MPI I/O SOLUTION SUPPORTED BY BYTE-ADDRESSABLE NON-VOLATILE RAM DISTRIBUTED CACHE 135

PFS layer (server or multiple servers)

HDD/SSDHDD/SSD HDD/SSD

cache

manager

. . .

cache

manager

MPI

application

computing

node 02

cache

manager

MPI

application

computing

node 01

computing

node n

MPI

application

communication between application and cache manager (MPI I/O API)

communication between cache manager and PFS (MPI I/O API)

regular communication between MPI processes

Fig. 1: Architecture of the multi-node system that utilizes the proposed solution. MPI processes are not included in the diagram.

Fig. 2: Architecture of proposed solution within a single node.

Gray components and dashed connections are transparent to

MPI application developer

• some additional parameters e.g. related with failure re-

covery.

A set of pointers to functions contain a single counterpart

function for each MPI I/O routine. Combining a file with

functions allows for choosing different strategies for different

files which could be potentially beneficial when extending the

method further.

Source code of the solution released under the BSD license,

software documentation and examples are available on GitHub

platform 2.

2https://github.com/pmem/mpi-pmem-ext

V. EXPERIMENTS

A. Testbed Environment

All of the tests were performed on an eight-node cluster,

each node equipped with two Intel R© Xeon R© E5-4620 CPUs,

as well as 32GB of RAM, storage on SSD + HDD together

with both 10 Gigabit Ethernet (10GbE) and Infiniband con-

nections.

A single node was responsible for application execution,

gathering the results and hosting a PFS server, the other 7

nodes for parallel application execution. OrangeFS 2.8.7 (for-

mer: PVFS2)3 compiled with Infiniband support was chosen

as PFS, because of relatively good performance [30]. MPICH

3.1.4 with ROMIO4 was installed on seven computing nodes

as an MPI IO implementation. OrangeFS stored both data and

metadata on SSD. Nodes were communicating with each other

using 10GbE, all of the Infiniband bandwidth was used to

provide fast file access. In most experiments each computing

node ran 15 processes – with 16 physical cores on a single

node it left a spare core for a PFS thread.

RAM in each of seven computing nodes was split into

two parts: regular system memory (15GB) and storage for

NVRAM simulation (17GB). Amount of NVRAM memory

does not influence performance, because the cache manager

would use only as much NVRAM, as the size of its cache

part. The NVRAM simulation part was visible in the operating

system as an ext4 file partition using The Persistent Memory

Driver and ext4 Direct Access (DAX)5. DAX provided a way

3http://www.orangefs.org/
4https://www.mpich.org/
5https://www.kernel.org/doc/Documentation/filesystems/dax.txt

136 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

strong
(continuous blocks)

no
(spread locations)

spatial locality of read/write operations

big

smalls
iz

e
 o

f
s
in

g
le

 d
a
ta

 c
h
u
n
k

low

high

p
e
rf

o
rm

a
n
c
e
 g

a
in

fr
o
m

 t
h
e
 p

ro
p
o
s
e
d
 s

o
lu

ti
o
n

(a)

short long

run time

low

high

I/
O

 i
n
te

n
s
it
y

low

high

p
e
rf

o
rm

a
n
c
e
 g

a
in

fr
o
m

 t
h
e
 p

ro
p
o
s
e
d
 s

o
lu

ti
o
n

(b)

Fig. 3: Plots present properties of the applications, that potentially would benefit most from the proposed solution

to use NVRAM through file system omitting paging, caching

etc., so we noted performance comparable to RAM. To obtain

expected NVRAM properties, we used a hardware simulator

configured with three parameters:

• latency – additional latency to access the data (default:

600ns),

• commit latency – time required to ensure that saved data

is flushed on device (default: 2000ns),

• bandwidth (default: 9.5GB/s).

If it is not explicitly stated in the experiment description,

the simulator was configured with default values.

B. Results

1) Rompio benchmark and tests: Rompio6, software devel-

oped at Los Alamos National Laboratory, is a file I/O per-

formance benchmark with MPI support. Rompio was chosen

because it is able not only to provide a final bandwidth, but

also intermediate values (i.e. time of opening or closing a file)

useful in performance tuning.

Fig. 4 shows execution times of read and write operations

separately, both for NVRAM cache based extension and

regular MPI I/O. In this test, the proposed extension is better

for small data chunks (up to 1024B), while the regular MPI

implementation has better results for larger data.

2) Discussion: The reason for execution time growth that

occurs in this case is related to the specific design of the

benchmark i.e. the size of a file increases linearly with the

size of data chunk, the number of operations and the number

of processes. A significant part of execution time of the

code using this solution is consumed on opening and closing

the file, as it prefetches data into cache, so this extension

benefits mostly for long-running applications with many read

and accesses on an open file. While the benchmark is very

configurable, it does not allow to use a fixed size of a file.

Bandwidth calculated with values that neglect time con-

sumed by opening and closing the file is presented in Fig. 5

which shows much better values for the NVRAM based

6http://www.osti.gov/scitech/biblio/1231008-rompio

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 10 100 1000 10000

e
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

single operation data chunk [B]

regular - write
regular - read

NVRAM cache - write
NVRAM cache - read

Fig. 4: Rompio benchmark execution time results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000

b
a
n
d
w

id
th

 [
M

B
/s

]

single operation data chunk [B]

regular - write
regular - read

NVRAM cache - write
NVRAM cache - read

Fig. 5: Rompio benchmark bandwidth results

ARTUR MALINOWSKI ET AL.: A PARALLEL MPI I/O SOLUTION SUPPORTED BY BYTE-ADDRESSABLE NON-VOLATILE RAM DISTRIBUTED CACHE 137

Algorithm 1 Cache manager routine

i n i t _ c a c h e () ; / / a l l o c a t e NVRAM memory

/ / p r e f e t c h p a r t o f f i l e , t h a t

/ / cache manager i s r e s p o n s i b l e f o r

M P I _ F i l e _ r e a d _ a t () ;

whi le (t ru e) {

MPI_Probe () ;

s w i t ch (p r o b e _ s t a t u s . MPI_TAG) {

cas e READ_AT_REQUEST_TAG :

MPI_Recv () ; / / g e t read r e q u e s t

r e a d _ f r o m _ c a c h e () ;

MPI_Send () ; / / send b y t e s from cache

break ;

cas e WRITE_AT_REQUEST_TAG :

MPI_Recv () ; / / g e t w r i t e r e q u e s t

w r i t e _ i n t o _ c a c h e () ;

c a c h e _ f l u s h () ; / / f l u s h i n t o NVRAM

break ;

cas e SYNC_TAG:

MPI_Recv () ; / / g e t s yn c r e q u e s t

M P I _ F i l e _ w r i t e _ a t () ; / / f l u s h

/ / i n t o PFS

break ;

cas e SHUTDOWN_TAG:

MPI_Recv () ; / / g e t shutdown r e q u e s t

M P I _ F i l e _ w r i t e _ a t () ; / / f l u s h

/ / i n t o PFS

d e i n i t _ c a c h e () ;

re turn ;

/ / a n o t h e r c a s e s

}

}

solution. As a consequence, in order to achieve a better overall

execution time compared to a standard solution, as shown in

Fig. 4, the NVRAM based proposed solution needs a high ratio

of the time spent on read/write operations compared to the

initialization/finalization time spent on open/close operations.

The large bandwidth drop between data chunk of 512B and

1024B is caused by inefficiency of asynchronous writing. In

the proposed extension, small write requests end immediately

after being submitted and then the cache manager is perform-

ing an actual writing procedure. However, for constant requests

frequency, writing bigger chunks consumes more time, so

consecutive requests have to queue.

3) 2D map search and tests: 2D map search is a geometric

SPMD type application for searching throughout a 2D map

stored in a file. The goal of this application is as follows:

search throughout the map for pixels that meet certain criteria

and – after a pixel/object meeting a criterion has been found

– a part of its immediate surrounding in a selected direction

is searched up to a predefined radius or until a given number

of pixels meeting another criterion is found. An exemplary

application of such an algorithm may be searching for spread-

ing of pollution in farmlands with wind blowing in a certain

direction. The application can read the data byte by byte (naive

approach, but fastest in development) or use block reading with

blocks of a predefined size.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

e
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

input size [kB]

regular
regular - blocked

NVRAM cache
NVRAM cache - blocked

Fig. 6: 2D map search results according to input size (105

processes, 512B block size)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12 14 16

s
p
e
e
d
u
p

number of processes per node

NVRAM cache
NVRAM cache - blocked

Fig. 7: 2D map search speedup according to number of

processes per each of seven nodes (map size: 100MB)

Fig. 6 shows, that for this application the proposed extension

performed better than regular MPI I/O, when the size of a file

138 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

 0

 50

 100

 150

 200

 250

 300

 350

 150 200 250 300 350 400 450 500 550 600

e
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

memory latency [ns]

NVRAM cache,
memory bandwidth: 37GB/s

NVRAM cache - blocked,
memory bandwidth: 37GB/s

NVRAM cache,
memory bandwidth: 9.5GB/s

NVRAM cache - blocked,
memory bandwidth: 9.5GB/s

Fig. 8: 2D map search execution time with different NVRAM

simulation platform configurations (map size: 100MB)

was greater than 100 KBs (execution time with smaller maps

is determined by operations unrelated to I/O). Fig. 7 presents

speedup according to the number of processes respectively. 2D

map search does not perform any time consuming calculations,

execution time is mainly based on I/O operations.

4) Discussion: With regular MPI I/O, the application does

not scale because from the PFS perspective, the number and

sizes of requests are constant. On the other hand, the proposed

extension is scalable – each additional node reduces average

load for a single node. Different NVRAM simulation platform

configurations do not influence the performance, which is

shown in Fig. 8. Taking into consideration file size 100MB,

the number of nodes equal to 7, file size per node equal

to 100MB

7
≈ 14MB, potential difference between latencies

450ns, for byte level access we can compute the overhead of

450ns · 14MB

1B
≈ 6.3s which constitutes 2.4% of execution

time. For 512B blocks we can compute a theoretical overhead

of 450ns · 14MB

512B
≈ 12ms while for reference for SSD with

512B block, 0.1ms· 14MB

512B
≈ 2.7s. In test runs, we did observe

differences in times varying from run to run, in the order of

this overhead, coming most likely from file system operations

and consequently such overhead is not exposed in the chart.

5) Random walk microbenchmark and tests: A third group

of experiments was performed with an application not as

data-intensive as Rompio or 2D map search, created in order

to check whether the solution could be useful in programs

where file operations consume less amount of time compared

to the application running time. This microbenchmark is a

constrained version of a random walk algorithm. In each

step a data chunk is read, the application performs some

selected computations (about a million iterations of Collatz

conjecture), and the chunk is written back.
6) Discussion: Results presented in Fig. 9 show, that if

the ratio of read/write to open/close operations is relatively

high, the solution performs better than regular MPI I/O. The

dependence shows, that the potential target of the extension

is not only a set of data-intensive applications that operate on

relatively small data chunks. Programs of a less data-intensive

character and operating on bigger data chunks can also

benefit from the solution if only they run long enough to

compensate the overhead for initialization and de-initialization

of NVRAM cache.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 10000 20000 30000 40000 50000 60000 70000

e
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

number of iterations

regular
NVRAM cache

Fig. 9: Random walk microbenchmark execution time results

(input file size: 10GB)

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new parallel MPI I/O so-

lution implemented by our group, including implementation

and tests, supported by byte-addressable non-volatile RAM

distributed cache. We demonstrated improvements of I/O oper-

ations’ performance in a cluster environment using NVRAM.

We proposed an MPI I/O extension based on distributed cache

in NVRAM, not only for improvement of performance, but

also to make application the development process easier by

allowing accessing small data chunks efficiently using the

MPI I/O data model and API. The solution was tested on

a cluster equipped with a hardware NVRAM simulator using

three different applications: an MPI I/O benchmark, searching

throughout a 2D map stored in a file and a microbenchmark

based on a random walk algorithm combined with Collatz

conjecture. The results confirmed, that in tested applications

in a cluster with hardware simulated NVRAM the proposed

solution significantly improves performance of small I/O op-

erations, compared to a standard MPI implementation on a

typical cluster without NVRAM.

In the nearest future we plan to extend the method further

and test selected optimizations. The next step is to test the

solution with more applications. At the time of writing, a sim-

ulation of tornadoes moving across an area is being prepared.

ARTUR MALINOWSKI ET AL.: A PARALLEL MPI I/O SOLUTION SUPPORTED BY BYTE-ADDRESSABLE NON-VOLATILE RAM DISTRIBUTED CACHE 139

We also plan on using this approach for parallelization of pro-

cessing of many images extending the work performed in [31]

for parallelization of image processing within GIMP using an

NVRAM-assisted MPI based solution. Although the proposed

distributed cache is always persistent and can be recreated

after a failure, additional set of tests, performance tuning and

further research of data consistency are also planned.

REFERENCES

[1] Message Passing Interface Forum, “MPI: A Message-Passing Inter-
face Standard Version 3.1,” June 2015, http://www.mpi-forum.org/docs/
mpi-3.1/mpi31-report.pdf.

[2] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using Advanced MPI:

Modern Features of the Message-Passing Interface (Scientific and Engi-

neering Computation). The MIT Press, 2014, ISBN 978-0262527637.
[3] P. Wautelet, “Best practices for parallel IO and MPI-IO hints,”

March 2015, http://www.idris.fr/media/docs/docu/idris/idris_patc_hints_
proj.pdf.

[4] B. Hadri, “Introduction to Parallel I/O,” October 2011, https://www.olcf.
ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf.

[5] N. H.-E. C. Program, “Lustre Best Practices,” August 2015, http://www.
nas.nasa.gov/hecc/support/kb/lustre-best-practices_226.html.

[6] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective
I/O in romio,” Frontiers ’99 - Seventh Symposium On Frontiers

Massively Parallel Computation, Proc., pp. 182–189, 1999. doi:
10.1109/FMPC.1999.750599. [Online]. Available: http://dx.doi.org/10.
1109/FMPC.1999.750599

[7] Y. Tsujita, K. Yoshinaga, A. Hori, M. Sato, M. Namiki, and
Y. Ishikawa, “Multithreaded Two-Phase I/O: Improving Collective
MPI-IO Performance on a Lustre File system,” 2014 22nd Euromicro

Int. Conference On Parallel, Distributed, Network-based Processing

(pdp 2014), pp. 232–235, 2014. doi: 10.1109/PDP.2014.46. [Online].
Available: http://dx.doi.org/10.1109/PDP.2014.46

[8] A. Hori, K. Yamamoto, and Y. Ishikawa, “Catwalk-ROMIO: A
Cost-Effective MPI-IO,” 2011 IEEE 17th Int. Conference On

Parallel Distributed Systems (icpads), pp. 120–126, 2011. doi:
10.1109/ICPADS.2011.40. [Online]. Available: http://dx.doi.org/10.
1109/ICPADS.2011.40

[9] F. Wang, Y. Chen, S. Li, F. Yang, and B. Xiao, “The design of data
storage system based on lustre for {EAST},” Fusion Engineering and

Design, pp. –, 2016. doi: 10.1016/j.fusengdes.2016.04.002. [Online].
Available: http://dx.doi.org/10.1016/j.fusengdes.2016.04.002

[10] S. A. Wright, S. D. Hammond, S. J. Pennycook, I. Miller, J. A.
Herdman, and S. A. Jarvis, “Ldplfs: Improving I/O Performance
Without Application modification,” 2012 IEEE 26th Int. Parallel

Distributed Processing Symposium Workshops & Phd Forum (ipdpsw),
pp. 1352–1359, 2012. doi: 10.1109/IPDPSW.2012.172. [Online].
Available: http://dx.doi.org/10.1109/IPDPSW.2012.172

[11] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson,
“Cooperative caching: Using remote client memory to improve file
system performance,” in Proceedings of the 1st USENIX Conference on

Operating Systems Design and Implementation, ser. OSDI ’94, 1994.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267638.1267657

[12] A. Teperman and A. Weit, “Improving Performance of Distributed File
System Using OSDs and Cooperative Cache,” IBM Haifa Labs, 2004.

[13] U. Karnani, R. Kalmady, P. Chand, A. Bhattacharjee, and B. S.
Jagadeesh, “Design and Implementation of a Novel Distributed
Memory File System,” ser. Communications in Computer and
Information Science, vol. 133, no. III, 2011. doi: 10.1007/978-3-642-
17881-8_14 pp. 139–148, 1st International Conference on Computer
Science and Information Technology, 2011, India. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-17881-8_14

[14] F. Isailå, J. G. Blas, J. Carretero, W.-k. Liao, and A. Choudhary,
“AHPIOS: An MPI-Based Ad Hoc Parallel I/O System,” in Parallel

and Distributed Systems, 2008. ICPADS’08. 14th IEEE International

Conference on. IEEE, 2008. doi: 10.1109/ICPADS.2008.50 pp. 253–
260. [Online]. Available: http://dx.doi.org/10.1109/ICPADS.2008.50

[15] W.-K. Liao, K. Coloma, A. Choudhary, and L. Ward, “Cooperative
Client-Side File Caching for MPI Applications,” Int. J. High

Perform. Comput. Appl., vol. 21, no. 2, pp. 144–154, May
2007. doi: 10.1177/1094342007077857. [Online]. Available: http:
//dx.doi.org/10.1177/1094342007077857

[16] P. Czarnul and M. Frączak, Recent Advances in Parallel Virtual

Machine and Message Passing Interface: 12th European PVM/MPI

Users’ Group Meeting Sorrento, Italy, September 18-21, 2005.

Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
ch. New User-Guided and ckpt-Based Checkpointing Libraries for
Parallel MPI Applications„ pp. 351–358. ISBN 978-3-540-31943-6.
[Online]. Available: http://dx.doi.org/10.1007/11557265_46

[17] P. Dorożyński, P. Czarnul, A. Malinowski, K. Czuryło, Ł. Dorau,
M. Maciejewski, and P. Skowron, “Checkpointing of Parallel MPI
Applications using MPI One-sided API with Support for Byte-
addressable Non-volatile RAM,” Procedia Computer Science, vol. 80,
pp. 30 – 40, 2016. doi: 10.1016/j.procs.2016.05.295 International
Conference on Computational Science 2016, June 2016, USA. [Online].
Available: http://dx.doi.org/10.1016/j.procs.2016.05.295

[18] R. Rajachandrasekar, A. Moody, K. Mohror, and D. Panda, “A 1PB/s
File System to Checkpoint Three Million MPI Tasks,” June 2013.

[19] M. H. Kryder and C. S. Kim, “After Hard Drives — What Comes
Next?” Magnetics, IEEE Transactions on, vol. 45, no. 10, pp.
3406–3413, Oct 2009. doi: 10.1109/TMAG.2009.2024163. [Online].
Available: http://dx.doi.org/10.1109/TMAG.2009.2024163

[20] Intel Corporation, “Intel and Micron Produce Break-
through Memory Technology,” July 2015, http://newsroom.
intel.com/community/intel_newsroom/blog/2015/07/28/
intel-and-micron-produce-breakthrough-memory-technology.

[21] ——, “3D XPoint Technology Revolutionizes Storage
Memory,” July 2015, http://www.intel.com/content/www/us/en/
architecture-and-technology/3d-xpoint-technology-animation.html.

[22] ——, “Introducing Breakthrough Memory Technology,” July 2015,
http://www.intel.com/content/www/us/en/architecture-and-technology/
non-volatile-memory.html.

[23] S. He, X.-H. Sun, and B. Feng, “S4d-cache: Smart Selective SSD
Cache for Parallel I/O systems,” 2014 Ieee 34th Int. Conference On

Distributed Computing Systems (icdcs 2014), pp. 514–523, 2014. doi:
10.1109/ICDCS.2014.59. [Online]. Available: http://dx.doi.org/10.1109/
ICDCS.2014.59

[24] S. He, Y. Wang, and X.-H. Sun, “Improving Performance of
Parallel I/O Systems through Selective and Layout-Aware SSD
Cache,” IEEE Transactions on Parallel and Distributed Systems,
2016. doi: 10.1109/TPDS.2016.2521363. [Online]. Available: http:
//dx.doi.org/10.1109/TPDS.2016.2521363

[25] D. Li, J. S. Vetter, G. Marin, C. McCurdy, C. Cira, Z. Liu,
and W. Yu, “Identifying Opportunities for Byte-Addressable Non-
Volatile Memory in Extreme-ScaleScientific applications,” 2012 Ieee

26th Int. Parallel Distributed Processing Symposium (ipdps), pp.
945–956, 2012. doi: 10.1109/IPDPS.2012.89. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2012.89

[26] B. V. Essen, R. Pearce, S. Ames, and M. Gokhale, “On the role
of NVRAM in data-intensive architectures: an evaluation,” 2012

Ieee 26th Int. Parallel Distributed Processing Symposium (ipdps),
pp. 703–714, 2012. doi: 10.1109/IPDPS.2012.69. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2012.69

[27] S. Kannan, A. Gavrilovska, K. Schwan, D. Milojicic, and V. Talwar,
“Using Active NVRAM for I/O Staging,” in Proceedings of

the 2Nd International Workshop on Petascal Data Analytics:

Challenges and Opportunities, ser. PDAC ’11. ACM, 2011.
doi: 10.1145/2110205.2110209. ISBN 978-1-4503-1130-4 pp. 15–22.
[Online]. Available: http://dx.doi.org/10.1145/2110205.2110209

[28] S. Kannan, D. Milojicic, V. Talwar, A. Gavrilovska, K. Schwan, and
H. Abbasi, “Using Active NVRAM for Cloud I/O,” in Proceedings of

the 2011 Sixth Open Cirrus Summit, ser. OCS ’11. IEEE Computer
Society, 2011. doi: 10.1109/OCS.2011.12. ISBN 978-0-7695-4650-6
pp. 32–36. [Online]. Available: http://dx.doi.org/10.1109/OCS.2011.12

[29] NVM Library team at Intel Corporation, led by Andy Rudoff, “pmem.io
Persistent Memory Programming,” http://pmem.io/nvml/libpmem/.

[30] J. M. Kunkel and T. Ludwig, “Performance evaluation of the PVFS2
architecture,” 15th Euromicro International Conference On Parallel,

Distributed And Network-based Processing, Proceedings, pp. 509–516,
2007.

[31] P. Czarnul, A. Ciereszko, and M. Fraczak, “Towards efficient parallel
image processing on cluster grids using gimp,” in Computational Science

- ICCS 2004, ser. Lecture Notes in Computer Science, M. Bubak,
G. van Albada, P. Sloot, and J. Dongarra, Eds. Springer Berlin
Heidelberg, 2004, vol. 3037, pp. 451–458. ISBN 978-3-540-22115-9.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-24687-9_57

140 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

