
A parallel multi-block Navier-Stokes solver on

distributed memory machines

G. Manzini, L. Stolcis

TV. &mro 70, OP723

Abstract

This work describes the development of a parallel communication strategy
on distributed memory platforms and its application to a Navier-Stokes
solver for compressible fluid flows. In the present method, distributed mes-
sage passing libraries are used in order to allow inter -processor communi-
cations. In particular, the implementation on the IBM-9076 SP1 available
at CRS4 has been performed using the native IBM message-passing library
[3] in order to enhance the usage of the inter-processor switch.

1 Introduction

Computational Fluid Dynamics (CFD) has reached a certain degree of
maturity and numerical methods based on the solution of the Reynolds-
averaged Navier-Stokes equations are widely used for the simulation of tur-
bulent compressible flows. However, such simulations are computationally
intensive and require the use of modern supercomputers in order to be
effectively used within an industrial environment. Accurate and realistic
simulations of engineering problems, require considerable computer mem-
ory and CPU time. Between these two requirements there is generally a
trade-off. In fact, a code designed to minimize the memory allocation will
have prohibitive CPU-times. Vice- versa, if one tries to keep the computa-
tional time at a minimum level, there will be severe restrictions concerning
the maximum mesh size that can be used, and, hence, the spatial accuracy
of the solutions to be computed.

The introduction of parallel computers, together with new programming
methodologies based upon distributed memory environments, has given a

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

188 High-Performance Computing in Engineering

relevant impulse to the development of high-performance computational
methods. The main objective of the present work is to show that an ex-
plicit multi-block structured code can be easily and efficiently extended to
distributed memory environments, [4]. The starting point of the present
work has been an existing software for the solution of the Navier-Stokes
equations for compressible fluid flows developed at CRS4 and named Thar-
ros [5]. The program solves a mixed parabolic-hyperbolic system of PDEs
which express the basic physical principles of conservation of mass, momen-
tum and energy, which are completed with an additional algebraic equa-
tion of state for the pressure, and the Fourier's law, to relate heat flux to
temperature gradients, see [2]. For turbulent flows, an eddy-viscosity ap-
proach has been employed, and the total viscosity is evaluated as the sum
of a laminar- and a turbulent viscosity. Two different turbulence models
has been implemented: an algebraic model (Baldwin-Lomax), and a two
equation k-e. The spatial discretization is performed with a structured fi-
nite volume 2'̂ -order scheme (both upwind and symmetric TVD schemes
have been implemented), and an explicit multistage Runge-Kutta method
is used to advance the solution in time. For steady state-solutions, accel-
eration techniques such as local time-stepping are implemented to provide
numerical efficiency and to increase the convergence rate. The turbulent
transport equations employed for the k — c model are solved in an implicit
way in order to enhance stability and convergence [1]. A sequential multi-
block approach has been originally chosen for the implementation in order
to allow the treatment of complex geometry.

2 Parallel strategy

In the present work we have adopted a coarse-grain approach for the par-
allelization of our CFD solver. Different approach are also possible, for
example tuning the code at a do-loop level (fine-grain parallelization). On
massively parallel SIMD platform, such as the CM-200 or CM-5, this is
managed in a transparent way using sophisticated programming languages
like Fortran 90 or HPF. On MIMD machines like shared memory system
(Convex, Cray) and virtual shared memory systems (BBN, KSR) the par-
allel tuning of do-loops is provided by some compiler directives that must
be specified by the user or by some "ad hoc" extension of the standard
Fortran. It is still an open question which is the best strategy, the answer
depending on too many factors. It is undoubtedly true that this latter type
of parallelism could demand a substantial rewriting of parts of the code.
On the contrary, a sequential multi-block code can be easily parallelized
with minor modifications, by simply adding a set of high-level routines to
manage communications in a multiprocessor environment. The basic idea
relies on the fact that in an explicit multi-block solver, the global domain is

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

High-Performance Computing in Engineering 189

Figure 1: A block with its dummy cells

partitioned into blocks whose update is independent. This intrinsic paral-
lelism can be directly exploited by defining a correspondence between blocks
and processors. The stencil required to update flow variables inside a giyen
cell has a limited local spatial extension, because information propagates
with a finite velocity. For the cells close to an internal boundary, that is a
boundary shared by two adjacent blocks, a part of the computational stencil
falls outside the block and inside a neighbouring one. Hence, the update
of each block requires the knowledge of the values taken by the flow vari-
ables inside a region larger than a single block but much smaller than the
global domain of computation, as shown in Figure 1. If this latter block is
treated by a different processor, it is necessary to establish a communication
through message passing send-receive primitives. Finally, the global solu-
tion is obtained by "putting together" the local solutions of all the blocks.
The original code has been designed to advance the solution in time by se-
quentially running one block at a time and the exchange of informations is
performed via a simple copy procedure in a dummy cell data structure. The
parallel implementation differs from the sequential one for a set of routines
which manage via send-receive primitives this exchange of information.

3 Parallel Implementation Details

3.1 Load Balancing Consideration

The parallel efficiency is strongly affected by the mapping of blocks on pro-
cessors. Unfortunately, it is very difficult to develop an algorithm which
automatically maps blocks on processors in an optimal way. Hence, the
user is required to supply such a mapping as an input data file. The infor-
mation to be given by the user are limited to the number of blocks treated
by each process in a global numbering system and a corresponding local
number on the processor to which the block has been assigned. A one-to-
one mapping is usually considered in parallel solvers, but we generalized
this approach in order to allow more than one block on any processor. Two
main reasons justify this strategy: the mapping block-to-processor is incle-

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

190 High-Performance Computing in Engineering

O O

Figure 2: Send operation Figure 3: Receive operation

pendent from the number of processors available, and allows an easy control
of load-balancing on the processors, by suitable re-distribution of blocks on
the processors available. Such a generalized block-processor mapping al-
lows the runs to be independent from the number of processors effectively
available on the machine. If more blocks than processors are present, some
processes will run in multi-block mode treating more than one block. Fur-
thermore, this approach also allows a restart with a number of processors
different from the previous run. Moreover, this feature provides an easy
way to control the load balancing. When several blocks with different sizes
are present due to a complex geometry, these blocks c^n be grouped into
clusters of approximately the same size. In this way a rough balancing of
the computational effort can always be ensured. Finally, we want to stress
that the file defining the distribution of blocks on processors is the only
supplementary input data with respect to the input files for sequential run
required to the user.

3.2 Boundary conditions, connectivities and commu-

nications

The solver sets the boundary conditions at the beginning of each stage of
the Runge-Kiitta cycle by a standard ghost-case technique. Two layers of
dummy cells are used to set the values used by the multi-block solver. The
single-processor version of the code nils these dummy cells by a simple copy
procedure. The parallel version works in the same way when the dummy
cells overlap a block which is assigned to the same process (internal connec-
tivity). When the dummy cells contain values belonging to a block mapped
on a different process, an inter-processor communication is necessary (ex-
ternal connectivity).

Communications are directly managed by the parallel solver through a
communication list, which is based on the distribution of blocks on proces-
sors and block connectivities. This communication list allows an easy-to-use

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

High-Performance Computing in Engineering 191

1
1•c > 2 4

3

Figure 4: Communication among six blocks

way of synchronize the processes during the communication phase. The na-
tive communication library EUI-PE of the SP1/SP2 machine requires such
a synchronization, because the communication buffer is only 128 bytes long.
When the send process starts its send operation, it fills the communication
buffer, and the receiver process must be in receiving mode to empty it. The
send-receive operation stops if the buffer is full. Hence, if the send/receive
operation is not synchronized, the communication falls in deadlock. During
the communication step, every process scans the communication list, and
when a communication in which it is engaged is found, the communication
is started.

The performances are strongly affected by the order if the communica-
tions executed by the code. Therefore, it can be very difficult to develop a
general algorithm able to optimize the communication list. For this reason,
the standard communication list is always built in a sequential way, and
the possibility of reordering the communications is left to the user as a final
tuning of the parallelization. Figure 3.2 shows an example of a possible
reordered communication sequence among six processors. Communications
(1,2.3) and (resp.) (4,5,6) take place simultaneously, optimizing the syn-
chronization delays among processors.

3.3 The I/O operations

All the operations involving I/O on disk are performed by a "master'' pro-
cess identified with id — 0. Hence, all the initialization operations, which
requires to read data from disk, are performed by this process. The master
process initializes itself, by reading all the input data files from disk, with
boundary conditions, mesh, and starting solution, and then it broadcasts
all the starting values and the parameters of the run to the other processes.
Some diagnostics (for example the monitoring of convergence) that are to be
executed during the run requires global computations. Processes perform
partial diagnostics on their local data, which are sent to the master process
to perform the final global diagnostics.

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

192 High-Performance Computing in Engineering

Computational grid Iso-Mach contours

Figure 5: Rae 2822 Airfoil (M^ = 0.734, # = 2.79̂ Re=6500000)

4 Performance measurements

As benchmark for performance measurements, we considered the standard
RAE 2282 aerofoil configuration. The original "C" mesh has been radially
divided in 20 blocks, 16 of size 53 x 65 and 4 of size 49 x 65, with a total
amount of 67870 points. Figure 5 presents the computational mesh and the
final iso-mach contours. Three different calculations of industrial interest
have been taken into account: inviscid flows, viscous laminar flows, and
viscous turbulent flows. Table 1 presents the elapsed time required by the
sequential solver to perform the first 200 iterations in the time-stepping loop
without the start-up time of communications in the initialization phase.

The performances of the 2D multiprocessor solver are reported in Tables
2-4, in term of speed-up and efficiency defined by:

elapsed time on one processor
E//. - ̂.

P
(1)elapsed time on p processors

In the threes cases, times were taken in runs with 1, 2, 5, 10, and 20 pro-
cessors by assigning respectively 20, 10, 4, 2 and 1 blocks to each node. The
ratio between computation and communication time per iteration become
less favorable as the number of processors grows up. Nevertheless, the mea-
sured speed-ups shows a good scalability of the schemes implemented in the
code. As a general trend, increasing the complexity of the physical model
- inviscid —> viscous laminar —>• viscous turbulent - gives better perfor-
mances, due to the increased amount of calculations required per time-step
with respect to the communications.

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

High-Performance Computing in Engineering 193

5 Final Remarks

Our results show that distributed parallel computing is useful for engineer-
ing CFD to reduce the elapsed time for large-scale calculations because of
a good scalability of the schemes generally adopted in computational fluid
dynamics. We have also shown that an explicit multi-block code can easily
be parallelized on a distributed memory machine, exploiting in a direct way
the intrinsic parallelism provided by the partition of the computational do-
mains in independent blocks. It is clear that the present parallel code is only
a starting point. In the future we want to investigate the possibility of using
in a distributed parallel environment more sophisticated schemes for time-
stepping, such as multigrid and implicit time-marching. These latter ones
will allow us to realize more efficient calculations both from a numerical- as
well as from a computational point of view.

References

[1] Davidson, L. Implementation of a k — e model and a Reynolds stress
model into a multi-block code, Appmath Report 93-21, CRS4, Cagliari,
Italy;

[2] Hirsch, C. Numerical computation of internal and external flows , Eng-
land, 1990;

[3] IBM AIX Parallel Environment, Release 1.0, International Businnes
Machines Corporation, 1993;

[4] Manzini, G. and Stolcis, L. Development of a parallel block-structured
Navier-Stokes solver on distributed memory platforms, Appmath Re-
port 94-16, CRS4, Cagliari, Italy;

[5] Mulas, M. (private communication, 1994). CRS4, Cagliari, Italy.

Acknowledgement

The present work has been carried out with the financial support of the
Sardinia Regional Government. Author's names are listed in alphabetic
order.

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

194 High-Performance Computing in Engineering

Table 1: Performances of the 2D solver: time in seconds for 200
iterations on one SPl node for an inviscid, a laminar , and a

turbulent calculation

#Nodes
1

Block per node
20

Euler
2987.4 sees

Laminar NS
4159.5 sees

k-eNS
4427.5 sees

Table 2: Speed-ups and efficiency for Euler solver (inviscid flows)

| #Nodes

2

5
10
20

Block per node

10
4
2

1

Speed-up

1.96
4.56
8.69
15,55

Efficiency |

0.98
0.91
0.87
0.78

Table 3: Speed-ups and efficiency for Navier-Stokes solver
(laminar flows)

P#Nodes | #Block per node

2

5
10
20

10
4
2

1

Speed-up

1.96
4.72
8.91
15.27

Efficiency |

0.98
0.94
0.89
0.76

Table 4: Speed-ups and efficiency for Navier-Stokes solver
(turbulent flows)

| #Nodes

2

5
10
20j

Block per node

10
4
2

1

Speed-up

1.95
4.68
8.95
15,58

Efficiency |

0.97
0.93
0.89
0.78

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

