
 Open access Proceedings Article DOI:10.5244/C.4.68

A Parallel Path Planning Algorithm for Mobile Robots — Source link

Chang Shu, Hilary Buxton

Published on: 01 Jan 1990 - British Machine Vision Conference

Topics: Mobile robot, Motion planning, Cellular automaton, SIMD and Representation (mathematics)

Related papers:

 Path Planning On The Warp Computer: Using A Linear Systolic Array In Dynamic Programming

 Comparison of parallel algorithms for path expression query in object database systems

 Strategies for mapping Lee's maze routing algorithm onto parallel architectures

 Degree-guided map-reduce task assignment with data locality constraint

 A scalable method for parallelizing sampling-based motion planning algorithms

Share this paper:

View more about this paper here: https://typeset.io/papers/a-parallel-path-planning-algorithm-for-mobile-robots-
21vrcm8yon

https://typeset.io/
https://www.doi.org/10.5244/C.4.68
https://typeset.io/papers/a-parallel-path-planning-algorithm-for-mobile-robots-21vrcm8yon
https://typeset.io/authors/chang-shu-1b17blzvkz
https://typeset.io/authors/hilary-buxton-2j03agm32y
https://typeset.io/conferences/british-machine-vision-conference-1gt8zawu
https://typeset.io/topics/mobile-robot-1is55hi3
https://typeset.io/topics/motion-planning-3av3bdsk
https://typeset.io/topics/cellular-automaton-3n083fe0
https://typeset.io/topics/simd-v20hzbk2
https://typeset.io/topics/representation-mathematics-17ztg7v0
https://typeset.io/papers/path-planning-on-the-warp-computer-using-a-linear-systolic-4u0x9n3ghm
https://typeset.io/papers/comparison-of-parallel-algorithms-for-path-expression-query-134j8xor84
https://typeset.io/papers/strategies-for-mapping-lee-s-maze-routing-algorithm-onto-175ej7ggk5
https://typeset.io/papers/degree-guided-map-reduce-task-assignment-with-data-locality-1wh643v0wv
https://typeset.io/papers/a-scalable-method-for-parallelizing-sampling-based-motion-46ooeeacw6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-parallel-path-planning-algorithm-for-mobile-robots-21vrcm8yon
https://twitter.com/intent/tweet?text=A%20Parallel%20Path%20Planning%20Algorithm%20for%20Mobile%20Robots&url=https://typeset.io/papers/a-parallel-path-planning-algorithm-for-mobile-robots-21vrcm8yon
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-parallel-path-planning-algorithm-for-mobile-robots-21vrcm8yon
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-parallel-path-planning-algorithm-for-mobile-robots-21vrcm8yon
https://typeset.io/papers/a-parallel-path-planning-algorithm-for-mobile-robots-21vrcm8yon

A Parallel Path Planning Algorithm for Mobile Robots

Chang Shu and Hilary Buxton

Department of Computer Science

Queen Mary and Westfield College

University of London, El 4NS

This paper presents a path planning algorithm for mobile

robots. We introduce a parallel search approach which is based

on a regular grid representation of the map. The search is

formulated as a cellular automaton by which local inter-cell

communication rules are defined. The algorithm is made

adaptive by utilising a multiresolution representation of the

map. It is implemented on AMT DAP 510, which is a SIMD

machine.

I. Introduction

A primary task in robotics is to plan collision-free path in

cluttered environments. The problem can be stated as: Given

the initial and desired final configurations of an object in two-

or three-dimensional space, and given the description of the

obstacles in the space, determine whether there is a continuous

motion of the object from one configuration to the other, and

find such a motion if one exists.

Previous methods for path planning can be divided into two

categories by the way they model the environment. Methods in

the first category are based on geometric reasoning in which a

precise geometric model of the environment and of the moving

object is required. These kind of models can be obtained from

CAD systems. In this paradigm, path planning is an once-only

off-line process. A great deal of research has been devoted to

this situation, e.g. [1] - [5], [8], [9], [11]. While these methods

are basically designed for manipulator path planning which

requires precise and repeatable paths, they are not suitable for

mobile robots where the requirements are different. A mobile

robot is often equipped with some sensors such as a TV camera

associated with a computer vision system. Its knowledge of the

environment is generally incomplete and imprecise. It has to

plan paths for the area it has seen. Therefore, path planning, in

this case, is an on-line real-time process.

Methods in the second category are designed for mobile

robot path planning. Thorpe[10], Kambhampati and Davis'

melhods[6] belong to this group. In [10] Thorpe uses aregular

grid search method and in [6] Kambhampati and Davis pro-

posed a quadtree representation of the environment. They all

use a computer vision system or image data as sources of the

world model.

Note that all of the above mentioned methods ultimately

reduce the path finding problem to a graph search. For ex-

ample, in the configuration space method[9], the search space

is the visibility graph. Usually, the A*or Dijkstra's algorithm

is used for searching the graph. The main drawback of these

methods is they have a big overhead for the construction of the

vertex graph. The best algorithm so far constructs the graph in

time 0(r) where n is the number of vertices of the obstacles[15].

Another disadvantage is that when working in a complex

environment the search space becomes so huge that it is not

applicable to a real-time mobile robot.

The potential field method[7], which also belongs to the

second category, uses artificial potential field applied to the

obstacles and goal positions and uses the resulting field to

influence the path of the robot which is subject to this potential.

Only very few papers in the literature discuss parallel

algorithms fortheproblem. Witkowski[17] suggested a method

which is based on a cellular representation of the environment

and uses a parallel searching algorithm. More recently,

Steels[12] suggested a similar approach which states the prob-

lem in a more general way by viewing path planning as a

dynamical process[13].

The work described here is an extension to that of Steels. We

propose an adaptive algorithm which plans paths on different

levels of resolution and implement this algorithm in parallel on

a SIMD machine, the AMT DAP510, to give fast execution

time. Section II introduces a cellular representation of the

environment. Section III describes a parallel algorithm for path

planning. In section IV, we give an adaptive path planning

method which uses multiresolution representation of the map.

Finally in section V, we discuss the implementation of the

algorithm and give some experimental results.

In this paper, we focus on two-dimensional path planning

and assume a robot with a symmetric cross-section. Work is

going on to generalising the approach to the asymmetric case.

II. Space Representation

The algorithm presented here tries to formulate the path

planning system as a cellular automaton. Given the binary

image representing the map of the environment as well as the

robot itself, we divide the map into regular square grids. Each

grid represents either a free space area or an obstacle area.

Therefore, the map is transformed into a binary array. Instead

of converting the array into a graph, as in [10], we define

383
BMVC 1990 doi:10.5244/C.4.68

strengths on each grid and then spread the strengths in the

whole area according to some predefined rules. In the next two

subsections, we shall first give a definition of cellular automata

and then define strengths on the grids.

A. Cellular Automata

Cellular Automata are mathematical models of physical sys-

tems in which space and time are discrete. They are generally

used as a tool for investigation of self-organisation and nonlin-

ear dynamical systems[14][16]. In its simplest form a cellular

automaton consists of a line of sites, with each site initially

having a value. It evolves in discrete time steps. At each time

step, the value of each site is updated according to a definite

rule. The new value on each site is specified in terms of the

values of its neighbours. One simple example of a cellular

automaton rule is

where a ^ is the value of site i at time step t.

In this paper, we use a two-dimensional cellular automa-

ton which involves rules based on values of the four neigh-

bourhoods of each site. An example of a two-dimensional

cellular automaton rule is

Since the rule is applied to each site simultaneously at

each time step, it makes a good model for parallel comput-

ers.

B. Strength on the Grids

Returning to the environment map, we create a strength space

upon the map. Each grid in the map has four strengths in the

strength space. They are the strengths to move to the south,

north, west, and east(Figure 1).

Figure 1. The binary map and strengths on a grid

We can use five bits for each grid to denote its state. The first

four bits represent the strengths in the four directions and the

fifth indicates whether the grid is in a free area or in a blocked

area. For example, if 3jj= 10101, it means that the grid ajj has

strength 1 in south and west, and strength 0 in north and east,

and it is a free point. We shall use ajj (N), a^ (S), aj; (E),

and a;: (W) to denote the first four bits of a- •, and use a- • (Free)

to denote the fifth bit.

That a grid has a strength in the north means if the robot were

at the location of the grid, it may move one step to the north, and

similarly for the strengths in the south, west and east. We define

the fifth strength as invariant, i.e.

(t+1) (F r e e) = a . (t) (F r e e) > for ^ j t

III. Spreading the Strengths

In this section, we describe how to search in parallel in the

strength space to find a path. Suppose we have a robot which

has a symmetric cross-section with a radius r in terms of the

number of grids. In order to make the search easy, we first

shrink the robot to a point by growing the obstacles by r grids.

The general strategy is that we first assign strengths to the

immediate four neighbourhood grids of the goal location, and

then diffuse these strengths in parallel in the four directions

according to some rules. Initially, the four neighbourhood

grids are each assigned a strength which points to the goal grid,

as shown in Figure 2(a). The diffusion rules are specified in the

following formula:

jW(

v

(W)>v a^CEree) (1)

(2)

^ (F r e e) (3)

j (t)
j(

t
>(ai+lj

(t)
(S) v ai+lj(

t
>(N)>v a (4)

Rule (1) - (4) specify how to compute the strengths on an

arbitrary grid in one step of the iteration. Rule(l) indicates that

the north strength value on the next step depends on its present

value as well as the east and west strength value of its north

neighbourhood(V and ' A ' represent logical 'or' and 'and'

respectively). It is necessary to consider the east and west

strength when the north strength is diffused because otherwise

the flow of strengths would not be able to avoid the obstacles.

Note that grids in a blocked area cannot acquire any strength in

any direction. Thus rule(l) implies that for any free grid a-at

a certain step of iteration, it acquires a north strength if (a) its

present north strength value is 1, or (b) its north neighbourhood

grid has a north strength, or (c) its north neighbourhood grid has

an east or a west strength. The implications of rule (2) through

(4) should be apparent from the above explanation.

The diffusion process terminates when the starting grid

acquires a strength. Then the robot makes an one-step move

384

G

r
r
r

J

(a) (b)

Figure 2. (a) The initial strength space (b) The configuration of the strength space after two steps of diffusion

according to the strength value on its location grid. If the grid

has strengths in more than one direction, a random choice is

made. Figure2(b) shows the configuration of the strength space

after two steps of diffusion. To make the robot move further

steps towards the goal, the strength space is cleared and repeats

the same process as described above. Figure 3 shows a path

found by the algorithm.

IV. Adaptive Path Planning

When discretising the space into regular cells, we always face

the problem of resolution, i.e. how big a cell should be. The

increase of resolution can be very costly in terms of computa-

tion. However, using a coarse resolution may result in the

report of a longer path, or even worse, may result in failure

report a path when one actually exists. Figure 4 illustrates this

situation.

Our adaptive algorithm makes use of a multiresolution rep-

resentation of the map. First, we apply the diffusion algorithm

to a relatively coarse resolution map. If a path is found, the
Figure 3. A path found by the algorithm

(a)

\

\ 1

V.

(b)

Figure 4. (a) A blocked path in a coarse resolution (b) An open path in a finer resolution

385

algorithm terminates and reports the path. If not, there are two

possibilities; either there is actually no path, or there is a path

in a finer resolution. Instead of going on to work in a finer

resolution immediately, we can decide whether it is possible to

find a path in a finer resolution by working on the present

resolution. This is achieved by growing the obstacles by r-l(r

is the radius of the robot cross-section measuring by the

number of grids), and then apply the algorithm again. If a path

is found, that means it is possible to find a path in a finer

resolution and so we move on to work in a finer resolution. On

the other hand, if no path is reported, wecome to the conclusion

that there is really no path. To see this clearly, we need only to

note that by growing the obstacles by r-1, we get rid of those

cells which are partially occupied by the obstacles but are

represented as blocked cells due to the relatively lower resolu-

tion level. The same process is repeated at each resolution

level. Note that it is worth checking if a path is possible at the

next resolution by repeating the algorithm as above since the

time to do the coarser resolution is only a small friction of the

time to do the finer one.

The above exposition is outlined in Figure 5 where n is

the resolution level.

Procedure Adaptive_Path_Planning(Map, n,r)

while n > 0 do begin

Map <— Grow(Map, r);

Path <- Diffusion(Map);

if Path* Nil then

Output(Path); Return;

else begin

Map <— Grow(Map, r-1);

Path <- Diffusion(Map);

if Path* Nil then

n <— n-1

else

report no path

end

end

Figure 5. Adaptive Path Planning Algorithm

V. Implementation and Experimental Results

The algorithm has been implemented on AMT DAP 510 which

is a SIMD machine and which is an ideal structure for imple-

menting cellular automata. The AMT DAP 510 has a 32x32

array of processors each connected to its four nearest

neighbours(north, south, east, and west) with each processor

having its own memory(Figure 6)

The program is written in DAP Fortran which exploits the

bit serial nature of the individual processors to give fast

execution time for the binary representations. Many computa-

tions are conveniently expressed with the built-in function

'shift', which allows all processors simultaneously get access

to their four neighbours. For example, growing the obstacles by

r simply means shifting r times in four directions.

Figure 6. The structure of the DAP

When working on a map with a resolution of 32x32, each

grid of the map is directly mapped onto the corresponding

processor. When working on resolutions which are greater than

32x32, the map is represented by a few 32x32 matrices.

Parallel instructions are applied on single matrix, while be-

tween matrices, instructions have to be executed repeatedly.

Figure 7 shows a 'worst case' example of path found only at

the finest of the three resolutions. Table 1 presents the timing

results for the running of the algorithm in three resolutions for

the problem shown in Figure 3.

Table 1. Timing summary of the experiment(second)

Resolution

32x32

64x64

128x128

Data conversion

0.0004

0.0031

0.0179

VI. Conclusions

Diffusion

0.0110

3.6276

42.5864

Total

0.0116

3.6321

42.6093

The purpose of this paper has been to demonstrate the utility of

the analogical representation of the environment for an in-

stance of the path planning problem. The representation scheme

is simple because it is directly transformed from the input

image data and makes no use of explicit geometrical features

of the environment. This leads to a parallel algorithm based on

a SIMD structure. The algorithm is modelled by a cellular

automaton which clearly specifies the inter-processor commu-

nications. The algorithm is adaptive so timings vary from

problem to problem but typical times are between 0.01 - 46

seconds in a 3 resolution level version. The algorithm has

applications not only to mobile robot navigation but also to

surveillance problems involving motion analysis where some

element of fast prediction of paths is required.

386

(a) (b)

(c) (d)

Figure 7. (a) The original map (b) Blocked in resolution 1 (c) Blocked in resolution 2

(d) Found a path in resolution 3

387

References

[I] Brooks, R.A., Solving the find-path problem by good

representation of free space, IEEE Trans. Syst. Man Cybern.

13(2) pp. 190-197(1983).

[2] Brooks, R.A. and Lozano-Perez,T., A subdivision

algorithm in the configuration space for find path with

rotation, IEEE Trans. Syst. Man Cybern. 15(2) pp. 224-233

(1985).

[3] Canny, J.F., The complexity of robot motion planning,

Ph.D. Thesis, Department of Electrical Engineering and

Computer Science, MIT, Cambridge, MA (1987).

[4] Canny, J.F., On detecting collisions between polyhedra,

Proceedings of ECAI84, pp533-542(1984)

[5] Canny, J.F., Collision detection for moving polyhedra,

IEEE Trans. PAMI-8, pp200-209 (1986).

[6] Kambhampati, S. and Davis,L.S., Multiresolution path

planning for mobile robots, IEEE J. Robotics and Automa-

tion, vol. RA-2, no.3, (1986)

[7] Khatib, O., Real time obstacle avoidance for manipula-

tors and mobile robots, International Journal of Robotics

Research, 5(1), pp.90-98,(Spring 1986)

[8] Lozano-Perez, T. and Wesley, M.A., An algorithm for

planning collision-free paths among polyhedral obstacles,

Comm. ACM 22 (10) pp560-570 (1979).

[9] Lozano-Perez, T., Spatial planning: A configuration space

approach, IEEE Trans. Comp. vol. C-32, no.2, pp. 108-120

(1983).

[10] Thorpe, C. E., FIDO: Vision and navigation for a robot

rover, CMU-CS-84-168, (1984)

[II] Schwartz, J.T. and Sharir, M., On the piano movers

problem II. General techniques for computing topological

properties of real algebraic manifolds, Courant Institute of

Mathematics, Rept. No. 41, New York(1982).

[12] Steels, L., Steps towards common sense, VUB AI Lab.

Memo 88-3, Brussels (1988).

[13] Steels, L., Artificial Intelligence and complex dynamics,

VUB AI Lab. Memo. 88-2, Brussels (1988a).

[14] Toffoli, T.,and Margolus.N., Cellular Automata Ma-

chines. A new environment for modelling. MIT Press, Cam-

bridge MA (1987)

[15] Welzl, E., Constructing the visibility graph for n line

segments in 0(nfyime, Inf. Process. Lett. 20pp. 167-171 (1985).

[16] Walfram, S., Statistical mechanics of cellular automata,

Review of Modern Physics, vol. 55, no.3 pp. 601-644.(1983)

[17] Witkowski, CM., A parallel processor algorithm for robot

route planning, Proceedings of IJCAI83, pp827-829, (1983)

388

