
A Parallel Processing Approach to

Transition Prediction for Laminar Flow

Control System Design

R. W. FORD 1 AND D. I. A. POLL2

1Centre for Novel Computing, Department of Computer Science, The University of Manchester, Oxford Rd.,

Manchester, Ml3 9PL, U.K.; e-mail: rupert@cs.man.ac.uk
2Department of Engineering, The Unh·ersitx of Manchester, Oxford Rd., Manchester, M 13 9PL, U.K.; e-mail:

diapoll@fsl.eng.man.ac.uk

ABSTRACT

The performance of transport aircraft can be considerably improved if the process by

which the wing boundary layer becomes turbulent can be controlled and extensive

areas of laminar flow maintained. In order to design laminar flow control systems, it is

necessary to be able to predict the movement of the transition location in response to

changes in control variables, e.g., surface suction. At present, the technique which is

available to industry requires excessively long computational time-so long that it is not

suitable for use in the "design process." Therefore, there is a clear need to produce a

systP.m which delivers results in near realtime, i.e., irr seconds rather than hours. This

article details how parallel computing techniques on a KSR-1 produce these perfor

mance improvements. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

In order to sustain an aircraft in straight and level

flight, two fundamental conditions must be satis

fied. The first is that the lifting force generated by

the wings must be equal to the weight and the

second is that the thrust from the engines must be

equal to the drag.

The drag force opposes the motion of the air

cr.aft and acts in the direction of flight. It is made

Received Mav I 994
Revised Dec~mber I 99-t

© 199.5 by John "'iley & Sons. Inc.

Scientific Programming, Vol. 4. pp. 20.3-21? (1995)

CCC 10.58-92H/9.5/0:3020:3-15

up of two components, these being the pressure

drag and the viscous drag. Pressure drag is pro

duced by the variation of the air pressure acting

on the aircraft surface and is closelv related to the

lift force-in fact, it is the penalty that must be

paid to produce the lift. Viscous drag, on the other

hand, is the result of tangential, or shearing

forces, because, as a result of viscosity, air sticks

to the surface.

On a typical transport aircraft in the cruise con

dition, the two components of the drag are ap

proximately equal i.e., 50% of the drag is due to

the action of viscosity. This means that a substan

tial fraction of the fuel which an aircraft carries is

there to overcome viscous drag. It follows that, if

the viscous drag can be reduced, a substantial

saving in fuel and, consequently, operating cost is

possible.

204 FORD A~D POLL

In flight, the effect of air viscosity is confined to

a very thin layer close to the aircraft-the so

called boundary layer. On the surface viscous

forces require that the flow speed must be zero.

However, a few millimeters above the surface the

air must be traveling at almost the fli~ht srwed of

the aircraft.

The motion of air within this thin boundarv

layer takes one of two possible forms. It may set up

a simple, steady flow where each layer of air slips

slowly over its neighbor-this i;;; called the laminar

condition. The alternative is an unsteadv flow with

almost random fluctuations causinf! the various

lavers of air to be mixed violenth· with one an-. .
other-this is the turbulent condition.

l\"ot surprisingly. a turbulent flow produn·,.

more viscous drag than the laminar one-the ratio

is approximately 10: 1. At \cry low speed,-_ f!tm·,.

are always laminar. However. a" spt·Pd is in

creased, there comes a stage at which laminar flow

becomes unstable to the small disturbance,; which

are always present in reality. At hi;.dwr :-pPed,;.

these disturbances are amplified and. wlwn the

amplitudes are sufficiently large. there is a break

down and turbulent flow is produced. -

It follows that. for a ~i,·en aircraft confi;ruration.

there is a flight speed abon· which the !HJundary

layer flow will be turbulent and the viscous draf!

will be large. Cnfortunately. for all but the small

est aircraft. the boundary layers are turbulent in

the cruise condition.

Vntil recently this situation was accepted as

unavoidable and aircraft desil!ns haw been opti

mized on the assumption that boundary layer flow

would always be turbulent. However, it has been

known for over 60 years that. if some of the air in

the boundary layer could be sucked throuf!h the

surface, then the speed at which laminar Jlow be

comes unstable can be increased.

The effect of suction is sufficiently powerful for

laminar flows to be achieved at typical aircraft

cruise conditions when the suction velocitv is onlv . .
0.05% of the flight speed (i.e., only about 10

em/ s!). If suction could be engineered, the drag of

an aircraft could be reduced bv as much as :30%.

This would represent a quantum leap in aircraft

performance since, in the current commercial cli

mate, an aircraft which could deliver a 5% drag

improvement relative to its competitors would

capture the entire market.

There are two major obstacles to the develop

ment of an aircraft which uses the surface suction

technique for laminar flow control (LFC). The first

is the provision of a suitable porous surface

through which the air can be drawn. This has al

ways been a serious problem "ince, in the past.

surfaces which were porous did not hm·e i!oud

load-bearing properties. However. this difficulty is

now effectiveh' resolved because of the recent de

velopment of the laser perforating technique. This

enables traditional aerospace materials-titanium.

aluminium. steeL and t>ven composite materiu,l-to

be drilled with millions of holes as small as ;)() J-tlll

in diameter, placed in any desired pattern. with

any desired spacinf!. This lean's the ~pcond proiJ

Iem which is that. in ordt>r to produce a desif-!11 for

an LFC ;-.vstem. it is JlecPssan· to lw able 10 e,.,ti-. .
mate the conditions under which the boundary

layer flow will undergo a ··tran,.,ition· · from tlw

laminar to turhuknt state . .\lorPo\er. it is Jlt'tTs

sary to be able to produce these estimate~ sufli

ciemly quickly ,.,o that a t'<lll\t'lltional dt·,.if-!11 pro

cess is not slowed do\n1.

The problem of predictinf! the conditions

necessary for the onset of tran,.ition i,- a particu

larly challenging one. In fact. at present. there is

no complete theory for transition. :'\pn·rtlwless.

various semi-empirical methods haYe !wen devel

oped o\·er the years and some are appropriate for

use in design.

Of these. the one which i,; most accurate and

allows for all the important paramett>r;;; i.e .. flow

compressibility (mach number). ,.;urface tempera

ture (heat transfPr). and wall transpiration !suc

tion) is the e' method. This is ba,;ed on an ap

proximate formulation of the stability problem fur

a bound an· lavPr which. when solved bv a sttitahle . . .
numerical technique. produces dispersion rela

tions for the unsta],]e disturbances. These rela

tions are used to track the disturbance amplitude

development and an empirical critPrion is u,-ed to

determine the breakdown (transition onset) condi

tion.

However. while the e' technique allows for all

the physical effects which can influence tranf'i

tion, it requires a great deal of computation-so

much so that the elapse time between predictions

is far too long for it to be described as a design

tooL One possible solution to this problem is the

application of parallel computing techniques.

This article chronicles the parallelization of a

laminar to turbulent transition prediction code,

de,eloped by the LFC group. in the Department

of Engineering, at the Cniwrsity of .\lanchester.

Section 2 introduces modeling techniques for

the onset of turbulence and Section 3 describes

the parallelism inherent in the solution method.

Section 4 introduces the KSR-1 and discusses

both the scalar optimization,; and parallelization

method;; used. Finallv, Section;) summarizPs dw

main conclusions of tiw article and SPction b di,..;

cus:;es future "·ork.

2 ALGORITHM DESCRIPTION

2.1 Solution Methods

The «eneral problem of predicting the onset of
~ ~ . 1

transition in a flow is extremely complex. Stnct y

speaking. the complete approarh requires the full

unsteadv 1\avier-Stokes equations to be solved

for a ra~ge of di,.;turbance:;, which span the com

plete spectrum of freestream fluctuation:;. surface

roughness, surface ,·ibration. and sound. Such a

calculation would have to be performed with very

fine resolution of len~h and time scale:; and it

would be necessary to specify every possible form

of disturbance in order to ascertain which were

amplified most rapidly . .\loreover. the computa

tions would have to be carried out sufficiently far

downstream to capture the nonlinear processes

which lead to laminar flow breakdown and the

ultimate establishment of turbulent flow. Even

with the most powerful machines currently avail

able. such calculations are only possible for sim

ple flows under highly restrictive and ultimately

unrealistic conditions. e.g .. fully developed pipe

flow with temporally developing disturbances. For

en~neerin(J" purposes. when the basic flows are
~ ~ .

much more complex, an alternative approximate

approach is called for.

A major simplification of the problem is pro

duced by limiting the consideration to the devel

opment of small amplitude di:;turbances in a

boundar-y laver flow. since this allows linearization

of the go~·er~ing equation. This approach was first

proposed in the 1920s by Prandtrs group in G6t

tingen [1 J. The complete analysis is available in

ma~w standard texts, e.g., ;\-lack[2J but, in es

senc~, the arguments run as follows.

1. The instantaneous fluid properties are ex

pressed in terms of a mean component plus
1' - + I a fluctuating component, e.g., u = u u ,

P=p+p',etc.
2. It is assumed that the complete unsteady

flow satisfies the l\avier-Stokes equations.

3. The amplitudes of the disturbed quantities

are assumed to be sufficiently small for

products of fluctuating components to be

negligible.

L\:\11:\.\R FLO\"'\" COYfHOL SYSTDI DESIG:\" 205

.Y. The mean flow is assumed to satisfy the

sreadv,boundarylayerequations.

a. The ~ormal-to-surface component of the

velocitv is assumed to be negligibly small

compa.red with the streamwise component.

Thus the flow is taken to be parallel.

Having taken the above steps the resulting

equations for the disturbance com~onents. are

found (by inspection) to have harmomc solutiOns.

Since the problem has been linearized. a general

disturbance can be constructed by superimposing

normal modes of the form

u'(x, y, z. t) = Fly)eia.r+/3=-wt (1)

where. in generaL a, {3. and ware complex quanti

ties. Bv substituting expressions for the distur

bance .quantities of the form of Equation 1 into

the governing equation, a system of equa.tions is

obtained which can be used to determme the

characteristics of traveling waves propagating

through the flow. These waves are known as

Tollmien-Schlichting (T -S) waves. It is interest

ing to note that, originally, the above stability

analvsis was carried out in the absence of any ex

peri~ental evidence that such waves could exist.

Verification of the existence of T -S waves and

their precursor role in the process of boundary

laver transition was not provided until the 1940s

b; Schubauer and Skramstadt[.3J.

. Finallv, in order to produce further simplifica

tion the.flow mav be assumed to be incompressi

ble;' it is then p~ssible to show that. for a two

dimensional boundan· laver, the most unstable

wave propagate in th~ m~an flow direction. i.e ..

f3 = 0[4 J. Consequently, from the point of view of

transition prediction, only two-dimensional dis

turbances need to be considered. This being the

case the stability problem reduces to the solution

of a single, fourth order ordinary differential

equation:

(d2)
2

[(d2)
dy 2 - a

2
v = iR (aU- w) dy 2 - a

2
(
2

)

d2U] A -a--v
dy2

subject to the boundary conditions:

v(O) = o, dv(O)Idy = o

v(y)- 0, dv(y)ldy- 0 asy- 00 (3)

206 FORD A:\0 POLL

This is known as the Orr-Sommerfeld (0-S)

equation. From the point of view of the present

exercise it is important to note that this equation

depends on local conditions only. i.e., there are no

terms involving derivatives with respect to .r. This

means that the stabilitv characteristics are not af

fected by the upstream history. For a wave of fixed

frequency, w" convecting through a given flow at

a specified local Reynolds number. R. the 0-S

equation provides two relationships (real and

imaginary part) among the three unknown quanti

ties a" a;, and w;. Therefore. in order to close the

problem, an extra condition is reyuired. ln the

early days of stability computation. the final step

was to assume that the disturbance l!rew in tinw

but not in space. i.e .. a; was zero. This produced a

well-posed mathematical problem. However. in

the physical world in which waves art> obsPrwd to

propagate in the mean flow direction a slightly

more realistic approach is to assume that the dis

turbances grow in space but not in time. i.e .. w; is

zero. This spatial form for the T -S Wa\·e is the

preferred option for use in transition prediction.

Solutions to the 0-S equation permit the

calculation of the dispersion relation for the dis

turbance waves of a specified freyuency. The

secondary problem then is how to use this infor

mation to predict the onset of transition. It has

already been noted that breakdown of laminar

flow occurs when the amplitude of amplified tra\·

eling disturbances becomes large. From Equation

1, it is immediately apparent that for a wave of

fixed frequency. iL at the point of neutral stability.

x 0 , the disturbance amplitude is A0 then at station

x, where x > xo:

In general, the boundary layer will change its

thickness and Reynolds number between any two

stations and, consequently. a; will vary with x.

However for the purposes of evaluating a;. it is

assumed that locally the flow does not ,·ary with x.

Hence, the amplitude ratio relation is only ap

proximate. 1'\evertheless, it is a quantity which can

be readilv calculated and it does bear some rela

tionship to the stability of the mean flow.

By examining a range of experiments in which

transition was observed, it has been proposed that

transition onset correlates with the condition

where the wave which has undergone the greatest

total amplification has just reached an amplitude

ratio of e9
, i.e.,

(;))

This io; the basis of tht' so-called t'' transition

method when the critical !transition <m,;et) value

for;\" in low disturbance environments is 4.

2.2 Numerical Method

The boundary layer (see Fig. 1) will. in /!t'neral.

vary in thickness alon!! the aerofoil. TlwreforP. we

soh·e the 0-S equation at a numlwr of equally

spaced positions along the aerofoiL finding the

wave amplification rail'S at each: tht>,;t> po~itions

are denoted ··stations.·':\ pa11icular wa\·e·s am

plification rate cmTt>><p<mds to the imaf!inary part

of its wavenumber a;. At each station the 0-S

equation is solvPd 'finding CX 1 \ for a nt1mlwr of

equally spaced frPquPiwie;;: tlw numlwr and

bounds of the;.,e are specifit>d.

An initial wavenumber approximation a mu,-t

be ~up plied by the u><er for the lowest fn•q1wn<·y at

the first station. \\'hen the actual wavPnumber

corresponding to that frequency has lwen calcu

lated. the frequency is pertllrbed and a new

wa\·enumber found for the perturbed frequency.

The original and perturbed ndues are then uo;ed

to make an approximation to the wavenumber ,-o

lution. for the next frequency. at the same ,;tation

(Fig. 2a shows the dependencies. at the first ,.;ta

tion. denoted by vertical arrows).

\\'hen the instabilities for each frequency at a

station have been calculated the results are

stored. The wavenumber correspondinl! to the

lowest frequency (f1 in Fig. 2a) is then used as an

approximation to the waveiHunher for the lowest

frequency at the next station (Fif!. 2b shows the

dependencies here, denoted by horizontal ar

rows): this method is possible as the boundary

layer and velocity profile are slowly varying (there

fore adjacent solutions have similar values). Thus.

FIGURE 1

air velocity profile
freestream

boundary
layer

aerofoil surface

Typical boundary layer wlocity profile.

a: b:
user user

input ----....f input --....
fl-fl-fl-·

l 12 12 12
t t1 t3 t1
l l f ,.
t4 t

4

t
4

t

FIGURE 2 Dqwnlkneil·s of fn·truerwie,.; and station,.;.

once thP initial wavenumber approximation has

been supplied. ,.;ub,.;equPnt approximations arP

generated automatically.

To soln· dw OS equation. findinl! a wa\·Pnum

ber solution from an initial approximation at each

frequency and station. we LISP a shooting

method[5 j. The slwotinl! method soh·es botmdm...

valuP problems (to find the solution for an ordi~
nary tlifferential equation betwePn two points with

known boundary conditions:. In this ca,.;p the

freestream give,; <mP boundary condition and the

aerofoil the otlwr (,;ee Equation :3). An approxi

mation is supplied at one boundarY and the sys

tem of ordinary diffprential equati~ms intewa;ed

to the other boundary (from the freP,;tream to the

aProfoilJ. This is repeated with another approxi

mation. In our algorithm the two approximations.

Z 1 and Z :1 • are integrated at the samP tinw. The

integrator used is a fourth order Runf!e-Kutta in

tegrator.

The shooting method we use suffers from the

problem of parasitic error wnwth. For thi" case (a

two-dimensional wan· in a two-Jimen,.;ional

boundary layer) the two ,.;olution,.; Z 1 and Z ·1

each con:'ii:'ih of four componPnh. Z :1 grow,.; morP

rapidly "·irh decrpa,.;inl! y than Z 1
• The para:-;itic

error follows Z :1 and when tht' difference in mag

nituJe of Z :1 and Z 1 bt:>cornt':'i ~ufficit>nth· larue
- r

Z 1 i~ no longer independent of Z :l . Before thi"

occurs we apply Gram-Schmidt orthonormaliza

tion: in fact we do this for each iteration. The large

solution z::1
; is normalized component by cnmpo

n~nt to give the new solution:

(6)

where the overbar refers to a complex conjugate

and {} a scalar product. Z 1 is then replaced by:

z l: = (Z' 11- {Z:J Z'1 } z-::·1,)1\'Z 12 1)112 (7)
flPW flf'U' flPU' _ _

L.\\11'\.\R FLO\\. CO'\TROL SYSTE\1 DESIG'\ 207

where the underbar refers to the quantity in the

numerator. The numerical integration proceeds

with the new values of Z 1 and Z :-1 •

A linear combination of Z 1 and Z :-1 can be

found which satisfies the bounJarv conJition

ll (0) = 0 at the aerofoil but will not satisfy the

condition .,; (0) = 0 unle,.;s the wavenumbe~ ap

proximation is an eil!envalue of the equation (the

correct value). The residual.,; (0) can therefore be

found.

The real part of the wa,·enumber approxima

tion .. ar is pt:>rturhed by a small amount Llar anJ

the integration repeated. The imaginary part of

the wavenumber approximation a, is then per

turbed by a small amount Lla1 and the integration

repeated. Corrections oar and oa, to the initial ap

proximation~ a, and a,. are obtaineJ from the rP

sidual and numerical approximations to deriva

tives using Equations 8 and 9:

(8)

(9)

The corrected a 1 and ar are used to start a new

iteration anJ the process continues until oar and

oa, are reduced below a preset criterion. This

method is a quasi 1\"ewton-Raph,on search.

2.3 Algorithm in Context

So far we have not discussed how initial data.

such as wavenumber and velocity profiles. for the

aerofoil are calculated. This section overviews this

process.

We begin with an aerofoil and its corresponding

pressure distribution. A simplified diagram of an

aerofoil is given in Figure 3. This shape has a sur

face static pressure distribution which is of the

form given by Figure -i.

Once a particular aerofoil shape is chosen the

pressure distribution, corresponding to that

shape, is used as input to a mean flow code. This

air How ____.
____.
____. ____.

suction holes to control
the boundary layer

--------"\.

FIGURE 3 Aerofoil.

208 FORD A:'\D POLL

pressure

position

FIGURE 4 Pressure di~tribution along aerofoil.

problem calculates the various boundary layer pa

rameters needed at each station. such a~ Reynold . .;

number. boundary layer thickness. and velocity

profile; its output is used as input to the ,.;tability

code. These two programs are separated so that

certain control parameters can be set and others

checked before running the time consuming sta

bility program.

The control parameters we set are the initial

wavenumber approximation for the first fre

quency at the first station. the frequency-range to

be examined, and the number of frequencies

within this range.

It is known from previous experience that in

practice two-dimensional instability waws tend to

occur within the region 500-5,000 Hz. There

fore, the first time the instability program is run. a

spread of frequencies across this range is exam

ined for a number of stations along the aerofoil.

typically 50-100 stations and 5-1 0 frequencies.

The first run is effectively exploratory, to find

which frequencies and stations to concentrate on.

\Ve then rerun the program with a greater number

of frequencies and stations over the range of inter

est, typically 100-400 stations and 10-40 fre

quencies. This process may be repeated two or

three times before a sufficiently accurate picture is

obtained.

The output consists of two files. a large diag

nostic file which records virtuallv all relevant \·ari

ables, and a file which gives the amplification rate

(a;) for each frequency at each station.

a; is the amplification rate at a station (for a

particular frequency). To convert this into an am

plitude ratio, a; needs to be integrated along the

aerofoil. The natural log of the amplitude ratio is

then plotted against position along the aerofoil for

each frequency; an example is shown in Figure 5.

Figure 5 shows a number of amplitude ratio

plots for various frequencies. It is the profile of

4

aerofoil position

FIGL'RE 5 Amplitude ratio~.

these frt>q ueuei~es. i.e .. the largest amplitude ratio

at any given position along the aeroi(Jil. that is

important when predicting v.·here turbulence

starts. This is because turbulence only twgins

above a certain (experimentally detennined) value

of 1'\, regardless of which frequency first reaches it.

2.4 Available Parallelism

This section dis<'usses the parallelism apparent

from the numerical method described in Section

2.2.

Pipelined Station Parallelism

"-hen examining Figure 2b it is clear that compu

tation for frequencies at a station can begin once

the wavenumber for the first frequency (f1) of the

preYious station has been calculated: this gi,·es a

parallel pipeline effect demonstrated in Figure 6.

ln Figure 6 the maximum overlap (number of

stages in the pipeline) is the number of frequen-

Parallel Streams

2

3

4

3

2

FIGUHE 6 Overlapped solutions.

fl
~

fi+MI fl
~

f2 fi+MI fl
~ •

f2+M2 f2 fi+MI

• f2+M2 f2

• •
f2+M2

• •
•

FIGURE 7 :\laximum ~tation on·rlap.

cies per station. In fact the overlap i,; l!reater than

thi,; a,; a station doe,; not rely on the pPrturbed

frpquencies wa\·Pnumher solution for the prt>vious

station: it can proceed as soon as the actual

wavenumber for the frequency at the previous sta

tion has been calculated. This effect is tihO\nl in

Figure?.

Thus the potential number of stages in the

pipeline (a,;surninl! all wavenumber frequency

pairs take the samP time) is two times the number

of frequencies per station. As will he seen in the

next section the pipeline is efff'ctivel~· reduced to

that shown in Figure 6 when the frequency and

perturbed frequency are parallt>lized.

Frequency and Perturbed Frequency

As described in Section 2.2. the wavenumber is

solved for each frequency and for that frequency

perturbed. The perturbation allow,; a wavenum

ber approximation to be extrapolated for the next

frequency at that station.

At first glance one would expect these two solu

tion to be independent: however to decrease the

number of iterations needed to converge for the

perturbed frequency, our sequential algorithm

uses the wavenumber solution of the frequency

itself: this imposes a dependency.

To enable these two solutions to proceed in

parallel the same wavenumber approximation

used for the frequency can be used for the per

turbed frequency. This change in the algorithm

may increase the amount of computation as the

solution to the perturbed frequency could take

longer to converge.

Another possible problem is that for a particu

larly bad wavenumber approximation the per

turbed frequency may not converge-therefore

LA:\11:\"AR FLov;· CO:'-ITROL SYSTEM DESIGl\; 209

• •
• •

FIGURE 8 Station and frequency parallelism.

the parallel algorithm i,=.; potentially less stable

than the sequential algorithm. This problem can

be eliminated as, on failure. the parallel algorithm

can revert to its sequential form. For all test cases

examined so far this has not been required. The

parallelism so far described is shown in Figure 8.

Wavenumber Approximations

For each frequency, the wavenumber approxima

tion and perturbations of its real and imaginary

parts (ar and a,) are integrated through the bound

ary layer. As suggested in Section 2.2. these are

indepe.ndent and can therefore be calculated m

parallel.

The parallelism so far described is shown in

Figure 9. It shows a potential loss of efficiency

when parallelizing at the frequency and perturbed

frequency level described in the previous section.

In the example given one solution converges in two

iterations while the other takes three.

a) One frequency b) all levels so far.
Example with 4 frequencies
per station

11li
I ill

FIGURE 9 Nested parallelism.

210 FORD AND POLL

integz<ll

integ z<3l ___ ,___ ..

orthonormalize
z<lJ and z<3>

FIGURE 10 Integration of solutions.

Integration of Solutions

Each wavenumber approximation and perturbed

values of its real and imaginary parts has two de

pendent solutions Z\1
) and Z ;j. These are inte

grated from the edge of the boundary layer to the

aerofoil (see Section 2.2). Each integration is in

dependent, however orthonormalization is ap

plied at each step (see Fig. 10).

3 PROGRAMMING TECHNIQUES

The codes described in this article were written

and are maintained by the LFC group in the aero

nautics department of The Cniversity of .\Ianches

ter, U.K. The stability code is called .\lelissa.

Melissa is written in standard Fortran 77 and as

a result has run without modification on all plat

forms tried. The code itself is approximately

1,000 lines long.

The 0-S solver utilized in .\1elissa was taken

from an earlier, more general purpose code, writ

ten in FortraniV. Due to both the language used

and the original authors' coding practice in this

earlier code, the 0-S solver section of .\Ielissa has

a typical "dusty deck" form.

3.1 Code Restructuring

To help understand the algorithm used to soh-e

the 0-S equation and make the code more read

able certain code restructuring was performed.

Loops implemented with a counter and condi

tional branch using a GOTO were converted into

DO loops. Redundant loops and code segments

associated with the equation solver performing

obsolete functions were removed. Tangled control

flow and conditional GOTOs were converted into

their IF THEN ELSE form. A number of redun

dant input variables and input variables read

more than once were removed. Large code frag

ments were converted to subroutines to aid read-

ability. Finally some C0.\1.\101\" blocks were re

moved and variables passed as arguments.

3.2 The Kendall Square Research KSR-1

The scalability of shared memory multiprocessors

has traditionally been limited to tens of proces~ors

due to memory access contention. As a result it

has been widely accepted that distributed memory

is the key to scalable parallel machines. however

these machines have been notoriouslv difficult to

program.

The KSR-1 is a distributed memon· machine

that provides a single address space. supported by

proprietary hardware [6]. the advantage)wing a

shared memory programming model for the user.

This technique has been termed virtual shared

memory (YS.\1). This term can cause confusion as

the KSR-1 also supports virtual memory (Y.\1)

with an address space of 1 million .\!bytes (2-+0
).

Each KSR-1 processor is a 20 .\1Hz RISC-style

superscalar 64-bit unit operating at 20 .\lips and

40 .\lflop/ s (peak). A KSR-1 system contains from

8 to L088 processors with a peak performance

range from 320 to 43,520 .\Hlop/ s.

Each processor has 0.5 .\lbyte of subcache ..

split equally between instructions and data, and

32 .\lbyte of cache. It is therefore a nonuniform

memory access (1\L-.\IA) style memory system. In

this svstem instructions and data are not bound to

specific physical locations, rather they migrate to

where they are being referenced: this is termed a

cache-only memory architecture (C0.\1..\).

The interconnect topology is a two-level hierar

chy of slotted unidirectional rings, known as ringO

and ring1. Each ringO can have a maximum of 32

processor memory pairs and has a bandwidth of 1

Gbyte/ s. The ring1 connects up to 34 ringOs and

has a bandwidth of 1-4 Gbyte/s depending on

configuration. The KSR-1 at .\1anchester is a 6-i

processor machine.

A thread (termed pthread by KSR) is a sequen

tial flow of control within a process and is the un

derlying mechanism used to execute the parallel

constructs available to Fortran programmers.

These constructs-parallel regions, parallel sec

tions, and tile families-form a high-level inter

face to pthreads. The user inserts these parallel

constructs, seen as cornments to other compilers,

around appropriate blocks of codes. A pthread

library for thread creation, barriers, locks, condi

tion variables, etc., can be accessed directly by the

programmer if a finer level of control is required.

3.3 Scalar Optimization on the KSR-1

The core element of Melissa, the 0-S equation

solver originally included the case of oblique

waves (three-dimensional waves); the values of

these were set to zero in the input files. The redun

dant code associated with this was removed.

Two core functions, in which nearly all compu

tation takes place, were each called twice with the

same input parameters. These two calls were re

placed by a single call and the result shared.

The innermost functions are called millions of

times and have little work within them. These were

manually inlined reducing the calling overhead.

In combination these scalar optimizations pro

duced over fourfold improvement in solution time

(see Section 4.3).

3.4 Parallelization on the KSR-1

Parallel Stations

In "Pipelined Station Parallelism" we describe

the potential parallelism available by overlapping

station solutions (see Fig. 6). As the overlap is

equal to the number of frequencies per station the

maximum parallelism that can be usefully em

ployed is equal to the number of frequencies.

If, for example there are 4 frequencies, thread 1

will be used to calculate stations 1, 5, 9, etc.,

thread 2 will calculate stations 2, 6, 10, etc., and

so on (see Fig. 11).

This ensures that all threads are kPpt as busy as

possible and minimizes the number of threads

used. As mentioned in "Pipelined Station Paral

lelism" this is, in fact, an oversimplification. To

Station
2 3 4 5 6 7 8

Thread

2 3 4

2"' !"' 3 2 "'

4 3 2ll
4 3 2

4 3

4

FIGURE 11 Maximum station parallelism.

LA1\II~AR FLOW CO:\'TROL SYSTEM DESIGN 211

create the appropriate number of threads on the

KSR-1 we use a parallel region directive. A func

tion is called within the parallel region which re

turns a unique value to each thread and is used in

combination with an explicit modulo function to

ensure each thread only calculates the appropri

ate stations.

We now need to delay the thread at the next

station until the thread at the current station has

calculated the a solution for its first frequency. To

implement the above we use a "mutex"; this al

lows only one thread through a section of code at a

time (the first frequency calculation is effectively

an ordered critical section) and a condition vari

able to ensure that the pthreads obtain the mutex

in the correct order. These were implemented us

ing calls to appropriate KSR pthread libraries.

The code implementing this is shown below.

C*KSR* parallel region(numthreads=
C*KSR*&NFREQ,private=(I,mynum, istat))

mynum=ipr _mid ()

DO I=l,NSTAT
IF(mod(I,NFREQ).EQ.mynum)THEN

call pthread_mutex_lock

& (mul, is tat)
IF(ftag(I) .EQ .. false.)THEN

call pthread_ cond_

& wait(icond(I), mul, istat)
END IF

CALL STATIONS(..)
END IF

END DO
C*KSR* end parallel region

The condition flag (flag (I)) is initialized to

false for all instances except for I=l. If the

"wrong" thread grabs the mutex it yields on a

pthreacLconcLwai t () until it is woken by the

thread which has calculated the previous station

wavenumber. ·when a thread has finished calcu

lating the wavenumber required for the next sta

tion to start, it unlocks the mutex, sets flag (I +1)

to true, and wakes the next thread if it is sleeping

on the condition variable; this is shown below:

IF (I.NE.NSTAT) flag(I+l)=.true.

call pthreacLmutex_unlock(rnul, istat)

IF (I.NE.NSTAT) THEN

call pthreacLconcLsignal (icond

& (I+l), istat)

END IF

A problem found in the use of parallel regions

and condition flags is in the KSR-1 's Fortran77

212 FORD A!\'D POLL

a: without 110 lock

110

fl

f2

f3

f4

b: with 110 lock

0
0

0

FIGURE 12 Owrlappin;r 1/0.

optimization: it assunws the code run;; ;;eq uen

tially making appropriate optimizations. 1t i,;

therefore possible for the compiler to ··optimize

out" a condition yariable as. sequentially. the

condition is alwavs true. On the KSR-1 ,;uch t:'X

plicit locks need to be deelared volatile. Thi;.; i,;

a Fortran77 extension which stop,; the-compiler

from optimizing that variable.

Other necessarv modifications to the code in

volved making wavenumber results for the first

frequency global so that the next station could

read them and sequentializing the output to a file:

this occurs after all the wayenumbers haYe been

calculated at a station. This latter change was im

plemented with a naiYe spin lock condition vari

able.

It ensues that we cannot neglect the time taken

for each thread to complete l/0 bdure calculating

the wavenumber solution;;; for its frequencie;;. This

overhead can be reduced by adding another lock

and condition variable, allowing the thread for a

station to proceed w1th its l/0 as soon as the l/0

has been dealt with by the preyious station (see

Fig. 12).

Parallel Frequencies

As discussed in "Frequency and Perturbed Fre

quency" the algorithm requires modification to

calculate the wavenumber for the frequency and

perturbed frequency in parallel. This involves em

ploying the same wavenumber approximation by

both the frequency and perturbed frequency. To

implement this we need only change one IF state

ment. To run this in parallel we add the KSR tile

directive given below:

C*KSR* TILE (FREQ, teamid=iteaml)

DO FREQ=l, 2

CALL PERT (...)

END DO

C*KSR* END TILE

The teamid argument to the tile directin~ i;-; dis

cussed in ""Teams and :\e:;ted Paralleli:-;m.·'

Parallel Wavenumber Approximations

As discussed in ··\\·an•numlwr Approximation,;··

the wavenumber approximation and perturl,a

tion;.; of its real and imaginary pans arP intc>gratt·d

through tlw boundary layc>r. As in tlw prn ious

section to implemelll this we simply need to add

the KSR tile dirc>ctive given lwlow:

C*KSR* TILE(PERT, teamid=iteam2)

DO PERT=1,3

CALL WAVE (...)

END DO

C*KSR* END TILE

The teamid argument to the> tile dirt>cti\P i;-; dis

cussed in ··Teams and :\p,;ted Paralleli,;m. · ·

Integration of Solutions

As discussed in ""lntt>gration of Solutions·· each

integration step of the two dependent :'iolutions

Z 1
' and Z :i can be exeeutt>d in parallel. lwweyer.

this is not true for the whole integration due to the

orthonormalization of the :'iolutions (see Fig. 10).

This was implenwnted using the KSR parallt>l ,.;pc

tions directive. ,.;pe below:

DO J=I,NSTEPS

C*KSR* parallel sections

& (teamid=iteam3)

C*KSR* section

CALL INTEG(AZ, ..)

C*KSR* section

CALL INTEG(CZ, ..)

C*KSR* end parallel sections

CALL MODOR(CZ, ..)

CALL ORTHO(AZ, CZ, ..)

END DO

The teamid argument to the parallel sections di

rective is discussed in '"Teams and l\'ested Paral

lelism."

Inner Functions

\\~hen the code is examined we obsf-rve some in

ner function,.; which could be called in parallel.

For example. functions Land Ll independently

search for the appropriate velocity and accelera

tion data. respectively. However. althou~h a lar~e

proportion of the computational timf' is spent in

these routines, the time per call i,.; too small to

obtain anv benefit on the KSR-1.

Teams and Nested Parallelism

~When a parallel construct is encountered. thP ap

propriate number of threads are allocated to the

work within it. To achieve this. threads which

have alreadv been created and have fini,;hed their

previously allocated work an~ utilized: such

threads are kept in an '·idle pool.,. If there are not

enough threads in the idle pool then threads are

created to make up the shortfall.

As threads start referencing instructions and

variables. the appropriate data are fetched from

remote processors (if there i:-; no instance of those

data in the correct state locallv). \\~hen threads

finish their work they return to the idle pool.

If another parallel construct is encountered

later. which accesses the same variables. it is sen

sible to use the same threads and processors that

executed previously. as the processors· local

memory may still have valid copies of data. If the

same construct is encountered. then the instruc

tion cache may also still have valid copies of in

struction code, and the thread will have the cor

rect data structures associated with it. The idea of

data reuse here is, of course. the same as reuse of

cache on a single processor machine.

To ensure the same threads and processors are

used for subsequent parallel constructs we use

"teams" of threads. A team is created with a de

fined number of thrf'ads. This team can then he

referenced in association with a number of paral

lel constructs and the same threads associated

with the team will be utilized each time it is called.

Teams of threads were implemented for each

level of parallelism in the code. Another important

effect of using teams is observed when the granu

larity of work is close to that of the start up cost of

the construct and the construct is called many

times: this is because a team reduces subsequent

construct start up overheads by a significant

margin.

A subtle problem in the use of teams arises

when parallelism is nested. This is due to run-time

L\\11:\":\R FLO\\. CO:\"TROL SYSTE:\1 DESIG:.\' 213

thread creation. A team groups together a number

of threads including the currently active thread.

thus sets of calls to create appropriately sized

teams at the beginning of the code are not desired.

It must be the active thread, arriving at the parallel

construct, that creates the team. Therefore the

team is created (once) at the same nested level as

the parallel construct.

4 PERFORMANCE REALIZATION

4. 1 Test Data

As outlined in Section 2.3, we first apply a low

resolution search to find the frequencies and aero

foil positions of interest: wf' dwn do a more de

tailed analvsis around these areas. The low reso

lution search typically use;; 3-10 frequencies and

50-100 stations. The high resolution analysis

typically uses 10-40 frequencies and 1 00-•fOO

stations.

In this article we use two test cases to represent

these different resolutions. Test case A has 4 fre

quencies and 40 stations. Tese case B has 40 fre

quencies and 100 stations.

4.2 Results

The results reported in this article were achieved

on the KSR-1/64 at Manchester University. Tim

ing runs were taken in a multiuser en,ironment.

To ensure the exclusive use of the appropriate

number of processors during the runs and to mini

mize interference from other users, cells were allo

cated exclusively to the program during its execu

tion. This was achieved with the command
1 allocate_cells -An 1 , where n is the number

of processors and -A avoids 'loaded' cells such as

those with ethemet cards. All results shown in the

next sections are the average of three consecutive

runs and all timings were made using the unix

timer "time."

Results for varying numbers of processors are

presented as temporal performance graphs[?].

The dotted line in each graph is the "naive ideal"

line lp = l 8 /p (often termed "linear speedup"),

where t., is the elapsed time for the serial program

for a fixed problem size and lp is the elapse time

for the same problem size on p processors.

Other results are presented in tabular form in

which we give absolute time and solutions per sec

ond. A solution is defined as the calculation of the

214 FORD A:\D POLL

wavenumber for one frequency (and its perturbed

complement) at a station.

The results described in this article extend work

reported in Ford[8].

4.3 Single Cell

A number of scalar optimizations have been ap

plied to the code during the course of our work.

Table 1 shows the performance improvements oL

tained. The solution rates differ for the two cases

as case B has a better conveqrence rate for the

iterative method used to solve the 0-S equation.

4.4 Parallel Stations

The temporal performances for cases A and B for

increasing numLers of processors are shown in

Figures 13 and 14, respectively.

The two results in each graph (Sand Sio) repre

sent the advantage of performin~ 1/0 as soon as it

is possible to do so: this effectively increases the

pipeline length (see Fig. 12).
The performance results ··drop away" from the

naive ideal line due to two major factors.- The first

is that we run out of overlapped work to do: note

that this is not a sharp cut off. as the pipeline

overlap varies during the run due to the iterative

method used. The second effect is due to the over

head of '·filling up"' the pipeline. This effect is

more prominent in case B (Fig. 14). as the ratio of

the pipeline length (a function of the number of

frequencies) to the number of stations is larger

than in case A.

4.5 Parallel Frequencies

To implement parallel frequencies we modified

the algorithm (see Section 2.4, "Frequency and

Perturbed Frequency"). Table 2 shows perfor

mance comparisons for the serial code and the

parallel version run both serially, and in parallel,

for test cases A and B. The parallel algorithm runs

more slowly than its sequential counterpart. The

temporal performance of cases A and B with the

Table 1. Sequential Optimizations

Version

A: Original

A: Optimized

B: Original

B: Optimized

Elapsed Time

6m Os

1m 28s

1h 51m 31s

25m 17s

soils

0.4-t

1.82

0.60

2.64

Table 2. Parallel Frequencies

Version

A: sequential

A: par 1 eell

A: par 2 cells

B: sequential

B: par 1 cell

B: par 2 cells

1m 27.7s

1m 3-t.h

S5JJS

2.Sm 16.8s

29m 19.0s

15m 1-t ..),;

~ol I,;

1.82

1. 70

2.88

2.64

2.27

•t.:37

0.08 ,-----,r---.-~----,----.--,.-~---.----,

0.07

0.06

0.05

:::: 0.04

0.03

0.02

.;i:l = // /// /~/:...- ... _ _ _· -----~

0.01

0"------'-----'---'----'---'---'-----'-----'---'

0 2 3 4 5 6 7 8 9
processors

FIGURE 13 Case A paralld ,.,ration,.;.

parallelism of parallel frequencies and parallel

stations combined is shown in Fi!!ures 15 and 16.

respectively. Again the two graphs show the ad

vantage of performing 1/0 as soon as it i:-; pos,.;ible

to do so.

Parallelizing at the frequency lewl has the ad

vantage of reducing the pipeline length Lut has the

disadvantage of modifying the algorithm to a less

efficient form. Figures 15 and 16 show that paral

lel frequencies are only beneficial when the pipe

line length is large. i.e .. close to the number of

0.025

s --+--

0.02 Sio ~

naive -------

0.015

-
0.01

.·
/

16 24 32 40 48 56
processors

FIGURE 14 Case B parallel stations.

0.1

0.09

0.08

0.07

0.06

:::; 0.05

0.04

0.03

0.02

001

2 4

s
Sio -+

naive ····-

S+F -<>-

Sio+F-~--,.__ ___ ___
A&-4""---e---o --~

6 8 10 12 14 16 18
processors

FICUHE l;j Ca,;e A para lid ,.;tation~ and fn·queneies.

:-;tations and that for small numbers of proeessors

it i:i better to pamlldize at tht• station level only.

The interesting feature,;; in the parallel station

and parallel frequency line (S + F) in Fi1-rtu-e 16

are the subject of ongoing work.

4.6 Parallel Wavenumber Solutions

Table 3 shows the performance results when soh-

ing wavernunher solutions in parallel. The tempo

ral performances of cases A and B. when the par

allelism of parallel wavcnumbers and parallel

stations is combined. as shown in Figures 17 and

18, respecti\·ely.

The results of parallelizing at the station level

only are also shown for comparison. There is a

clear advantage in parallelizing at the wavenum

ber level as we obtain improved performance in

both cases A and B. In case A the improvement is

due to the increa:o;e in the amount of parallelism

0.025

0.02

0.015

-<::

O.oJ

0.005

0
0

s -+--

Sio-
naive

S+F -<>

Sio+F-

8 16 24 32 40 48 56
processors

L\\IL'\ \R FLO\'r CO.';TROL SYSTE\1 DES! G.'; 215

Table :3. Parallel \Vavenumbers

Version

A: sequential

A: :3 cells

B: sequential

B: :J cells

Elapsed Time

1m 27."?s

3:~.9s

2:')m 16.8s

Sm .)7.9,;

sol/ s

1.82

-+. '72

2.6-+

-:'.·H

available. In case B this impnwerm~nt results in

better peformance for the number of processors

used: a major part of this is due to the reduction of

the pipeline overhead.

4.7 Parallel Integration

When the integration was parallelized as de

scribed in Section 2.i, '·Integration ofSolutiom;,"

the program ran more slowly. The degradation in

performance is due to the startup oYerhead of the

0.15

- 0.1

0.05

s
Sio-

naive -·----·

Sio+W -<>--

0 ~--~~--~----~----~----~----~
0 4 8 12

processors

16 20 24

FIGURE 17 Case A parallPI station~ and wavt>num

bers.

0.02

s 0.015

0.01

0.005

0 ~--~--~--~--~----~--~--~~
0 8 16 24 32 40 48 56

processors

FIGUHE 18 Case B parallel ;;tations and wawnum-

FIGUHE 16 Ca~e B parallel station,; and frequencies. bers.

216 FORD A'\D POLL

Table 4. Parallel Integrations

Version

A: sequential

A: sections 2 cells

A: reduced 2 cells

Elapsed Time

1m 27.?s

4m 9.4s

1m 13.5s

sol/ s

1.3:2

(). 6-t

:2.18

KSR parallel section construct being close or

greater than the work inside each section. To re

duce this overhead we expanded the KSR parallel

sections (see Section 2.4, "Integration of Solu

tions") outside the integration loop, thus reducing

the number of section startups. This was achieved

by duplicating the loop and synchronizing manu

ally via shared variables*, see below.

C*KSR* parallel sections(teamid=

C*KSR*& iteam3, private=J)

C*KSR* section

DO J=l,NSTEPS

CALL INTEG(AZ, ..)

DONE_INTEG(J)=.TRUE.

20 IF (.NOT.DONE_ORTHO(J)) GOTO 20

END DO

C*KSR* section

DO J=l,NSTEPS

CALL INTEG (CZ, ..)

10 IF (.NOT.DONE_INTEG(J)) GOTO 10

CALL MODOR (CZ, ..)

CALL ORTHO (AZ,CZ, ..)

DONE_ORTHO(J)=.TRUE.

END DO

C*KSR* end parallel sections

Table 4 shows the performance of these differ

ent versions. Clearly we only obtain a modest im

provement in the solution time when parallelizing

sections.

5 CONCLUSIONS

We have shown that for a typical low resolution

search, we can reduce the solution time from min

utes to near interactive times. In test case A, we

have reduced the solution time from 6 minutes to

under 8 seconds on 24 processors (this is the

maximum number of processors that can be use

fully employed on this problem size).

* The premise here is that manual synchronization incurs

less overhead than parallel sections.

\Ve have also dt>monstrated that for a typical

high resolution search, we can reduce tlw :-;olution

time from hours to seconds. In test ca:-;e B. we

have reduced the ,.;olution time from onT 1 hour

51 minutes to under -!0 seconds on 5-i proces,.;ors.

These results were obtained by a combination

of scalar optimization and parallelization. Scalar

optimization accounts for over fourfold imprpve

ments in the results.

These results open up the pos;;ibility of much

larger runs involving more stations and frequen

cies. However, more significantly. we demonstrate

near iteractive performance for smaller runs,

enabling a transformation of search methods and

opening up new possibilities for this methods use

in industry.

The algorithm has a reasonable amount of

functional parallelism (for the :;tandards of to

day's machines) but would not be classified as

being massively parallel; useful parallelism on the

KSR-1 is limited to six times the number of fre

quencies in a run. The majority of this parallelism

is coarse grained with little communication and

should therefore be efficient on both shared mem

ory and distributed memory machines.

There is further parallelism available, within

which a large amount of the total execution time is

spent: however, the time per call is too small to

exploit on the KSR-1.

Conceptually, a message-passing style would

be a natural way to exploit the functional parallel

ism available and svnchronization needed in this

algorithm, particula"rly at the level of parallel sta

tions. However, the combination of a shared

memorv model and dvnamic thread control on the

KSR-1: coupled wid{ automatic thread and data

migration. offered significant advantages wht>n

parallelizing the existing sequential program.

These features enabled each level of parallelism to

be separately parallelized with little code modifi

cation: thev also enabled each level and combina

tions of le,:els to be incrementally dewloped and

tested; finally .. we could effective ignore thread

placement and the migration of shared data.

6 FUTURE WORK

The algorithm described here models incompres

sible fluid flow. A compressible wrsion is now op

erational: this has similar characteristics but is

more computationally intensive. The compres

sible code will be the subject of future paralleliza

tion efforts.

• •

from
user ""'

•

FIGURE 19 :"ew parallelism stratefrY·

•

The dependency of a station on the previous

station may be broken by "inputting" an accurate

initial wavenumber approximation either at every

station or, more feasibly. groups of stations. This

would increase the amount of parallelism avail

able and reduce the functional pipeline overhead

(see Fig. 19). The accuracy of initial wavenumber

approximations is one of the current focuses of the

LFC group.

The algorithm described here is also con

strained to a two-dimensional flow. A three-di

mensional ver;;ion of their model is now opera

tional. The three-dimensional code will again

increase the computational requirements. In this

case a different parallelization stratebry will also

have to be adopted, as the three-dimensional ver

sion imposes new orderings on the computation

(such as dependt>ncies across the wing).

Work aimed at improving the efficiency of a

search procedure in one of the core routines, elim-

LA;\Il:'\AR FLOW CO:\'TROL SYSTEM DESIGI'i 217

inating any further redundant work and reducing

the parallel overheads of thread start-up, may

also yield further performance benefits .

ACKNOWLEDGMENTS

This work was supported by the Esprit Projects 2716-

AMUS and 625.3-SHIPS. Th~ authors would also like to

thank members of the Centre for Novel Computing and

Laminar Flow Control Group for their invaluable ad

vice.

REFERENCES

[1] H. Schlichting, Boundary-Layer Theory. New

York: McGraw-Hill.

[2] L. M. Mack. "Boundary layer linear stability the

ory, special course on stability and transition of

laminar flow." Advisory Group for Aerospace Re

search and Development, AGARD Report l'io. 709,

March 1984.

[3] G. B. Schubauer, and H. H. Skramstad, "Laminar

boundary oscillations and stability of laminar

flow," NACA Report 909.

[4] H. B. Squire, "On the stability of three-dimen

sional disturbances of viscous fluid between paral

lel walls,'' Proc. R. Soc. [A]. vol. 142. pp. 621-

628, 19.3.3.

[5] R. L. Burden, NumericalAna{ysis (4th ed.). PWS

KEi\T. 1939.

[6] KSR -1 Programming Manuals, 170 Tracer Lane,

Waltham, MA, 1993.

[7] R. A. Hackney, "Framework for benchmark per

formance analysis," Supercomputer, vol. 43. pp.

9-22, 1992.

[3] R. W. Ford, "ProceedingsofSuperComputingEu

rope '9.3," Utrecht. Holland. February 22-24,

1993.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

