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ABSTRACT 

The performance of transport aircraft can be considerably improved if the process by 

which the wing boundary layer becomes turbulent can be controlled and extensive 

areas of laminar flow maintained. In order to design laminar flow control systems, it is 

necessary to be able to predict the movement of the transition location in response to 

changes in control variables, e.g., surface suction. At present, the technique which is 

available to industry requires excessively long computational time-so long that it is not 

suitable for use in the "design process." Therefore, there is a clear need to produce a 

systP.m which delivers results in near realtime, i.e., irr seconds rather than hours. This 

article details how parallel computing techniques on a KSR-1 produce these perfor

mance improvements. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

In order to sustain an aircraft in straight and level 

flight, two fundamental conditions must be satis

fied. The first is that the lifting force generated by 

the wings must be equal to the weight and the 

second is that the thrust from the engines must be 

equal to the drag. 

The drag force opposes the motion of the air

cr.aft and acts in the direction of flight. It is made 
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up of two components, these being the pressure 

drag and the viscous drag. Pressure drag is pro

duced by the variation of the air pressure acting 

on the aircraft surface and is closelv related to the 

lift force-in fact, it is the penalty that must be 

paid to produce the lift. Viscous drag, on the other 

hand, is the result of tangential, or shearing 

forces, because, as a result of viscosity, air sticks 

to the surface. 

On a typical transport aircraft in the cruise con

dition, the two components of the drag are ap

proximately equal i.e., 50% of the drag is due to 

the action of viscosity. This means that a substan

tial fraction of the fuel which an aircraft carries is 

there to overcome viscous drag. It follows that, if 

the viscous drag can be reduced, a substantial 

saving in fuel and, consequently, operating cost is 

possible. 
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In flight, the effect of air viscosity is confined to 

a very thin layer close to the aircraft-the so

called boundary layer. On the surface viscous 

forces require that the flow speed must be zero. 

However, a few millimeters above the surface the 

air must be traveling at almost the fli~ht srwed of 

the aircraft. 

The motion of air within this thin boundarv 

layer takes one of two possible forms. It may set up 

a simple, steady flow where each layer of air slips 

slowly over its neighbor-this i;;; called the laminar 

condition. The alternative is an unsteadv flow with 

almost random fluctuations causinf! the various 

lavers of air to be mixed violenth· with one an-. . 
other-this is the turbulent condition. 

l\"ot surprisingly. a turbulent flow produn·,. 

more viscous drag than the laminar one-the ratio 

is approximately 10: 1. At \cry low speed,-_ f!tm·,. 

are always laminar. However. a" spt·Pd is in

creased, there comes a stage at which laminar flow 

becomes unstable to the small disturbance,; which 

are always present in reality. At hi;.dwr :-pPed,;. 

these disturbances are amplified and. wlwn the 

amplitudes are sufficiently large. there is a break

down and turbulent flow is produced. -

It follows that. for a ~i,·en aircraft confi;ruration. 

there is a flight speed abon· which the !HJundary 

layer flow will be turbulent and the viscous draf! 

will be large. Cnfortunately. for all but the small

est aircraft. the boundary layers are turbulent in 

the cruise condition. 

Vntil recently this situation was accepted as 

unavoidable and aircraft desil!ns haw been opti

mized on the assumption that boundary layer flow 

would always be turbulent. However, it has been 

known for over 60 years that. if some of the air in 

the boundary layer could be sucked throuf!h the 

surface, then the speed at which laminar Jlow be

comes unstable can be increased. 

The effect of suction is sufficiently powerful for 

laminar flows to be achieved at typical aircraft 

cruise conditions when the suction velocitv is onlv . . 
0.05% of the flight speed (i.e., only about 10 

em/ s! ). If suction could be engineered, the drag of 

an aircraft could be reduced bv as much as :30%. 

This would represent a quantum leap in aircraft 

performance since, in the current commercial cli

mate, an aircraft which could deliver a 5% drag 

improvement relative to its competitors would 

capture the entire market. 

There are two major obstacles to the develop

ment of an aircraft which uses the surface suction 

technique for laminar flow control (LFC). The first 

is the provision of a suitable porous surface 

through which the air can be drawn. This has al

ways been a serious problem "ince, in the past. 

surfaces which were porous did not hm·e i!oud 

load-bearing properties. However. this difficulty is 

now effectiveh' resolved because of the recent de

velopment of the laser perforating technique. This 

enables traditional aerospace materials-titanium. 

aluminium. steeL and t>ven composite materiu,l-to 

be drilled with millions of holes as small as ;)() J-tlll 

in diameter, placed in any desired pattern. with 

any desired spacinf!. This lean's the ~pcond proiJ

Iem which is that. in ordt>r to produce a desif-!11 for 

an LFC ;-.vstem. it is JlecPssan· to lw able 10 e,.,ti-. . 
mate the conditions under which the boundary 

layer flow will undergo a ··tran,.,ition· · from tlw 

laminar to turhuknt state . .\lorPo\er. it is Jlt'tTs

sary to be able to produce these estimate~ sufli

ciemly quickly ,.,o that a t'<lll\t'lltional dt·,.if-!11 pro

cess is not slowed do\n1. 

The problem of predictinf! the conditions 

necessary for the onset of tran,.ition i,- a particu

larly challenging one. In fact. at present. there is 

no complete theory for transition. :'\pn·rtlwless. 

various semi-empirical methods haYe !wen devel

oped o\·er the years and some are appropriate for 

use in design. 

Of these. the one which i,; most accurate and 

allows for all the important paramett>r;;; i.e .. flow 

compressibility (mach number). ,.;urface tempera

ture (heat transfPr). and wall transpiration !suc

tion) is the e' method. This is ba,;ed on an ap

proximate formulation of the stability problem fur 

a bound an· lavPr which. when solved bv a sttitahle . . . 
numerical technique. produces dispersion rela

tions for the unsta],]e disturbances. These rela

tions are used to track the disturbance amplitude 

development and an empirical critPrion is u,-ed to 

determine the breakdown (transition onset) condi

tion. 

However. while the e' technique allows for all 

the physical effects which can influence tranf'i

tion, it requires a great deal of computation-so 

much so that the elapse time between predictions 

is far too long for it to be described as a design 

tooL One possible solution to this problem is the 

application of parallel computing techniques. 

This article chronicles the parallelization of a 

laminar to turbulent transition prediction code, 

de,eloped by the LFC group. in the Department 

of Engineering, at the Cniwrsity of .\lanchester. 

Section 2 introduces modeling techniques for 

the onset of turbulence and Section 3 describes 

the parallelism inherent in the solution method. 

Section 4 introduces the KSR-1 and discusses 



both the scalar optimization,; and parallelization 

method;; used. Finallv, Section;) summarizPs dw 

main conclusions of tiw article and SPction b di,..;

cus:;es future "·ork. 

2 ALGORITHM DESCRIPTION 

2.1 Solution Methods 

The «eneral problem of predicting the onset of 
~ ~ . 1 

transition in a flow is extremely complex. Stnct y 

speaking. the complete approarh requires the full 

unsteadv 1\avier-Stokes equations to be solved 

for a ra~ge of di,.;turbance:;, which span the com

plete spectrum of freestream fluctuation:;. surface 

roughness, surface ,·ibration. and sound. Such a 

calculation would have to be performed with very 

fine resolution of len~h and time scale:; and it 

would be necessary to specify every possible form 

of disturbance in order to ascertain which were 

amplified most rapidly . .\loreover. the computa

tions would have to be carried out sufficiently far 

downstream to capture the nonlinear processes 

which lead to laminar flow breakdown and the 

ultimate establishment of turbulent flow. Even 

with the most powerful machines currently avail

able. such calculations are only possible for sim

ple flows under highly restrictive and ultimately 

unrealistic conditions. e.g .. fully developed pipe 

flow with temporally developing disturbances. For 

en~neerin(J" purposes. when the basic flows are 
~ ~ . 

much more complex, an alternative approximate 

approach is called for. 

A major simplification of the problem is pro

duced by limiting the consideration to the devel

opment of small amplitude di:;turbances in a 

boundar-y laver flow. since this allows linearization 

of the go~·er~ing equation. This approach was first 

proposed in the 1920s by Prandtrs group in G6t

tingen [ 1 J. The complete analysis is available in 

ma~w standard texts, e.g., ;\-lack[2J but, in es

senc~, the arguments run as follows. 

1. The instantaneous fluid properties are ex

pressed in terms of a mean component plus 
1' - + I a fluctuating component, e.g., u = u u , 

P=p+p',etc. 
2. It is assumed that the complete unsteady 

flow satisfies the l\avier-Stokes equations. 

3. The amplitudes of the disturbed quantities 

are assumed to be sufficiently small for 

products of fluctuating components to be 

negligible. 
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.Y. The mean flow is assumed to satisfy the 

sreadv,boundarylayerequations. 

a. The ~ormal-to-surface component of the 

velocitv is assumed to be negligibly small 

compa.red with the streamwise component. 

Thus the flow is taken to be parallel. 

Having taken the above steps the resulting 

equations for the disturbance com~onents. are 

found (by inspection) to have harmomc solutiOns. 

Since the problem has been linearized. a general 

disturbance can be constructed by superimposing 

normal modes of the form 

u'(x, y, z. t) = Fly)eia.r+/3=-wt (1) 

where. in generaL a, {3. and ware complex quanti

ties. Bv substituting expressions for the distur

bance .quantities of the form of Equation 1 into 

the governing equation, a system of equa.tions is 

obtained which can be used to determme the 

characteristics of traveling waves propagating 

through the flow. These waves are known as 

Tollmien-Schlichting (T -S) waves. It is interest

ing to note that, originally, the above stability 

analvsis was carried out in the absence of any ex

peri~ental evidence that such waves could exist. 

Verification of the existence of T -S waves and 

their precursor role in the process of boundary 

laver transition was not provided until the 1940s 

b; Schubauer and Skramstadt[.3J. 

. Finallv, in order to produce further simplifica

tion the.flow mav be assumed to be incompressi

ble;' it is then p~ssible to show that. for a two

dimensional boundan· laver, the most unstable 

wave propagate in th~ m~an flow direction. i.e .. 

f3 = 0[ 4 J. Consequently, from the point of view of 

transition prediction, only two-dimensional dis

turbances need to be considered. This being the 

case the stability problem reduces to the solution 

of a single, fourth order ordinary differential 

equation: 

( d2 )
2 

[ ( d2 ) 
dy 2 - a

2 
v = iR (aU- w) dy 2 - a

2 
(
2

) 

d2U] A -a--v 
dy2 

subject to the boundary conditions: 

v(O) = o, dv(O)Idy = o 

v(y)- 0, dv(y)ldy- 0 asy- 00 (3) 
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This is known as the Orr-Sommerfeld (0-S) 

equation. From the point of view of the present 

exercise it is important to note that this equation 

depends on local conditions only. i.e., there are no 

terms involving derivatives with respect to .r. This 

means that the stabilitv characteristics are not af

fected by the upstream history. For a wave of fixed 

frequency, w" convecting through a given flow at 

a specified local Reynolds number. R. the 0-S 

equation provides two relationships (real and 

imaginary part) among the three unknown quanti

ties a" a;, and w;. Therefore. in order to close the 

problem, an extra condition is reyuired. ln the 

early days of stability computation. the final step 

was to assume that the disturbance l!rew in tinw 

but not in space. i.e .. a; was zero. This produced a 

well-posed mathematical problem. However. in 

the physical world in which waves art> obsPrwd to 

propagate in the mean flow direction a slightly 

more realistic approach is to assume that the dis

turbances grow in space but not in time. i.e .. w; is 

zero. This spatial form for the T -S Wa\·e is the 

preferred option for use in transition prediction. 

Solutions to the 0-S equation permit the 

calculation of the dispersion relation for the dis

turbance waves of a specified freyuency. The 

secondary problem then is how to use this infor

mation to predict the onset of transition. It has 

already been noted that breakdown of laminar 

flow occurs when the amplitude of amplified tra\·

eling disturbances becomes large. From Equation 

1, it is immediately apparent that for a wave of 

fixed frequency. iL at the point of neutral stability. 

x 0 , the disturbance amplitude is A0 then at station 

x, where x > xo: 

In general, the boundary layer will change its 

thickness and Reynolds number between any two 

stations and, consequently. a; will vary with x. 

However for the purposes of evaluating a;. it is 

assumed that locally the flow does not ,·ary with x. 

Hence, the amplitude ratio relation is only ap

proximate. 1'\evertheless, it is a quantity which can 

be readilv calculated and it does bear some rela

tionship to the stability of the mean flow. 

By examining a range of experiments in which 

transition was observed, it has been proposed that 

transition onset correlates with the condition 

where the wave which has undergone the greatest 

total amplification has just reached an amplitude 

ratio of e9
, i.e., 

(;)) 

This io; the basis of tht' so-called t'' transition 

method when the critical !transition <m,;et) value 

for;\" in low disturbance environments is 4. 

2.2 Numerical Method 

The boundary layer (see Fig. 1) will. in /!t'neral. 

vary in thickness alon!! the aerofoil. TlwreforP. we 

soh·e the 0-S equation at a numlwr of equally 

spaced positions along the aerofoiL finding the 

wave amplification rail'S at each: tht>,;t> po~itions 

are denoted ··stations.·':\ pa11icular wa\·e·s am

plification rate cmTt>><p<mds to the imaf!inary part 

of its wavenumber a;. At each station the 0-S 

equation is solvPd 'finding CX 1 \ for a nt1mlwr of 

equally spaced frPquPiwie;;: tlw numlwr and 

bounds of the;.,e are specifit>d. 

An initial wavenumber approximation a mu,-t 

be ~up plied by the u><er for the lowest fn•q1wn<·y at 

the first station. \\'hen the actual wavPnumber 

corresponding to that frequency has lwen calcu

lated. the frequency is pertllrbed and a new 

wa\·enumber found for the perturbed frequency. 

The original and perturbed ndues are then uo;ed 

to make an approximation to the wavenumber ,-o

lution. for the next frequency. at the same ,;tation 

(Fig. 2a shows the dependencies. at the first ,.;ta

tion. denoted by vertical arrows). 

\\'hen the instabilities for each frequency at a 

station have been calculated the results are 

stored. The wavenumber correspondinl! to the 

lowest frequency (f1 in Fig. 2a) is then used as an 

approximation to the waveiHunher for the lowest 

frequency at the next station (Fif!. 2b shows the 

dependencies here, denoted by horizontal ar

rows): this method is possible as the boundary 

layer and velocity profile are slowly varying (there

fore adjacent solutions have similar values). Thus. 

FIGURE 1 

air velocity profile ... ... ... ... 
freestream 

boundary 
layer 

aerofoil surface 

Typical boundary layer wlocity profile. 
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FIGURE 2 Dqwnlkneil·s of fn·truerwie,.; and station,.;. 

once thP initial wavenumber approximation has 

been supplied. ,.;ub,.;equPnt approximations arP 

generated automatically. 

To soln· dw OS equation. findinl! a wa\·Pnum

ber solution from an initial approximation at each 

frequency and station. we LISP a shooting 

method[5 j. The slwotinl! method soh·es botmdm...

valuP problems (to find the solution for an ordi~ 
nary tlifferential equation betwePn two points with 

known boundary conditions:. In this ca,.;p the 

freestream give,; <mP boundary condition and the 

aerofoil the otlwr (,;ee Equation :3 ). An approxi

mation is supplied at one boundarY and the sys

tem of ordinary diffprential equati~ms intewa;ed 

to the other boundary (from the freP,;tream to the 

aProfoilJ. This is repeated with another approxi

mation. In our algorithm the two approximations. 

Z 1 and Z :1 • are integrated at the samP tinw. The 

integrator used is a fourth order Runf!e-Kutta in

tegrator. 

The shooting method we use suffers from the 

problem of parasitic error wnwth. For thi" case (a 

two-dimensional wan· in a two-Jimen,.;ional 

boundary layer) the two ,.;olution,.; Z 1 and Z ·1 

each con:'ii:'ih of four componPnh. Z :1 grow,.; morP 

rapidly "·irh decrpa,.;inl! y than Z 1 
• The para:-;itic 

error follows Z :1 and when tht' difference in mag

nituJe of Z :1 and Z 1 bt:>cornt':'i ~ufficit>nth· larue 
- r 

Z 1 i~ no longer independent of Z :l . Before thi" 

occurs we apply Gram-Schmidt orthonormaliza

tion: in fact we do this for each iteration. The large 

solution z::1
; is normalized component by cnmpo

n~nt to give the new solution: 

(6) 

where the overbar refers to a complex conjugate 

and {} a scalar product. Z 1 is then replaced by: 

z l: = (Z' 11- {Z:J Z'1 } z-::·1, )1\'Z 12 1 )112 (7) 
flPW flf'U' flPU' _ _ 
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where the underbar refers to the quantity in the 

numerator. The numerical integration proceeds 

with the new values of Z 1 and Z :-1 • 

A linear combination of Z 1 and Z :-1 can be 

found which satisfies the bounJarv conJition 

ll (0) = 0 at the aerofoil but will not satisfy the 

condition .,; (0) = 0 unle,.;s the wavenumbe~ ap

proximation is an eil!envalue of the equation (the 

correct value). The residual.,; (0) can therefore be 

found. 

The real part of the wa,·enumber approxima

tion .. ar is pt:>rturhed by a small amount Llar anJ 

the integration repeated. The imaginary part of 

the wavenumber approximation a, is then per

turbed by a small amount Lla1 and the integration 

repeated. Corrections oar and oa, to the initial ap

proximation~ a, and a,. are obtaineJ from the rP

sidual and numerical approximations to deriva

tives using Equations 8 and 9: 

(8) 

(9) 

The corrected a 1 and ar are used to start a new 

iteration anJ the process continues until oar and 

oa, are reduced below a preset criterion. This 

method is a quasi 1\"ewton-Raph,on search. 

2.3 Algorithm in Context 

So far we have not discussed how initial data. 

such as wavenumber and velocity profiles. for the 

aerofoil are calculated. This section overviews this 

process. 

We begin with an aerofoil and its corresponding 

pressure distribution. A simplified diagram of an 

aerofoil is given in Figure 3. This shape has a sur

face static pressure distribution which is of the 

form given by Figure -i. 

Once a particular aerofoil shape is chosen the 

pressure distribution, corresponding to that 

shape, is used as input to a mean flow code. This 

air How ____. 
____. 
____. ____. 

suction holes to control 
the boundary layer 

--------"\. 

FIGURE 3 Aerofoil. 
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pressure 

position 

FIGURE 4 Pressure di~tribution along aerofoil. 

problem calculates the various boundary layer pa

rameters needed at each station. such a~ Reynold . .; 

number. boundary layer thickness. and velocity 

profile; its output is used as input to the ,.;tability 

code. These two programs are separated so that 

certain control parameters can be set and others 

checked before running the time consuming sta

bility program. 

The control parameters we set are the initial 

wavenumber approximation for the first fre

quency at the first station. the frequency-range to 

be examined, and the number of frequencies 

within this range. 

It is known from previous experience that in 

practice two-dimensional instability waws tend to 

occur within the region 500-5,000 Hz. There

fore, the first time the instability program is run. a 

spread of frequencies across this range is exam

ined for a number of stations along the aerofoil. 

typically 50-100 stations and 5-1 0 frequencies. 

The first run is effectively exploratory, to find 

which frequencies and stations to concentrate on. 

\Ve then rerun the program with a greater number 

of frequencies and stations over the range of inter

est, typically 100-400 stations and 10-40 fre

quencies. This process may be repeated two or 

three times before a sufficiently accurate picture is 

obtained. 

The output consists of two files. a large diag

nostic file which records virtuallv all relevant \·ari

ables, and a file which gives the amplification rate 

(a;) for each frequency at each station. 

a; is the amplification rate at a station (for a 

particular frequency). To convert this into an am

plitude ratio, a; needs to be integrated along the 

aerofoil. The natural log of the amplitude ratio is 

then plotted against position along the aerofoil for 

each frequency; an example is shown in Figure 5. 

Figure 5 shows a number of amplitude ratio 

plots for various frequencies. It is the profile of 

4 

aerofoil position 

FIGL'RE 5 Amplitude ratio~. 

these frt>q ueuei~es. i.e .. the largest amplitude ratio 

at any given position along the aeroi(Jil. that is 

important when predicting v.·here turbulence 

starts. This is because turbulence only twgins 

above a certain (experimentally detennined) value 

of 1'\, regardless of which frequency first reaches it. 

2.4 Available Parallelism 

This section dis<'usses the parallelism apparent 

from the numerical method described in Section 

2.2. 

Pipelined Station Parallelism 

"-hen examining Figure 2b it is clear that compu

tation for frequencies at a station can begin once 

the wavenumber for the first frequency (f1 ) of the 

preYious station has been calculated: this gi,·es a 

parallel pipeline effect demonstrated in Figure 6. 

ln Figure 6 the maximum overlap (number of 

stages in the pipeline) is the number of frequen-

Parallel Streams 

2 

3 

4 

3 

2 

FIGUHE 6 Overlapped solutions. 
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cies per station. In fact the overlap i,; l!reater than 

thi,; a,; a station doe,; not rely on the pPrturbed 

frpquencies wa\·Pnumher solution for the prt>vious 

station: it can proceed as soon as the actual 

wavenumber for the frequency at the previous sta

tion has been calculated. This effect is tihO\nl in 

Figure?. 

Thus the potential number of stages in the 

pipeline (a,;surninl! all wavenumber frequency 

pairs take the samP time) is two times the number 

of frequencies per station. As will he seen in the 

next section the pipeline is efff'ctivel~· reduced to 

that shown in Figure 6 when the frequency and 

perturbed frequency are parallt>lized. 

Frequency and Perturbed Frequency 

As described in Section 2.2. the wavenumber is 

solved for each frequency and for that frequency 

perturbed. The perturbation allow,; a wavenum

ber approximation to be extrapolated for the next 

frequency at that station. 

At first glance one would expect these two solu

tion to be independent: however to decrease the 

number of iterations needed to converge for the 

perturbed frequency, our sequential algorithm 

uses the wavenumber solution of the frequency 

itself: this imposes a dependency. 

To enable these two solutions to proceed in 

parallel the same wavenumber approximation 

used for the frequency can be used for the per

turbed frequency. This change in the algorithm 

may increase the amount of computation as the 

solution to the perturbed frequency could take 

longer to converge. 

Another possible problem is that for a particu

larly bad wavenumber approximation the per

turbed frequency may not converge-therefore 
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• • 
• • 

FIGURE 8 Station and frequency parallelism. 

the parallel algorithm i,=.; potentially less stable 

than the sequential algorithm. This problem can 

be eliminated as, on failure. the parallel algorithm 

can revert to its sequential form. For all test cases 

examined so far this has not been required. The 

parallelism so far described is shown in Figure 8. 

Wavenumber Approximations 

For each frequency, the wavenumber approxima

tion and perturbations of its real and imaginary 

parts (ar and a,) are integrated through the bound

ary layer. As suggested in Section 2.2. these are 

indepe.ndent and can therefore be calculated m 

parallel. 

The parallelism so far described is shown in 

Figure 9. It shows a potential loss of efficiency 

when parallelizing at the frequency and perturbed 

frequency level described in the previous section. 

In the example given one solution converges in two 

iterations while the other takes three. 

a) One frequency b) all levels so far. 
Example with 4 frequencies 
per station 

11li 
I ill 

FIGURE 9 Nested parallelism. 
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integz<ll 

integ z<3l ___ ,___ .. 

orthonormalize 
z<lJ and z<3> 

FIGURE 10 Integration of solutions. 

Integration of Solutions 

Each wavenumber approximation and perturbed 

values of its real and imaginary parts has two de

pendent solutions Z\1
) and Z ;j. These are inte

grated from the edge of the boundary layer to the 

aerofoil (see Section 2.2). Each integration is in

dependent, however orthonormalization is ap

plied at each step (see Fig. 10). 

3 PROGRAMMING TECHNIQUES 

The codes described in this article were written 

and are maintained by the LFC group in the aero

nautics department of The Cniversity of .\Ianches

ter, U.K. The stability code is called .\lelissa. 

Melissa is written in standard Fortran 77 and as 

a result has run without modification on all plat

forms tried. The code itself is approximately 

1,000 lines long. 

The 0-S solver utilized in .\1elissa was taken 

from an earlier, more general purpose code, writ

ten in FortraniV. Due to both the language used 

and the original authors' coding practice in this 

earlier code, the 0-S solver section of .\Ielissa has 

a typical "dusty deck" form. 

3.1 Code Restructuring 

To help understand the algorithm used to soh-e 

the 0-S equation and make the code more read

able certain code restructuring was performed. 

Loops implemented with a counter and condi

tional branch using a GOTO were converted into 

DO loops. Redundant loops and code segments 

associated with the equation solver performing 

obsolete functions were removed. Tangled control 

flow and conditional GOTOs were converted into 

their IF THEN ELSE form. A number of redun

dant input variables and input variables read 

more than once were removed. Large code frag

ments were converted to subroutines to aid read-

ability. Finally some C0.\1.\101\" blocks were re

moved and variables passed as arguments. 

3.2 The Kendall Square Research KSR-1 

The scalability of shared memory multiprocessors 

has traditionally been limited to tens of proces~ors 

due to memory access contention. As a result it 

has been widely accepted that distributed memory 

is the key to scalable parallel machines. however 

these machines have been notoriouslv difficult to 

program. 

The KSR-1 is a distributed memon· machine 

that provides a single address space. supported by 

proprietary hardware [ 6]. the advantage )wing a 

shared memory programming model for the user. 

This technique has been termed virtual shared 

memory (YS.\1). This term can cause confusion as 

the KSR-1 also supports virtual memory (Y.\1) 

with an address space of 1 million .\!bytes (2-+0
). 

Each KSR-1 processor is a 20 .\1Hz RISC-style 

superscalar 64-bit unit operating at 20 .\lips and 

40 .\lflop/ s (peak). A KSR-1 system contains from 

8 to L088 processors with a peak performance 

range from 320 to 43,520 .\Hlop/ s. 

Each processor has 0.5 .\lbyte of subcache .. 

split equally between instructions and data, and 

32 .\lbyte of cache. It is therefore a nonuniform 

memory access (1\L-.\IA) style memory system. In 

this svstem instructions and data are not bound to 

specific physical locations, rather they migrate to 

where they are being referenced: this is termed a 

cache-only memory architecture (C0.\1..\). 

The interconnect topology is a two-level hierar

chy of slotted unidirectional rings, known as ringO 

and ring1. Each ringO can have a maximum of 32 

processor memory pairs and has a bandwidth of 1 

Gbyte/ s. The ring1 connects up to 34 ringOs and 

has a bandwidth of 1-4 Gbyte/s depending on 

configuration. The KSR-1 at .\1anchester is a 6-i

processor machine. 

A thread (termed pthread by KSR) is a sequen

tial flow of control within a process and is the un

derlying mechanism used to execute the parallel 

constructs available to Fortran programmers. 

These constructs-parallel regions, parallel sec

tions, and tile families-form a high-level inter

face to pthreads. The user inserts these parallel 

constructs, seen as cornments to other compilers, 

around appropriate blocks of codes. A pthread 

library for thread creation, barriers, locks, condi

tion variables, etc., can be accessed directly by the 

programmer if a finer level of control is required. 



3.3 Scalar Optimization on the KSR-1 

The core element of Melissa, the 0-S equation 

solver originally included the case of oblique 

waves (three-dimensional waves); the values of 

these were set to zero in the input files. The redun

dant code associated with this was removed. 

Two core functions, in which nearly all compu

tation takes place, were each called twice with the 

same input parameters. These two calls were re

placed by a single call and the result shared. 

The innermost functions are called millions of 

times and have little work within them. These were 

manually inlined reducing the calling overhead. 

In combination these scalar optimizations pro

duced over fourfold improvement in solution time 

(see Section 4.3). 

3.4 Parallelization on the KSR-1 

Parallel Stations 

In "Pipelined Station Parallelism" we describe 

the potential parallelism available by overlapping 

station solutions (see Fig. 6 ). As the overlap is 

equal to the number of frequencies per station the 

maximum parallelism that can be usefully em

ployed is equal to the number of frequencies. 

If, for example there are 4 frequencies, thread 1 

will be used to calculate stations 1, 5, 9, etc., 

thread 2 will calculate stations 2, 6, 10, etc., and 

so on (see Fig. 11 ). 

This ensures that all threads are kPpt as busy as 

possible and minimizes the number of threads 

used. As mentioned in "Pipelined Station Paral

lelism" this is, in fact, an oversimplification. To 

Station 
2 3 4 5 6 7 8 

Thread 

2 3 4 

2"' !"' 3 2 "' 

4 3 2ll 
4 3 2 

4 3 

4 

FIGURE 11 Maximum station parallelism. 
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create the appropriate number of threads on the 

KSR-1 we use a parallel region directive. A func

tion is called within the parallel region which re

turns a unique value to each thread and is used in 

combination with an explicit modulo function to 

ensure each thread only calculates the appropri

ate stations. 

We now need to delay the thread at the next 

station until the thread at the current station has 

calculated the a solution for its first frequency. To 

implement the above we use a "mutex"; this al

lows only one thread through a section of code at a 

time (the first frequency calculation is effectively 

an ordered critical section) and a condition vari

able to ensure that the pthreads obtain the mutex 

in the correct order. These were implemented us

ing calls to appropriate KSR pthread libraries. 

The code implementing this is shown below. 

C*KSR* parallel region(numthreads= 
C*KSR*&NFREQ,private=(I,mynum, istat)) 

mynum=ipr _mid () 

DO I=l,NSTAT 
IF(mod(I,NFREQ).EQ.mynum)THEN 

call pthread_mutex_lock 

& (mul, is tat) 
IF(ftag(I) .EQ .. false. )THEN 

call pthread_ cond_ 

& wait(icond(I), mul, istat) 
END IF 

CALL STATIONS( .. ) 
END IF 

END DO 
C*KSR* end parallel region 

The condition flag (flag (I) ) is initialized to 

false for all instances except for I=l. If the 

"wrong" thread grabs the mutex it yields on a 

pthreacLconcLwai t () until it is woken by the 

thread which has calculated the previous station 

wavenumber. ·when a thread has finished calcu

lating the wavenumber required for the next sta

tion to start, it unlocks the mutex, sets flag (I +1) 

to true, and wakes the next thread if it is sleeping 

on the condition variable; this is shown below: 

IF (I.NE.NSTAT) flag(I+l)=.true. 

call pthreacLmutex_unlock(rnul, istat) 

IF (I.NE.NSTAT) THEN 

call pthreacLconcLsignal (icond 

& (I+l), istat) 

END IF 

A problem found in the use of parallel regions 

and condition flags is in the KSR-1 's Fortran77 
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0 

FIGURE 12 Owrlappin;r 1/0. 

optimization: it assunws the code run;; ;;eq uen

tially making appropriate optimizations. 1t i,; 

therefore possible for the compiler to ··optimize 

out" a condition yariable as. sequentially. the 

condition is alwavs true. On the KSR-1 ,;uch t:'X

plicit locks need to be deelared volatile. Thi;.; i,; 

a Fortran77 extension which stop,; the-compiler 

from optimizing that variable. 

Other necessarv modifications to the code in

volved making wavenumber results for the first 

frequency global so that the next station could 

read them and sequentializing the output to a file: 

this occurs after all the wayenumbers haYe been 

calculated at a station. This latter change was im

plemented with a naiYe spin lock condition vari

able. 

It ensues that we cannot neglect the time taken 

for each thread to complete l/0 bdure calculating 

the wavenumber solution;;; for its frequencie;;. This 

overhead can be reduced by adding another lock 

and condition variable, allowing the thread for a 

station to proceed w1th its l/0 as soon as the l/0 

has been dealt with by the preyious station (see 

Fig. 12). 

Parallel Frequencies 

As discussed in "Frequency and Perturbed Fre

quency" the algorithm requires modification to 

calculate the wavenumber for the frequency and 

perturbed frequency in parallel. This involves em

ploying the same wavenumber approximation by 

both the frequency and perturbed frequency. To 

implement this we need only change one IF state

ment. To run this in parallel we add the KSR tile 

directive given below: 

C*KSR* TILE (FREQ, teamid=iteaml) 

DO FREQ=l, 2 

CALL PERT ( ... ) 

END DO 

C*KSR* END TILE 

The teamid argument to the tile directin~ i;-; dis

cussed in ""Teams and :\e:;ted Paralleli:-;m.·' 

Parallel Wavenumber Approximations 

As discussed in ··\\·an•numlwr Approximation,;·· 

the wavenumber approximation and perturl,a

tion;.; of its real and imaginary pans arP intc>gratt·d 

through tlw boundary layc>r. As in tlw prn ious 

section to implemelll this we simply need to add 

the KSR tile dirc>ctive given lwlow: 

C*KSR* TILE(PERT, teamid=iteam2) 

DO PERT=1,3 

CALL WAVE ( ... ) 

END DO 

C*KSR* END TILE 

The teamid argument to the> tile dirt>cti\P i;-; dis

cussed in ··Teams and :\p,;ted Paralleli,;m. · · 

Integration of Solutions 

As discussed in ""lntt>gration of Solutions·· each 

integration step of the two dependent :'iolutions 

Z 1
' and Z :i can be exeeutt>d in parallel. lwweyer. 

this is not true for the whole integration due to the 

orthonormalization of the :'iolutions (see Fig. 10 ). 

This was implenwnted using the KSR parallt>l ,.;pc

tions directive. ,.;pe below: 

DO J=I,NSTEPS 

C*KSR* parallel sections 

& (teamid=iteam3) 

C*KSR* section 

CALL INTEG(AZ, .. ) 

C*KSR* section 

CALL INTEG(CZ, .. ) 

C*KSR* end parallel sections 

CALL MODOR(CZ, .. ) 

CALL ORTHO(AZ, CZ, .. ) 

END DO 

The teamid argument to the parallel sections di

rective is discussed in '"Teams and l\'ested Paral

lelism." 



Inner Functions 

\\~hen the code is examined we obsf-rve some in

ner function,.; which could be called in parallel. 

For example. functions Land Ll independently 

search for the appropriate velocity and accelera

tion data. respectively. However. althou~h a lar~e 

proportion of the computational timf' is spent in 

these routines, the time per call i,.; too small to 

obtain anv benefit on the KSR-1. 

Teams and Nested Parallelism 

~When a parallel construct is encountered. thP ap

propriate number of threads are allocated to the 

work within it. To achieve this. threads which 

have alreadv been created and have fini,;hed their 

previously allocated work an~ utilized: such 

threads are kept in an '·idle pool.,. If there are not 

enough threads in the idle pool then threads are 

created to make up the shortfall. 

As threads start referencing instructions and 

variables. the appropriate data are fetched from 

remote processors (if there i:-; no instance of those 

data in the correct state locallv ). \\~hen threads 

finish their work they return to the idle pool. 

If another parallel construct is encountered 

later. which accesses the same variables. it is sen

sible to use the same threads and processors that 

executed previously. as the processors· local 

memory may still have valid copies of data. If the 

same construct is encountered. then the instruc

tion cache may also still have valid copies of in

struction code, and the thread will have the cor

rect data structures associated with it. The idea of 

data reuse here is, of course. the same as reuse of 

cache on a single processor machine. 

To ensure the same threads and processors are 

used for subsequent parallel constructs we use 

"teams" of threads. A team is created with a de

fined number of thrf'ads. This team can then he 

referenced in association with a number of paral

lel constructs and the same threads associated 

with the team will be utilized each time it is called. 

Teams of threads were implemented for each 

level of parallelism in the code. Another important 

effect of using teams is observed when the granu

larity of work is close to that of the start up cost of 

the construct and the construct is called many 

times: this is because a team reduces subsequent 

construct start up overheads by a significant 

margin. 

A subtle problem in the use of teams arises 

when parallelism is nested. This is due to run-time 
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thread creation. A team groups together a number 

of threads including the currently active thread. 

thus sets of calls to create appropriately sized 

teams at the beginning of the code are not desired. 

It must be the active thread, arriving at the parallel 

construct, that creates the team. Therefore the 

team is created (once) at the same nested level as 

the parallel construct. 

4 PERFORMANCE REALIZATION 

4. 1 Test Data 

As outlined in Section 2.3, we first apply a low 

resolution search to find the frequencies and aero

foil positions of interest: wf' dwn do a more de

tailed analvsis around these areas. The low reso

lution search typically use;; 3-10 frequencies and 

50-100 stations. The high resolution analysis 

typically uses 10-40 frequencies and 1 00-•fOO 

stations. 

In this article we use two test cases to represent 

these different resolutions. Test case A has 4 fre

quencies and 40 stations. Tese case B has 40 fre

quencies and 100 stations. 

4.2 Results 

The results reported in this article were achieved 

on the KSR-1/64 at Manchester University. Tim

ing runs were taken in a multiuser en,ironment. 

To ensure the exclusive use of the appropriate 

number of processors during the runs and to mini

mize interference from other users, cells were allo

cated exclusively to the program during its execu

tion. This was achieved with the command 
1 allocate_cells -An 1 , where n is the number 

of processors and -A avoids 'loaded' cells such as 

those with ethemet cards. All results shown in the 

next sections are the average of three consecutive 

runs and all timings were made using the unix 

timer "time." 

Results for varying numbers of processors are 

presented as temporal performance graphs[?]. 

The dotted line in each graph is the "naive ideal" 

line lp = l 8 /p (often termed "linear speedup"), 

where t., is the elapsed time for the serial program 

for a fixed problem size and lp is the elapse time 

for the same problem size on p processors. 

Other results are presented in tabular form in 

which we give absolute time and solutions per sec

ond. A solution is defined as the calculation of the 
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wavenumber for one frequency (and its perturbed 

complement) at a station. 

The results described in this article extend work 

reported in Ford[8]. 

4.3 Single Cell 

A number of scalar optimizations have been ap

plied to the code during the course of our work. 

Table 1 shows the performance improvements oL

tained. The solution rates differ for the two cases 

as case B has a better conveqrence rate for the 

iterative method used to solve the 0-S equation. 

4.4 Parallel Stations 

The temporal performances for cases A and B for 

increasing numLers of processors are shown in 

Figures 13 and 14, respectively. 

The two results in each graph (Sand Sio) repre

sent the advantage of performin~ 1/0 as soon as it 

is possible to do so: this effectively increases the 

pipeline length (see Fig. 12). 
The performance results ··drop away" from the 

naive ideal line due to two major factors.- The first 

is that we run out of overlapped work to do: note 

that this is not a sharp cut off. as the pipeline 

overlap varies during the run due to the iterative 

method used. The second effect is due to the over

head of '·filling up"' the pipeline. This effect is 

more prominent in case B (Fig. 14). as the ratio of 

the pipeline length (a function of the number of 

frequencies) to the number of stations is larger 

than in case A. 

4.5 Parallel Frequencies 

To implement parallel frequencies we modified 

the algorithm (see Section 2.4, "Frequency and 

Perturbed Frequency"). Table 2 shows perfor

mance comparisons for the serial code and the 

parallel version run both serially, and in parallel, 

for test cases A and B. The parallel algorithm runs 

more slowly than its sequential counterpart. The 

temporal performance of cases A and B with the 

Table 1. Sequential Optimizations 

Version 

A: Original 

A: Optimized 

B: Original 

B: Optimized 

Elapsed Time 

6m Os 

1m 28s 

1h 51m 31s 

25m 17s 

soils 

0.4-t 

1.82 

0.60 

2.64 

Table 2. Parallel Frequencies 

Version 

A: sequential 

A: par 1 eell 

A: par 2 cells 

B: sequential 

B: par 1 cell 

B: par 2 cells 

1m 27.7s 

1m 3-t.h 

S5JJS 

2.Sm 16.8s 

29m 19.0s 

15m 1-t .. ),; 

~ol I,; 

1.82 

1. 70 

2.88 

2.64 

2.27 

•t.:37 

0.08 ,-----,r---.-~----,----.--,.-~---.----, 

0.07 

0.06 

0.05 

:::: 0.04 

0.03 

0.02 

.;i:l = // /// /~/:...- ... _ .... _ .... _· -----~ 

0.01 .......... 

0"------'-----'---'----'---'---'-----'-----'---' 

0 2 3 4 5 6 7 8 9 
processors 

FIGURE 13 Case A paralld ,.,ration,.;. 

parallelism of parallel frequencies and parallel 

stations combined is shown in Fi!!ures 15 and 16. 

respectively. Again the two graphs show the ad

vantage of performing 1/0 as soon as it i:-; pos,.;ible 

to do so. 

Parallelizing at the frequency lewl has the ad

vantage of reducing the pipeline length Lut has the 

disadvantage of modifying the algorithm to a less 

efficient form. Figures 15 and 16 show that paral

lel frequencies are only beneficial when the pipe

line length is large. i.e .. close to the number of 

0.025 

s --+--

0.02 Sio ~ 

naive -------

0.015 

-
0.01 

.· 
/ 

16 24 32 40 48 56 
processors 

FIGURE 14 Case B parallel stations. 
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FICUHE l;j Ca,;e A para lid ,.;tation~ and fn·queneies. 

:-;tations and that for small numbers of proeessors 

it i:i better to pamlldize at tht• station level only. 

The interesting feature,;; in the parallel station 

and parallel frequency line (S + F) in Fi1-rtu-e 16 

are the subject of ongoing work. 

4.6 Parallel Wavenumber Solutions 

Table 3 shows the performance results when soh-

ing wavernunher solutions in parallel. The tempo

ral performances of cases A and B. when the par

allelism of parallel wavcnumbers and parallel 

stations is combined. as shown in Figures 17 and 

18, respecti\·ely. 

The results of parallelizing at the station level 

only are also shown for comparison. There is a 

clear advantage in parallelizing at the wavenum

ber level as we obtain improved performance in 

both cases A and B. In case A the improvement is 

due to the increa:o;e in the amount of parallelism 

0.025 

0.02 

0.015 

-<:: 

O.oJ 

0.005 

0 
0 

s -+--

Sio-
naive 

S+F -<>

Sio+F-

8 16 24 32 40 48 56 
processors 
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Table :3. Parallel \Vavenumbers 

Version 

A: sequential 

A: :3 cells 

B: sequential 

B: :J cells 

Elapsed Time 

1m 27."?s 

3:~.9s 

2:')m 16.8s 

Sm .)7.9,; 

sol/ s 

1.82 

-+. '72 

2.6-+ 

-:'.·H 

available. In case B this impnwerm~nt results in 

better peformance for the number of processors 

used: a major part of this is due to the reduction of 

the pipeline overhead. 

4.7 Parallel Integration 

When the integration was parallelized as de

scribed in Section 2.i, '·Integration ofSolutiom;," 

the program ran more slowly. The degradation in 

performance is due to the startup oYerhead of the 

0.15 

- 0.1 

0.05 

s
Sio-

naive -·----· 

Sio+W -<>--

0 ~--~~--~----~----~----~----~ 
0 4 8 12 

processors 

16 20 24 

FIGURE 17 Case A parallPI station~ and wavt>num

bers. 

0.02 

s 0.015 

0.01 

0.005 

0 ~--~--~--~--~----~--~--~~ 
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processors 

FIGUHE 18 Case B parallel ;;tations and wawnum-

FIGUHE 16 Ca~e B parallel station,; and frequencies. bers. 
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Table 4. Parallel Integrations 

Version 

A: sequential 

A: sections 2 cells 

A: reduced 2 cells 

Elapsed Time 

1m 27.?s 

4m 9.4s 

1m 13.5s 

sol/ s 

1.3:2 

(). 6-t 

:2.18 

KSR parallel section construct being close or 

greater than the work inside each section. To re

duce this overhead we expanded the KSR parallel 

sections (see Section 2.4, "Integration of Solu

tions") outside the integration loop, thus reducing 

the number of section startups. This was achieved 

by duplicating the loop and synchronizing manu

ally via shared variables*, see below. 

C*KSR* parallel sections(teamid= 

C*KSR*& iteam3, private=J) 

C*KSR* section 

DO J=l,NSTEPS 

CALL INTEG(AZ, .. ) 

DONE_INTEG(J)=.TRUE. 

20 IF (.NOT.DONE_ORTHO(J)) GOTO 20 

END DO 

C*KSR* section 

DO J=l,NSTEPS 

CALL INTEG (CZ, .. ) 

10 IF (.NOT.DONE_INTEG(J)) GOTO 10 

CALL MODOR (CZ, .. ) 

CALL ORTHO (AZ,CZ, .. ) 

DONE_ORTHO(J)=.TRUE. 

END DO 

C*KSR* end parallel sections 

Table 4 shows the performance of these differ

ent versions. Clearly we only obtain a modest im

provement in the solution time when parallelizing 

sections. 

5 CONCLUSIONS 

We have shown that for a typical low resolution 

search, we can reduce the solution time from min

utes to near interactive times. In test case A, we 

have reduced the solution time from 6 minutes to 

under 8 seconds on 24 processors (this is the 

maximum number of processors that can be use

fully employed on this problem size). 

* The premise here is that manual synchronization incurs 

less overhead than parallel sections. 

\Ve have also dt>monstrated that for a typical 

high resolution search, we can reduce tlw :-;olution 

time from hours to seconds. In test ca:-;e B. we 

have reduced the ,.;olution time from onT 1 hour 

51 minutes to under -!0 seconds on 5-i proces,.;ors. 

These results were obtained by a combination 

of scalar optimization and parallelization. Scalar 

optimization accounts for over fourfold imprpve

ments in the results. 

These results open up the pos;;ibility of much 

larger runs involving more stations and frequen

cies. However, more significantly. we demonstrate 

near iteractive performance for smaller runs, 

enabling a transformation of search methods and 

opening up new possibilities for this methods use 

in industry. 

The algorithm has a reasonable amount of 

functional parallelism (for the :;tandards of to

day's machines) but would not be classified as 

being massively parallel; useful parallelism on the 

KSR-1 is limited to six times the number of fre

quencies in a run. The majority of this parallelism 

is coarse grained with little communication and 

should therefore be efficient on both shared mem

ory and distributed memory machines. 

There is further parallelism available, within 

which a large amount of the total execution time is 

spent: however, the time per call is too small to 

exploit on the KSR-1. 

Conceptually, a message-passing style would 

be a natural way to exploit the functional parallel

ism available and svnchronization needed in this 

algorithm, particula"rly at the level of parallel sta

tions. However, the combination of a shared 

memorv model and dvnamic thread control on the 

KSR-1: coupled wid{ automatic thread and data 

migration. offered significant advantages wht>n 

parallelizing the existing sequential program. 

These features enabled each level of parallelism to 

be separately parallelized with little code modifi

cation: thev also enabled each level and combina

tions of le,:els to be incrementally dewloped and 

tested; finally .. we could effective ignore thread 

placement and the migration of shared data. 

6 FUTURE WORK 

The algorithm described here models incompres

sible fluid flow. A compressible wrsion is now op

erational: this has similar characteristics but is 

more computationally intensive. The compres

sible code will be the subject of future paralleliza

tion efforts. 
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The dependency of a station on the previous 

station may be broken by "inputting" an accurate 

initial wavenumber approximation either at every 

station or, more feasibly. groups of stations. This 

would increase the amount of parallelism avail

able and reduce the functional pipeline overhead 

(see Fig. 19). The accuracy of initial wavenumber 

approximations is one of the current focuses of the 

LFC group. 

The algorithm described here is also con

strained to a two-dimensional flow. A three-di

mensional ver;;ion of their model is now opera

tional. The three-dimensional code will again 

increase the computational requirements. In this 

case a different parallelization stratebry will also 

have to be adopted, as the three-dimensional ver

sion imposes new orderings on the computation 

(such as dependt>ncies across the wing). 

Work aimed at improving the efficiency of a 

search procedure in one of the core routines, elim-
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inating any further redundant work and reducing 

the parallel overheads of thread start-up, may 

also yield further performance benefits . 
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