
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2009

Parallel Processing Architecture for Solving Large Scale Linear Parallel Processing Architecture for Solving Large Scale Linear

Systems Systems

Arun Nagari
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Nagari, Arun, "Parallel Processing Architecture for Solving Large Scale Linear Systems. " Master's Thesis,
University of Tennessee, 2009.
https://trace.tennessee.edu/utk_gradthes/53

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=trace.tennessee.edu%2Futk_gradthes%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Arun Nagari entitled "Parallel Processing

Architecture for Solving Large Scale Linear Systems." I have examined the final electronic copy

of this thesis for form and content and recommend that it be accepted in partial fulfillment of

the requirements for the degree of Master of Science, with a major in Computer Engineering.

Itamar Arel, Major Professor

We have read this thesis and recommend its acceptance:

Fangxing Li, Hairong Qi

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a thesis written by Arun Nagari entitled "Parallel Processing Architecture
for Solving Large Scale Linear Systems". I have examined the �nal electronic copy of this thesis
for form and content and recommend that it be accepted in partial ful�llment of the requirements
for the degree of Master of Science, with a major in Computer Engineering.

Itamar Arel, Major Professor

We have read this thesis and
recommend its acceptance:

Fangxing Li

Hairong Qi

Acceptance for the Council:

Carolyn R. Hodges, Vice Provost and
Dean of the Graduate School

Parallel Processing Architecture for Solving

Large Scale Linear Systems

A Thesis
Presented for the

Degree
Master of Science

The University of Tennessee, Knoxville

Arun Nagari
August 2009

Copyright c
 2008 by Arun Nagari

All rights reserved.

ii

Dedication

This thesis is dedicated to my parents, Govindarajulu Nagari and Lavanya Bharathi Nagari, and to

my sister Silpa Nagari. For your love, support, and encouragment in helping me achieve my goals,

I thank you.

iii

Acknowledgments

I would �rst like to thank the Almighty for giving me the opportunity to work on this project and

pursue my masters at University of Tennessee - Knoxville. There are many people whom I would

like to acknowledge at this time for their help and support.

First of all, I must thank my advisor, Dr. Itamar Arel, for expending the time and e¤ort to

both get me started and guide me down the path towards the completion of my studies. I would

not be where I am without his knowledge and understanding.

I would also like to express my thanks to all involved in my academic career for in�uencing me and

helping me achieve my goals. I thank my teachers and professors throughout my studies for their

support and teaching. Thank you to Junkyu Lee, Siddartha Janga Gautam, Ravi Chiravuri, Ankit

Master, Derek Rose, and Cuibi Lu for assisting me in my work in various ways.

Finally, I thank my family for their love, and for always supporting and ecouraging me.

iv

Abstract

Solving linear systems with multiple variables is at the core of many scienti�c problems. Parallel

processing techniques for solving such system problems has have received much attention in recent

years. A key theme in the literature pertains to the application of Lower triangular matrix and

Upper triangular matrix(LU) decomposing, which factorizes an N � N square matrix into two

triangular matrices. The resulting linear system can be more easily solved in O(N2) work. Inher-

ently, the computational complexity of LU decomposition is O(N3). Moreover, it is a challenging

process to parallelize. A highly-parallel methodology for solving large-scale, dense, linear systems

is proposed in this thesis by means of the novel application of Cramer�s Rule. A numerically stable

scheme is described, yielding an overall computational complexity of O(N) with N2 processing

units.

v

Contents

1 Introduction 1

1.1 Background of Solving Linear Systems . 1

1.2 Motivation . 2

1.3 Thesis Outline . 2

2 Literature Review 4

2.1 Overview . 4

2.2 Existing methods . 4

2.2.1 Gauss-Seidel and Jacobi Methods . 4

2.2.2 Newton�s Method . 5

2.3 FPGA Technology . 7

3 Designed Algorithm 8

3.1 Concurrency in Solving Linear systems . 8

3.1.1 Revisiting Cramer�s Rule . 8

3.2 Proposed Architecture . 9

3.2.1 Chio�s Pivotal Condensation Process . 9

3.2.2 Parallel Application of Cramer�s Rule . 10

3.2.3 Computational Complexity . 14

4 Hardware Architecture 17

4.1 Overall block Diagram . 18

4.2 Memory . 18

4.2.1 IEEE 754 32-bit single precision format . 19

vi

4.3 Control Block . 19

4.4 Components . 20

4.4.1 Processing Unit . 20

4.4.2 Xilinx Floating Point Operator . 21

4.4.3 Parallel Comparator Logic . 23

4.5 Synthesis Results . 25

4.5.1 Device utilization summary . 25

4.5.2 Timing Constrain . 25

4.6 Hardware . 25

5 Conclusions 27

5.1 Comparison with LU Decomposition Method . 27

5.1.1 Elimination of Zero Calculations for Sparse Matrices 27

5.1.2 Number of Dividers . 27

5.1.3 Pivoting . 28

5.1.4 Communication Overhead . 28

5.2 Conclusions . 28

5.3 Relevant Publications . 29

vii

Chapter 1

Introduction

1.1 Background of Solving Linear Systems

Solving a system of linear equations is a fundamental problem in many scienti�c and engineer-

ing applications, including electric power network analysis, circuit simulation, aircraft design and

structural analysis[8]. LU decomposition, in which a matrix is decomposed as a product of a

lower and upper triangular matrix, is a common method used to solve a system of linear equations.

In applications where matrices have thousands of elements, LU factorization demands exhaustive

computations. When real time operations need to be performed, a reduced execution time is of

the utmost importance. For this purpose, extensive research is directed towards the application of

parallel processing techniques for LU factorization of linear systems[8]. Parallel supercomputers

have achieved great success in solving computation-intensive problems, but have drawbacks such

as high price/performance ratios, programming complexities, and maintenance costs[7].

On the other hand, with the rapid evolution of Field Programmable Gate Arrays (FPGA)

into multi-million-gate System on a Programmable Chip (SOPC) computing platforms, it is now

possible to integrate a large number of computational resources onto one silicon die, which speeds

the process of concurrently solving linear systems[7][8][4]. Such e¤orts pertain to both �ne-grained,

as well as coarse, parallelism.

In this thesis, a novel approach for solving large-scale linear systems, using Cramer�s Rule, is

presented[6]. This approach yields a highly parallelizable design that can be directly realized in

hardware. The computational complexity of the proposed method is O(N), given N2 processors.

1

1.2 Motivation

Power system distribution is one area in which solving a system of linear equations is crucial.

The distribution networks of a power system are generally hierarchical with limited number of

high-voltage lines transmitting electricity to connected local networks. Reliability, in this type of

system, is ensured by feeding the highly interconnected local networks from multiple high voltage

sources. Power grids have a graphical representation, expressed as matrices, in which graph nodes

and matrix diagonal elements represent electrical bus, while graph edges, or non-zero o¤-diagonal

elements, represent the electrical transmission lines. Load �ow analysis is a critical task in power

systems. Numerical methods such as the Jacobi, Gauss-Seidel, or Newton-Raphson are employed

to solve the load �ow equations[1]. The power system analysis is the basis from which the load �ow

calculations stems. The results of the calculations are used to estimate the operation of a power

system under a set of conditions. Any of the varied input conditions can change since the systems

are not static. In the event of scheduled or unscheduled equipment outages, the ability to quickly

perform the load �ow calculations allows engineers to be more con�dent about safety, reliability,

and economic operation.

The existing technology is inadequate in that it does not allow real-time or dynamic analysis

of these systems. The computational complexity can require hours to complete. Much research

has been performed in this area and can be summarized as : developing an algorithm, improving

software e¢ ciency, and adding custom hardware parallelism. The impetuous for my research is

to improve the performance of electrical power system applications in order to provide real-time

power system control and decision making support by solving a system of linear equations.

1.3 Thesis Outline

Chapter 2 discusses several of the existing methods to solve a system of linear equations and their

mathematical concepts. It also includes descriptions of the other methods currently being used to

solve large scale linear systems. A brief explaination of the disadvantages of these methods is also

addressed.

In Chapter 3 the algorithm developed in this thesis is discussed. It includes a detailed explaina-

tion of the algorithm with emphasis on the mathematical concepts used, its design, numerical

stability, and computational complexity. A software simulation is helpful since a design can be

more easily created in a software rather than in a FPGA, ensureing its veri�cation and stability.

2

The algorithm was implemented in MATLAB for veri�cation. The algorithm has been tested for

stability with the �xed point arithmatic in MATLAB.

Chapter 4 focuses on the hardware architecture used to implement the developed algorithm.

The algorithm has been implemented in VHDL and the Vertex2Pro family of FPGAs targeted to

implement the hardware design. Each of the di¤erent components used has been discussed in detail.

The synthesis results are provided. Finally Chapter 5 includes the results and comparision of the

algorithm with other existing methods and algorithms.

3

Chapter 2

Literature Review

2.1 Overview

The purpose of a load �ow computation is to determine the numerical values of the voltage mag-

nitude and phase angles at load buses, voltage phase angle and reactive power at generator buses,

and real and reactive power at the slack bus of a power system transmission network. Popular

methods to perform the load �ow are Jacobi, Gauss-Seidel and Newton-Rapson. Each method has

its own advantages and disadvantages. The Jacobi and Gauss-Seidel methods use the known quati-

ties of the power system and are easier to understand. Though their implementation is simple, the

process needs signi�cantly more iterations to converge to a solution. The Jacobi method requires

more iterations than the Gauss-Seidel method. Newton�s method is much complex than either the

Jacobi or Gauss-Seidel method. The number of calculations per iteration is increased, requiring

additional hardware. However, less iterations are needed to converge to a solution. The rate of

convergence of Newton�s method is quadratic whereas the rate of convergence for the Jocobi and

Gauss-Seidel models is linear.

2.2 Existing methods

2.2.1 Gauss-Seidel and Jacobi Methods

The Jacobi and Gauss-Seidel methods are comparable. They have a similar output for any given

input. The di¤erence, however, is how newly calculated voltage data is handled in further cal-

culations. The Jacobi method produces a solution vector for a constant set of inputs, unlike the

Gauss-Seidel method, which utilizes the most readily existing value. The solution, via Gauss-Seidel,

4

uses the following two equations, Eqs1 and 2

V
(v+1)
i =

1

Yii

"�
Si
V vi

��
�
k<iX
k=l

YikV
v+1
k �

NZX
k=i+1

YikV
v
k

#
(1)

Si = Pi + jQi; (2)

until the change in each element in the voltage vector, V , between iterations is less than 10�4 per

unit. In Eqs.1 and 2, where Y is the bus admittance matrix (Y -bus), P is a vector of real power

injections and Q is a vector of reactive power injection and the di¤erence between generation and

demand. All elements of the Y matrix and the V vector are complex quantities. First, the reactive

power is estimated for the Gauss-Seidel iteration shown in Equation 3.

Qvi = V
v
i

NZX
k=1

(YikV
v
k)
� : (3)

When the voltage magnitudes and angles converge to a solution, reactive power becomes an

output of the calculation.

2.2.2 Newton�s Method

The objective of the power �ow analysis is to determine steady-state voltages on all buses in a given

network, and to derive from them the real and reactive power �ows into each line and transformer.

In most network buses, the active and reactive powers are speci�ed, and can be evaluated by the

following equations, for a network with N buses.

Pi =
NX
k=1

jyikViVkj cos (�ik + �k � �i) (4)

Qi =
NX
k=1

jyikViVkj sin (�i � �k � �ik) : (5)

Here Pi, Qi, and Vi are the active power, reactive power, and the complex voltage at bus i,

respectively, with

Vi = jVij\�i
Vk = jVkj\�k

5

yik = jyikj\�ik = gik + jbik
i; k 2 [1; N]

where yik is an element of the bus admittance matrix. If Ng is the number of voltage controlled

buses in the system, then we have to solve (2N �Ng � 2) equations. After expanding the obtained

equations into a Taylor series, the following linear equations are produced. The linear equations

need to be solved iteratively until the di¤erence between �� and �V is smaller than the tolerance.

24 J11 J12

J21 J22

3524 ��

�V
jV j

35 =
24 �P

�Q

35 (6)

The Jacobian matrix, J; is evaluated at every iteration by the following equations

J11:
@Pi
@�j

= jVij jVj j (gij sin �ij � bij cos �ij) j 6= i (7)

@Pi
@�j

= � jVij
NX
i=1

jVj j (gij sin �ij � bij cos �ij) j 6= i (8)

J12:

jVj j
@Pi
@ jVj j

= jVij jVj j (gij cos �ij + bij sin �ij) j 6= i (9)

jVj j
@Pi
@ jVj j

= 2 jVij2 gii + jVij
NX
i=1

jVj j (gij cos �ij + bij sin �ij) j 6= i (10)

J21:
@Qi
@�j

= � jVij jVj j (gij cos �ij + bij sin �ij) j 6= i (11)

@Qi
@�j

= jVij
NX
i=1

jVj j (gij cos �ij + bij sin �ij) j 6= i (12)

J22:

jVij
@Qi
@Vj

= jVij jVj j (gij sin �ij � bij cos �ij) j 6= i (13)

jVij
@Qi
@Vj

= jVij
NX
i=1

jVj j (gij sin �ij � bij cos �ij)� 2V 2i bii j 6= i (14)

To derive the di¤erence at each iteration from the above linear equations, two types of methods are

used. One is the direct method and the other is the iterative method. LU factorization, followed by

forward reduction and backward substitution, is the most widely used method. In LU factorization,

6

a sequence of Gaussian eliminations are applied to arrive at the form PJ = LU , where L is the

lower triangular matrix, U is the upper triangular matrix and P is the Permutation matrix. The

solution can then be obtained from the following equations

Lw =

24 �P

�Q

35 (15)

U

24 ��

�V
jV j

35 = w (16)

In direct methods, it is di¢ cult to extract substatial parallalism while maintaining low inter-

processor communication overhead. The computational complexity of LU factorization is shown

by O(M3), where M stands for the order of the matrix. Hence, Newton�s method is preferable to

over direct methods.

2.3 FPGA Technology

FPGA stands for Field Programeable Gate Array, which are reusable logic devices. It is a combi-

nation of a number of Logic-cells. Each logic cell is a combination of a look-up table, a D �ip-�op,

and a 2-to-1 multiplexer. The look-up table is similar to a small RAM and typically has 4 inputs.

Arrays of logic cells contain logic gates, along with memory blocks, to form the underlying �exible

fabric for FPGA integrated circuits. Codes written in Hardware Description Language(HDL), such

as VHDL, are synthesized and mapped to the devices, facilitating the designer to model the FPGA�s

functionality. FPGA device density could br found in a multitude of logic gates with operational

clock rates in the tens of Megahertz in 2002. Today, the FPGA device densities are in millions of

logic gates with synthesized logic capable of running at rates up to, and exceeding 500MHz. Apart

from an increase in logic density, the inclusion of high performance embedded arithmetic units,

and large amounts of memory, high speed processor cores have facilitated the growth of FPGA

integrated circuits beyond a simple prototyping device. Today, high performance �oating point

computations are now feasible on a FPGA.

7

Chapter 3

Designed Algorithm

The algorithm employs Cramer�s method for sloving a system of linear equations and Chio�s Pivotal

Condensation Process to develop a novel algorithm for solving large scale linear systems.

3.1 Concurrency in Solving Linear systems

3.1.1 Revisiting Cramer�s Rule

Cramer�s Rule expresses the solution to a system of simultaneous linear equations in terms of ratios

of the determinants. For a linear system in the form Ax = b, where A = [aij] is an invertible

N �N matrix with ja11j > 0; Cramer�s Rule states that

xi =
det(Ai)

det(A)
; (i = 1; 2; 3; :::; n) (17)

where Ai is the matrix formed by replacing the ith column of A by the column vector b[6]. Although

Cramer�s Rule provides an elegant way to solve a consistent system of equations, it is often viewed

as highly impractical because it is computationally too expensive for large systems. Comparing

Cramer�s Rule to the Gaussian elimination method or other iterative methods accentuate this

argument. Given that the most e¢ cient method of calculating the determinant of an N�N matrix

is O(N3), Cramer�s Rule is generally perceived as an O(N4) method, limiting its scalability.

The widely acknowledged theory stated above is challenged in this thesis by introducing two

relevant contributions. The �rst is a numerically stable and e¢ cient method for calculating deter-

minants in a parallel processing system, while the second is a framework for concurrently obtaining

det(Ai). This thesis shows that, for a system with P parallel processing units, the overall computa-

8

tional complexity of the new method is reduced to O(N3=P). Moreover, the method�s inherently

small communication requirements render this method highly attractive for large-scale parallel

processing platforms.

3.2 Proposed Architecture

3.2.1 Chio�s Pivotal Condensation Process

The conventional approach of determining the computation of an N �N matrix is to express the

elements of any one row or column, and the corresponding cofactors of the elements, as a linear

combination of N determinants on the order N�1. For higher order matrices, the process becomes

prohibitively lengthy. An alternative to the conventional method of determinant evaluation is to use

a condensation method[3][2]. In condensation methods, an initial matrix of order N is successively

reduced by one order per iteration until the basic order of 2� 2 is reached. This method decreases

the time required for determinant computation, as compared to the standard method.

Let A = [aij] be an N�N matrix with ja11j > 0, and D denote the matrix obtained by replacing

each element aij in A by the term

������ a11 a1j

ai1 aij

������ ; it can be shown that jAj = jDj=(aN�211):

jAj = (1=aN�211)� �������������������������

������a11 a12

a21 a22

������
������a11 a13

a21 a23

������ :::

������a11 a1N

a21 a2N

������
������a11 a12

a31 a32

������
������a11 a13

a31 a33

������
:::

������a11 a1N

a31 a3N

������
...

... :::
...������a11 a12

aN1 aN2

������
������a11 a13

aN1 aNN

������ :::

������a11 a1N

aN1 aNN

������

�������������������������

(18)

Let the reduction of an order k matrix to the order k� 1 be de�ned as one iteration. Applying

N �2 iterations will reduce the determinant matrix to 2�2. The above process exhibits attractive

attributes in the context of parallel processing. First, it is clear that in each iteration, all 2 � 2

elements can be calculated independently. This suggests that given (N � 1)2 processing units, the

process of calculating the determinant is reduced to O(N). Moreover, and more important from

9

a distributed-processing standpoint, the communication involved is simply a broadcast from the

�rst column to all other columns. This suggests a communications complexity of O(N) with clear

independence between the right-most, N � 1 columns.

3.2.2 Parallel Application of Cramer�s Rule

Consider N simultaneous linear equations, Ax = ac, of the form

26666666664

a11 a12 � � � a1N

a21 a22 � � � a2N

a31 a32 � � � a3N
...

... � � �
...

aN1 aN2 � � � aNN

37777777775
�

26666666664

X1

X2

X3
...

XN

37777777775
=

26666666664

ac1

ac2

ac3
...

acN

37777777775
(19)

The solution of such a system is addressed by means of an e¢ cient utilization of Cramer�s Rule.

The core calculation performed by each processing unit will be the determinant of a 2� 2 matrix;

will remain the case throughout the process. Custom hardware can be designed to optimize the

core calculation and further reduce aggregate computation time.

The reduction of computation time is achieved by eliminating the need to independently calcu-

late the di¤erent numerators involved in Cramer�s Rule. Performing Cramer�s Rule traditionally

requires computing N; numerators. Prior to applying the algorithm, normalization of the matrix

elements is required. This is performed by dividing each of the �rst column elements with the

highest element in that column. These elements are stored and can later be multiplied to obtain

the �nal values. Understanding this method hinges upon realizing that each numerator can be

found using the original matrix and the constant column (ac). Extending this theory, half of the

numerators of Cramer�s Rule can be derived by replacing, in succession, half of the columns of the

original matrix with (ac). The remaining half of the numerators can be derived by replacing the

other half of the original matrix.

This idea is exploited in the new method by mirroring the original matrix to yield two matrices,

each of which is used to attain half of the variables. Chio�s Condensation Process is used to reduce

the matrices, the original and the mirrored matrix, until both are mirrored, creating four matrices.

Each of the matrices will be used to �nd one fourth of the variables. This continues until each

matrix is reduced to contain only information pertaining to one variable. The steps comprising

the new method are explained below.

10

Step 1: Mirroring: The �rst step involves the creation of a new matrix by mirroring, horizon-

tally, the original coe¢ cient matrix. Recall that by interchanging two columns in a matrix, one

must be negated for their determinants to be equal. The following illustrates the mirroring

266666666666664

a11 a12 � � � a1N

a21 a22 � � � a2N

a31 a32 � � � a3N

a41 a42 � � � a4N
...

... � � �
...

aN1 aN2 � � � aNN

377777777777775
=) (20)

266666666666664

a1N � � � �a12 �a11
a2N � � � �a22 �a21
a3N � � � �a32 �a31
a4N � � � �a42 �a41
... � � �

...
...

aNN � � � �aN2 �aN1

377777777777775
Mirroring thus refers to multiple interchanges, resulting in one half of the new matrix being

negated with respect to the original matrix. This is an integral step in parallelizing Cramer�s

Rule. The last half of the columns of the original matrix will be used to �nd the latter half of

the variables. Similarly the last half of the columns of the mirrored matrix, or the �rst half of

the columns of the original matrix, is used to obtain the �rst half of the variables. Note that by

using Chio�s process, every column is combined with the �rst column. Thus, the �rst column is the

only one not combined with itself, resulting in its information being forfeited in the context of this

architecture.

Step 2: Column Replacement: The second operation in the process is the replacement of the

last column of the original and mirrored matrix with the constant column matrix, and storage of

the replaced columns. Using the mirrored matrix as an example, the matrix, along with its stored

columns, is shown below.

11

Figure1: Number of variables being solved for

vs. matrix set size

266666666666664

a1N � � � �a12 ac1

a2N � � � �a22 ac2

a3N � � � �a32 ac3

a4N � � � �a42 ac4
... � � �

...
...

aNN � � � �aN2 acN

377777777777775
I

266666666666664

�a11
�a21
�a31
�a41
...

�aN1

377777777777775
(21)

The above set of matrices, a larger matrix and its accompanying column matrix, is the funda-

mental unit and is repeated throughout the architecture. Hereafter, this unit will be referred to

as a matrix set. The original coe¢ cient matrix and the constant column matrix of the system of

equations can be considered the �rst matrix set. Note that after mirroring, two matrix sets will

be present, not just the one depicted above.

Step 3: Variable Assignment: The reduction of matrix sets occurs until a certain size matrix is

reached. The appropriate size is determined by the number of variables being solved for by each

matrix set. Following mirroring, each matrix set solves for half of the variables. In the case of

an odd number N , such as N = 9, the original matrix set would be used to solve for
�
N
2

�
= 5

and the mirrored matrix set for
��
N
2

��
= 4 variables. To compensate for the loss of information

inherent in the condensation process, the matrices are only reduced to size
�
N
2 + 2

�
, 7�7 and 6�6,

respectively. This type of calculation is utilized throughout the process to denote at which point

reduction is terminated.

The tree diagram in Figure 1 illustrates the relationship between the number of variables being

12

derived and the size of each matrix set, using an original 7� 7 matrix as an example. The number

followed by v is the number of variables solved for by that particular matrix set, while the number

inside the brackets is the order of the matrix set. In this example, 7 total variables exist. The

process continues until the �nal 3 � 3 matrix sets are produced. Note that the �nal number of

variables in the branches equal 7, and only one variable is derived by any matrix set. All individual

matrix sets are independent and can be computed as such.

Step 4: Reduction refers to reducing the individual matrix sets utilizing Chio�s Process. The

reduction of the accompanying column matrix using Chio�s Process is equivalent to treating it as if

it were an additional column of the larger matrix. However, the process requires the accompanying

column matrix to be stored separately. Once reduced to the appropriate size, steps (1), (3), and (4)

are repeated until all matrix sets are reduced to a 3� 3 matrix. Replacement of the �nal columns

of the matrices is performed only once �after the �rst mirroring step.

Chio�s Process states that the a11 element in the reduced matrix should equal one. Due to

the number of multiplications components involved, individual elements tend to expand and can

eventually increase to large values. To counteract this problem, after each reducing iteration of

the matrix set, the �rst row of both the large matrix and its accompanying column matrix is

interchanged with the row that has the largest-magnitude �rst value jai1j, with one of the inter-

changed rows being negated. The negation ensures that the determinant remains the same after

interchanging the rows. This process prevents matrix elements from increasing.

To force the �rst element of the matrix equal to one, the �rst column of the large matrix is

divided by a11. This also forces the multiplying factor, (1=aN�211) equal to 1 in Chio�s process

because both the denominator (a11) and numerator equal one. A record of each dividing factor

(a11) is kept for each branch of matrix sets and is multiplied back in the �nal step. When the

matrix set is reduced to its minimal dimensions (3�3), a list of dividing factors F = fF1; F2; :::; Fig

will have been formed.

After each mirroring step, two child matrix sets are produced from one parent set. The parent

will have a factor list FP = fFP1; FP2; :::; FPig. Both child matrix sets will have the factor lists, FA
and FB, respectively and both will begin with FP . As new factors are added, each separate child

set will add factors to its respective list, creating FA = fFP1; FP2; :::; FPi; FA1; FA2; :::; FAig and

FB = fFP1; FP2; :::; FPi; FB1; FB2; :::; FBig. This pattern continues through out the mirroring and

reducing steps. Thus, all branches have lists that share common leading factors between sibling

branches, and each unique branch adds its own unique factors.

13

Step 5: Solving for Variables: Each column of the original coe¢ cient matrix can be traced

through the reduction and mirroring phases to the �nal 3�3 matrices. This dictates which variable

is solved for by each �nal matrix set. To solve for all but the �rst and last variables, the middle

columns of the �nal 3 � 3 matrices are replaced with the negation of the accompanying column

matrix, forming a matrix, Z. If the original coe¢ cient matrix is A, then det(Z)
det(A)

Q
[F] = aci. The

�rst and last variables, ac1 and acN , are derived without replacing columns in the �nal matrices.

The branch that is always mirrored contains the information of the �rst variable. If we let that

branch�s 3� 3 matrix be denoted by M . then det(M)
det(C)

Q
[F] = ac1: Similarly, acN can be computed

from the branch that is always the original matrix. This process yields N + 2 variables, two will

be repeated and can be neglected. The following summarizes the process described:

1. Form a matrix which is the mirror image of the original matrix, A.

2. Replace the last column in each matrix with the constant matrix and store the column that

has been replaced.

3. Determine the number of variables, V ,to be derived by each matrix.

4. Reduce each matrix to (V + 2)� (V + 2) using Chio�s Process. Store the dividing factors in

the list, F; for each branch. Repeat steps 1, 3, and 4 until all matrices are reduced to the

minimal order 3� 3.

5. Solve for the variables.

3.2.3 Computational Complexity

An approximation of the number of 2�2 determinants calculated for a given N�N matrix yields an

expression of computational complexity. To simplify, references to determinants hereafter implies

2�2 determinants. To reduce a matrix, using Chio�s Process, from an N�N to an (N�1)�(N�1)

matrix requires (N � 1)2 determinants to be calculated. Recall that an extra column matrix is

carried in each matrix set. This requires an extra N�1 determinant to reduce from an N�1 to an

(N � 1)� 1 column matrix. As such, each reduction of one matrix set requires (N � 1)2+(N � 1)

determinants.

The number of determinants depends on N and the number of mirroring steps performed.

The computational complexity expression below was derived assuming that N is a power of 2.

This simpli�es the calculation since N=2 will also be a power of 2, and the number of mirroring

14

steps is exactly log2(N). Using an original 8 � 8 matrix set and Figure 2 as an illustration, the

computational complexity expression is obtained. To reduce one 8�8 matrix set to 7�7,
�
72 + 7

�
determinants are required. Similarly, to reduce that matrix set to 6 � 6,

�
62 + 6

�
determinants

are required. So, to reduce both 8 � 8 matrix sets to 6 � 6, 2
�
72 + 7 + 62 + 6

�
determinants are

required. At this point, both 6 � 6 matrix sets are mirrored, creating four matrix sets instead of

two. This process continues until the �nal 3� 3 order for each matrix set is reached.

The number of determinants required for an 8�8matrix, for example, is given by 2
�
72 + 7 + 62 + 6

�
+

4(52 + 5 + 42 + 4) + 8(32 + 3) = 492: Letting log2(N) = G, this expression can be compacted and

generalized using the following equation

N�1X
h=N

2
+2

�
2
�
h2 + h

��
+

GX
k=2

2642k
N

2k�1
+1X

m= N

2k
+2

�
m2 +m

�375 (22)

Expanding the second summation to include the k = 1 case and subtracting the resulting factor,

the expression becomes

GX
k=1

2642k
N

2k�1
+1X

m= N

2k
+2

�
m2 +m

�375� (23)

2
�
N2 +N + (N + 1)2 + (N + 1)

�

Figure 2 : Tree diagram illustrating the

derivation of computational complexity

15

Rewriting the second summation using the identities
tP
i=1

�
i2
�
= t(t+1)(2t+1)

6 and
tP
i=b

[i] = (t�b+1)(t+b)
2 ,

the expression becomes

1

3

GX
k=1

�
7N3

4k
+
18N2

2k
+ 11N

�
� 4N2 � 8N � 4; (24)

which is equal to exchanging the limits of the summation and negating the k exponents, such that

1

3

�1X
k=�G

h
4k7N3 + 2k18N2 + 11N

i
� 4N2 � 8N � 4 (25)

This facilitates the use of the identity
tP
i=b

[ix] = xt+1�xb
x�1 . Finally, the expression becomes

7

9
N3 + 2N2 � 133

9
N +

11

3
N log2(N)� 4; (26)

suggesting a complexity of O(N3) This result is precisely accurate for any N that is a power of

2. The error for any other N is well below 0:01%; for N > 256. Because the application of this

algorithm is for N � 256, the computational complexity expression above is su¢ ciently accurate.

16

Chapter 4

Hardware Architecture

The hardware architecture used for implementing the aforementioned algorithm is discussed in this

chapter. The algorithm is coded in VHDL and processed on a XUP(Xilinx University Program)

Vertex 2Pro board. A clock speed of 147MHz was achieved. The data is represented in IEEE754

format.

17

4.1 Overall block Diagram

Processing Unit 1 Processing Unit 2 Processing Unit 3

RAM

1

RAM

2

RAM

3

RAM

4

RAM

3n +1

Control Block

Figure3 : General Block Diagram of the Hardware Architecture

As shown in the above �gure, the data is stored in di¤erent RAM blocks. Initially only 2N RAM

blocks are required to store the original matrix and its image matrix. As the algorithm is executed,

the data increases by n + 1 RAM blocks, thus 3N + 1 RAM blocks are needed. The control block

accesses the required data from the di¤erent blocks of RAMs and forward it to the processing units

operating in parallel to the control block. The processed data is now written back to the RAM

blocks, again in parallel. Three �oating point multipliers, three �oating point subtractors and two

dividers exist in each processing unit.

4.2 Memory

The memory where the data is stored is divided into block RAMs. The number of RAM blocks can

be found by an order N computation. Initially only 2N RAM blocks will be �lled with data, but

18

as the algorithm progresses the data expands and the correspoding data is stored in the remaining

RAM blocks. The matrix data is divided into individual colomns and also stored in RAM blocks.

This is so that the required data can be acessed in parallel. The data is initially converted to IEEE

754, 32-bit single-precision format.

4.2.1 IEEE 754 32-bit single precision format

The IEEE 754 is the most frequently used standard for �oating point computation. It de�nes

formats for representing �oating-point numbers, including four rounding modes and �ve exceptions.

A single-precision, �oating-point number is stored in 32 bits. The exponent is biased by 28�1�1 =

127; in this case (Exponents in the range �126 to +127 are representable. See the above explanation

to understand why biasing is performed). An exponent of �127 would be biased to the value 0; but

this is reserved to encode or show that the value is a denormalized number or zero. An exponent

of 128 would be biased to the value 255; but this is reserved to encode an in�nity or not a number

(NaN).

For normalized numbers, the exponent is the biased exponent and the fraction is the signi�cand

without the most signi�cant bit.

The number has the value, v:

v = (�1)sign � 2exponent�exponent~bias � (1 + fraction)

0 0 1 1 1 1 1 0 0 0 1 0

31 023

sign

Exponent(8­bit) Fraction (23­bit)

= 0.15625

32-bit single precision format

4.3 Control Block

The block diagram of a control block used in this architecture is shown below in Figure 5

19

Register 1 Register 2 Register 3 Register 4 Register 5 Register 6

Data Register 1 Data Register 2 Data Register 3 Data Register 4 Data Register 5 Data Register 6

Data 1Register 1 Data 2Register 2 Data 3Register 3 Data 4Register 4 Data 5Register 5 Data 5Register 6

CONTROL BLOCK

Figure 5 : Block Diagram of Control Block

Several registers in the control block contain the data to be multiplied and subtracted. The data

from the control block is forwarded to the three processing units operating parallel to the control

block. Computed data is then written back to the RAM blocks. The �rst register in the block

diagram contains the data of the �rst row of the matrix and the remaining 12 registers contain the

data of the remaining two elements of a 2X2 determinant. The control block mediates the �ow

of data from the RAM blocks to the processing units, and back to the RAM blocks. The control

block depends on a clock count to access the data from the di¤erent RAM blocks.

4.4 Components

4.4.1 Processing Unit

Three processing units are operating at the same time in this architecture. The block diagram of

a single processing unit is shown below in Figure 6.

20

MULTIPLIER

SUBTRACTOR

PROCESSING UNIT

Figure 6 : Processing Unit

The processing unit consists of a multiplier and subtractor. The 2X2 determinant is computed

with a single multiplier and subtractor. The computed values are forwarded to the control block

where the data is loaded and then back into the RAM blocks. The multiplier and subtractor are

Xilinx coregen �oating-point units.

4.4.2 Xilinx Floating Point Operator

The Xilinx Floating-point core provides engineers with a means to perform �oating point computa-

tions on an FPGA. The core is customizable and allows the optimization of operations, wordlength,

latency, and interface. Table 1 summarizes the features and supported operations of a Xilinx

Floating-Point Operator.

21

Overview:

The Xilinx Floating-point core permits a range of �oating-point arithmetic operations to be

performed on FPGAs. The operation is speci�ed when the core is generated, and each variant

has a common interface. This interface is shown in Figure 1. When a user selects an operation

requiring only one operand, the B input is omitted.

IEEE-754 Support:

The Xilinx Floating-point core complies with majority of the IEEE-754 Standard. The devi-

ations require a trade-o¤ between resources versus functionality. Speci�cally, the core deviates in

the following ways:

1) Non-standard Wordlengths

2) Denormalized Numbers

3) Rounding Modes

4) Signalling and Quiet NaNs

5)Non-standard Wordlengths

22

The Xilinx Floating-point core supports a greater range of fraction and exponent wordlengths

than the wordlengths de�ned in the IEEE-754 Standard.

Standard formats commonly implemented by programmable processors include:

� Single Format - uses 32 bits, with a 24-bit fraction and 8-bit exponent.

� Double Format - uses 64 bits, with 53-bit fraction and 11-bit exponent.

Less commonly implemented standard formats are:

� Single Extended - wordlength extensions of 43 bits and above

� Double Extended - wordlength extensions of 79 bits and above

The Xilinx core support formats with fraction and exponent wordlengths beyond these standard

wordlengths.

4.4.3 Parallel Comparator Logic

A parallel comparator block has been developed to increase the speed of the comparison process.

Several single comaparators have been joined together to form a parallel comparator block. The

block has as inputs of numbers that need to be compared inorder to produce their maximum

number, as well as an enable signal. The enable signal is a 32-bit standard logic vector, which has

all information regarding the count of numbers to be compared. This block not only provides the

maximum number out of a set of numbers, but also provides the address of the maximum number

so that the row replacement logic can be performed.

23

Data

Enable Signals
Maximum number

Address of
Maximum number

C

C

C

C

C

C

C

C

C

C

C

C

C

Figure 7 : Parallel Comparator

24

4.5 Synthesis Results

4.5.1 Device utilization summary

Table_1 : Device_Utilization_Summary

4.5.2 Timing Constrain

Default period analysis for Clock �sys_clk_pin�Clock period: 8.541ns (frequency: 117.082MHz)

Minimum period: 8.541ns (Maximum Frequency: 117.082MHz)

Minimum input arrival time before clock: 1.746ns

Maximum output required time after clock: 3.293ns

4.6 Hardware

Xilinx University Program (XUP) - XC2VP30 Board

The XUP is designed for engineering education. The XUP features are described as follows:

25

Table_2 : Xilinx_University_Program_features

One of the two PowerPC processors is used to provide input signals to the FPGA and to read

data from the FPGA. The SDRAM is used to load an executable �le. The USB port provides

a communication mechanism between the host PC and the Power PC. For example, the Xilinx

Microprocessor Debug (XMD) tool is used to load the executable �le to the SDRAM and execute

the �le through the USB port. The RS-232 port is utilized to verify the results via a HyperTerminal.

26

Chapter 5

Conclusions

5.1 Comparison with LU Decomposition Method

5.1.1 Elimination of Zero Calculations for Sparse Matrices

In the proposed process, as well as in LU decomposition, several of the calculations yield a result

of zero. In performing LU decomposition using systolic arrays, it is impossible to predict the zero

results and hence, eliminate its occurrence. However, in the proposed process, any 2 � 2 matrix

with a column or row of zeros yields a determinant of zero. Therefore, that particular determinant

computation does not need to be fully executed. Simply checking for a row or column of zeros

will allow the skipping of many determinant computations. This will greatly increase the overall

speed of the process. Given that the prediction of zeros is not possible in LU decomposition using

systolic arrays, the new process is signi�cantly faster.

5.1.2 Number of Dividers

The proposed process includes a step where the �rst column of a given matrix is divided by its

own �rst element. The largest matrix size is N , and to divide that matrix and its mirror requires,

at most, 2N dividers. In comparison, LU decomposition using systolic arrays requires multiple

dividers to parallelize the procedure. Since dividers are di¢ cult and slow to implement, the

di¤erence in required dividers provides a signi�cant increase in speed gain in the new process when

compared to LU decomposition.

27

5.1.3 Pivoting

Pivoting is a critical issue in parallel LU factorization[8]. Pivoting is applied by arranging rows

and/or columns of the matrix in order to choose the largest element as the pivot. This step main-

tains numerical stability during factorization. Pivoting in parallel LU decomposition increases

complexity because the arrangement of rows and columns requires greater communication and

synchronization between processors[8]. Pivoting also exacerbates the problem of load imbalances.

The load imbalance issue can become more prominent if matrices are stored within dynamic data

structures[1][8]. Generally, the pivoting process in the LU decomposition algorithm requires the

maintainance of a separate matrix (composed of 1�s and 0�s) that keeps a record of the various

row and column interchanges that occurred during the algorithm execution process. However, the

method described in this paper requires an array of 2N elements, but it does not require a separate

pivoting matrix and thus, reduces the memory requirement of the entire system.

5.1.4 Communication Overhead

One critical issue in a parallel implementation of LU factorization is data dependencies. If the

matrix elements are stored among processors of a parallel processing platform, each processor has

to communicate with the other processors to access the matrix elements. This not only e¤ects the

e¢ ciency of parallel algorithms, but also increases the hardware complexity of the machines[8]. This

has been a persistent problem in many LU decomposition algorithms. Bounded broadcast is one

way to reduce the execution time in a LU decomposition methods[5]. In the proposed process, only

the �rst column of elements in a given matrix is broadcast. The remaining calculations, namely the

computations of each 2� 2 determinant, are performed independently. Thus, less time is required

to broadcast the needed information between the processing elements.

5.2 Conclusions

This thesis describes a methodology for solving large-scale linear systems on a parallel processing

platform, using a variation of Cramer�s Rule. The proposed architecture has a comparable compu-

tational complexity to that of LU decomposition while o¤ering distinctive advantages in terms of

parallelism and storage e¢ ciency. Thus, given P parallel processing units, the computational com-

plexity of the method is O(N3=P). Moreover, the communication overhead, a major challenge in

parallel LU factorization schemes, is overcome by the proposed algorithm. For large-scale systems,

28

this architecture can be implemented on hardware platforms, such as FPGAs, to yield a lower cost

and performance ratio, when compared to that of supercomputers.

5.3 Relevant Publications

The A Parallel Processing Architecture for Solving Large Scale Linear Systems has appeared in the

following publication:

� Arun Nagari, Itamar Elhanany, Ben Thomson, Fangxing Li, Thomas King, "A Parallel

Processing Architecture for Solving Large Scale Linear Systems" The 2008 International

Conference on Parallel and Distributed Processing Techniques and Applications Las Vegas,

Nevada, USA, July, 2008.

29

Bibliography

30

Vita

Arun Nagari was born in Cudapha, India on Febuary 25, 1985. After graduating from All Saints

High School in 2000, he attended The JNT University in Hyderabad. He received his Bachelor of

Technology degree in Electronics and Communication Engineering in May of 2006. He then joined

The University of Tennessee in August of 2007 to continue his studies, where he received his Master

of Science degree in Electrical Engineering in August of 2009.

32

	Parallel Processing Architecture for Solving Large Scale Linear Systems
	Recommended Citation

	tmp.1263997479.pdf.O_t2O

