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A parallel rule activation and rule synthesis model

for generalization in category learning

ANDREVANDIERENDONCK
University ofGhent, Ghent, Belgium

This paper proposes a distinction between primary generalization (transfer from stored exemplars
to perceived targets) and secondary generalization (transfer from inferred abstractions to perceived
targets). This distinction is embodied in the parallel rule activation and rule synthesis (PRAS) model,
a production model capable of exemplar-based and abstraction-based categorization. As an exemplar
model, the PRAS model is related to the generalized context model (Nosofsky, 1984).Exemplars are
stored in memory encoded as condition-action rules. Working as an exemplar-based model, rules are
activated on the basis of their strength and their similarity to the current to-be-categorized instance.
Similarity between a target and a stored exemplar is weighted for attention to the dimensions of the
psychological space. Depending on the value of a special parameter, the PRASmodel is also able to op
erate as an abstraction model. In the latter case, it attempts to construct generalizing productions,
which are activated according to the same rules as the exemplar-specific rules. The model is described
in detail. It is applied to a number of important observations described in the research literature, and
an experiment is reported that tested the usefulness of the proposed secondary-generalization mech
anism. Finally, the discussion elaborates on the implications of the present study for further research.

After learning to categorize a number of training exem

plars, subjects usually are able to correctly classify simi

lar new patterns. In well-defined categorizations, transfer

performance is nearly perfect and improves slightly with

the distance between the to-be-categorized exemplar and

the category boundary (see, e.g., Nosofsky, 1991; Van

dierendonck, 1988, 1991). If the categorization is fuzzy,

transfer performance is not quite so good, and it varies as

a function ofthe similarity between the new exemplar and

the old stimulus patterns (see, e.g., Homa, Cross, Cornell,

Goldman, & Schwartz, 1973; Medin & Schaffer, 1978;

Nosofsky, 1984, 1986). In fact, it seems that transfer gra

dients occur with both kinds of category structure. In ad

dition, typicality gradients have been observed in virtually

all kinds ofcategorization tasks (Armstrong, Gleitman, &

Gleitman, 1983; Bourne, 1982; Rosch, 1975b; for an over

view, see Vandierendonck, 1991).

According to the early work, a category was represented

by a decision rule (Bower & Trabasso, 1964; Bruner, Good-
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now, & Austin, 1956; Hunt, 1962); however, these early

models failed to explain the existence oftypicality effects.

The basic tenet of these models-that all instances are

equivalent-was challenged by Rosch (1973, 1975a, 1975b,

1975c, 1978) in an impressive research program. Due also

to Posner and Keele's (1968, 1970) findings with proba

bilistic categories, new models appeared that assumed that

categories are represented by their central tendency, the

prototype. However, as Reed (1972) has demonstrated, it

is difficult to distinguish empirically between these mod

els and the exemplar models, which assume that no ab

straction at all occurs during category learning. The intro

duction ofthe context model by Medin and Schaffer (1978)

drew the attention to another factor: whether the represen

tation of a stimulus aspect is context free or not. Subse

quent research based on models that assume that cues are

not coded independently has compiled an imposing stock

of evidence in favor of the view that category representa

tion is based on exemplar information only.

The models still in competition today can be distinguished

on their acceptance of the presence of category level in

formation in category representations. Exemplar models

(e.g., Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky,

1984) assume that during acquisition or training, the ob

served exemplars are stored in memory together with the

correct category name. Later, when a new exemplar is en

countered, it is compared to the old exemplar copies stored

in memory. The degree of similarity between the new ex

emplar and a stored instance contributes evidence in favor

ofthe category associated with the instance. The final cat

egorization decision relies on an integration of the evi

dence collected over comparisons to a number of stored

instances.
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Abstraction models, on the contrary, assume that during

acquisition, category level information is inferred from

the observed exemplars. Afterwards, when a new exem

plar has to be categorized, it is compared to this category

level information. This process yields a measure ofcorre

spondence between the exemplar and the category level

information. This measure is then used to decide the cat

egory membership of the new exemplar.

Prototype and rule models are special kinds ofabstrac

tion models that implement quite different mechanisms

for abstraction and representation ofcategory level infor

mation. In prototype models, the inferred category level

information is a prototype, a representation of the central

tendency and the variability of the instances in the cate

gory (see, e.g., Homa, 1984; Homa et aI., 1973; Posner &

Keele, 1968, 1970). Rule models assume that subjects con

struct abstract classification rules that are used to catego

rize old and new exemplars (e.g., Bourne, 1982; Nosofsky,

Palmeri, & McKinley, 1993).

Some authors have proposed mixed models (i.e., models

that rely on both exemplar and category level information).

Medin, Altom, and Murphy (1984), for example, have pro

posed an aggregate exemplar-prototype model-an ex

tension ofMedin and Schaffer's (1978) context model- in

which an extra free parameter, e, determines the probabil

ity of utilizing exemplar information, and I-e refers to

the probability of utilizing category level (prototype) in

formation. A similar mixed model was tested by Buse

meyer, Dewey, and Medin (1984).

Anderson, Kline, and Beasley's (1979) application of

the ACT model (Anderson, 1983) to the problem of cate

gory learning yields another example ofa mixed model. In

their implementation of this production model, informa

tion at many different levels ofabstraction is accumulated

in memory. Exemplars encountered during acquisition are

converted to production rules in which all the features of

the exemplar are specified. By means of generalization

and discrimination, new production rules can be inferred

in which some of the features are left unspecified. As a re

sult, a category representation is obtained in which the in

formation is coded at different levels of specificity.

Recently, several connectionist models relevant to the

problem of category learning have been proposed (e.g.,

Gluck & Bower, 1988; Kruschke, 1992; Nosofsky &

Kruschke, 1992). In such models, information is repre

sented in a network of nodes and weighted links between

the nodes, which are grouped into layers. The stimulus is

represented as a pattern ofactivation over the layer of input

nodes. From there on, activation spreads through the links

to the next layer of nodes until the layer ofoutput nodes is

reached. The pattern of activation over the output nodes

represents the response of the system. Learning consists

ofadapting the weights so that the difference between the

network's output and the desired output is minimized.

This short overview focused on the problems that theo
ries ofcategorization have tried to solve. It is evident that,

in general, a good theory ofcategorization should account

for human categorization and category learning behavior

in all its variability. Given the current state of the art (see,
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e.g., the collections by Nakamura, Taraban, & Medin,

1993, and by Neisser, 1987), such a theory should account

for the rule-like behavior in well-defined categories, the

exemplar and prototype effects in categorization, the typ

icality gradients, the observation that nonlinear separable

categories are not more difficult than linear separable ones

(see, e.g., Medin & Schwanenflugel, 1981), the observa

tion that the correlational structure of a stimulus set is an

important factor in category learning (see, e.g., Medin, Al

tom, Edelson, & Freko, 1982), and the interaction ofknow1

edge with perceived similarity (e.g., Murphy & Medin,

1985; Murphy & Spalding, 1995).

On the basis ofa distinction between two kinds ofgen

eralization, the present article develops a model that ful

fills these requirements. First, the generalization concept

is elaborated. Next, the model is described and applied to

a number of datasets. Finally, it is tested in a dedicated

experiment.

PRIMARY AND SECONDARY

GENERALIZATION

Suppose a new exemplar (a target) has to be categorized,

and the only information available is the memory for a

previous encounter with a similar exemplar. This memory

trace can be the source of a generalization based on the

similarity between this stored instance and the target. In

fact, the more similar the source and the target are, the

higher the probability that the remembered action for the

source will be generalized to the target.

Now consider a similar situation, but the information in

memory is an abstracted representation obtained from a

number of previous experiences with similar exemplars.

This representation contains information about the range

of stimulus attributes that were encountered and to which

a particular response was appropriate. Ifthe features ofthe

target fall within the range of the representation, the same

response can be applied with confidence. If, on the con

trary, the source does not match the representation, another

action is called for.

The first example gives a simplified description ofwhat

happens according to exemplar models. The kind of gen

eralization that occurs between a stored source and a per

ceived target can be coined primary generalization, and it

is based on the similarity between the target and the mem

ory trace of previous exemplar. It may be said that both

elements in the generalization are at the same level of

encoding.

The situation is quite different in the second example,

which gives a description of what may happen according

to an abstraction model. The information in the source and

the target are on different levels ofencoding. Instead ofes

timating the similarity between the two, it is necessary to

look at the correspondence or the applicability ofthe source

to the target. This kind ofgeneralization will be called sec

ondary generalization, and it is typical for abstraction

models. In some models, the applicability ofthe source in

formation to the target is considered to be all-or-none

that is, the information matches and the generalization oc-
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curs, or the information does not match and no general

ization is possible. Inother models, the degree ofmatch of

the summary information to the target may take many dif

ferent values. In the latter case, the probability of a sec

ondary generalization will increase as the degree of cor

respondence does.

A more formal definition of the two kinds of general

ization can now be given. Primary generalization is the ex

tent to which the remembered source can be confused with

the perceived target, and the variation in similarity between

the source and the target yields a primary-generalization

gradient: the more similar the target is to the source, the

larger the tendency to generalize from the source to the

target and, hence, the larger the tendency to assign the tar

get to the same category as the source, everything else being

equal (such as, e.g., exemplar strength, familiarity, etc.).

The defining characteristics ofprimary generalization are

(1) a categorization response appropriate for an object rep

resented in memory, the source, is also performed in the

presence of another object, the target; (2) the source and

the target are similar; (3) the tendency to generalize in

creases with the similarity between the source and the

target; and (4) no direct association has been learned be

tween the target and the categorization response.

The degree of similarity between source and target is

normally expressed as a function of the distance between

target and source. Shepard (1957, 1986, 1987, 1988) has

formulated a universal law ofgeneralization according to

which similarity is an exponential decay function of psy

chological distance. Applied to the present problem, sim

ilarity between a target i and a source j can be defined as

this probably is a simplification. Inferred or abstracted in

formation may consist of different "components," each

yielding a degree of secondary generalization to the tar

get. A process of evidence integration is needed before a

categorization decision can be reached.

The situation sketched thus far is a simplification. Ac

tually, in both exemplar and abstraction models, the cate

gorization decision about a particular target may depend

on a large number ofcomparisons yielding several gener

alization tendencies that have to be resolved or integrated

before a decision can be taken. Although the two kinds of

models represent information at different levels of ab

straction or of specificity, stored exemplars and abstrac

tions may contain essentially the same information in a

different coding format. Therefore, it is difficult to con

ceive of a critical test that distinguishes between the two

kinds of models (see Barsalou, 1990).

However,the issue ofwhether categories are represented

by exemplar information or by abstracted information,or

by both, remains an important one for the understanding

of category learning and category representation. An al

ternative approach to the study ofthis issue can be realized

by integrating the capabilities of primary and secondary

generalization into a single framework and then evaluat

ing the relative importance of each of them.

The rest ofthe paper is devoted to the description ofsuch

a class of models, an experiment showing the validity of

the approach, and a preliminary evaluation of the set of

models.

THE MODEL

where dij is the perceived distance between the target and

the source, c is a free parameter determining the steepness

of the gradient, and p = 1 or 2. With P = 1, g ij decreases

with increasing distance according to an exponential func

tion, and Equation 1 is the definition of similarity used by

Nosofsky (1984) in his generalized context model. Ifp =
2, similarity is a Gaussian function of the distance. In the

remainder of the present article, p = 1 is assumed. The

distance d., is further defined as

where the summation runs over the stimulus dimensions,

and Wk is a weight expressing the degree ofattention to the

kth dimension, such that Lk Wk = 1. When r = 1, the city
block metric applies; when r = 2, the metric is Euclidean.

Secondary generalization is said to occur when a source

ofinformation inferred or constructed from a number ofin

dividual exemplars matches a perceived target. The magni

tude ofthe generalization yields a secondary-generalization

gradient.

Although the notion of abstract information may sug

gest that the inferred abstraction is a single unit of infor

mation that is, to a certain degree, applicable to the target,

-cdP
gij = e 'J, (1)

(2)

The endeavor to construct a class ofmodels integrating

primary and secondary generalization should be guided

by a number of constraints.

1. A compatible representation format is needed

in order to represent and to compare exemplars

(targets), stored instances (primary sources), and

inferred category level information (secondary

sources).

2. When the process ofsecondary generalization in the

model is prohibited, the model should behave like

an exemplar model. Inthis condition, it should yield

fits to empirical data that are comparable to those

obtained by other prominent exemplar models.

The reverse condition, in which primary general

ization is prohibited, is not used as a constraint, be

cause exemplar level. information almost always

seems to be present (see Medin et al., 1984; Nosof

sky,1991).

3. Inseveral studies, the importance ofattentional fac

tors in categorizing exemplars has been demon

strated (e.g., Kruschke, 1992; Nosofsky, 1984). Be

cause these attentional mechanisms appear to be at

the core ofsome very successful exemplar models,

their inclusion in a more general model seems to

be evident.

4. Recently,there have been some doubts as to whether

category decisions and typicality ratings are based



on the same underlying information in memory (see

Vandierendonck,1991).Therefore, the model should

provide opportunities to explore this relationship.

Efforts to model generalization have already been re

ported by Anderson et al. (1979) and Holland, Holyoak,

Nisbett, and Thagard (1986). The Anderson group, work

ing with the ACT model, used production rules to repre

sent category knowledge. Exemplar level productions

coded all the stimulus features as the condition part and

the category assignment as the action part of the rules.

Substitution of some stimulus features in a rule condition

by wild cards resulted in generalized production rules. A

drawback of this procedure is that, for example, observa

tions ofa brown horse and a black horse result in the gen

eralization that a horse can have any color.' In order to

counteract such overgeneralizations, new differentiating

or discriminating productions are needed, which adds to

the overhead in the system.

The classifier system proposed by Holland et al. (1986)

faces similar problems. Classifiers are in fact production

rules with ternary-valued condition elements (feature pre

sent, feature absent, or no information). Whenever the no

information sign is present in a condition element, it al

lows for generalization over the two possible values ofthis

element. The degree of overgeneralization appears to be

less dramatic than in the ACT model, but the restriction of

the conditions to binary-valued descriptions is certainly not

an advantage either.

This does not mean, however, that the production-rule

approach is useless as a means to model generalization. The

approach has a number of advantages, as shown by An

derson et al. (1979):

I. Production systems provide a means to code knowl

edge at different levels of abstraction in a compat

ible format. Every piece ofknowledge, whether at

the level of the instance or at the level of abstrac

tion, can be represented by means of a condition

action rule.

2. Productionsystems are compatiblewith an exemplar

based account of categorization. Instances can be

coded as the condition part ofa production rule. If

the system contains only such specific rules, it acts

like an exemplar model because only exemplar level

information is used.

3. Production systems allow for multiply determined

behavioral actions. Production rules can be activated

in parallel, so that the selection ofan action cannot

be traced back to a single rule that determines the

behavior.

4. Generalized production rules can be constructed by

merging or integrating information from the con

dition parts ofother production rules.

It will be shown that these advantages, combined with

an efficient method of inferring abstractions from indi

vidual instances, could give rise to a powerful model ofcat

egory learning. In the remainder ofthis section, a method

will be presented that allows for the representation of in

ferences. The machinery ofa class ofmodels will then be

explained.
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Representing Inferences
Consider the following series of objects: a tiny black

square, a very small gray square, a small black square, a

large gray square, a very large gray square, and a huge black

square. Assume that the first three belong to Category A,

and the other ones belong to Category B. From the obser

vation that the tiny black square and the small black square

both belong to Category A, it may be derived that "small

ish" black objects all belong to Category A. This qualifies

as a generalizing production, without having the disad

vantage of overgeneralization toward the complete size

continuum. Actually, this generalization is not even com

plete, and more powerful generalizations are possible, but

the example illustrates one possible way to model gener

alizing inference.

Figure 1 displays one possible way to represent a gener

alization in a two-dimensional stimulus set. Each panel of

the figure represents two stored individual instances be

longing to the same category (the black circles). In Fig

ure IA, these two instances differ from each other in only

one dimension; in Figure 1B, the difference relates to both

dimensions. Given the two instances, a generalization may

encompass a range of values on the two stimulus dimen

sions. In Figure IB, where the two stimuli vary on both di

mensions, a rectangular area is circumscribed so that the

categorization response generalizes to all stimuli falling

within this area. In Figure lA, where only one stimulus di

mension varies among the two stimuli, the area is collapsed

to a line, so that exemplars falling on this line are responded

to on the basis of the generalization.

The size ofthe generalization can vary. A full-scale gen

eralization would embrace the rectangular area formed

by the two original instances. Another possibility is to re

strict the generalized area to a single point centrally lo

cated between the two original instances. Note that such a

generalization would be impossible to distinguish from an

exemplar located at the same place in the psychological

space. The constant p is used to express the fraction ofthe

distance covered by the generalization. If p = 0, the gen

eralization is restricted to a single point; if p = I, the gen

eralization spans the complete distance between the two

instances. If p > 1, an overgeneralization is constructed.

(A) (B)
(\J •c:

D
0

"iii
c
Cll

E
is • • •

Dimension 1 Dimension 1

Figure 1. Representation of generalizations from two bivalued
instances belonging to the same category. The resulting general
ization is intermediate between the two individual instances and
is proportional to the distance between the two instances. In both
cases, the area has a rectangular format; in the left panel, the ver
tical side ofthe rectangle has zero length.
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This generalization format can be used as the condi

tional part of a production rule as follows:

[(a l.min,al.max)' (aZ.min,aZ. max)' ...] ~ R1, (3)

where ai.min refers to the lower end ofthe range and a i.max

refers to the upper end of the range. An original instance

can be represented in this format in such a way that a i .min=

a i.max for all i.

With this representational format, individual instances

and inferred (secondary) generalizations form a contin

uum, extending from complete specificity in the repre

sentation of exemplars (zero range) over small range gen

eralizations to wide-range generalizations. The degree of

secondary generalization from a source to a target is a

function ofthe size of the secondary generalization, which

is built into the representation and a function of the dis

tance from the target to the generalized area. More partic

ularly, three cases can be distinguished:

I. The degree ofgeneralization between a production

representing an exemplar and a target is given by

Equation I. In this case, only primary generaliza

tion operates.

2. The degree of generalization between a generalized

production rule and a target localized within the

the generalized area, as defined in Equation 3, is

given by Equation I, with dij = O. In this case, only

secondary generalization applies.

3. The degree ofgeneralization between a generalized

production rule and a target localized outside the

generalized area is given by Equation I, with dij rep

resenting the distance between the target and the

nearest boundary of the generalized area. In this

case, primary and secondary generalization oper

ate simultaneously,

Figure 2 illustrates these operational differences between

primary and secondary generalization, in the rectangular

representational format.? Figure 2A depicts the general

ization gradient as a function of the distance from a

bivalued instance in the center of the field to target posi

tions anywhere in the plane. When the target coincides

with the instance, generalization is maximal, and it drops

quickly as the target is moved away from this central po

sition. This is an example of a gradient based solely on

primary generalization (Equation I). Figure 2B displays a

generalization gradient as a function of the distance be

tween a generalized inference and a number of target po

sitions in the plane. The central rectangular plateau in

the graph corresponds to a complete match of the infer

ence to the target, which results in maximal generalization.

As the target is moved away from this central region, the

applicability ofthe inference becomes smaller and the de

gree of generalization decreases. The latter part is in fact

the primary-generalization gradient displayed in Fig

ure 2A. The inferred generalization describes a region in

which the secondary generalization applies. Outside this

region, the principles of primary generalization are in ef

fect.

Figure 2. Examples of generalization gradients of a source lo
cated in the center ofthe field with respect to different target po
sitions. (A) Generalization gradient of an individual instance or

a zero-extent inferred generalization. The degree of generaliza
tion is a function ofthe distance between the source and the tar
get (primary generalization only). (B) Generalization gradient of
an inference in rectangular format. From the edges of the rec
tangular generalization plateau, there is a gradual drop-off sim
ilar to the primary generalization gradient.

Parallel Rule Activation
In this section, the structure and the functioning of the

parallel rule activation and rule synthesis (PRAS) model

is described. A fairly general overview is given before the

components are discussed in more detail. Where appro

priate, motivations will be presented for the particular

choices made.

The PRAS model consists of a set ofattentional weights

for each ofthe stimulus dimensions, a short-term memory

store that contains the currently active rules, a long-term

memory store that contains condition-action rules, and an

information integration unit that collects support for each

ofthe possible actions.

On each trial, the model goes through a cycle ofactions.

On the basis of the presented exemplar (target), a number

of rules in the long-term store are activated and placed into

the short-term store with their associated activation levels.

Per action category, the support from the activated rules is

combined in the integration store. On the basis of the rel

ative support for each action category, an action is selected.



(6)

If feedback is presented to the system, it goes through

a number of evaluations. First the attentional weights are

adapted. Next, the strengths of the activated production

rules are updated, and the the current exemplar is con

verted into a production rule with the correct category

label as its action part and added to the long-term store. Fi

nally, the system tries to find inferences by combining ac

tivated rules into a new more general rule.

In the following paragraphs, these processes are de

scribed in more detail.

Rule activation. Activation ofa rule depends on (I) the

similarity ofthe target pattern and the rule, and (2) the rule

strength.' First, for every rule in long-term memory, an ac

tivation value is obtained:

(4)

where A ij represents the degree ofactivation ofrule j con

ditional on the presence of stimulus pattern i, gij is the

generalization value (or similarity) from rule j to pattern i

as defined in Equation I, and Sj is the strength of rule j.

Evidence combination. Assume that there are n pos

sible actions (categories) that can be selected. For each of

these actions, the total activation value is calculated. Let

.'il(k) indicate the set ofactivated rules supporting action k,
then 'LjES'l(k,Aij is the relative evidence in favor of that ac

tion. This method ofevidence combination was borrowed

from Holyoak, Koh, and Nisbett (1989).

Decision making. Luce's (1959) ratio rule is used to

select a decision over the set of possible actions:

L jES'l(k' A ij
Pr(R=k)= , (5)

L;~I LjES'lII' Aij

where Pr(R = k) is the probability of selecting action k,

expressed as the ratio of the evidence in favor of cate

gory k relative to the amount ofevidence for all categories.

This seems to be a natural choice. The same mechanism

is used by Medin and Schaffer (1978) and Nosofsky (1984)

in the context models. Because the present model should

be able to operate as an exemplar model, it was thought to

be a good idea to keep similarities with such models where

possible.

Monitoring of attentional weights. Attentional weights

are included in order to keep the similarity with Nosofsky's

generalized context model (GCM), and with Kruschke's

(1992; Nosofsky & Kruschke, 1992) extension of this

model. If feedback is presented and any rules were acti

vated, the attentional weights are changed.

Associated with each stimulus dimension is a weight

°s W I s 1, such that 'L7WI = I. The weight WI expresses

the degree of attention to dimension I. If wI is relatively

large, dimension I is stretched, so that distances along this

dimension increase and the corresponding similarities

decrease.

A change in the attentional weights during learning is

motivated by the assumption that selective attention con

tributes to the category representation. During the process

ofacquisition, attention must be redirected toward the di-
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mens ions that are important in the categorization. This is

achieved by increasing the weights on these important di

mensions (see Kruschke, 1992,andNosofsky, 1984, 1986,

for a more extensive discussion).

In the present implementation ofthe PRAS model, each

weight wI depends on a dimensional strength vI > 0, such

that WI = vII'L7vi . Changes in attention are achieved by

changing the attentional weights (wI) by mediation of

changes to the dimensional strengths (vI)'

Feedback concerning the correctness ofthe categoriza

tion response does not indicate in which direction the at

tentional weights should change. A mechanism was de

veloped that infers the most optimal change by comparing

a current activation index with the value that would obtain

if the weights of the dimensions with rather large weights

are incremented and with the value that would occur ifthese

weights were decremented. Because the exact implemen

tation of the procedure is not essential for understanding

the working of the model, a more elaborate description is

presented in the Appendix.

Changing strengths ofproductions. The productions

that did not contribute to the selected action are deacti

vated. Ifthe productions generated a correct prediction of

the target's category, their strength is increased; otherwise,

their strength is decreased. Changes in strength are made

on each trial in such a way that, over trials, a negatively ac

celerated change curve is obtained. To that end, the aver

age strength at trial t, sp of these productions is calculated:

LjES'l'+JSj.t

St = 11.'il(+)11

where I1.'il(+JII is the cardinality of the set .'il(+), the produc

tions contributing to the selected action, and Sj,t is the

strength of rule j on trial t. If the prediction was correct,

the strength ofall the rules contributing to that prediction

are incremented according to the following rule:

Sj,t+l = Sj.t + (1 - St){3, (7)

where Sj,t represents the strength ofproductionj on trial t,

St represents the average production strength on trial t, and

°< {3 ~ I is a free parameter representing the learning rate.

Analogously, the strength ofincorrectly predicting rules is

changed as follows:

(8)

It should be clear from Equations 6-8 that the strength

of a rule can become less than zero. All such rules are

deleted from the long-term store at the end of the trial.

Due to the coupling of the rule increment to the average

strength ofthe contributing rules (a feature borrowed from

Holland et aI., 1986; Holyoak et aI., 1989), strong rules

can become stronger than I (which would be the asymp

tote if St is replaced by Sj,t in Equation 7). As pointed out

clearly by Holyoak et al. (1989), this mechanism allows

for blocking and overshadowing of cues. It is also a fea

ture of Rescorla and Wagner's (1972) learning model.

Designing new productions. If feedback is presented,

the current instance is converted into a production rule
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where vis rounded to the nearest positive integer.

/3 The rate of change of the rule strengths is given in

Equations 6-8, which require a value of the learning

operator /3.
a New productions receive an initial strength a, which

should be a number between °and I.
n The probability of making an inference is tt. If n = 0,

the models should behave like exemplar models be

cause no abstractions are made.

p The size of a generalization, as explained in the sec

tion on inference formats, can vary among inferences.

Model Parameters
In order to run, each model in the class requires appro

priate values for a number of free parameters. The fol

lowing parameters are used in these models:

c Equation 4 is based on the similarity gradient between

a rule and a target, gil' which is defined in Equation 1.
The latter equation requires a value for the parame

ter c, the steepness of the similarity gradient.

a The rate of change in the attentional weights is given

by the parameter a, which is converted to a starting

level for the attentional strengths, vI' by the following
equation:

and added to the long-term store. The dimensional values

ofthe exemplar are used as the values in the condition part

of the rule, and the correct category as specified in the

feedback is used as the action part of the production. An

initial strength of a(O < a::;; 1) is assigned to the new pro

duction, if it did not already exist. If the newly generated

production was already present in the long-term store, it

is not added, and the strength of the production is not

changed.

This is different from Anderson et al.'s (1979) implemen

tation of ACT for category learning. The motivation for

this difference can be explained as follows. When a target

is presented and a rule completely matching the target al

ready exists, there are two possibilities: (1) the rule is ac

tivated and will be strengthened if it contributes to a correct

prediction, or (2) the rule is not activated. Inthe latter case,

other rules probably exist that are sufficiently similar to the

target and that are strong enough to take control. Hence,

an extra incrementation of rule strength is not needed.

Inferring more general productions. Finally, with

probability n an attempt is made to generate an inference.

Taking each active rule contributing to the prediction in

turn, an inference is attempted by combining it with the

most similar exemplar level rule among the other active

rules supporting the same action. The most similar rule is

chosen in order to avoid overgeneralization. If a rule is

found, the generalizing inference is constructed according

to the appropriate production rule format. The strength as

signed to this new rule is the same as the highest ofthe two

contributing rules, the assumption being that the general

ization, if correct, is at least as useful as its constituents.

If the new rule already exists in long-term store, the in

ference is not added.

v= l/a, (9)

In the present applications, the size of the generaliza

tion is fixed: p determines the ratio of the difference

between the two constituting conditions that are used

in the inference. Ingeneral, if the distance between the

two constituting conditions is d, the actual extension

ofthe inference is p d. With small a p, the extent ofthe

inference is small. However, with p > 1, every infer

ence tends to overgeneralize from the two constituting

productions.

Model Fitting
The performance ofthe model depends on a fairly large

number offree parameters. Fits ofthe model were obtained

by maximizing a log likelihood function (see Nosofsky,

1992) over the predicted and the observed proportions of

category assignments. This was done by fixing a number of

parameters on reasonable or plausible values and then

searching the rest of the parameter space for a minimum.

Brent's (1973) LOCALMIN procedure was used. This

method quite efficiently finds a local minimum. By taking

several different random starts, an acceptable minimum

can be obtained.

In the simulations reported in the present study, a was

fixed at 0.05. Insimulations ofprimary generalization (ex

emplar model), tt was set to 0, and p was not applicable.

In simulations of secondary generalization (abstraction

mode), x was set to 1, and p was estimated.

Relationship to Other Work

The PRAS model shares features with a number ofmod

els that have been extensively studied. The similarity and

attentional mechanisms that are at the heart of the GCM

(Nosofsky, 1984) were used to build a production model

capable of exemplar learning. In this process, extensions

were needed to cope with the change ofattentional weights

during the course of learning, and decisions were needed

concerning the representational format ofexemplars in pro

duction rules. Although the resulting implementation is

not identical to the GCM, the fundaments are comparable.

The PRAS model was also inspired by work of Ander

son et al. (1979). The idea of using production rules rep

resenting differing degrees of abstraction was borrowed

from it, even though in the implementation the differences

are quite numerous: PRAS has no differentiation process,

its production strengths are not incremented when the pro

duction is recreated, and, foremost, matching is a matter of

degree in PRAS rather than an all-or-none phenomenon.

Holyoak et al.'s (1989) framework was also a source of

inspiration for the present endeavor. Essentially, the fea

tures of rule strength combination and its implication for

the change ofrule strengths in the course oflearning ofthe

latter model were included in the realization of the PRAS

model. The motivation for these inclusions resides in the

expectation that, by doing so, PRAS would inherit the pos

sibility to predict the same phenomena that Holyoak's model

is capable of, such as blocking, overshadowing, and con

ditioned inhibition. There is no reason to expect, however,

that this inheritance would occur automatically. Hence,

the implication should be tested empirically.
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The PRAS model is also related, but in a very indirect

way, to other extensions of the GCM, such as ALCOVE

(Kruschke, 1992) and ALEX (Nosofsky & Kruschke,

1992).These models, too, are extensionsofthe GCM, in that

processes oflearning are included in the model. However,

these extensions are in the direction of connectionism. It

is not clear at this time whether the ideas developed in these

extensions can be reconciled with the ideas developed in

the PRAS model. Work clarifying this issue would cer

tainly be very interesting.

The approach taken in the PRAS model is, however,

quite different from a number of other recent models. In

the RULEX model, Nosofsky et al. (1994) elaborate the

idea that people construct simple rules while learning a

categorization. When these simple rules fail to make cor

rect classifications, exception rules are added. If this still

fails, a more complex rule is tried, possibly complemented

with exception rules. While this model gives a fairly good

account of categorization behavior even in the domains

where exemplar models previously were very successful,

the rule+exception scheme is reminiscent ofthe procedure

used by Anderson in the ACT model; in the PRAS model,

a different inference mechanism was developed.

The PRAS model also differs from Ashby's general

recognition theory (GRT; see, e.g., Ashby & Gott, 1988;

Maddox & Ashby, 1993).This is a theory about well-learned

(asymptotic) categorization behavior, which focuses on

the decision process that is required to distinguish between

two categories. It assumes "that there is trial-by-trial vari

ability in the perceptual information associated with every

stimulus" (Maddox & Ashby, 1993,p. 50). Within this view,

variability in classification is due to the variability in the

perception of the stimulus. This process is quite different

from the one postulated in the context models and in the

PRAS model.
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EXEMPLARS VERSUS ABSTRACTIONS:
AN EXPERIMENT

The PRAS model was developed under the hypothesis

that categories may be represented at different levels of

abstraction, so that both exemplar level information and

category level information are present. There is no direct

way to assess the relative contribution ofabstractions and

ofexemplars to categorization performance or to typical

ity judgments. In fact, as the number ofexemplars grows,

the probability that a new stimulus pattern resembles one

of the exemplars stored in memory becomes larger. The

consequence is that the threshold that an abstraction model

must surpass in order to make a differential prediction is

raised.

In order to the test the validity of the hypothesis that

both levels of information are normally used in catego

rization, a method must be devised that is sensitive to both

levels ofrepresentation. Consider the three cases displayed

in Figure 3. The empty circles represent exemplars that

belong to one category, the filled circles represent exem

plars belonging to the contrasting category, and the square

refers to a critical test pattern not present during learning.

Figure 3. Three category composition schemes for categories
containing two instances, each varying in two dimensions. In one
category, the two instances are rather similar; in the contrasting
category, the two instances are quite dissimilar. The square rep
resents the position of critical test pattern.

In all panels, the category structure runs counter to the

natural groupings ofthe exemplars: the intercategory sim

ilarities are higher than the intracategory similarities.

For PRAS with n > 0, there is only one opportunity in

each category to form a generalization. If the abstractions

are formed, instances in the central area ofthe bottom cat

egory would be matched by this abstraction, and, as a con

sequence, the exemplar would be assigned to the bottom

category. If no abstractions are formed (e.g., tt = 0), then

one or both bottom instances are more similar to the in

stances ofthe top category than to each other. By changing

the attentional weights of the dimensions, the between

category similarity can be decreased and the within

category decreased. However, these attentional changes

are only invoked if it is necessary during acquisition to im

prove category discrimination. In practice, it appears that

large changes in the attentional weights ofthe PRAS model
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Figure 4. Stimulus pattern layout in Condition RO. Numbers in
squares and circles refer to stimuli presented during acquisition.
Squares indicate Category P; circles represent Category Q. The
numbers not enclosed in a square or a circle indicate the patterns
used only in transfer and typicality.

(with tt> 0) and GCM are very rare in the three cases dis

played in Figure 3.

The case presented in Figure 3A was taken as the basis

of an experiment to test the usefulness of the generaliza

tion mechanism proposed in the PRAS model. After

learning the categorization of the four stimulus patterns,

subjects were required to categorize a number ofnew pat

terns selected in such a way that the categorization per

formance on these patterns could indicate whether sec

ondary generalization had occurred.

Because the perceived dimensionality of the stimulus

domain may have an impact on categorization performance,

the stimulus set was implemented in three variants: (1) on

the two dimensions as displayed, (2) with the same two di

mensions rotated clockwise over 30°, and (3) with the

same two dimensions rotated clockwise over 60°. Separa

ble stimulus dimensions (see, e.g., Gamer, 1978) were

used to ensure that the dimensions perceived by the sub

jects maximally coincide with the formal descriptions.

In the basic set (RO), as displayed in Figure 4, to learn

the categorization, either Dimension 2 must be stretched

in order to increase the difference between the category at

the top (Patterns 1 and 2) and the category at the bottom

(Patterns 3 and 4) or a generalizing inference within the

two categories is required.

In the first rotated set (R30, see Figure 5), stretching Di

mension 1 would actually decrease the difference between

Pattern 3 and Patterns 1 and 2. Stretching Dimension 2

would increase the difference between Patterns 1 and 2 on

the one hand and Pattern 3 on the other, but it would also

increase the similarity between Pattern 2 and Pattern 4.

In the other rotated set (R60, see Figure 6), stretching

Dimension 1 would increase the difference between Pat

terns 2 and 3, but it would also increase the difference
within the categories.

In other words, only in Set RO does primary generaliza

tion alone have a chance to lead to correct categorization

of critical test patterns (5 and 6). In all three variants, RO,
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R30, and R60, generalizing inferences would show little

overlap and could form a basis for correct categorization.

Figure 5. Stimulus pattern layout in Condition R30. Numbers
in squares and circles refer to stimuli presented during acquisi
tion. Squares indicate Category P; circles represent Category Q.

The numbers not enclosed in a square or a circle indicate the pat
terns used only in transfer and typicality.

Method
Materials. The stimulus patterns consisted of a rectangle ("train

wagon") with two small circles underneath ("wheels"). The two di

mensions in the stimulus materials were realized as the height ofthe

rectangles and the distance between the two circles, which where po

sitioned symmetrically. Three sets of stimulus patterns were ob

tained. In Set RO, the layout as displayed in Figure 4 was used. In

Set R30, the stimulus dimensions were rotated clockwise over 30°,

as shown in Figure 5. In the Set R60, the stimulus dimensions were

rotated clockwise over 60°, as shown in Figure 6. The width of the

rectangle was fixed at 7 em; the height could vary from 14 to

57.4 mm. The distance between the circles, which had a radius of

2 mm, varied also from 14 to 57.4 mm.

Each stimulus set was realized in two ways. In the first form, Di

mension I corresponded to the height of the rectangles; in the sec

ond form, Dimension I was the distance between the two small cir

cles. Figure 7 displays the four basic patterns of the six stimulus sets.

The stimuli were presented on a computer screen at a distance of

about 50 em from the subject. The size ofthe stimuli subtended about

8° of visual angle.

Nine different stimulus patterns were developed and were used in

all phases ofthe experiment, except in the acquisition phase. During

acquisition, only four of the nine patterns were used (viz., Patterns

1-4 in Figures 4-6). Of these four patterns, two belonged to Cate

gory P and two belonged to Category Q. The other patterns were in

cluded for testing the tendencies to generalize from the learned cat

egorizations. Pattern 5 was selected so as to maximize the difference

between the predictions from exemplar representation versus abstrac

tion. The other patterns were distributed over the stimulus domain.

This way, proportions ofP responses could yield information about

the form of the generalization gradient over the P and Qcategories.

Procedure. The subjects were tested individually at an IBM

compatible AT with a 14-in. color monitor based on a VGA graphics
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Figure 6. Stimulus pattern layout in Condition R60. Numbers

in squares and circles refer to stimuli presented during acquisi

tion. Squares indicate Category P; circles represent Category Q.

The numbers not enclosed in a square or a circle indicate the pat

terns used only in transfer and typicality.

interface. The experiment consisted of four phases: stimulus com

parison, category acquisition, transfer, and typicality.

In the first phase, the subjects were shown all possible pairs ofdif

ferent stimuli in both within-pair orders (72 pairs). They were in

structed to rate the similarity between the two patterns on a 7-point

rating scale, using the mouse to click over a horizontal array of push

buttons, numbered I through 7. They were asked to use all the val

ues of the scale. To ensure that the instructions were clearly under

stood, a practice session of 10 trials was administered before the ac

tual test session started.

After the subjects had completed this rating task, instructions about

the category learning task were presented on the screen. The subjects

were told that each ofthe stimulus patterns they would see belonged

to one of two categories, P or Q, and that it was their task to learn

which pattern went with which category label. Feedback was given

immediately after each response, which was made by clicking the

mouse over one of the two visually presented push buttons (P or Q)

on the screen.

The category acquisition task consisted of five blocks of four

trials each, such that in each block each of the four training patterns

was presented once in a random order. A fixed number of trials was

presented in order to ensure that the degree of learning per exemplar

was the same for all subjects in all conditions.

When the category acquisition task ended, the subjects were told

that the task would be continued in the same way without feedback.

During this transfer phase, the complete set ofnine stimulus patterns

was presented five times in five different random orders.

Next, for the typicality rating phase, the subjects were told that

some patterns may be better examples ofa category than other ones.

They were also told to rate each pattern they would see on the screen

with respect to the P category on a 7-point rating scale, clicking the

mouse over the appropriate numbered area. The complete set of

stimulus patterns was presented five times in five different random

orders, with the question "How typical is this one for Category P?"

Finally, the subjects completed a postexperimental questionnaire

and were debriefed a few weeks later.
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Dimension 1

Subjects and Design. Sixty-eight first-year psychology students

of the University of Ghent (Belgium) participated for course re

quirements and credit. They were randomly assigned to the six con

ditions of a 3 (stimulus set) X 2 (relevant dimension) factorial de

sign. The cells in this combination contained respectively 12, 12, 13,

11, 10, and 10 subjects.

Results

First, the results obtained in the acquisition, transfer,

and typicality phases of the experiment will be reported.

Next, the predictions concerning primary and secondary

generalization will be compared with the data. Finally,

tests on the necessity of attentional selectivity will be re

ported.

In the data analyses presented, the proportion of Cate

gory P responses (or the typicality ratings) were analyzed

by means ofa multivariate analysis ofvariance (MANOVA),

with stimulus set and relevant dimension as between

subjects variables and the scores on the stimulus patterns

(proportion P responses, typicality) as dependent variables.

Effects concerning stimuli were evaluated by means ofcon

trasts in the dependent variables. This is based on a method

suggested by McCall and Appelbaum (1973) as a solution

to the analysis ofdesigns where repeated measures are in

volved. The level of significance, a, was set at .05.

In the following paragraphs, only the findings that are

central to the present study are reported. In general, inter

actions involving relevant dimension and the interaction

of relevant dimension and stimulus set are not mentioned,

because they did not attain significance.

Acquisition. At the end of the acquisition phase, the

subjects in all conditions achieved a fairly good level of

category discrimination. The average proportions ofCat

egory P responses during the last training block (Trials

17-20) amounted to .87 and .82 for the two P category pat

terns (I and 2) and to .18 and .09 for the two Q category

patterns (3 and 4). Table 1 shows the proportion of P re

sponses during the last block as a function of stimulus set,

relevant dimension, and category.

The three stimulus sets were not equally difficult

[F(2,62) = 11.28, P < .001]. Set RO was learned faster

(average last error trial = 8.25) than were the rotated sets

[average trial oflast error = 14.71 in R30 and 15.55 in

R60; F( I ,62) = 22.48, p < .00 1], but the learning rate did

not differ among the two rotated sets (F < I). This is con

sistent with comparisons of filtering and condensation

tasks (see, e.g., Kruschke, 1993).

Categorization accuracy, measured as the proportion of

incorrect categorizations per stimulus pattern, did not dif

fer as a function of between-subjects variables [stimulus

set, F(2,62) = 1.18,p> .05; relevant dimension, F< I] or

their interaction (F < I).

An analysis with the proportion ofP responses per stim

ulus as dependent variable revealed an effect of stimulus

set [F(2,62) = 3.26,p < .05] but no effect of relevant di

mension (F < I) or its interaction with stimulus set (F < I).

Transfer. The average proportions ofP responses dur

ing transfer are displayed in Table 2 as a function of stim

ulus set. The subjects almost always assigned the Category P

80604020
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Figure 7. Training exemplars of Set RO (panels A and B), Set R30 (panels C and D), and
Set R60 (panels E and F). In panels A, C, and E, width (distance between the wheels) is the
relevant dimension. In panels B, D, and F, height of the car is the relevant dimension.

patterns (1 and 2) to the P category, and they almost never

assigned the Category Q patterns (3 and 4) to the P category.

The proportions of P responses to each of the stimulus

patterns were the dependent variables in a 3 X 2 MANOVA,

with contrasts in the dependent variables. Ofthe between

subjects variables, only stimulus set yielded a significant

effect [F(2,62) = 1O.16,p < .001].

The contrast of Patterns 1 and 2 (P category) versus

Patterns 3 and 4 (Q category) was significant overall

[F(1,62) = 361.50, p < .001], and it interacted with the

stimulus set variable [F(2,62) = 11.77,p < .001], but not

with the relevant dimension variable (F < 1) and not with

the interaction ofthis variable with stimulus sets. Given the

high level ofcorrect responding, it may be concluded that,

in all conditions, the subjects learned the categorization.

The patterns can be ordered into three groups with re

spect to the P-Q categorization: the Category P patterns

complemented with Pattern 6, the patterns intermediate

between the two categories (7, 8, and 9), and the Cate

gory Q patterns together with Pattern 5. The prediction

that the proportion ofP responses decreases with this or

dering was tested by means of a linear trend comparison.

It turned out to be significant [F(1,62) = 294.95,p< .001,

r 2 = .80]. Moreover, the difference between Pattern 5 and

the Category P patterns was significant [F(1,62) = 51.42,

p < .001], but the difference between Pattern 5 and the

Category Q patterns was not [F(1,39) = 3.73, p > .05].

As shown in Table 2, the general picture ofthe findings

was quite similar in the three stimulus set conditions, al

though the performance levels with respect to the P-Q

categorization were somewhat different: the linear trend

on the P-Q ordering interacted significantly with the vari

able of stimulus set [F( 1,62) = 11.77, P < .001]. This ef

fect is due to the difference between the conditions with

Set RO and the conditions with Sets R30 and R60: the con

trast between the standard and the rotated conditions in

teracted with the linear trend over the P-Q categorization

[F(1,62) = 23.09,p < .001, r2 = .05], but the linear con

trast did not interact with the contrast between the condi

tions with Sets R30 and R60 (F < 1).

Overall, the proportion ofP responses to the critical in

stance (Pattern 5) was different from the proportion of P

responses to Patterns 1 and 2 [F(1,62) = 198.96,p < .001],

but it was not different from the proportion ofP responses
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Table 1

Average Category P Proportions During the Last

Acquisition Block and Average Typicality Ratings

as a Function of Stimulus Set and Stimulus Patterns

Set RO Set R30 Set R60

Relevant Dimension Relevant Dimension Relevant Dimension

Pattern Height Width Height Width Height Width

Last Acquisition Block: Proportion ofP Responses

I 0.917 0.833 0.769 0.818 0.900 1.000

2 1.000 1.000 0.846 0.818 0.500 0.700

3 0.000 0.083 0.385 0.000 0.300 0.300

4 0.167 0.083 0.077 0.182 0.000 0.000

Typicality Ratings

I 5.23 5.84 4.85 5.76 6.38 5.40

2 5.80 5.73 4.47 5.49 4.68 5.62

3 2.17 2.05 3.28 2.12 3.74 3.56

4 2.53 1.93 2.40 2.04 1.54 2.48

5 2.80 1.97 3.23 3.20 3.44 3.16

6 5.77 5.50 3.79 4.25 3.44 4.60

7 4.18 4.43 4.08 4.71 4.22 4.57

8 4.17 4.34 3.98 4.56 3.81 4.35

9 4.17 4.20 3.30 3.31 2.50 3.82

Note-The pattern numbers refer to those given in Figures 4-6.

to Patterns 3 and 4 [Q category, F(1,62) = 3.73,p > .05].

Again, these two contrasts interacted with the stimulus set

variable [F(2,62) = 7.08,p< .01, andF(2,62) = 9.55,p<

.00 I, respectively]. The Category P versus Pattern 5 con

trast is due to differences between the three stimulus set

conditions, as it interacted with the standard versus rotated

sets contrast [F(1,62) = 4.92, p < .05] and with the con

trast between the two rotated set conditions [R30 vs. R60;

F(1,62) = 8.52,p < .01]. The Category Qversus Pattern 5

contrast differed only between the two rotated sets [F( I ,62)

= 18.73,p < .001].

Typicality. The typicality ratings are presented in

Table I as a function of stimulus set, relevant dimension,

and the stimulus patterns.

The findings were very similar to those of the transfer

phase. Typicality ratings were higher in the P category than

in the Qcategory [F(1,62) = 115.76,p < .001, r2 = .81].

The predicted pattern ordering of p, Q, and intermediate

patterns was significant [F(1,62) = 116.85,p < .001, r2 =

.88], and it interacted with stimulus set [F(2,62) = 3.96,

p < .05], which was completely explained by the contrast

between the conditions with Set RO and with Sets R30 and

R60 [F(1,62) = 7.92,p < .01].

Pattern 5 typicality was different from both the P pat

tern typicality [F(1,62) = 92.30,p < .001] and the Qpat

tern typicality [F(1 ,62) = 1l.40,p < .01]. These contrasts

did not interact with the stimulus set variable [F(2,62) =
2.64, P > .05, and F(2,62) = 1.30, p > .05, respectively].

Similarities. The correlation was calculated between

the median of the similarity ratings pooled per condition

and the physical distances between the stimuli as mea

sured either by a city-block metric or by a Euclidean met

ric. Because the similarities are not independent, a non

parametric method described by Hubert and Subkoviak

(1979) was used to test the confidence intervals on these

correlations. The correlation ranged from - .40 to - .89 for

the Euclidean metric (all ps < .00 I, except the lowest value

for which p < .01) and from - .60 to - .94 for the city

block metric (allps < .001). In all conditions but one, the

correlation with the city-block structure was larger than

with the Euclidean structure.

Because the relevant dimension variable had no effects

on training and transfer performance, further tests were

performed to find out whether this variable had any sub

stantial effect in the similarity ratings. Per stimulus set, the

correlations between the two relevant dimension condi

tions amounted to .53 (p < .01), .56 (p < .01), and .65 (p <

.001), respectively. Medians obtained by pooling the two

relevant dimension conditions within each stimulus set

correlated highly with the medians of the individual con

ditions: the correlations ranged from .79 to .91 (allps <

.001). These pooled values also correlated more with the

city-block structure (respectively - .89, - .87, and - .93,

all ps < .001) than with the Euclidean structure (respec

tively -.77, -.81, and -.89, allps < .001) .

Furthermore, a method described by Hubert and Gol

ledge (1981) was applied in order to test to what extent the

medians of the combined conditions explained the struc

ture in the similarities per condition. This was done by cal

culating a "residual correlation" (r 12 1-2)' These correla

tions amounted to - .12 (p = .79), .:.... .03 (p = .59), and

- .04 (p = .55) for the three stimulus set conditions.

These results indicate that, in the similarity structures,

the relevant dimension variable again did not seem to play

a role. In combination with the finding that the same vari

able did not affect training and transfer performance, it

seemed to be safe to infer multidimensional scaling (MDS)

solutions per stimulus set. Because the similarity structure

correlated better with the city-block physical distances

than with the Euclidean physical distances, MDS solu-
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Table 2
Observed and Predicted Proportions of Category P

Responses Under Conditions of Primary and
Secondary Generalization During Transfer

Pattern Observed PO OCM-4 OCM-9 SO FO

SetRO

I .900 .959 .932 .959 .967 .906

2 .967 .966 .933 .964 .960 .907

3 .033 .064 .055 .088 .041 .106

4 .075 .020 .060 .038 .034 .110

5 .100 .109 .060 .118 .026 .117

6 .967 .929 .932 .926 .953 .891

7 .767 .782 .627 .753 .722 .652

8 .750 .707 .496 .660 .574 .545

9 .683 .709 .757 .739 .797 .735

Set R30

I .817 .938 .783 .808 .861 .842

2 .800 .927 .810 .806 .735 .756

3 .242 .086 .245 .170 .154 .127

4 .017 .065 .036 .084 .092 .088

5 .383 .639 .661 .534 .124 .454

6 .467 .664 .578 .564 .433 .518

7 .717 .670 .454 .522 .563 .548

8 .750 .852 .760 .691 .370 .633

9 .250 .315 .244 .293 .249 .294

Set R60

I .940 .898 .914 .931 .920 .915

2 .810 .820 .785 .803 .816 .796

3 .310 .250 .348 .318 .346 .342

4 .080 .027 .042 .027 .045 .040

5 .090 .212 .230 .205 .085 .103

6 .310 .353 .35I .323 .362 .357

7 .670 .538 .557 .550 .609 .958

8 .390 .399 .422 .399 .420 .434

9 .220 .225 .262 .237 .IlO .111

Note-PO = primary generalization (n= 0); OCM-4 = generalized con-

text model estimated on the patterns stimuli only; OCM-9 = OCM esti-

mated on transfer performance of all nine patterns; SO = secondary gen-

eralization (n= I); FO = free generalization (z free).

tions were obtained on the basis of the city-block metric.

The stress ofthe solutions was .009, .00 I, and .020 for the

three stimulus sets. The solution was then rotated so as to

maximize the correspondence with the physical dimen-

sions. The resulting coordinates are presented in Table 3.

Primary and secondary generalization. A parameter

search was performed in order to obtain a reasonable fit of

the model to the data, under conditions ofprimary gener-

Table 3
MDS Coordinates ofthe Stimulus Patterns After Rotation

SetRO Set R30 Set R60

Patterns Xl X 2 Xl X 2 Xl X2

I -1.212 .834 -1.880 -.147 -1.618 -1.190

2 -.294 .841 -.171 .755 -.814 .244

3 -1.101 -1.085 -1.100 -1.642 -.IlI -1.520
4 1.664 -1.004 1.932 .565 1.740 1.588
5 -.214 -1.017 .298 -.658 .810 -.227

6 1.014 1.061 .641 1.125 -.030 .989
7 -.723 .Il2 -.774 -.420 -.423 -.714

8 -.215 -.072 -.140 -.209 -.218 -.262
9 1.078 .332 1.193 .628 .664 1.091

alization (with the parameters c, a, and f3 free to vary, and

zrfixed at 0), obligatory secondary generalization (with p
free to vary in addition to the same three free parameters

and with Jr fixed at 1), and free secondary generalization

(with all five parameters free to vary).

The parameter searches were performed for all the vari

ants of the models on the basis of the average proportion

of Category P responses observed both during the last ac

quisition block and during transfer. It is worth noting that,

in these fits, only performance on the four training instances

was included. The essential feature of the test was to find

out how the model would categorize the critical transfer

patterns. Table 4 displays the parameter values obtained in

these fits.

The degree of fit expressed in terms of the root mean

squared deviations (RMSDs) ranged between .031 and

.045 in the ROcondition, between .051 and .057 in the R30

condition, and between .015 and .022 in the R60 condi

tion. By way ofcomparison, the fits of the standard GCM

amounted to .031, .012, and .027, respectively. A fit of

GCM to the transfer data of all nine stimuli yielded a fit

for the four training patterns of .029, .033, and .018, re

spectively. The corresponding parameter values are dis

played in Table 5. Even though the meaning of the C para

meter is the same in the PRAS model as in the GCM, the

estimated values are different because, in the simulations

ofPRAS, the stimulus coordinates were rescaled to values

in the range of 10-40.

So far, it appears that the variants of the PRAS model

yield a fit to the four training patterns that is quite good

and at a level comparable to the fit of the GCM. On the

basis of these fits, predictions were generated for transfer

performance on all nine stimuli. For the PRAS model,

these predictions were obtained by averaging the model's

Table 4
Estimated Values of the Free Parameters in the Different

Versions ofthe PRAS Model Applied to the Three Stimulus Sets

Condition c a f3 tt p

Set RO

PO .11 .02 .30 0.00
SO .09 .05 .12 1.00 1.07
FO .06 .07 .34 0.91 0.24
SO, no attention .68 .26 1.00 1.26
FO, no attention .39 .03 0.35 0.29

Set R30

PO .15 .01 .21 0.00
SO .17 .03 .38 1.00 0.29
FO .15 .05 .24 0.05 0.77
SO, no attention .39 .38 1.00 0.73
FO, no attention .29 .05 0.33 0.14

Set R60

PO .10 .07 .21 0.00

SO .09 .10 .12 1.00 0.13

FO .09 .06 .13 0.39 0.14
SO, no attention .24 .03 1.00 0.05

FO, no attention .24 .04 0.59 0.17

Note-PO = primary generalization (n= 0); SO = secondary general
ization (n= I); FG = free generalization (z free).



TableS
Estimated Values of the Free Parameters in the Different

Versions ofthe PRAS Model Applied to the Three Stimulus Sets

Condition c b w

SetRO

GCM-4 1.47 .47 .0\

GCM-9 1.95 .53 .27

Set R30

GCM-4 1.70 .45 .87

GCM-9 1.61 .43 .62

Set R60

GCM-4 1.36 .53 .99

GCM-9 1.53 .53 .99

Note-GCM-4 = generalized context model fitted to the four training

patterns; GCM-9 = GCM fitted to all nine stimulus patterns.

performance in 1,000 runs with the estimated parameters.

As can be seen in Tables 2 and 6, the predicted perfor

mance on the four training patterns is quite good and at a

comparable level for all models in all conditions.

The important test concerns the prediction of transfer

performance on the critical pattern (5). In Condition RO,

there appears to be little need for postulating a secondary

generalization process: all the variants ofthe PRAS model

and the standard GCM yield quite similar predictions about

the performance on Pattern 5. In Condition R30, the situ

ation is somewhat different. Table 2 shows that the PRAS

model, working under conditions of primary generaliza

tion, assigns Pattern 5 more often to Category P than the

subjects did. This is also true for GCM. Under conditions

of obliged secondary generalization, the opposite occurs:

Pattern 5 is too often assigned to the Q category. In both

cases, the degree of discrepancy is about the same. When

the 7r parameter is free to vary, the prediction is closer to

the data. In Condition R60, the model working with sec

ondary generalization yields a prediction that is closer to

the data than do the primary-generalization models.

The other transfer patterns are less informative: the pre

dictions concerning Pattern 6 are rather similar under con

ditions ofprimary and secondary generalization, except in

the R30 condition. The category assignment of the other

three stimuli (7-9) is highly dependent on the steepness of

the gradient between the two categories and on the degree

to which Dimension 2 has been weighed more heavily.

In summary, it may be said that in Condition RO there

is no gain in adding a secondary-generalization mecha

nism; however, in Conditions R30 and R60, where the di

mensions are rotated, the predictions appear to be better

when secondary generalization is allowed.

Is attention necessary? When n > 0, PRAS achieves

its performance by constructing abstractions. The ques

tion arises whether these abstractions are sufficient as an

explanation of categorization behavior, and can take over

the function of attentional selection. An answer to this

question is easily obtained when the parameter a is fixed

at zero. In other words, when the attentional weights are

all equal and fixed.
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The PRAS model was fitted in the same way as before

to the subject's performance on the four training stimuli in

the three conditions of the experiment. In all these fits, a
was fixed at O. The fits were obtained, once with tt> 0 and

once with 7r free to vary between 0 and 1.

The RMSDs of the fits varied between .052 and .073,

which are not bad but are slightly worse than the corre

sponding fits obtained when a was free to vary. Table 4

displays the parameter values of these fits, and Table 6

displays the accuracy of the transfer predictions based on

1,000 runs with these parameters.

It is clear that the model's predictions are systematically

less accurate than when parameter a is free to vary under

the same conditions. This occurs in all three conditions of

the experiment. These findings show that the function of

the attentional selection mechanism is not replaced by the

abstraction mechanism and that, in fact, both are needed

to explain the subjects' performance in Conditions R30

and R60.

Discussion
An argument was made in favor ofa distinction between

two kinds ofgeneralization: primary and secondary. These

two principles of generalization were simultaneously im

plemented in the PRAS model, a production rule model

that learns by changing the strengths ofits rules, by chang

ing its attentional weights, and by adding new rules to its

knowledge base. The rules stored in memory either are ex

emplar specific or are generalizing inferences from previ

ously stored rules.

In the present article, it was argued and shown that this

model acts as an exemplar model ifthe mechanism ofgen

eralizing inference is inhibited. In many conditions, pri-

Table 6

Correspondence Between Predictions and Data
in Terms of Root Mean Squared Deviations Under

Conditions of Primary and Secondary Generalization

PG GCM-4 GCM-9 SG FG SG- FG-

SetRO

1-4 .043 .027 .045 .040 .05\ .067 .066

5 .009 .040 .018 .057 .017 .100 .\00

6 .038 .035 .040 .0\4 .076 .028 .014

7-9 .030 .173 .062 .124 .139 .362 .275

Set R30

1-4 .120 .020 .050 .070 .072 .168 .\41

5 .256 .278 .15\ .259 .071 .377 .368

6 .\97 .112 .098 .034 .05\ .006 .092
7-9 .075 .152 .120 .237 .12\ .355 .268

Set R60

1-4 .046 .032 .027 .027 .029 .105 .099

5 .122 .140 .1\5 .005 .013 .066 .068

6 .043 .04\ .013 .052 .047 .020 .080
7-9 .076 .072 .070 .075 .080 .174 .\50

Note-PG = primary generalization (Jr= 0); GCM-4 = generalized con-
text model estimated on the training stimuli only; GCM-9 = GCM esti-

mated on transfer performance of all nine stimuli; SG = secondary gen-

eralization (Jr = I); FG = free generalization (Jr free). For SG- and
FG-, (1= O.
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mary generalization suffices to explain categorization;

however, under certain circumstances, generalization based

solely on exemplar representation is not sufficient to ex

plain categorization. Three cases were developed in which

exemplar-based transfer would lead to incorrect predic

tions of transfer performance on some critical exemplars.

One of these cases (Figure 3A) was tested empirically,

and the predictions of the PRAS model without and with

secondary generalization were compared with the data. In

the conditions where the stimulus dimensions were ro

tated, the prediction from PRAS that allowed only for pri

mary generalization failed on the critical test instance,

whereas the prediction derived from a version that in

cluded secondary generalization resulted in more accurate

predictions.

Why do models not operating with an abstraction mech

anism have difficulty in explaining the data in the rotated

conditions? The answer is fairly simple: Category learn

ing in this case is highly dependent on the attentional se

lection mechanism that regulates attention to one stimulus

dimension at the expense of the other one. In the ROcon

dition, the task can be described as a filtering task for which

the dimensional attention mechanism suffices to explain

subjects' categorization behavior. The rotated conditions

would require that attention be selective across dimen

sions. In other words, they require that stretching and

shrinking of the stimulus space be possible along oblique

orientations. With dimensional attention weights, this is

not possible, and this is why the PRAS model with tt = 0

and GCM generate incorrect predictions.

The question remains, why is there a difference in the

accuracy of the prediction in Conditions R30 and R60?

The reason is that, in the R60 condition, attentional filter

ing is possible. Figure 6 clearly shows that if the first di

mension is stretched, a neat separation of the P and train

ing patterns is possible. As a result of the stretching, the

similarity ofPattern 5 to the P stimuli decreases while the

similarity to the Q stimuli increases, so that the catego

rization is learned. These changes, however, are not large

enough to assign Pattern 5 as often to the Qcategory as the

subjects did. Some minimum ofabstraction was needed to

achieve this result.

Apart from the conclusion that it makes sense to distin

guish between the two kinds of generalization, this study

shows that, in the categorization scheme used in the present

experiment, secondary generalization (i.e., generalization

based on abstracted information) is needed to explain

human categorization behavior. This was also confirmed

in a test with different stimulus materials ofthe three cases

shown in Figure 3 (Vandierendonck, 1994).

It could be argued that model fits with more free para

meters were needed for the predictions of secondary gen

eralization than for the predictions concerning primary

generalization, and that the partial superiority of the sec

ondary generalization predictions is a direct consequence

of this state of affairs. Two elements contradict this argu

ment. First, the additional parameters were not necessary

to obtain a better fit to the categorization performance on

the four training patterns, because the fits of the model

variants with or without secondary generalization were ap

proximately at the same level. Second, the crucial point

was concerned with how each ofthe model variants would

categorize critical Pattern 5, which was not included in the

data used to fit these variants.

One can also wonder how models such as RULEX and

GRT would fare in explaining the present data. Because

the RULEX model was not developed to handle continu

ous dimensions, only a tentative answer can be provided

here. In the RO condition, the model would make the dis

crimination on the basis of the relevant dimension, and

Pattern 5 would be assigned to Category Q. Its behavior

would probably be similar in the R60 condition: one ofthe

dimensions can be treated as relevant and, consequently,

Pattern 5 would be assigned to Category Q. No single di

mension is relevant, however, in the R30 condition. Any

simple rule requires an exception. Ifthe first dimension is

the basis of the rule, Patterns 1-3 are grouped together,

and an exception rule about Pattern 3 is required. If, on the

contrary, the rule is based on the second dimension, Patterns

I, 2, and 4 are grouped together, and an exception con

cerning Pattern 4 is required. In both cases, it depends on

the exact localization of the boundary between the two

categories whether Pattern 5 will be classified as a P or a

Q. It would certainly be interesting to study such a gener

alization of the RULEX model.

It is equally difficult to apply the GRT to the present

data. The GRT assumes that the categorization has been

well learned, which is not the case in the present experi

ment. Ignoring this restriction, an exploratory application

of the theory shows that in all three conditions a linear

bound suffices for an optimal categorization of the four

training instances, so that, given the bound, Pattern 5 is al

ways assigned to Category Q. For this reason, a specially

designed test, with a guarantee for the applicability of the

GRT, could reveal whether the GRT can handle the find

ings of the present experiment.

One question that springs to mind concerns the gener

ality of these findings. Are the cases selected for the test

strange situations that would never occur outside the lab

oratory? It is true that the categorization problems selected

for the present study are very simple, but that is not the

reason why they were selected. To the contrary, the reason

for using the stimulus layout of the present study was to

enable a clear discrimination between exemplar-based and

"rule-based" categorization. Studies based on less simple

categorization problems (e.g., Bourne, 1982; Nosofsky,

199 I; Nosofsky, Clark, & Shin, 1989; Vandierendonck,

1988, 1990) have not been able to settle the issue unam

biguously. The present finding that secondary generaliza

tion is required to represent the categories of the simple

category structure used in the present experiment may be

maintained as a tentative conclusion that more complicated

categorization representations may be based on secondary

generalization or abstraction.



IMPLICATIONS OF THE PRESENT WORK

In addition to its contribution in clarifying the issue of

exemplar-based and abstraction-based generalization, the

PRAS model raises a number of implications for future re

search. Although not an exhaustive overview, some ofthese

implications are discussed in the following paragraphs.

One problem concerns the relationship between atten

tion and generalization. In fact, this is the relationship

upon which the GCM was built, and it is included in the

PRAS model. Primary generalization is a function of the

similarity and, indirectly, the distance between exemplars

varying in several dimensions. The importance of these

dimensions is moderated by attentional processes, which

are modeled in the GCM and the PRAS model in the form

of weights associated with these dimensions. One of the

questions that may be asked is whether such a weighting

scheme is needed in the conditions where secondary gen

eralization is allowed and effective. The function ofstretch

ing and shrinking dimensions may no longer be needed in

the cases where generalizing productions can be con

structed that overcome dimensional similarities. The pre

sent data also suggest that when secondary generalization

occurs, attentional selectivity remains necessary.

Related to this problem is the issue of local attentional

processes. Aha and Goldstone (1990, n.d.) report experi

ments in which two stimulus dimensions are equally im

portant for two categories of instances globally but not lo

cally. Insuch a case, shrinking one dimension may lead to

increased similarities between halfofthe instances in each

category, but it also results in decreased similarities be

tween the other half of the instances in each category. Ex

emplar models having dimensional attentional weights (e.g.,

GCM) are not capable of correctly predicting the catego

rization ofa number ofcritical instances. Aha and Goldstone

present an exemplar model with locally adjustable weights.

This model appears to be able to give reasonable predic

tions. Simulations of PRAS show that the mechanism of

secondary generalization is, in some circumstances, able

to account for the data. However, a more constrained test

is needed before viable conclusions can be formulated.

Allen and Brooks (1991) describe some situations in

which rule specialization occurs: a previously acquired

relatively general rule that is applied under restricted con

ditions appears to specialize to a more specific rule. As

suming that the kind ofrule that is considered here can be

represented by the PRAS model as a collection of inferred

generalizations, it may be expected that the PRAS model

is capable of the behavior described by Allen and Brooks.

A rule that is too general with respect to the domain for

which it is intended will not be activated and strengthened

more frequently than will a more specific rule, or even a

pure exemplar representation. As a consequence, the net

gain in strength of the general rule will be smaller than the

net gain of the more specific ones. After some training,

the behavior described by Allen and Brooks may appear.

In order to test this line of reasoning, the experimental

situation used by Allen and Brooks was simulated. PRAS
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was applied withc= .15, a= .05, f3= .38, tt> 1.0, andp=

1.0. To simulate the condition where subjects are given a

rule, PRAS started with eight restricted generalizations

completely covering the rule used by Allen and Brooks.

The main finding-that transfer stimuli similar to a training

stimulus from the opposite category were more often cat

egorized erroneously than were the other stimuli-was

confirmed. In addition, just as in the Allen and Brooks

findings, more errors were committed to these stimuli

when PRAS started without a rule representation than when

it started with a representation of the rule. Even though

this is not the final test, the finding confirms the contention

that the PRAS model has the potential to explain rule spe

cialization behavior.

Another issue concerns the problem that typicality rat

ings and category membership decisions each reveal cer

tain characteristics ofcategory representation. Although it

has sometimes been argued that both measures are de

rived from the internal structure of the categories, there is

some evidence that these measures are related to different

sources of information (Vandierendonck, 1991). The so

lution to this problem is not straightforward, as can be

seen in the work ofNosofsky (1991), who tried to predict

typicalities directly from the GCM. The data presented in

the present study also show differences between the typi

cality measure and the category assignment measure. For

example, categorization proportions of critical Pattern 5

were not different from the proportions of Patterns 3 and

4, whereas the typicality ofPattern 5 differed significantly

from the typicality ofPatterns 3 and 4. Inthe present study,

no effort was made to try to fit the predictions ofthe PRAS

model to the typicality ratings, because this is beyond the

scope ofthe present paper; however, it is obvious that such

a model offers opportunities to explore the relationship

between the two measures of category representation.

Murphy and Medin (1985) and Lakoff (1987) have

pointed out the role that implicit cognitive theories may play

in the coherence ofconcepts and categories. Such theories

are sometimes learned by inductive processes. The PRAS

model implements one possible way to bridge the gap be

tween similarity-based representations and the (implicit)

cognitive models. Because the model is capable ofabstrac

tion, extensive experience with a complex domain may re

sult in a network of generalizations that can be character

ized as a "theory."

Similarly, cognitive theories may influence the percep

tion ofexemplars belonging to a particular domain. Inthe

process ofacquiring a new categorization, the order in which

hypotheses are generated and tested may be affected by

the implicit views. In the same vein, the similarity ofexem

plars may be affected more directly. It seems plausible to

assume that, in comparing stimuli, not only the stimuli as

such but also the domain knowledge about these stimuli

may enter the comparison. Ifactivated knowledge leads to

the activation ofrules relevant to the identification and the

categorization ofthe stimuli, it may be expected that these

activated rules affect stimulus comparison. In fact, an un

published experiment (Vandierendonck, 1993) found sys-
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tematic differences in similarity when subjects were given

verbally stated functional knowledge about the stimuli as

compared to subjects who were given no knowledge at all.

Thus far, it has been difficult to describe the mecha

nisms that are needed to relate contextual and functional

knowledge to the level of similarity-based categorization.

In both directions, from exemplars to theory and from the

ory to categorization learning, the problem is rather com

plicated, but the PRAS model offers a medium to explore

the relationship between exemplars and theory.
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A second scheme makes changes in the opposite direction:

(A3)

(A2)

VI >*'
v. =*,

v. < *,.

where .>4(+) refers to the set ofactivated rules that support the cor

rect categorization, and .>4(-) indicates the set of activated rules

that support another action. Everything else held constant, this

difference increases as the attentional weights approach their op

timal values. The reason is that the gij,+ values [i.e., the gij val
ues corresponding to the set .>4(+)] become larger as the atten

tional weights approach their optimum. Similarly, gi),- values
decrease as the attentional weights approach the optimum.

As defined in Equation 4, the A ij values used in Equation 10

are obtained by multiplying the gij values by the strength of

rule}. All these rule strengths are positive values, so that, on av

erage, the difference between the gij,+ and the gij,- values is am
plified. As a consequence, t.A is maximal when the attentional

weights are optimal.

The procedure adopted for optimizing the attentional weights

calculates t.A for three different possible sets of weights: the

current weights, the currently highest weights incremented, and

the currently highest weights decremented. The largestofthe three

t.A values is based on weights that are closest to the optimum.

Changed weights were obtained by changing the dimensional

strengths. Let V = I,7vi' where m refers to the number of stimu

lus dimensions, then the average weight is ,r. In a first scheme,

the changes are made such that if vI is larger than the average

weight, it is incremented by I; if it is equal to the average, VI re

mains unchanged; and if vI is below average, it is decreased with

the constraint that VI cannot drop below 1:

l
max(v, - I, I) <=> v. > *'

vl,2 = vI <=> vI =*'
v. + I <=> v. < *,.

On the basis of these changes, new tentative weights wI , and

wl,2 are calculated,and these are used to recalculate the activation

valueofthe activeproduction rules. Equation lOis applied to these

new sets ofactivations.Let t.A0 denote the activationdifferenceas

given in Equation 10with the current attentional weights, let t.A 1

denote the difference when Equation II is applied to the weights,

and let t.A 2 denote the differencewhen Equation 12is applied.The

set of vI (and consequently of wI) associated with the largest of the

three values t.A o, t.A" and t.A 2 is now taken to be the new set of
strengths (weights). If there is a tie, the weights are not changed.

Explorative simulations have shown the usefulness of the

scheme: it avoids oscillation, it finds the direction ofchange fairly
soon in learning, and the change is stopped as soon as an opti

mal distribution of attention is attained.

It may be remarked that the mechanism proposed here is com

putationally too complex to have some psychological plausibility.

At the present point, an attention weighting mechanism is in

cluded in the model, because it is assumed that, during categoriza

tion, attention gradually changes. The computational method used

here is not introduced as a model ofhow subjects come to change

attention during categorization learning.
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APPENDIX

NOTES

I. Even if thecontext is restricted to, say, darkcolors, the sameprob
lemoccurs (e.g., navy blue). Moreover, including suchcontext informa
tionat this level isequivalent to putting knowledge intothemodel thatit
somehow should acquire.

2. Therectangular format for representing a generalization is not the
only onepossible. Infact,anybounded region may be considered.

3. A thirdconstraint mightbethecapacity of the short-term store. In
thepresent version ofthemodel, thecapacity of thisstoreisunrestricted.
This is in line with the GCM and its extension ALEX (Nosofsky &

Kruschke, 1992), where memory forexemplars isessential. Ifnecessary,
future versions of the PRAS model couldinclude a capacity limitation
on thenumber of active productions.

The present version ofthe PRAS model has attentional weights

wI that are associated with the dimensions and that depend on a

corresponding dimensional strength VI' such that WI = vllI,7v i .

The procedure used to change the attentional weights is based on

the difference

t.A = I Ai) - I Aij,
jEsJ(+l je:Ji.(-)

(AI) (Manuscript received June20, 1994;
revision accepted forpublication March 20, 1995.)


