
"Permission to make digital/hard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and /or a fee."

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

Abstract
A methodology for architecture exploration of look-up table
based decoders is presented. For the degree of parallel pro-
cessing a trade-off can be made by exploring system level
and register transfer level models. Executable specifications
(pure functional software models, VHDL behavior models)
are used to analyze the performance of different architec-
tures. Hardware cost (area) and feasibility (timing) are
determined by synthesis of RTL models. These models are
generated directly out of the specification to avoid errors
due to manual transformations and to reduce overall design
time. Generator-based reuse modeling and hardware cost
estimation is demonstrated using a decoder for MPEG vari-
able length codes (VLC).

1 Introduction
Decoders are often specified by look-up tables, in which the
codes can have fixed or variable length. For image compres-
sion, entropy coding with variable length codes (VLC) is
used to reduce redundancy and thereby data transmission
rates. Many video standards (e.g. MPEG-1/2, JPEG) use
this coding method. Depending on the coded bit rate, rang-
ing from some Kb/s for video phone to some Mb/s for
HDTV, the decoder architecture has to be adapted.

A parallel/serial trade-off for the processing bit width of
the decoder has to be made for each application. For the
design space exploration, information about the required
performance as well as information about the hardware
costs that arise to achieve this performance is needed.

If a component is laid out for peak data rates, no data
buffers are needed, because the component can process the
data on demand. On the other hand, the component can be
designed for average data rates only and therefore data buff-
ers are needed to deal with peaks.

Executable specifications in form of C software models,
which are often publicly available in the field of multime-
dia, are used to calculate data distributions and average data
rates. Then, buffer sizes can be adjusted by simulation of
VHDL behavioral models. Finally, for the architecture
selection hardware costs have to be estimated.

The approach proposed in this paper is based on an
external model generator for look-up tables and RTL syn-
thesis to determine hardware costs for the whole parameter
range using an industrial example, a decoder for VLCs.

1.1 Related Work
A survey of VLC architectures can be found in [Fogg94].
Assessment criteria like bit rate vs. symbolic rate and pre-/
post-buffering are discussed for serial and parallel architec-
tures. But to apply these assessment criteria, information
from the system level as well as from RTL is needed.

Petri Nets [AbCo90, MüKr93] and stochastic system
models [HuTo90] are often used for early system level
exploration. Other approaches capture the design in specifi-
cation languages [TAB95], that are not part of the design
process at all. The method proposed here uses publicly
available C software models and VHDL behavioral models,
that are part of the regular design process to reduce the
modelling effort for performance exploration.

At RT level, generator-based methods for design space
exploration of regular structured logic (e.g. multipliers) are
proposed in [JhDu92, GWG93]. Other approaches are based
on counting literals, for example [BRSW87]. The approach
presented in this paper is novel, because the RTL models for
irregular structured LUTs are generated directly out of the
specification to avoid errors due to manual transformations
and to reduce overall design time. In addition to that, the
tables are optimized in the generator to provide more accu-
rate estimations and to reduce synthesis run time.

1.2 Paper Structure
First, an overview of the architecture exploration process is
given. The system level exploration is described using data
distributions, generated by pure functional software models
to stimulate the behavioral simulation. At RT level the limi-
tations of self-generating models are discussed. Then, the
usage of an external model generator is presented. Finally,
the results of the exploration process are summarized.

2 Overview

2.1 Decoding of Variable Length Codes
The MPEG video standard uses variable length codes, in
which shorter codewords are assigned to more frequent
symbols (see Figure 6). The boundaries of the codewords
can not be determined explicitly by the decoder. After a
codeword and its length are decoded, the bitstream has to be
shifted, before the decoder can start processing the next
codeword (see Figure 5).

Variable length codes can be decoded either serial (one
bit per clock cycle, see Figure 7) or parallel (multiple bits
per clocks cycle, see Figure 8). If the processing width of
the decoder is smaller than the maximum code length a
finite state machine is needed. Otherwise the decoder con-
sists only of combinatorial logic. The hardware cost (area)
of the whole decoder increases with the degree of parallel
processing.

A Parallel/Serial Trade-Off Methodology for
Look-Up Table Based Decoders

Claus Schneider

Siemens AG, Corporate Technology, ZT ME 5
D-81730 Munich

E-Mail: Claus.Schneider@mchp.siemens.de

2.2 Parallel/Serial Trade-Off Methodology
For the parallel/serial trade-off of a variable length decoder,
top-down information from the system level as well as bot-
tom-up information from the RT level is needed. At system
level, the design space is examined with regard to data rates
and throughput for different degrees of parallelism. At RT
level, hardware cost (circuit area) and feasibility (propaga-
tion delay) are calculated to support the architecture selec-
tion (see Figure 1).

Architectural explorations are performed using four dif-
ferent kinds of models:

• Execution of C software

• Simulation of VHDL at behavior level

• Analysis of VLC tables in text form

• Synthesis of VHDL at register transfer level
For system level exploration, executable specifications

are used to get the performance information. A pure func-
tional software model of the whole MPEG video decoder,
which is publicly available [MSSG] in addition to the
printed specification [MPEG], is extended to generate data
statistics. Average data rates and data distributions for
selected interfaces are calculated, running several MPEG
video sequences. Then, the data distribution is used to stim-
ulate the VHDL behavior model to analyze the synchroniza-
tion and to perform a buffer-size/operation-schedule trade-
off.

At RT level, synthesizable VHDL code is generated to
determine the circuit area and propagation delay. First, the
variable length code (VLC) tables are extracted from an
electronic version of the MPEG specification and written as
a plain text file. After that, a generator for look-up tables
reads the text file with the VLC tables and generates the
VHDL code for all architectures (processing widths) in a

specified range. During the code generation, informations
like the number of states are collected to assist the parallel/
serial trade-off process. Using these pre-synthesis analysis
results, promising architectures can be selected for the time
consuming synthesis task. By analyzing the pre-synthesis
and post-synthesis results a close relationship between the
number of states and the area of the next-state logic, which
is independent of the state coding (binary or onehot), was
discovered. In addition to that, the area of the output logic
of the generated state machines can be estimated roughly by
the number of relevant input bits [Schn97].

3 System Level Exploration
At system level, MPEG bitstreams are analyzed and statis-
tics about data rates are generated by the C software model.

Figure 2: Distribution of VLC Lengths (MPEG-2)

0.01

0.1

1

10

100

0 5 10 15 20 25

%

VLC Length

Figure 1: Parallel/Serial Trade-off: Overview

VHDL-Code
Generator

Text VHDL

RTL
Synthesis

MPEG
Bitstreams

Data Statistics

Area/TimingInputs/States

Throughput

Behavior
Simulation

(Pre-Synthesis) (Post-Synthesis)

VHDLC

VHDL
Queue

Package

VHDL
Reuse
Library

Stat.C

Behavior
Model

Software
Model
(Only Functionality) (Only Synchronization)

Spec

International
Standard
ISO/IEC 13818-2

VLC
Tables

RTL
Model

Architecture Trade-Off Information

Therefore the original model of the MPEG decoder was
extended by statistic functions. The number of VLCs was
accumulated in the statistic module for each possible length
value and the average length of all VLCs was calculated as
well.

The statistic in Figure 2, generated by playing several
MPEG-2 video sequences, shows the distribution of the
code length of variable length codes. More than 50% of all
VLCs have a length of only one bit and the average VLC
length is about 3 bits. Nevertheless, peak data rates of 24
bits per coded symbol are possible as well.

For a decoder, that is laid out for average data rates, a
processing width of 3 bits could be chosen. But for this low
performance architecture, large data buffers may be needed
around the decoder to guarantee average data rates. On the
other hand a fully parallel (24 bit) architecture can decode
the VLCs at a constant symbol output rate and therefore
only needs small or even no data buffers at all.

For the buffer-size/operation-performance trade-off the
distribution of the VLC lengths can be used to stimulate the
behavior level simulation model as shown in Figure 3.

Figure 3: Performance Model

In [ScEc96] a methodology for behavioral modeling, which
consists of separation of synchronization and functionality,
was presented. The benefit of this behavioral modeling
approach is, that controller and datapath can be modeled
and verified independently. For performance modeling only
the controller has to be modelled and the datapath can be
omitted. In Figure 3 only a part of the performance model is
shown. The variable length decoder operation (VLD) is
decoupled by data buffers, which are modelled by queue
controllers (QC). On one side the source data buffer is filled
with a constant data rate, at the other side the output buffer
is emptied by the inverse quantization operation (IQ). Data
dependent processing times of the VLD and IQ operations
are modelled by distribution functions, calculated by the
software model.

More details about the architecture trade-off at system
level can be found in [Schn97]. In the following section a
generator-based approach for reuse modeling and hardware
cost estimation at RT level is presented.

4 RT level Exploration
At RT level circuit area and timing information is calculated
to support the architecture selection process.

On one hand for regular hardware structures, like adders
and multipliers, this information can be estimated quickly
using a formula or a table.

On the other hand for irregular hardware structures,
rough estimations can be made by analyzing the VHDL
code pre-synthesis and by counting, for example, the num-
ber of states and inputs. Better cost figures (e.g. area, tim-
ing) can be obtained by performing a more or less precise
(time consuming) synthesis process.

IQOS

DISTR

QCQC VLD

DISTRCONST
[MB/s]

Not only hardware cost estimation is different for regu-
lar and irregular hardware structures, but different modeling
techniques are required as well. In the next sections, the
limitations of self-generating models due to the synthesis
subset will be discussed and an external generator-based
approach will be presented to work around these limitations.

4.1 Limitations of Self-Generating Models
Self-generating VHDL models for synthesis are well suited
for regular hardware structures. In most of the cases only
the bit width of a component is controlled by a generic
parameter. Inside the model, the hardware structure can be
built using generate statements, for example [PrMR96].

For more complex and irregular hardware structures,
VHDL constructs like text I/O, access types and record con-
stants are needed for efficient modeling. Unfortunately
these language features are not supported by current synthe-
sis tools. Text I/O, for example, should not be synthesized,
but it is very useful to read the whole definition of a look-up
table for a decoder component from a parameter file. During
the model generation of irregular hardware structures,
access types are very useful as well to dynamically build
intermediate data structures. Finally, text I/O is very impor-
tant for writing reports and revision control information.

Despite these limitations, a self-generating VHDL
model was implemented first. The look-up table was defined
as an array of record inside a package. Because record con-
stants are not supported by synthesis, the record elements of
each table entry (te, see Figure 4) are passed to a function
that returns a record.

constant vlc_max_len_c : integer := 32;
subtype vlc_vector_t is

std_logic_vector(0 to vlc_max_len_c-1);

type vlc_rec_t is record
vlc: vlc_vector_t;
length: integer;
symbol: integer;
.....

end record ;

type vlc_tab_t is
array (natural range <>) of vlc_rec_t;

function te (vlc: string; symbol: integer)
return vlc_rec_t is

variable vr: vlc_rec_t;
begin

get_vlc(vlc, vr.vlc, vr.length);
vr.symbol := symbol;
return vr;

end te;

constant vlc_tab_10_c: vlc_lut_t:= (
.....
te("0000_0011_001", -16),
te("0000_0011_011", -15),
te("0000_0011_101", -14),
.....
te("0000_0011_000", 16)
);

Figure 4: Self-Generating Model

For the transformation of the pure combinational look-
up table to a finite state machine with a given processing
width several nested loops are needed to calculate a con-
stant for the output logic and for the next-state logic. During
the elaboration the synthesis tools interpret these calcula-
tions as hardware and perform loop unrolling. This leads to
long elaboration run times and high memory requirements.

4.2 External Model Generator
Because of the long elaboration run times, which are not
acceptable for architecture explorations, a mixture of self-
generating and externally generated models was chosen for
the final implementation. Regular structures like barrel
shifters and FIFOs are used from a VHDL reuse library.
Irregular structures like look-up tables are generated exter-
nally using the scripting language Perl [WaSc92, PERL,
HuHe96]. Perl supports regular expression matching,
dynamic lists and associative memories, which are useful to
read parameters, generate the model and to write reports.
Another advantage is, that code can be generated using a
small VHDL subset without synthesis tool dependent com-
piler directives or non-portable modeling tricks.

4.2.1 Basic Decoder Architecture
The decoder consists of a barrel shifter (reuse component),
that shifts the VLC by the length, detected by the length
look-up table (LUT). If the processing width is smaller than
the maximum code width, the table look-up can’t be per-
formed in one step and therefore a state register and next-
state logic is needed as well (see Figure 5). The critical tim-
ing path (thick arrows) goes through the length LUT. There-
fore the length LUT is separated from the symbol LUT and
the next-state logic.

Figure 5: Basic Decoder Architecture

4.2.2 Generator Structure
The model generation process is demonstrated for the
length LUT and next-state logic of the decoder. The MPEG
standard consists of several tables of variable length codes.
One of these tables (see Figure 6) was chosen to show the
transformations, optimizations and the code generation
done by the generator.

The generator performs the following tasks:
• Read table and initialize internal data structure.

• Split VLC table according to given processing width.

• Extract length-, symbol LUT and next-state logic.

• Generate code (VHDL package) of non-optimized
look-up tables for different state encodings.

• Logic minimization and mapping of don’t care
values of length LUT.

• Code generation of optimized look-up tables.

Barrel Shifter

VLC State

Length
LUT

Next
State

VLC

SYM

Symbol
LUT

The generator is parameterized by the name of the VLC
table definition file and the processing width. After the table
is read, it is transformed to the given processing width.

One extreme is serial processing, where only one bit is
decoded in each step (clock cycle). In Figure 7 the decoding
process is shown for the VLC table of Figure 6. The number
of decoding steps depends strongly on the length of the
VLC. The symbol ‘0’ can be decoded in one step and the
symbol ‘16’ in 11 steps, for example.

Figure 7: Serial Processing (1 Bit)

Figure 8: Parallel Processing (8 Bit)

Figure 6: Original Table from MPEG Specification

VLC SYM

0000 0011 001 -16

0000 0011 011 -15

0000 0011 101 -14

0000 0011 111 -13

0000 0100 001 -12

0000 0100 011 -11

0000 0100 11 -10

0000 0101 01 -9

0000 0101 11 -8

0000 0111 -7

0000 1001 -6

0000 1011 -5

0000 111 -4

0001 1 -3

0011 -2

011 -1

1 0

continued

010 1

0010 2

0001 0 3

0000 110 4

0000 1010 5

0000 1000 6

0000 0110 7

0000 0101 10 8

0000 0101 00 9

0000 0100 10 10

0000 0100 010 11

0000 0100 000 12

0000 0011 110 13

0000 0011 100 14

0000 0011 010 15

0000 0011 000 16

0

0 1

0 1

0 1

-1

0 1

1

0 1

-2

0 1

2

-3

0 1

3

-16

0 1

16

0

011 1
00000011

001
-11

010

-1616

111000

-13

..............

..............

1

0
State

Leaf

The one bit serial architecture is characterized by a con-
stant input data rate. A fully parallel architecture with a pro-
cessing with of the maximum code length, on the other hand
is characterized by a constant output data rate. An architec-
ture variant between these extremes, with a processing
width of 8 bits is shown in Figure 8.

The most important task of the generator for look-up
tables is to split the table according to the processing width
given by a parameter. A state is assigned to each branch
(e.g. “00000011”) in the code tree. For different VLC tables,
equal states are assigned to equal input vectors to reduce the
overall number of states. If a leaf of the code tree is reached,
a symbol is decoded and the state can be reset to zero. The
split table for an 8 bit processing width is shown in Figure 9.

The symbol table, which includes the error handling for
invalid codes, is generated separately. Due to this separa-
tion, logic optimization and don’t care mapping the length
and next-state tables can be minimized (see Figure 10).

Figure 10: Length and Next-State Table
after Optimization

Figure 9: Table after Splitting (Width = 8 Bit)

S VLC N L Y

0 00000011 1 8

1 001 0 3 -16

1 011 0 3 -15

1 101 0 3 -14

1 111 0 3 -13

0 00000100 2 8

2 001 0 3 -12

2 011 0 3 -11

2 11 0 2 -10

0 00000101 3 8

3 01 0 2 -9

3 11 0 2 -8

0 00000111 0 8 -7

0 00001001 0 8 -6

0 00001011 0 8 -5

0 0000111 0 7 -4

0 00011 0 5 -3

0 0011 0 4 -2

0 011 0 3 -1

0 1 0 1 0

S = State
N = Next State
L = Length
Y = Symbol

continued

0 010 0 3 1

0 0010 0 4 2

0 00010 0 5 3

0 0000110 0 7 4

0 00001010 0 8 5

0 00001000 0 8 6

0 00000110 0 8 7

3 10 0 2 8

3 00 0 2 9

2 10 0 2 10

2 010 0 3 11

2 000 0 3 12

1 110 0 3 13

1 100 0 3 14

1 010 0 3 15

1 000 0 3 16

State VLC Length

0 00000 8

0 000010 8

0 000011 7

0 0001 5

0 001 4

0 01 3

0 1 1

1 - 3

2 0 3

2 1 2

3 - 2

State VLC Next

0 00000011 1

0 00000100 2

0 00000101 3

Finally, the VHDL code for the non-optimized and opti-
mized look-up tables is generated for different state encod-
ings. For each architecture a separate package is written.
The VHDL model for the whole variable length decoder,
consisting of components like barrel shifters, registers and
FIFOs with variable bit widths, is parameterized by the gen-
erated packages. The VHDL code, generated for the length
table from Figure 10 is shown in Figure 11.

function vlc_len_lut_f(
table : table_int_t;

mpeg_2 : std_ulogic;
dc : std_ulogic;

state : state_vec_t;
vlc : vlc_vec_t)

return length_vec_t is
variable len : length_vec_t;

begin
len:=(others => '-');
-- NOTE: vlc_width is a power of 2
-- -> len is binary coded as vlc_length - 1
case state is

when s_0 =>
if vlc(0 to 4)="00000" then len:="111";

elsif vlc(0 to 5)="000010" then len:="111";
elsif vlc(0 to 5)="000011" then len:="110";
elsif vlc(0 to 3)="0001" then len:="100";
elsif vlc(0 to 2)="001" then len:="011";
elsif vlc(0 to 1)="01" then len:="010";
elsif vlc(0)='1' then len:="000";
end if ;
when s_1 =>

len:="010";
when s_2 =>

if vlc(0)='0' then len:="010";
elsif vlc(0)='1' then len:="001";
end if ;
when s_3 =>

len:="001";
when others => null ;

end case ;
return len;
end vlc_len_lut_f;

Figure 11: VHDL Code of Length LUT

4.3 Results
The whole decoder for variable length codes was synthe-
sized for several processing widths, different state encod-
ings (binary, onehot) and for the optimized (opt) and non-
optimized (nop) look-up tables.

Figure 12: Area of VLC Decoder

Architecture: Processing Width [bit]

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 5 10 15 20 25 30

A
re

a
[N

A
N

D
2]

NOP_BINARY
NOP_ONEHOT

OPT_BINARY
OPT_ONEHOT

In Figure 12 the area (2 input NAND equivalent gate count),
which is dominated by the increasing bit width of the regu-
lar structures like registers, barrel shifters and FIFOs, is
shown.

The timing (propagation delay) of the critical path is
influenced by the delay of the length LUT, as shown in Fig-
ure 13.

Figure 13: Timing of VLC Decoder

After collecting performance and hardware cost infor-
mation, the parallel/serial trade-off can be performed.
Depending on the required performance (bit/symbol rate) an
architecture with minimum area (decoder and buffers) can
be selected, that meets the timing constraints given by the
clock frequency.

5 Conclusion and Outlook
A methodology for the parallel/serial trade-off of look-up
table based decoders was presented. The architecture explo-
ration at system level is performed with executable specifi-
cations. Based on data distribution functions, generated by
pure functional software models, the synchronization is ana-
lyzed using behavior models. Especially in multimedia,
where executable specifications are often publicly available
as C software models, the proposed approach allows for
early system level architecture exploration with low addi-
tional modeling effort.

At RT level, area and timing information is obtained by
synthesis of parameterizable models. For regular hardware
structures like barrel shifters, self-generating models are
reused from a VHDL library. Because of the restricted syn-
thesis subset, an external model generator is used for archi-
tecture trade-off of the irregular structured look-up tables.

During the elaboration, all VHDL constructs should be
supported by the synthesis tools to improve modeling for
reuse and architecture trade-off. Another problem is loop
unrolling during the elaboration, which causes long synthe-
sis run times and needs a huge amount of memory.

The self-generating model of a look-up table with less
than 1K gates needed more than 4 hours (Sparc20, 1GB
swap) for synthesis. But the externally generated and opti-
mized model was synthesized in about 30 minutes only.

In addition to the reduced synthesis run time, due to the
pre-optimized VHDL code, another advantage of the gener-
ator-based approach is, that the synthesis models can be
generated directly out of the specification to avoid errors
due to manual transformations.

12

13

14

15

16

17

Architecture: Processing Width [bit]
0 5 10 15 20 25 30

D
el

ay
 [N

S
]

NOP_BINARY
NOP_ONEHOT

OPT_BINARY
OPT_ONEHOT

References
[AbCo90] Aboulhamid, M.; Cordeau, M.:System Level

Modeling in VHDL using Timed Petri Nets. Pro-
ceedings of the EURO-VHDL’90.

[BRSW87] Brayton, R.K.; Rudell, R.; Sangiovanni-Vincen-
telli A.; Wang, A.R.: MIS: A Multiple-Level
Logic Optimization System. IEEE Transactions
on CAD, Nov. 1987.

[Fogg94] Fogg, C.: Survey of software and hardware
VLC architectures. Proceedings of the SPIE -
The International Society for Optical Engineer-
ing, vol.2186, p.29-37, 1994.

[GWG93] Gasteier, M.; Wehn, N.; Glesner, M.:Synthesis
of Complex VHDL operators. Proceedings of
the EURO-VHDL’93.

[HuHe96] Hutchins, R.C.; Hemmady S.:How to Write
Awk and Perl Scripts to Enable your EDA Tools
to Work Together. Proceedings of the 33rd
DAC, 1996.

[HuTo90] Hubbard, P.; Torres, J.:Using VHDL for High-
Level and stochastic System Modeling. Pro-
ceedings of the EURO-VHDL’90.

[JhDu92] Jha, P.K.; Dutt, N.D.:Rapid Estimation for
Parameterized Components in High-Level Syn-
thesis. Sixth International Workshop on High
Level Synthesis, 1992.

[MPEG] Information Technology - Generic Coding of
Moving Pictures and Associated Audio Infor-
mation: Video. Recommendation ITU-T H.262
(MPEG 2), International Standard ISO/IEC
13818-2: 1995.

[MSSG] MPEG Software Simulation Group:MPEG-2
Encoder/Decoder.
http://www.mpeg.org/MSSG/.

[MüKr93] Müller, J.; Krämer, H.:Analysis of Multi-Pro-
cess VHDL Specifications with a Petri net
Model. Proceedings of the EURO-VHDL’93.

[PERL] The Perl Language Home Page.
http://www.perl.com/perl/index.html

[PrMR96] Preis,V.; März-Rössel,S.:Modeling highly flexi-
ble and self-generating parameterizable com-
ponents in VHDL.Current Issues in Electronic
Modeling #5, Kluwer Academic Publishers,
1996.

[ScEc96] Schneider, C.; Ecker, W.:Stepwise Refinement
of Behavioral VHDL Specifications by Separa-
tion of Synchronization and Functionality. Pro-
ceedings of the EURO-VHDL’96.

[Schn97] Schneider, C.:A Methodology for Hardware
Architecture Trade-off at Different Levels of
Abstraction. Proceedings of the ED&TC, 1997.

[TAB95] Tanir, O; Agarwal, V.K.; Bhatt, P.C.P.:A Speci-
fication-Driven Architectural Design Environ-
ment. Computer Vol. 28, No. 6, 1995.

[WaSc92] Wall, R., Schwartz R.L.:Programming PERL.
O’Reilly & Associates, 1992.

