
A parallel tabu search algorithm for solving
the container loading problem

A. Bortfeldt *, H. Gehring, D. Mack

FernUniversit€aat, Fachbereich Wirtschaftswissenschaft, Postfach 940, 58084 Hagen, Germany

Received 18 July 2002; accepted 15 October 2002

Abstract

This paper presents a parallel tabu search algorithm for the container loading problem with

a single container to be loaded. The emphasis is on the case of a weakly heterogeneous load.

The distributed-parallel approach is based on the concept of multi-search threads according to

Toulouse et al. [Issues in designing parallel and distributed search algorithms for discrete op-

timization problems, Publication CRT-96-36, Centre de recherche sur les transports, Univer-

sit�eede Montr�eeal, Canada, 1996] i.e., several search paths are investigated concurrently. The

parallel searches are carried out by differently configured instances of a tabu search algorithm,

which cooperate by the exchange of (best) solutions at the end of defined search phases. The

parallel search processes are executed on a corresponding number of LAN workstations. The

efficiency of the parallel tabu search algorithm is demonstrated by an extensive comparative

test including well-known reference problems and loading procedures from other authors.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Container loading problem; Tabu search; Distributed-parallel search

1. Introduction

In the area of production and distribution of goods the efficient use of transpor-

tation devices such as containers and palettes is of high economic relevance. A high

utilization of the applied transportation capacities causes considerable cost savings.
Further effects are the reduction of the goods traffic and the protection of natural

*Corresponding author.

E-mail address: andreas.bortfeldt@fernuni-hagen.de (A. Bortfeldt).

0167-8191/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0167-8191(03)00047-4

www.elsevier.com/locate/parco

Parallel Computing 29 (2003) 641–662

mail to: andreas.bortfeldt@fernuni-hagen.de


resources. Computer supported packing methods can considerably contribute to the

achievement of these goals.

The modelling of practical problems concerning the optimal utilization of trans-

portation devices leads to different kinds of packing problems. An overview of the

different types of packing problems and related cutting problems is given by Dyck-
hoff and Finke [7]. In this contribution the problem of optimally loading a single

container, also known as container loading problem, is considered. It can be charac-

terized as follows.

Let a rectangular container and a set of rectangular packing pieces be given. The

latter contain the shipped goods and are referred to as boxes. In general, the sum of

the volumes of the boxes exceeds the volume of the container. The goal is to deter-

mine a feasible arrangement of a subset of boxes which maximizes the stowed box

volume and meets the given loading constraints.
An arrangement of boxes in the container is called feasible if the following con-

ditions are respected:

• each box is placed completely within the container;

• each box does not overlap with another box;

• each box is arranged parallel to the side walls of the container.

In practice the loading of containers has to consider a great number of different
constraints (cf. [1]). Here, only the following two constraints are included in the

problem formulation.

1.1. (C1) Orientation constraint

If it is required by the storage of the goods within a box, one or two side dimen-

sions of the box may not be used as the height.

1.2. (C2) Stability constraint

In the interest of stability of the load, both horizontal dimensions of each box are

to be supported according to a predefined percentage. In any case the centre of gra-

vity of each box must be supported in order to avoid boxes tipping over. It is as-

sumed that the centre of gravity and the geometric centre of each box coincide.

Box types are defined as follows. Two boxes are the same type if they coincide in

all three side dimensions. On the basis of this concept of box types, the following
three categories of box sets can be distinguished. A homogeneous box set is given

if all boxes are of the same type. A box set is called weakly heterogeneous if there

exist a few box types and many items per type. Finally, a strongly heterogeneous

box set is characterized by a greater number of box types and only few items per

type. Here, a weakly heterogeneous set of boxes is assumed.

In the recent years, many (sequential) solution methods for the container loading

problem have been developed. It is well known that the container loading problem is

NP-hard (cf. [18]). Hence, the methods developed are heuristic approaches. Problem

642 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



specific heuristics are proposed by Loh and Nee [13], Ngoi et al. [15], Bischoff et al.

[2] and Bischoff and Ratcliff [1]. Intelligent graph search algorithms go back, e.g., to

Morabito and Arenales [14] and Pisinger [16], while Gehring and Bortfeldt [8] and

Bortfeldt and Gehring [5] present genetic algorithms (GAs). Tabu search algorithms

(TSAs) are introduced by Sixt [19] and Bortfeldt and Gehring [4].
In the recent years, parallel algorithms have been successfully applied to different

combinatorial optimization problems, for example to the vehicle routing problem

with time windows (cf. e.g., [11,17]). Depending on the chosen parallelization ap-

proach (see Section 4), the concept of parallelization has various advantages. These

are, e.g., the reduction of the computing time and the enhancement of the solution

quality for a given computing time. Parallel approaches should be considered espe-

cially in situations where particularly hard combinatorial optimization problems or

realistically sized problem instances are to be handled. The container loading prob-
lem considered here is an extremely hard combinatorial problem with a particularly

large solution space (cf. e.g., [3]). Therefore, the application of a parallelization con-

cept is undoubtedly obvious.

Nevertheless, there exist only a few parallel approaches for three-dimensional

packing problems. A parallel TSA is proposed by Gehring and Bortfeldt [9] and a

parallel GA by Gehring and Bortfeldt [10].

In this paper a parallel TSA for the container loading problem as characterized

above is described. The algorithm is the result of a further development of the ap-
proach from Gehring and Bortfeldt [9]. The algorithm is hierarchically structured

into three modules:

• The lowest module consists of a simple heuristic, called basic heuristic, which

serves the complete loading of a container.

• The middle module contains a sequential TSA. For each solution generated by the

TSA the basic heuristic is applied once. For the purpose of diversification, the

search process is subdivided into several phases each carried out by the same
but differently configured TSA.

• Within the uppermost module several differently configured instances of the TSA

evolve independent search paths. The instances cooperate through the exchange

of best solutions. The exchange always takes place at the end of defined search

phases and exerts an influence on the further search of the individual instances.

The rest of the paper is structured as follows. In Section 2, the basic heuristic is

described and in Section 3 the sequential TSA is presented. The subject of Section
4 is the parallelization of the TSA. The results of numerical tests are reported and

evaluated in Section 5. Finally, in Section 6 the contribution is summarized and

an outlook on further research is given.

2. The basic heuristic

By means of the basic heuristic a given container is loaded in several iterations.
Within an iteration a so-called packing space is filled with one or more boxes.

A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662 643



A packing space is an empty rectangular space within the container with defined side

dimensions. In the first iteration the complete interior of the container is used as the

packing space. For the loading of a packing space only box arrangements with a pre-

defined simple structure are considered. These are called local arrangements. The

feasible local arrangements for a packing space are generated and evaluated by
means of certain criteria. The unused part of the packing space is completely subdi-

vided into several residual packing spaces. These are filled later. A rough description

of the algorithm of the basic heuristic is given in Fig. 1.

The overall algorithm presented in Fig. 1 requires some comments.

• In order to enhance the chances of loading small packing spaces, the packing

space with the smallest volume is always processed first.

• The container is embedded in a three-dimensional coordinates system. The bot-
tom left-hand rear corner of a packing space is used as the reference corner.

The coordinates of the reference corner are stored together with the dimensions

of the packing space. The position of a box results from the coordinates of the

reference corner of the respective packing space and its placement within the res-

pective local arrangement (see below).

• In this section, the basic heuristic is presented as a greedy heuristic. In step (5) the

best evaluated first local arrangement of ArrList is selected. In Section 3 the basic

heuristic is extended in such a way that the best arrangement is not necessarily
used for a packing space with packing space index ipr. Only with this extension

can the basic heuristic be used for the generation of different solutions to a prob-

(1) Initialize: 
the set of residual boxes BRes := set of all boxes; 
the packing space list PrList := {Container}; 
the packing space index ipr := 0; 
the stowing list StList := { }. 

(2) Determine the current packing space pcurr as the packing space from PrList with minimum 
volume and delete pcurr from PrList.

(3) For packing space pcurr, initialize the arrangement list as empty list ArrList := { }. Generate 
and evaluate all local arrangements for pcurr. Insert the local arrangements in descending order 
with respect to the evaluation into the arrangement list ArrList.

(4) If ArrList is empty, go to step (8). 

(5) Update the packing space index ipr := ipr + 1. Insert the pair (pcurr, ArrList (1)) as ipr-th 
element into the stowing list StList.

(6) Insert the residual packing spaces for the packing space pcurr and the local arrangement 
ArrList(1) into the packing space list PrList.

(7) Update the set of residual boxes BRes.

(8) If the packing space list PrList is not empty, then go to step (2). 

(9) Stop. 

Fig. 1. Overall algorithm for the basic heuristic.

644 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



lem instance. It should be mentioned that an index ipr is only assigned to fillable

packing spaces in which at least one box can be placed.

• At the same time as a local arrangement is generated and evaluated (step 2), the

residual packing spaces that would occur if this local arrangement was used are

generated. In step (6) these residual packing spaces are possibly inserted into
the packing space list PrList.

From the last comment it can be concluded that a more detailed description of the

basic heuristic requires merely a refinement of step (3), which is subsequently des-

cribed.

2.1. Generation of local arrangements

The structure of local arrangements for a packing space is defined as follows.

A local arrangement consists of one or two so-called blocks and is therefore re-

ferred to as a 1- or 2-arrangement (see Fig. 2). A block is formed from boxes of

the same type. Furthermore, all boxes of a block are arranged in an identical spatial

orientation variant. In each of the three dimensions (x-, y- and z-direction) a block

consists of one or more boxes.

The only block of a 1-arrangement is always placed in the reference corner of the

packing space. From the two blocks of a 2-arrangement, one is arranged in the
reference corner. The second block can alternatively be placed as a neighbour in

x-direction (arrangement type ‘‘in front of’’), as a neighbour in y-direction (arrange-

ment type ‘‘beside’’) or as a neighbour in z-direction (arrangement type ‘‘above’’). In

the case of a placement according to arrangement type ‘‘in front of’’, the block with

the larger y-dimension is positioned in the reference corner, while for the arrange-

ment type ‘‘beside’’ the block with the larger x-dimension is positioned in the refe-

rence corner. The arrangement type ‘‘above’’ is only used if both horizontal

dimensions of a block are not smaller than the corresponding dimensions of the
other block. The block with the larger horizontal dimensions is positioned in the refe-

rence corner and the other above. Fig. 2 illustrates a 1-arrangement and two 2-

arrangements of the arrangement types ‘‘in front of’’ and ‘‘beside’’.

arrangement
block single 

box

a) 1-arrangement

packing
space

x

y y

x

y

x
b) 2-arrangement,

type "beside"
c) 2-arrangement,

 type "in front of "

Fig. 2. 1-Arrangement and 2-arrangements within a packing space (overhead view).

A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662 645



For the blocks of an arrangement, the box numbers in all three dimensions are

first determined in such a way that the concerned dimensions of the packing space

are utilized as fully as possible. If the number of boxes of a given type required

for a block exceeds the number of still available items of this type, then the numbers

of boxes are reduced appropriately.
With the selection of a box type and an orientation variant for its block, an 1-

arrangement is defined unambiguously. Analogously a 2-arrangement is completely

defined by the selection of two box types, two orientation variants, and an arrange-

ment type. All 1-arrangements and all 2-arrangements, which can occur if the box

types, the orientation variants and––in the case of 2-arrangements––the arrangement

type are varied, are generated. However, only those box types for which at least one

item is still available are considered here. Furthermore, the variation of the orienta-

tion variants has to take the orientation constraint (C1) into consideration.

2.2. Generation of residual packing spaces

Immediately after the generation of a local arrangement for a packing space, the

unused part of the packing space is subdivided into residual packing spaces. In order

to enable an evaluation of a local arrangement (see below), different subdivisions

into residual packing spaces are experimentally generated.

For the complete subdivision of the unused part of a packing space, several vari-
ants always exist. Type and number of the different subdivision variants depend on

two criteria. The first concerns the type of the local arrangement within the packing

space, i.e. whether it is a 1-arrangement or a 2-arrangement and, in the case of a 2-

arrangement, which arrangement type is given. The second refers to the support of

stowed boxes, i.e. whether the stability constraint (C2) demands a complete or only a

partial support of each stowed box. In the first case, only those packing spaces that

lie completely on the container bottom or on the top of blocks are considered. If only

z

x packing space

y

rps1
(in front of block)

rps2
(beside 
block)

rps3
(above 
block)

block

rps1

rps2

rps3

Fig. 3. Subdivision variants for a packing space and a 1-arrangement without overhanging residual pack-

ing spaces (rps), resudial packing space.

646 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



a partial support is required, then (residual) packing spaces, that project over their

supporting boxes and thus cause a lateral overhang, are also to be considered.

For clarifying purposes, different 1-arrangements are illustrated in the following.

In the case of complete support, there exist only two subdivision variants which are

shown in Fig. 3.
In the case of a partial support, there exist four further subdivision variants,

which are illustrated in Fig. 4.

As regards 2-arrangements, only the numbers of subdivision variants are stated

here. For 2-arrangements of the types ‘‘in front of’’ and ‘‘beside’’, there always exist

five subdivision variants without and 26 variants with overhanging packing spaces.

For a 2-arrangement of the type ‘‘above’’, four subdivision variants without and six

variants with overhanging packing spaces are to be considered.

The subdivision variants corresponding to the type of an arrangement and the
given stability constraint are calculated and evaluated. In general, the evaluation is

based on two criteria. The first is the loss volume; it denotes the sum of the volumes

of the unfillable residual packing spaces and should be as small as possible. The sec-

ond is the maximum effective volume of all residual packing spaces, which should be

as large as possible. In the case of a packing space without overhang, the effective

volume is simply its volume. For a packing space with overhang, however, the usable

volume of the packing space is estimated on the basis of the overhanging part and

z

x packing space

y

rps1
(in front of block)

rps2
(beside 
block)

rps3
(above block)

block

rps1

rps2

rps3

rps1

rps2

rps3

rps1

rps2

rps3

Fig. 4. Additional subdivision variants for a packing space and a 1-arrangement with overhanging resi-

dual packing spaces (rps), resudial packing space.

A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662 647



used as effective volume. It should be noted that the box numbers in the horizontal

directions for the blocks of an arrangement also depend on whether a packing space

does or does not have overhang.

The evaluation is based on two alternative modes; the selection of the relevant
mode is controlled by the parameter cutEvalMode. Application and effects of a mode

depend on the given stability constraint. Further details are presented in Table 1.

For a packing space and an arrangement type, the residual packing spaces finally

result from the determined best evaluated subdivision variant.

2.3. Evaluation of local arrangements

For the evaluation of the local arrangements generated for a packing space, two
modes are available which are applied alternatively. The selection of the relevant

mode is also controlled by a parameter, named arrEvalMode.

The first mode, encoded by the parameter value 0, applies a single evaluation cri-

terion: the total volume of the boxes stowed in the packing space which should be as

large as possible.

The second mode, encoded by the parameter value 1, additionally applies two fur-

ther evaluation criteria. These are the already introduced quantities loss volume and

maximum effective volume. Both criteria refer to the residual packing spaces of a lo-
cal arrangement. Analogous to the evaluation of subdivisions, the loss volume

should be as small as possible and the maximum effective volume as large as possible.

Since the three evaluation criteria applied are weighted equally, the evaluation pro-

cedure is organized as a series of comparisons of the local arrangements for a pack-

ing space in pairs.

Finally, two additional parameters of the basic heuristic are introduced and

briefly discussed. The parameter maxArr defines the maximum length of the arrange-

ment list ArrList for a packing space. A local arrangement is only considered in the

Table 1

Evaluation modes for subdivisions of a packing space

Evaluation mode

cutEvalMode

Stability con-

straint/required

support

Comments

0 Complete 1. Criterion: loss volume

2. Criterion (tie breaker): maximum effective volume

Partial The same criteria as for complete support

1 Complete Not applicable

Partial Only subdivisions without overhanging packing spaces are

considered

Criterion: maximum effective volume

The best subdivision is used again

� Unfillable residual packing spaces on the bottom of the

original packing space are horizontally cut, and

� The upper parts are transferred to higher positioned

residual packing spaces

648 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



tabu search process if it occurs in ArrList, i.e. belongs to the maxArr best arrange-

ments. The parameter aboveArr determines whether 2-arrangements of type ‘‘above’’

are generated (parameter value 1) or not (parameter value 0). Like the different

modes for subdivisions and arrangements, the parameter aboveArr serves the diversi-

fication of the tabu search.

3. The sequential tabu search algorithm

In Fig. 5, a generic tabu search algorithm is described on a sufficiently general

level. The foundations of the search strategy tabu search are assumed to be well

known (see e.g., [12]).

In the following, the generic TSA is adapted to the given container loading prob-
lem. The adaption is carried out in three steps:

(1) Introduction of the encoding of feasible solutions to the problem.

(2) Specification of the basic components of the TSA.

(3) Configuration of the TSA.

3.1. Encoding of feasible solutions

In order to define neighbourhoods for the tabu search that can be easily mani-

pulated, an encoding of feasible solutions to the container loading problem is chosen.

Fig. 5. Generic algorithm of a tabu search for solving a maximization problem.

A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662 649



A feasible solution is encoded by means of a vector Ps, called packing sequence.

The position ipr, ipr ¼ 1; 2; . . ., of this vector corresponds to a fillable packing space

with the index ipr. The vector element at the position ipr is a data structure consisting

of two components. The first component PsðiprÞ:ia specifies the index of a local ar-

rangement of the arrangement list ArrList for the iprth packing space. The second
component PsðiprÞ:na records the length of this arrangement list.

The transformation of an encoded solution to a complete solution is carried out

by means of the basic heuristic, which, however, has to be modified for this purpose.

When the modified basic heuristic is called, a packing sequence Ps is handed over to

the basic heuristic. Instead of the best local arrangement ArrList(1), the arrangement

ArrList(ia) is now used for the iprth packing space; the index ia is determined here as

ia ¼ PsðiprÞ:ia. Let, e.g., the packing sequence contain the arrangement index 2 at

position 1 and the index 3 at position 2. Then the second arrangement of the corres-
ponding arrangement list is selected for the first fillable packing space and the third

arrangement for the second fillable packing space.

Only during the transformation can the length of the arrangement lists for the fill-

able packing spaces be determined and inserted into the packing sequence, Ps. All

packing sequences have the same, sufficiently dimensioned length maxpr. The num-

ber of fillable packing spaces and therefore the number npr, npr6maxpr, of signifi-
cant positions of Ps can only be determined during the transformation, as well.

Together with the packing sequence Ps the number npr is kept in a superordinate
data structure. An arrangement index is, however, always kept in all positions of

a packing sequence. This and further technical measures ensure that any packing

sequence can unambiguously be transformed into a feasible solution.

3.2. Specification of the basic components of the TSA

The tabu search is carried out in the space of encoded solutions. In this space two

neighbourhood structures are introduced, which can be used alternatively. For any
packing sequence Ps with npr significant positions, a large and a small neighbour-

hood are defined as follows:

(1) The large neighbourhood embraces all packing sequences Ps0, for which the fol-

lowing applies: the recorded arrangement indices differ for exactly one position

ipr0, i.e. Ps0ðipr0Þ:ia 6¼ Psðipr0Þ:ia, and for the deviating index it is required that

Ps0ðipr0Þ:ia 2 f1; . . . ; Psðipr0Þ:nag; on the other hand, the arrangement indices

must coincide for each of the remaining positions, i.e. Ps0ðiprÞ:ia ¼ PsðiprÞ:ia
for all ipr with 16 ipr6maxpr, ipr 6¼ ipr0. The change position ipr0 can be se-

lected arbitrarily within the interval 16 ipr0 6 npr.
(2) The small neighbourhood is defined analogous by to the large neighbourhood.

The only deviation concerns the change position ipr0, which is pre-set on a con-

stant value from the interval 16 ipr0 6 npr. But this fixing is always valid for one

iteration only. In subsequent iterations the change position ipr0 is cyclically va-

ried starting with ipr0 ¼ 1. Assuming that the solution achieved in the jth itera-

tion has been determined using the change position ipr0 and includes npr

650 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



significant positions. Then, if ipr0 < npr holds, the change position ipr0 þ 1 is

used in the (jþ 1)th iteration; for ipr0 ¼ npr, on the other hand, the change

position 1 is used again.

Both neighbourhood structures have in common that neighbouring packing se-
quences Ps and Ps0 prescribe––with the exception of one position or packing space,

respectively––the application of local arrangements that occupy the same place in

the respective arrangement list. Hence, neighbouring packing sequences are similar

with respect to the relative quality of their arrangements. In this sense both neighbour-

hoods can be characterized as environments in terms of quality. As a greedy heuristic,

the unmodified basic heuristic fills all packing spaces in a local-optimizing way. The

tabu search, on the contrary, aims at the determination of a solution near the global

optimum and allows local highly favourable arrangements for a few packing spaces to
be ignored. Precisely this goal is supported by the introduced neighbourhoods.

Within one iteration each neighbouring packing sequence Ps0 for a given packing

sequence Ps is twice transformed into a feasible solution by means of the modified

basic heuristic. In the case of the first transformation, only 1-arrangements are as-

signed to all packing spaces, while at the second transformation 2-arrangements

are also considered. Both (intermediate) solutions are evaluated and the solution

with the higher value of the objective function is selected as the final result of both

transformations. It should be noted that, due to the successive processing of several
packing spaces, the first transformation variant can also lead to the better solution.

The tabu list and its application are designed as follows. After each iteration the

tabu list is extended by the best solution of the iteration. The best solutions of the

iterations are stored as complete packing sequences in the tabu list. In this way cy-

cling is definitely avoided. Since the transformation effort is rather high, only a rela-

tively small number of iterations can be calculated. The effort caused by the

management of the tabu list is therefore small absolutely, as well as in comparison

with the transformation effort. The maximum length of the tabu list is given by
the number of iterations. With the approach chosen for the tabu list, aspiration cri-

teria are not necessary.

As initial solution for the tabu search, a packing sequence is used which contains

the arrangement index 1 at all positions. This means that the initial solution is de

facto determined by means of the unmodified basic heuristic.

3.3. Configuration of the TSA

The configuration of the TSA includes its parameterization, the introduction of a

diversification concept, and the definition of termination criteria.

In addition to the four parameters of the basic heuristic (cf. Section 2), three fur-

ther parameters are introduced. The parameter nIter defines the number of iterations

of the tabu search. The parameter nbhType states whether the large neighbourhood

(parameter value 0) or the small neighbourhood (parameter value 1) is applied.

The size of neighbourhoods is already affected by the parameter maxArr of the

basic heuristic; maxArr restricts the number of the local arrangements that are to

A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662 651



be considered per packing space. In addition, the parameter nbhDecrease is used for

the reduction of both neighbourhoods; nbhDecrease can take integer values from 1

onwards. For a given change position ipr0 it is assumed that from a total of

Psðipr0Þ:na possible arrangements within the packing sequence Ps, the arrangement

Psðipr0Þ:ia is the designated item. Then, only those alternative local arrangements
are allowed for the change position ipr0, the indices ia0 of which meet the condition

jia0 � Psðipr0Þ:iaj6 Psðipr0Þ:na=nbhDecrease:
For nbhDecrease ¼ 1, the neighbourhoods will not be reduced. For nbhDecrease > 1,

the alternative arrangements per change position are limited to those items that lie

near the original arrangement with respect to the evaluation.
The method includes the following diversification concept: The overall search pro-

cess is structured into nphases different search phases. In each phase the search starts

from the same initial solution and with an empty tabu list. In order to achieve diver-

sification, an independent set of the seven parameters mentioned above is applied in

each phase. An additional diversification of the search can be caused by the stability

constraint (C2), if only partial support of the stowed boxes is demanded. For this

purpose, the required percentage of support with respect to both horizontal dimen-

sions of a box is, to a certain extent, arbitrarily increased (cf. Section 5).
The termination of the overall method is caused by two criteria. The search is ter-

minated, if all nphases search phases have been carried out or if the calculation time

exceeds a given time limit maxTime. The best solution over all search phases is finally

determined as the solution to the problem.

4. The parallel tabu search algorithm

According to Toulouse et al. [20], three types of parallelization strategies seem to

be appropriate for the methods most often used in combinatorial optimization: (1)

parallelization of operations within an iteration of the solution method, (2) decom-

position of problem domain or search space, and (3) multi-search threads with vari-

ous degrees of synchronization and cooperation. Which of these types is suited for

the parallelization of an optimization method depends mainly on the goal pursued

by the parallelization. Since the enhancement of the solution quality is in the fore-

ground here, an approach of type 3 is chosen for the parallelization.
An instance of a container loading problem is treated by several processes. Each

process is an instance of the sequential TSA and solves the complete problem. How-

ever, the individual instances are configurated differently. Furthermore, the processes

cooperate through the exchange of calculated solutions. A transmitted solution is

possibly used by the receiving process as a starting point for further search. While

the varying configuration of the processes causes a diversification of the search,

the exchange of solutions serves the intensification of the search within the regions

of best solutions.
Each of the autonomous processes is assigned to a workstation of a local network

(LAN). Hence, more precisely expressed, the parallel TSA is a distributed-parallel

method. It is described more closely in the following.

652 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



4.1. Structuring of the search and communication frequency

According to the diversification concept of the sequential TSA, the search in each

process is structured into several phases. In order to determine favourable parameter

settings with respect to the definition of the phases of all processes, a series of expe-
riments was carried out by means of the sequential TSA (cf. Section 5). The best pa-

rameter settings are distributed approximately evenly over the processes and per

process the most promising parameter settings are, as far as possible, applied in early

phases. In this way the intended intensified exploration of regions that contain solu-

tions of high quality, is supported to a greater extent.

As to the communication frequency or the number of communications, the type

of the underlying sequential method (here a TSA) is to be considered. The conse-

quence of a very high communication frequency is that the individual processes
are prevented from intensively exploring limited regions of the search space. There-

fore, a lower communication frequency is to be chosen in advance. Here, an ex-

change of best solutions is only carried out at the transition from one phase to the

next phase of each of the processes.

4.2. Communication model

The exchange of solutions is performed by means of a communication object. It
records the solutions generated by the processes and makes the solutions available to

them again. The organization of the communication object depends on the commu-

nication model applied. The latter determines the available communication paths.

Two alternative communication models are provided here, a ring and a blackboard.

The communication object is realized by means of a data base.

In the case of the ring, the data base is subdivided into separate areas. Each area is

firmly assigned to a process. A process writes its solutions into its own data base area

only. Each area is organized as a queue according to the FIFO principle. A new so-
lution is always inserted at the end of the queue. The processes are connected in a

process
1

process
2

process
3

process
4

P2
P3
P4
P1

database

process
1

process
2

process
3

process
4

Fig. 6. The communication model ring.

A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662 653



way that forms a ring, i.e. each process has exactly one predecessor. A process always

reads the solution at the end of the queue of its predecessor. Then the solution is re-

moved. In Fig. 6 the communication model ring is shown.

In the case of the blackboard, the data base is organized as a common area, in

which the processes write their solutions and from which they read out solutions.
The area is managed as a stack according to the LIFO principle. A solution provided

by a process is inserted as the top element of the stack and each process always reads

the uppermost solution of the stack. In contrast to a ring, an accessed solution is not

removed. Rather, it remains available for access by other processes until the next

solution is inserted into the stack. Since, in general, the solution quality will be

enhanced during the search, it is definitely intended that only the last inserted solu-

tion is available for reading processes. Fig. 7 illustrates the communication model

blackboard.

4.3. Exchange of solutions

At the end of a phase, a process provides its best solution, i.e. the best solution

found during the previous search, for the other processes. At the beginning of the

subsequent phase, the process reads a solution that was provided by another process.

The read solution possibly forms the new starting point for the search of the reading

process. The next neighbourhood examined by the process is therefore the neigh-
bourhood of the foreign solution.

Solutions are exchanged as packing sequences or encoded solutions, respectively.

Furthermore, the parameters of the basic heuristic, which are valid in the phase in

which the solution was found, are provided and taken over by the receiving process.

Only in this way is it guaranteed, that the transfer of the packing sequence also leads

to a solution of high quality on the side of the receiving process. If, therefore, a re-

ceived foreign solution serves as a starting point for the next phase of the receiving

process, then the parameters of the basic heuristic belonging to the foreign solution
are applied in this phase.

process
1

process
2

process
3

process
4

database

process
1

process
2

process
3

process
4

1. solution n
2. solution n-1
3. ...

Fig. 7. The communication model blackboard.

654 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



Foreign solutions are processed in two alternative ways; one of them is always

used for all processes. In the case of an unconditioned adoption of foreign solutions,

a read foreign solution is always the starting point for the further search. In the case

of a conditional adoption, the foreign solution is only used as a new starting solution

if its value of the objective function is higher than the respective value of the present
best solution of the process. Otherwise, the process continues the search as if the

communication had not taken place. In particular, all predefined parameters are

used for the next phase.

The adoption of a foreign solution leads to an enlargement of the subsequently

explored neighbourhoods. The reason is that the parameter nbhDecrease of the re-

ceiving process is decremented by 1 (cf. Section 3). This measure ensures that the re-

gion around the adopted high-quality solution is subsequently subjected to an

intensified search. In order to keep the increase of the computing time within limits,
the total number of phases carried out by a process should be smaller than in the case

of the sequential TSA.

4.4. Further details

One of the processes performing the concurrent search is excluded from the com-

munication. Operating as sequential TSA this process carries out an isolated search.

Its best generated solution is, however, finally included in the determination of the
solution of the parallel method. Hence, the solution quality of the sequential method

will be achieved in any case.

The termination of the parallel TSA is controlled by an additional process––the

so-called master. The parallel method is terminated by the master, if either all pro-

cesses have carried out all their search phases, or if the computing time consumed

by the distributed-parallel system has exceeded a predefined time limit maxTime. Af-

ter the end of the concurrent search, the solution of the parallel method is deter-

mined as the best solution found by the whole process group.

5. Numerical results

The test of the distributed-parallel approach includes two steps. In the first step

the configurations of the sequential and the parallel TSA are determined. In the se-

cond step the two configured methods are subjected to a comparative test comprising

container loading methods from other authors. All calculations were carried out on
Pentium workstations with a cycle frequency of 2 GHz. In the following, the test

problems are specified first and then the two test steps are evaluated.

5.1. Applied test problems

The test is based on well-known reference problems from the literature. These

are the 15 test problems from Loh and Nee [13] and the 700 test problems from

Bischoff and Ratcliff [1]. The problems from Loh and Nee may be classified as

A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662 655



weakly heterogeneous throughout. The problems from Bischoff and Ratcliff are sub-

divided into seven test cases each with 100 problems. In the seven test cases the char-

acter of the box sets changes from weakly heterogeneous to strongly heterogeneous.

All problems of a test case are characterized by a constant number of box types.

The problem instances of both groups contain an orientation constraint (C1). To
enable the consideration of a stability constraint (C2), an additional attribute min-

Support is introduced for each instance. minSupport specifies the minimum extent

to which both horizontal dimensions of a box are to be supported. In the test two

extreme values are chosen for the extent of the support of boxes. The value

minSupport ¼ 55% ensures that, at minimum, boxes do not tip. For the value

minSupport ¼ 100%, the bottom of each box must be supported completely.

5.2. Configuration pretests

First, the configuration of the sequential TSA is described and then the configu-

ration of the parallel TSA is specified.

In a limited series of experiments it turned out that in the case of the sequential

TSA, a subdivision of the search into six phases (nPhases ¼ 6) is appropriate. Fur-

thermore, the parameter settings for six search phases were determined for each of

the two given values of minSupport. The parameter settings are shown in Table 2.

Meaning and values of the parameters have been explained earlier (see Sections 2
and 3). As has already been mentioned, for a given value of minSupport < 100 this

value may be increased arbitrarily for individual search phases in order to achieve

additional diversification of the search. For the given value of minSupport ¼ 55

and the third search phase, the respective phase-specific value of phMinSupport

was therefore enhanced and set to the value 100. For the parameter nbhDecrease,

Table 2

Parameter settings for the sequential TSA

Phase-

ID

phMin-

Support

cutEval-

Mode

arrEval-

Mode

maxArr aboveArr nbhType nIter nbh

Decrease

(a) Parameter settings for minSupport ¼ 55

1 55 0 1 100 1 1 100 3

2 55 0 1 50 1 0 20 3

3 100 0 1 100 0 1 100 3

4 55 0 0 100 0 1 100 3

5 55 1 1 50 1 0 20 3

6 55 1 1 100 1 1 100 3

(b) Parameter settings for minSupport ¼ 100

1 100 0 1 100 1 1 100 3

2 100 0 1 50 1 0 20 3

3 100 0 1 100 0 1 100 3

4 100 0 0 100 0 1 100 3

5 100 0 0 100 1 1 100 3

6 100 0 0 50 0 0 20 3

656 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



the value 3 is used throughout; it guarantees a high solution quality within accept-

able computing times.

As to the parallel TSA, the number of processes was set to four. One of these four

processes is excluded from the communication and configured in the same way as the

sequential TSA with six phases. For each of the remaining three processes only four
phases are used, while, starting with the value 3, the parameter nbhDecrease is now

decremented per phase. The phases are parameterized in the same way as for the se-

quential TSA. Table 3 shows how the parameter settings for the phases of the se-

quential TSA are distributed over the communicating processes.

Remaining conceptual decisions concern the communication model and the hand-

ling of foreign solutions. As communication model either a ring or a blackboard can

be chosen. For foreign solutions either an unconditional adoption or a conditional

adoption can be applied. In order to evaluate the resulting four configuration vari-
ants, some computational experiments were carried out. The highest calculated vol-

ume utilization differed only slightly between these four variants; the maximum

difference amounted to 0.2% of the container volume. Only the best variant, defined

by the communication model ring and the unconditioned adoption of foreign solu-

tions, is used for the comparative test described in the following. For the sequential

and the parallel TSA, the limit of the computing time is equally set to maxTime ¼
600 s.

5.3. Comparative test

It should be mentioned beforehand, that results calculated by other authors are

presented here as reported in the respective literature sources. For the 15 problems

from Loh and Nee, computational results are reported for the heuristics from Loh

and Nee [13], Ngoi et al. [15], Bischoff et al. [2], Bischoff and Ratcliff [1] and for

the GAs from Gehring and Bortfeldt [8] and Bortfeldt and Gehring [5]. Table 4

shows the test results obtained for the 15 problems from Loh and Nee. Note that
Loh and Nee [13] use a capacity criterion referred to as ‘‘packing density’’ which

overestimates the volume utilization (cf. [1]). As to the quantities in the first column

of Table 4, a best value is counted for a method if it achieved the best known volume

utilization for a problem instance. Analogously, a global optimum is counted if a

Table 3

Distribution of the parameter settings over the communicating processes of the parallel TSA

Phase of the respective

process

Configuration of the communicating processes of the parallel TSA

First process

(sequential phase-IDs)

Second process

(sequential phase-IDs)

Third process

(sequential phase-IDs)

First 1 2 3

Second 4 5 6

Third 2 3 4

Fourth 5 6 1

A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662 657



method has stowed all boxes of a problem instance in the container. For the sequen-

tial and the parallel TSA, the support of the boxes is set to minSupport ¼ 100%.

In summary, it can be stated that for the problems from Loh and Nee, the TSA

obtains better results than the other methods. However, the parallelization does not

lead to an improvement here.
For the 700 test problems from Bischoff and Ratcliff, results are available for the

heuristics from Bischoff et al. [2], Bischoff and Ratcliff [1] and for the GAs from Geh-

ring and Bortfeldt [8] and Bortfeldt and Gehring [5]. These results are summarized in

Table 5 together with those obtained by the sequential and parallel TSA. For the lat-

ter two methods, the support of the boxes is always set to minSupport ¼ 55%. For

each test case, the number of box types and the mean number of boxes per type

for the problems of the test case are given in the first column.

For the sequential and the parallel TSA, Table 6 shows the mean computing times
per problem instance calculated over each of the test cases from BR1 to BR7 and

over all 700 problems.

The results of this comparative test can be summarized as follows.

• The sequential and the parallel TSA clearly dominate over the other methods with

respect to the mean volume utilization. The parallelization of the TSA leads to a

mean enhancement of the volume utilization of 0.66% of the container volume.

For the standard deviations per test case, the TSA also achieves favourable re-
sults. For the seven test cases, the highest standard deviation of the volume utili-

zation calculated over the instances of a test case amounts to 2.25% of the

container volume.

• The parallel TSA requires significantly higher computing times per problem in-

stance than the sequential TSA. This is the result of the configuration of the par-

allel search and especially of the fact, that the transition of a search process to a

foreign solution is coupled with an enlargement of the neighbourhoods subjected

to the further search. Nevertheless, the mean computing times of the parallel TSA
observed for the calculated test cases lie obviously in an acceptable range.

• The results reported for the other methods (cf. the second to the fifth column in

Table 5) are based on full support of the stowed boxes. In the interest of fair com-

parison, additional calculations for the value minSupport ¼ 100 were carried out

with the sequential and the parallel TSA. The achieved mean volume utilizations

amount to 91.6 % for the sequential TSA and 92.2% for the parallel TSA. This

means, that the ranking of the methods with respect to the volume utilization is

not affected by the required support of the boxes. On the other hand, these expe-
riments demonstrate the extent to which the volume utilization can be improved

through the relaxation of the stability constraint (C2). It should be mentioned,

however, that the method from Bischoff et al. [2] achieves better results than

the TSA with respect to other stability criteria such as, e.g., the number of sup-

porting boxes per stowed box.

• In the case of the TSA the mean volume utilizations calculated per test case are, in

general, monotonically decreasing with increasing number of box types. Hence,

the TSA achieves the highest volume utilizations for weakly heterogeneous box

658 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



Table 4

Numerical results obtained for the 15 problems from Loh and Nee [13]

Quantities Loh and Nee

[13]

Ngoi et al.

[15]

Bischoff et al.

[2]

Bischoff and

Ratcliff [1]

Gehring and

Bortfeldt [8]

Bortfeldt and

Gehring [5]

Authors� Se-
quential TSA

Authors�
parallel TSA

Packing

density

Volume

utilization

Volume

utilization

Volume

utilization

Volume

utilization

Volume

utilization

Volume

utilization

Volume

utilization

Mean value (%) 74.2 69.0 69.5 68.6 70.0 70.1 70.9 70.9

Best values 11 11 10 11 12 13 15 15

Global optima 11 11 10 11 12 13 13 13

Table 5

Numerical results for the 700 problems from Bischoff and Ratcliff [1]

Test case (no. of box types, mean

number of boxes per type)

Bischoff et al.

[2]

Bischoff and

Ratcliff [1]

Gehring and

Bortfeldt [8]

Bortfeldt and

Gehring [5]

Authors� sequen-
tial TSA

Authors� parallel
TSA

Volume

utilization [%]

Volume

utilization [%]

Volume

utilization [%]

Volume

utilization [%]

Volume

utilization [%]

Volume

utilization [%]

BR1 (3, 50.1) 81.76 83.79 85.80 87.81 93.23 93.52

BR2 (5, 27.3) 81.70 84.44 87.26 89.40 93.27 93.77

BR3 (8, 16.8) 82.98 83.94 88.10 90.48 92.86 93.58

BR4 (10, 13.3) 82.60 83.71 88.04 90.63 92.40 93.05

BR5 (12, 11.1) 82.76 83.80 87.86 90.73 91.61 92.34

BR6 (15, 8.8) 81.50 82.44 87.85 90.72 90.86 91.72

BR7 (20, 6.5) 80.51 82.01 87.68 90.65 89.65 90.55

All test cases 82.0 83.5 87.5 90.1 92.0 92.7

A
.
B

o
rtfeld

t
et

a
l.

/
P

a
ra

llel
C

o
m

p
u
tin

g
2
9

(
2
0
0
3
)

6
4
1
–
6
6
2

6
5
9



sets. This solution behaviour is caused by the design of the basic heuristic. The

attainable utilization depends strongly on the question of whether sufficient num-

bers of boxes of the same types are available for the forming of solid space-saving

blocks. Note that the GA from Bortfeldt and Gehring [5], which is tailored to

strongly heterogeneous box sets, shows a complementary behaviour.

Finally, the question of interest is, whether and to what extent the process com-
munication causes a synergetic effect. Therefore, the 700 problems from Bischoff and

Ratcliff were solved again using the parallel TSA, but without communication be-

tween the concurrently executed processes. For a required support of minSupport ¼
55% the mean volume utilization over all 700 problems amounted to 92.5% for the

parallel TSA without and to 92.7% with communication, i.e., the synergetic effect

caused by the process communication is rather small.

6. Conclusions

In this paper a parallel tabu search algorithm for solving the container loading

problem with a single container to be loaded is presented. The parallelization ap-

proach follows the concept of multi-search threads with cooperating processes ac-

cording to Toulouse et al. [20]. According to an extensive comparative test also

including heuristics from other authors, high utilizations of the container volume

are already obtained with the sequential TSA. A slight improvement of these results
could be achieved by the parallelization. The communication between the TSA in-

stances, however, had only a small share in this effect. Similar results are found in

the literature. Crainic et al. [6], for example, report on the parallelization of a

TSA for solving a warehouse location problem, where the best results were obtained

without communication between the concurrently executed processes.

Previous experience with the parallelization of container loading methods gives

rise to consider the parallelization of a method as a relevant methodical extension,

particularly if other concepts for the improvement of a sequential method are al-

Table 6

Computation times for the 700 problems from Bischoff and Ratcliff [1]

Test case Sequential TSA mean

computation time [s]

Parallel TSA mean

computation time [s]

BR1 3 36

BR2 10 48

BR3 31 97

BR4 48 138

BR5 65 179

BR6 46 150

BR7 60 198

All test cases 38 121

660 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662



ready exhausted. However, only a limited enhancement of the solution quality can be

expected. On the other hand, it is not impossible that a hybrid parallelization ap-

proach, including different types of metaheuristics, leads to better results with respect

to the enhancement of the solution quality. The well-known fact that the balance bet-

ween exploration and intensive examination of limited regions of the search space
differs significantly with the type of the metaheuristic speaks in favour of this option.

A subject of further research on this topic is therefore a hybrid approach for the con-

tainer loading problem combining instances of a tabu search and a simulated annea-

ling algorithm.

References

[1] E.E. Bischoff, B.S.W. Ratcliff, Issues in the development of approaches to container loading, Omega

23 (1995) 377–390.

[2] E.E. Bischoff, F. Janetz, M.S.W. Ratcliff, Loading pallets with non-identical items, European Journal

of Operational Research 84 (1995) 681–692.

[3] A. Bortfeldt, Informierte Graphensuchverfahren und genetische Algorithmen zur L€oosung von

Containerbeladeproblemen, Dissertation, Freie Universit€aat, Berlin, Verlag Dr. K€ooster, Berlin, 1995.

[4] A. Bortfeldt, H. Gehring, Ein Tabu Search-Verfahren f€uur Containerbeladeprobleme mit schwach

heterogenem Kistenvorrat, OR Spektrum 20 (1998) 237–250.

[5] A. Bortfeldt, H. Gehring, A hybrid genetic algorithm for the container loading problem, European

Journal of Operational Research 131 (2001) 143–161.

[6] T.G. Crainic, M. Toulouse, M. Gendreau, Synchronous tabu search parallelization strategies for

multicommodity location-allocation with balancing requirements, OR Spektrum 17 (1995) 113–

123.

[7] H. Dyckhoff, U. Finke, Cutting and Packing in Production and Distribution, Physica, Heidelberg,

1992.

[8] H. Gehring, A. Bortfeldt, A genetic algorithm for solving the container loading problem,

International Transactions in Operational Research 4 (1997) 401–418.

[9] H. Gehring, A. Bortfeldt, Ein verteilt-paralleles Tabu Search-Verfahren f€uur Containerbeladeprobleme

mit schwach heterogenem Kistenvorrat, in: P. Kall, H.-J. L€uuthi (Eds.), Operations Research

Proceedings 1998, Springer, Berlin, 1999, pp. 220–227.

[10] H. Gehring, A. Bortfeldt, A parallel genetic algorithm for solving the container loading problem,

International Transactions in Operational Research 9 (2002) 497–511.

[11] H. Gehring, J. Homberger, A parallel two-phase metaheuristic for routing problems with time

windows, Asia-Pacific Journal of Operational Research 18 (2001) 35–47.

[12] F. Glover, M. Laguna, Tabu search, in: C.R. Reeves (Ed.), Modern Heuristic Techniques for

Combinatorial Problems, Blackwell Scientific Publications, Oxford, 1993, pp. 70–150.

[13] T.H. Loh, A.Y.C. Nee, A packing algorithm for hexahedral boxes, in: Proceedings of the Conference

of Industrial Automation, Singapore, 1992, pp. 115–126.

[14] R. Morabito, M. Arenales, An AND/OR-graph approach to the container loading problem,

International Transactions in Operational Research 1 (1994) 59–73.

[15] B.K.A. Ngoi, M.L. Tay, E.S. Chua, Applying spatial representation techniques to the container

packing problem, International Journal of Production Research 32 (1994) 111–123.

[16] D. Pisinger, Heuristics for the container loading problem, European Journal of Operational Research

141 (2002) 143–153.

[17] Y. Rochat, E. Taillard, Probabilistic diversification and intensification in local search for vehicle

routing, Journal of Heuristics 1 (1995) 147–167.

[18] G. Scheithauer, Algorithms for the container loading problem, in: Operations Research Proceedings,

1991, Springer, Berlin, 1992, pp. 445–452.

A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662 661



[19] M. Sixt, Dreidimensionale Packprobleme. L€oosungsverfahren basierend auf den Meta-Heuristiken

Simulated Annealing und Tabu-Suche, Europ€aaischer Verlag der Wissenschaften, Frankfurt am Main,

1996.

[20] M. Toulouse, T.G. Crainic, M. Gendreau, Issues in designing parallel and distributed search

algorithms for discrete optimization problems, Publication CRT-96-36, Centre de recherche sur les

transports, Universit�ee de Montr�eeal, Canada, 1996.

662 A. Bortfeldt et al. / Parallel Computing 29 (2003) 641–662


	A parallel tabu search algorithm for solving the container loading problem
	Introduction
	(C1) Orientation constraint
	(C2) Stability constraint

	The basic heuristic
	Generation of local arrangements
	Generation of residual packing spaces
	Evaluation of local arrangements

	The sequential tabu search algorithm
	Encoding of feasible solutions
	Specification of the basic components of the TSA
	Configuration of the TSA

	The parallel tabu search algorithm
	Structuring of the search and communication frequency
	Communication model
	Exchange of solutions
	Further details

	Numerical results
	Applied test problems
	Configuration pretests
	Comparative test

	Conclusions
	References


