
Geophysical Journal International
Geophys. J. Int. (2014) 196, 357–374 doi: 10.1093/gji/ggt342

Advance Access publication 2013 October 22

G
JI

S
ei

sm
o
lo

g
y

A Parallel Tempering algorithm for probabilistic sampling
and multimodal optimization

Malcolm Sambridge
Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia. E-mail: malcolm.sambridge@anu.edu.au

Accepted 2013 August 28. Received 2013 August 7; in original form 2013 June 11

S U M M A R Y

Non-linear inverse problems in the geosciences often involve probabilistic sampling of mul-

timodal density functions or global optimization and sometimes both. Efficient algorithmic

tools for carrying out sampling or optimization in challenging cases are of major interest.

Here results are presented of some numerical experiments with a technique, known as Parallel

Tempering, which originated in the field of computational statistics but is finding increasing

numbers of applications in fields ranging from Chemical Physics to Astronomy. To date, ex-

perience in use of Parallel Tempering within earth sciences problems is very limited. In this

paper, we describe Parallel Tempering and compare it to related methods of Simulated An-

nealing and Simulated Tempering for optimization and sampling, respectively. A key feature

of Parallel Tempering is that it satisfies the detailed balance condition required for conver-

gence of Markov chain Monte Carlo (McMC) algorithms while improving the efficiency

of probabilistic sampling. Numerical results are presented on use of Parallel Tempering for

trans-dimensional inversion of synthetic seismic receiver functions and also the simultaneous

fitting of multiple receiver functions using global optimization. These suggest that its use

can significantly accelerate sampling algorithms and improve exploration of parameter space

in optimization. Parallel Tempering is a meta-algorithm which may be used together with

many existing McMC sampling and direct search optimization techniques. It’s generality and

demonstrated performance suggests that there is significant potential for applications to both

sampling and optimization problems in the geosciences.

Key words: Numerical solutions; Inverse theory.

1 I N T RO D U C T I O N

Two classes of approach to inversion are common in the earth sci-

ences. The first is to seek a single set of unknowns via optimization

of a data misfit function, often combined with some regularization

term (Parker 1994). The second is via probabilistic sampling of an

a posteriori probability density function (PDF) within a Bayesian

framework (Tarantola 2005). There are numerous examples of both

approaches in the literature, and in some cases combinations (Aster

et al. 2012; Sen & Stoffa 2013). Over the past 20 yr, geoscientists

have attempted an ever expanding range of data inference prob-

lems in terms of both size and complexity. For situations where

the data–model relationship is highly non-linear, the correspond-

ing optimization or sampling problem becomes difficult because

of the multimodality of the data misfit or log-likelihood term. In

these circumstances, gradient-based optimization algorithms can

become ineffective due to entrapment in secondary minima and

likewise probabilistic sampling methods can become inefficient

in converging to regions of parameter space where a posteriori

probability density is high. Accordingly, there is an ongoing need

to extend the range of problems that can be addressed through

more efficient and robust inversion algorithms. Here, we define

efficiency as the time taken for an algorithm to converge to a so-

lution, and robust as the likelihood that the obtained solution is

acceptable.

In this paper, we discuss a class of approach known as Parallel

Tempering (PT; Geyer 1991; Falcioni & Deem 1999), which has

gained considerable attention in the field of computational statistics

over the last decade but to date appears to have been overlooked

by earth scientists. PT was devised as a technique for probabilistic

sampling of multimodal density functions, but as we shall argue

here also has applications to global optimization. We introduce the

rationale for PT by briefly outlining two other related techniques,

Simulated Annealing (SA) and Simulated Tempering (ST), the first

of which will be familiar to geophysicists through numerous appli-

cations to optimization problems over more than two decades. Sev-

eral numerical examples are presented applying PT to multimodal

sampling and optimization problems. Comparisons with some
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existing approaches are presented both in theoretical context and by

way of numerical examples. We conclude that for inverse sampling,

PT appears to provide a significant acceleration of convergence, and

is also able to solve complex multimodal optimization problems.

The paper is concluded with a discussion of related approaches and

future directions.

2 T E M P E R I N G F O R O P T I M I Z AT I O N

A N D S A M P L I N G

The class of geophysical inverse problem considered here is one

in which the likelihood function measuring discrepancies between

data and model predictions is non-quadratic and most likely multi-

modal. This situation arises in non-linear inverse problems where

the data/model relationship is sufficiently complex that gradient-

based optimization methods are of limited use. An example is the

well known work of Ammon et al. (1990) where seismic receiver

functions are used to constrain 1-D shear wave velocity profiles as a

function of depth. For the class of problems considered in this paper,

we will assume that gradient methods are of little use, either due to

their need for an ambitiously optimistic starting model, or simply

because no adequately accurate or efficient approach is available

for gradient calculations. If our objective is optimization of some

combination of likelihood and regularization terms, then we seek

the global minimum of a function φ(m) with respect to parameters

m representing an earth model. Global optimization is commonly

used in geosciences for many problems, examples include survey

design (Curtis & Wood 2004), Gibbs’ free energy minimization

(Bina 1998) and phase detection in seismology (Garcia et al. 2006),

and all such problems can be cast in a similar form (see Sen &

Stoffa 2013, for a discussion of many such applications). A com-

mon approach is to optimize φ(m) by instead sampling a PDF π (m,

T), where

π (m, T ) = exp−φ(m)/T . (1)

For T > 0 the minimum of φ(m) corresponds to the maximum

of π (m), hence an optimization problem has been converted to a

statistical sampling problem where samples drawn from π (m|T)

will be attracted to the peak in the distribution and hence the global

minimum of φ(m).

Tempering will be familiar to many readers from the work of

Rothman (1985, 1986) who used it to perform optimization of

residual statics parameters in reflection seismology. In brief, it is

the process of introducing the variable T, or temperature whose

role is to rescale the optimization function, all quantities being

dimensionless. The role of T is best illustrated through a simple

example. Fig. 1 shows a plot of π (m, T) for a least-squares data

misfit function representing the difference between observed and

predicted receiver functions (see Section 3.2). Note that π (m, 1) is

a multipeaked target PDF for sampling. As temperatures are raised,

the shape of π (m, T) becomes relatively flat with all maxima less

pronounced. Since probabilistic sampling algorithms, by definition,

seek to draw samples of m proportional to the relative heights of

the target PDF, then their performance is affected by a change in

temperature. At higher temperatures the flatter PDF means that it is

much easier to escape from local maxima as each is less prominent

in the landscape. At the extremes as T → ∞, π (m, T) tends to a uni-

form PDF and as T → 0, π (m, T) tends to a delta function located at

the global maximum in π (minimum in φ(m)). For an optimization

problem then, tempering is the process of embedding the objective

function φ(m) into a higher dimensional sampling space (m, T),

Figure 1. An example of a tempered likelihood function according to eq.

(1) corresponding to inversion of a seismic receiver function. Details of

the problem setup are given in Section 3.2. Here higher values represent

increased likelihood or lower data misfit. The temperatures are shown on

the left-hand side. Increasing temperature flattens the profile and reduces

the chance that a Metropolis random sampler will get trapped by secondary

peaks. To aid visualization, curves are offset vertically by 0.1, 0.15, 0.2 and

0.25 units, respectively, in cases for T > 1.

where the prominence of local and global minima are controlled by

temperature.

In inversion settings where probabilistic sampling is the objective

(for summaries see Mosegaard & Tarantola 1995; Mosegaard &

Sambridge 2002; Tarantola 2005), stochastic algorithms are used

to directly draw samples from Bayesian a posteriori PDFs given by

the well known Bayes’ rule

p(m|d) = k−1 p(d|m)p(m), (2)

where, as usual, d represents the data, p(d|m) the likelihood term

and p(m) the a priori PDF (or prior) on the unknowns m (Tarantola

& Valette 1982a,b), and k is a normalizing constant. In this context,

tempering may be used in a number of ways. We can write

π (m, T ) = [p(d|m)p(m)]1/T , (3)

and hence simply raise the unnormalized target PDF to a power of

inverse temperature, as in (1). For notational convenience we ignore

the dependence of π on the data d. As before, temperature acts

as a convenient way to embed the actual PDF whose sampling is

desired, that is π (m, 1), into a larger augmented space of [m, T] over

which the PDF π (m, T) is defined and whose sampling is in a sense

easier due to its propensity towards flatness for T > 1. If π (m, T)

can be sampled for the augmented set of variables, [m, T], then, as

we shall see, samples from the conditional distribution π (m|T = 1)

are usually available as a subset. In contrast to the optimization

case here, we restrict the range of temperatures to T ≥ 1 to avoid

needless sampling of distributions even more peaked than the target

p(m|d). Details of sampling algorithms follow in the next section,

but intuitively one can recognize tempering as a way to improve

the efficiency of probabilistic samplers, by allowing them to escape

from local maxima and move more freely about the space at higher

temperatures.

Alternate versions of tempering are possible in Bayesian compu-

tations. For example, (3) could be replaced with

π (m, T ) = k−1 p(d|m)1/T p(m). (4)
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The reader will recognize that as T → ∞ the tempered distribution

π (m, T) becomes the a priori distribution, p(m), which may not

be uniform. At the other extreme T = 1, the tempered distribution

becomes the a posteriori PDF, p(m|d). Here, the aim would be

to draw samples from the conditional distribution at T = 1 using

the augmented PDF, which may be an advantage in cases where

there is a convenient algorithm available to draw from the particular

a priori distribution, or indeed the prior itself is implicitly defined

by such an algorithm. For an example of the latter see Mosegaard

& Tarantola (1995). This form of tempering has been used to good

effect by Minson et al. (2013) for finite fault inversion of a seismic

source (see also Beck & Au 2002; Ching & Chen 2007).

Tempering in a sampling context should not be confused with

hierarchical inversion schemes (such as Bodin et al. (2012b)) where

a parameter, representing data noise variance, for example, σ 2, is

also introduced into the exponent of the likelihood function, in a

similar manner to T, and then sampled over. They differ because,

in the hierarchical case, the data noise parameter also appears in

the normalizing constant, that is, k in (4). The competing roles of

σ in both the likelihood exponent and normalizing constant means

that noise parameters can be constrained by the data (see Appendix

B). This is in contrast to the temperature parameter in (4), which

only appears in the exponent and always flattens the likelihood as it

increases.

We see then that both optimization (1) and Bayesian sampling

problems (3) can be treated similarly, that is, as a sampling problem

of a tempered distribution over an augmented space [m, T]. In the

next section, we briefly outline a few sampling algorithms that can

be used to solve problems of this kind and point out some of their

limitations. This leads to the concept of PT which is the main focus

of the paper.

2.1 Simulated Annealing

SA is an optimization method introduced by Kirkpatrick et al.

(1983). It was recognized early on that SA could find practical

solutions to difficult combinatorial optimization problems which

generated much interest in its use. The idea was first applied in

the geosciences by Rothman (1985, 1986) to fit seismic reflection

waveforms in residual statics. For a detailed account of SA and its

variants, as well as a summary of numerous applications that have

appeared see Sen & Stoffa (2013). For our purposes a generic de-

scription will suffice and many of these details will be familiar to

readers.

SA makes use of a Metropolis algorithm (Metropolis & Ulam

1949), also called a Markov chain Monte Carlo (McMC) random

walker, to draw samples m from the conditional distribution π (m|T)

given by (1) for a fixed temperature, T. A temperature ladder Ti(i = 1,

. . . , n) is constructed either in advance, or dynamically, and the

algorithm progressively samples from the conditional distributions

π (m|Ti) as temperature is adjusted from high to low values as in

Fig. 2(a). The initial temperature, Tn, is chosen sufficiently high so

that the tempered distribution π (m|Tn) is relatively flat (as in Fig. 1)

with the effect that changes to the model, or ‘state space’ m, which

both decrease and increase the objective function φ(m) are allowed.

At each fixed temperature, the Markov chain is required to be in

‘equilibrium’ meaning that it is sampling from the corresponding

conditional distribution π (m|Tn) without bias. As the temperature is

decreased, to the next level, Tn−1, the algorithm switches to sampling

a new conditional distribution π (m|Tn−1) and since Tn−1 < Tn the

new distribution is more peaked than the last resulting in increased

preference for downhill steps in φ(m).

SA is illustrated in Fig. 2(a) which shows eight chains at dif-

ferent temperatures. We refer to the model updates of m as being

‘within-chain’, corresponding to horizontal steps in Fig. 2(a) (see

the appendix for a discussion). Changes of temperature are referred

to as being an update ‘between-chains’ (vertical steps). In practice,

there may be an ensemble of independent walkers all acting in par-

allel, but the key feature to emphasize here is that SA involves the

sampling of a series of conditional distributions, π (m|Ti), (i = 1. . . ,

Tn) transitioned in a deterministic fashion, which decrease T ‘slowly

enough’, to drive the algorithm towards a global minimum in φ(m).

In practice, the performance of the algorithm is always dependent

on the choice of cooling schedule, that is, how and when transitions

occur between temperature levels. Experience shows that the opti-

mal cooling schedule will usually be problem dependent and hence

tuning is often required for each application.

2.2 Simulated Tempering

Introduced independently by Marinari & Parisi (1992) and Geyer

& Thompson (1995), ST was devised not as an optimization tool

per se but rather for probabilistic sampling of PDFs in the form of

(3). The situation is similar to SA in that a temperature ladder is

required and a Metropolis algorithm draws samples of m within the

chain according to the conditional distribution π (m|Ti) in the usual

way. In ST, however, two new elements appear: (1) the temperature

level may either increase or decrease, and (2) the decision to change

level becomes stochastic where proposals are made at random and

accepted or rejected according to the same Metropolis–Hastings

rule used in a standard McMC random walker. This situation is

depicted in Fig. 2(b). At points along the Markov chain, a jump is

proposed between temperatures Ti and Tj and accepted with prob-

ability α(i, j). The Metropolis–Hastings rule for determining the

acceptance probability in this situation has been determined by

Geyer & Thompson (1995) and can be written as

α(i, j) = 1 ∧
p̃(m|d)1/T j c(Ti )q(i | j)

p̃(m|d)1/Ti c(T j )q( j |i)
, (5)

where

p̃(m|d) = p(d|m)p(m) (6)

is the unnormalized a posteriori PDF; c(Ti) and c(Tj) are the nor-

malizing constants

c(Ti ) =

∫

p̃(m|d)1/Ti dm, (7)

c(T j ) =

∫

p̃(m|d)1/T j dm, (8)

and q(j|i) is the probability of proposing a move from temperature

level i to j, q(j|i) = q(i|j) = 1/2, for j = i ± 1 with q(2|1) =

q(n − 1|n) = 1, and n is the number of temperature levels. In

(5) the function a ∧ b represents the minimum of a and b. The

stochastic accept–reject process using (5) is necessary to kept the

chain in equilibrium, a property known as ‘detailed balance’. After

many such steps, the ST walker will spend time at all temperatures

and produce samples (m, Ti) whose density converges to the set of

conditional distributions π (m|Ti), (i = 1, . . . , n).

A comparison of ST and SA is illuminating when one recalls

that the whole idea of tempering in an optimization context was to

achieve sampling of π (m|T) as T decreases, thereby encouraging

samples near the global maximum. It is evident that ST becomes
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360 M. Sambridge

Figure 2. Schematic illustration of various tempering-based sampling algorithms. Each horizontal line represents a Markov chain random walker at a different

temperature, T1 < T2 < . . . < T8. A standard McMC update of variables is represented by a horizontal step along the black line, whereas a change in

temperature is represented by a vertical jump between levels (dashed line). Panel (a) represents a Simulated Annealing algorithm where the temperature of a

single walker is steadily reduced, often according to a prescribed function; (b) corresponds to Simulated Tempering where the temperature of a single walker

can increase or decrease in fixed increments; (c) shows a standard Parallel Tempering algorithm applied to eight walkers, with randomized swaps between

neighbouring temperatures; (d) shows the Parallel Tempering variant used in this study with randomized swaps between any pair of temperature levels.

identical to SA if j = i − 1 and α = 1, but of course, in general,

this will not be the case. SA, therefore, violates the condition of

detailed balance in transitioning between a finite set of temperature

levels, while ST maintains detailed balance (Earl & Deem 2005).

In SA the Markov chain must be in balance at each temperature

and the rule of thumb is that transitions between two tempera-

ture levels must be done ‘slowly’ enough to avoid entrapment in

local minima. The Metropolis–Hastings condition (5) provides a

quantification of this statement since ‘slow’ translates to taking

small enough increments in temperature so that α ≈ 1. In contrast,

ST guarantees detailed balance for finite steps in temperature by

satisfying (5).

ST would appear to have attractive properties in both optimization

and sampling problems. However, looking again at (5) we note that

the ratios of the normalizing constants c(Ti)/c(Tj), (j = i ± 1; i = 1,

. . . , n) are required for evaluation of α(i, j). Marinari & Parisi

(1992) suggest that these can be determined in advance by some

experimentation. From (7) we see that each of them is an integral of

the a posteriori distribution, raised to a power, over the entire model

space. In Bayesian problems, this is comparable to calculation of the

quantity known as the evidence, accurate determination of which is

often a major computational challenge (see Sambridge et al. 2006).

Hence, while ST might be attractive in maintaining detailed balance

it is difficult to implement in cases where normalizing constants

must be determined numerically.

2.3 Parallel Tempering

The preceding discussion of SA and ST helps set the scene for a

description of PT, which was initially devised by Geyer (1991) with

the more modern version attributed to Falcioni & Deem (1999). In

this case, a temperature ladder is again employed and an ensemble

of walkers are distributed across all levels of the ladder. PT is, there-

fore, naturally an ensemble-based approach. Appendix C contains

a pseudo-code representation of a basic PT algorithm which illus-

trates the main idea. For PT the within-chain steps, updating model

parameters m, are unchanged from ST and SA, and so again the stan-

dard McMC Metropolis algorithm is used to sample the respective

conditional distribution π (m|Ti). The difference between ST and

PT lies in the nature of the between-chain steps, that is, transitions

from one conditional distribution to another. Again between-chain

steps are proposed either randomly, or simply alternately to within-

chain steps. However, rather than a single walker moving either up

or down a level in the ladder as in ST, in PT the between-chain

step consists of a swap of models at two neighbouring temperature

levels, a process referred to as an ‘exchange swap’. We write

(mi , Ti ), (m j , T j ) → (mi , T j ), (m j , Ti ), (9)

where mi and mj are the model parameter vectors in chains i and

j immediately before the proposed swap. Fig. 2(c) illustrates the

situation. Pairs of neighbouring chains are seen to always swap
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together. As shown in Appendix A, the probability, α(i, j), that an

exchange swap between models mi and mj at temperature levels Ti

and Tj, respectively, should be accepted is

α(i, j) = 1 ∧

{

p̃(mi |d)1/T j c(Ti )q(i | j)

p̃(mi |d)1/Ti c(T j )q( j |i)

×
p̃(m j |d)1/Ti c(T j )q( j |i)

p̃(m j |d)1/T j c(Ti )q(i | j)

}

. (10)

Cancelling the like terms, the detailed balance condition for the

swap becomes

α(i, j) = 1 ∧

[

p̃(m j |d)

p̃(mi |d)

]1/Ti
[

p̃(mi |d)

p̃(m j |d)

]1/T j

, (11)

and hence the troublesome normalizing constants cancel out, leav-

ing α(i, j) dependent on only the values of the unnormalized

a posteriori distribution in the two chains at the time of the swap.

We see then that PT provides a way to sample the combined distribu-

tions π (m|Ti), (i = 1, . . . , n) maintaining equilibrium but without

the need to calculate normalizing constants. In the author’s view

this is it most appealing feature.

For an optimization problem (1), the corresponding expression is

derived in Appendix A and becomes

α(i, j) = 1 ∧ exp {(1/Ti − 1/T j )(φ(mi ) − φ(m j )}, (12)

and again this is a simple term to evaluate requiring only known

quantities. It is seen then that the use of the term ‘Parallel’ in the

name does not refer to a need for parallelized computer architec-

ture but rather in the nature of the algorithm itself, and the way it

communicates information between otherwise independent Markov

chains using the exchange swap process. In practice, it makes a lot

of sense to implement PT on paralleled hardware for which it is

ideally suited.

In a Bayesian sampling problem our interest is only in the dis-

tribution at T = 1; however, by augmenting the space in this way

the ensemble of models collected at T = 1 will have been cycled

through all other temperature levels each of which allows consid-

erably more exploration of the parameter space. This should, in

principle, improve ‘mixing’ of the Markov chain and hence effi-

ciency of convergence. In an optimization framework this translates

to an improved ability to escape from entrapment in local minima.

Examples of applications appear below.

A clear difference between PT and SA in an optimization con-

text, is that the latter by definition starts at high temperatures and

hence more exploratory parameter search and moves to lower tem-

peratures and more localized search. In contrast, with PT effort is

spread across all temperatures at all times and hence while low tem-

perature chains are exploring locally, higher temperature chains are

exploring more globally and communication between all changes

continues at a constant rate throughout. One might argue that PT

would be less efficient for some problems since effort (i.e. ob-

jective function evaluations) is continually expended in the more

exploratory higher temperature sampling, regardless of the value of

the objective function. This may well be true in some cases, however,

all direct search optimization algorithms are a trade-off between ef-

ficiency, that is, how quickly one gets to an acceptable answer, and

robustness, that is, the likelihood of not getting an answer at all (due

to entrapment in secondary minima). In SA the search is initially

expansive and finally concentrated which will be efficient provided

the rate of transition between the two states is appropriate for the

particular problem. The harder the optimization problem, the more

carefully the cooling schedule of temperatures needs to be chosen,

otherwise entrapment in local minima will result. In PT these issues

are avoided because the balance of effort between higher temper-

ature exploratory search and lower temperature localized search is

kept constant throughout. Thereby, at least, providing the potential

that sampling can always climb out of deep wells in the misfit land-

scape, because some chains are never stuck there in the first place.

An example of this aspect appears in the next section.

The first applications of search algorithms involving exchange

swaps were to protein folding, then under the title of replica ex-

change molecular dynamics (Swendsen & Wang 1986; Sugita &

Okamoto 1999; Habeck et al. 2005). In recent years, use of the PT

algorithm has become widespread across a number of fields includ-

ing chemical physics (Falcioni & Deem 1999), Bayesian statistics

(Brooks et al. 2011) and gravitational wave astronomy (Cornish

2012). More recently, the first applications appeared in ocean acous-

tics, (Dettmer & Dosso 2012, 2013; Dosso et al. 2012). We are not

aware of any applications in solid earth geophysics. Further discus-

sions of tempering algorithms can be found in Li et al. (2004), Earl

& Deem (2005) and Geyer (2011). In the next section, we illustrate

PT through some numerical examples. Issues addressed include the

number and distribution of temperatures in the ladder and its affect

on performance.

3 N U M E R I C A L E X A M P L E S

3.1 A bi-modal toy problem

As a first illustration of PT, we draw samples from a bi-modal PDF

given by

π (x) = 2−x + 2−(100−x), (13)

which is shown in Fig. 3(a). This has two peaks of value π (x ≈ 1

at x = 0 and 100 separated by an extremely low probability re-

gion in between where π (x) ≈ 10−15. This function was used by

Atchadé et al. (2011) to study optimal temperature ladders in PT. It

is a simple way of illustrating the ‘mixing problem’, where McMC

random walkers at one peak have considerable difficulty in mov-

ing to the other. In a Bayesian setting, the test function presents

a challenge because we need to sample all significant probability

peaks for meaningful results, while in optimization we want to ex-

plore all significant peaks to ensure an optimal solution, that is,

higher values of π (x). In this example, the x-axis is discretized into

101 points, xi = i (i = 0, . . . , 100). The within-chain steps of the

Metropolis–Hastings walker consist of a randomly chosen proposal

to either increase or decrease the walker position, xi, by one unit.

This is represented by a proposal distribution q(xj|xi), which is the

probability of the chain moving from position xi to xj and given by

q(x j |xi ) =

⎧

⎪

⎨

⎪

⎩

1/2 : j = i ± 1,

1 : i = 0, j = 1 or i = 100, j = 99,

0 : otherwise.

(14)

According to the Metropolis–Hastings rule, this proposal is ac-

cepted with probability

αi j =
π (x j )q(xi |x j )

π (xi )q(x j |xi )
. (15)

Fig. 3(b) shows the position of the (non-tempered) McMC random

walker produced in this way. The walker starts in the left-hand peak

at x = 0, and, despite numerous attempts, after 10 000 steps is unable

to move far from its initial position. This is because the extreme

low probability region between the two peaks forms a barrier to
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362 M. Sambridge

Figure 3. (a) Target probability density function for the bi-modal test problem corresponding to (13). Random walkers have difficulty passing through the

channel of low probability separating the two peaks. Dashed lines indicate tempered distributions for T = 16, 64 and 1000. (b) Position, x, of non-tempered

random McMC walker (y-axis) as a function of chain step (x-axis). The random walker starts in the left-hand peak at x = 0 but is unable to move far away

even after 10 000 samples. (c) Positions of two random walkers at T = 1 (cold chain) and T = 1000 (hot chain) with exchange swaps allowed between them.

The cold chain is now able to traverse the low probability region and reach the second high probability peak at x = 100. For reference, the grey line shows

the hot chain (T = 1000) which moves more freely around the space. Panels (d) and (e) show position of the cold chain with 10 and 50 temperature levels,

respectively, between 1 ≤ T ≤ 1000, allowing exchange swaps between neighbouring temperatures (see Fig. 2c). For n = 10, the cold chain transitions multiple

times between the peaks, but these disappear for n = 50. (f) A repeat of case (e) at the same 50 temperature levels only with exchange swaps permitted between

all chains, as shown in Fig. 2(d). Traversals are observed and at an increased rate over the 10 temperature case.

transition. Fig. 3(c) shows the situation with two tempered chains.

The cold chain at T = 1 ‘sees’ the same π (x) given by (13) as in

the previous case, but now is able to perform exchange swaps with

the hot chain at T = 1000 which wanders about virtually uniformly

across the domain (see grey curve in Fig. 3a). Here, within-chain

steps perturbing x and exchange swaps between temperature levels

are proposed alternately. After about 3000 chain steps a successful

transition occurs from the peak at x = 0 to the one at x = 100
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because of an accepted exchange swap between the two chains.

This simple example demonstrates the power of the exchange swap

process in enabling the cold chain to pass across regions of extreme

low probability in parameter space.

Figs 3(d) and (e) show the situation with a ladder of n = 10 and

50 temperature levels, respectively. Temperatures are distributed

according to the formula Ti = 103(i − 1)/(n − 1), (i = 1, . . . , n) as

proposed by Atchadé et al. (2011). For the 10 temperature level

case, the cold chain transitions multiple times between the two

peaks in the first 10 000 steps suggesting that smaller temperature

jumps and more levels improves the ability of the cold chain to

move about the space compared to the n = 1 case. However, with

50 temperature levels the transitions between peaks is absent even

though there are five times as many chains present.

One might expect that an increased numbers of chains and tem-

peratures would mean better sampling of the temperature variable

and hence better performance. However, this is not the case because

an increase in the number of temperature levels means a decrease in

the gap between temperatures. While the probability of a successful

exchange swap is increased as the temperature gap decreases, at the

same time the cold chain needs to undergo many more successful

swaps in order to reach the hottest chain. It turns out that these

two effects do not simply trade-off with one another. In fact, it is a

generally observed feature of PT that the ability of the cold chain

to move around the parameter space will initially be improved as

the number of temperature levels is increased, because of higher

acceptance probability per swap, but ultimately inhibited, because

of the increased number of successful swaps needed (Earl & Deem

2005).

This effect is seen in our example. Fig. 4 shows a plot of the

average distance moved by the cold chain (a proxy for algorithm

efficiency used by Atchadé et al. 2011) as a function of the number

of temperature intervals. As can be seen, the cold chain initially

increases in efficiency with n and then decreases again. Atchadé

Figure 4. Sampling efficiency of a Parallel Tempering algorithm for the

bi-modal problem in Fig. 3(a) as a function of the number of temperature

levels. Here efficiency is represented by the size of the mean square jump

distance of the cold chain in units of inverse temperature (see Atchadé et al.

2011, for a discussion). The solid curve corresponds to the standard case

where transitions between temperatures are restricted to neighbouring tem-

perature levels, and the dashed curve where transitions are allowed between

all temperature levels. Increased efficiency is achieved by allowing transi-

tions between all temperature levels, and, in this case, finding an appropriate

number of temperature levels is relatively straightforward.

et al. (2011) cite this as motivation for the need to tune the size of

temperature gaps to allow the cold chain to efficiently move about

the space. Indeed, there has been considerable focus on the tuning of

temperature ladders in both PT and ST (Geyer & Thompson 1995;

Kofke 2002, 2004; Pedrescu et al. 2004; Kone & Kofke 2005).

In our experiments we found that the situation can be reme-

died with a simple adjustment to the standard PT algorithm. Rather

than restricting exchange swaps to neighbouring temperature levels,

we relax this condition and allow exchange swaps to be proposed

between any pair of levels randomly. The situation is depicted in

Fig. 2(d). This simple change increases the number of possible swap

pairs from N − 1 to 1
2

N (N − 1) but has no effect on the computa-

tional effort because the total number of swaps are unchanged. Nev-

ertheless, the result is a significant improvement in performance.

Fig. 3(f) shows a repeat of the 50 temperature level example in

Fig. 3(e) allowing proposed swaps between any pair of temperature

levels. The result is dramatic with multiple and regular transitions of

the cold chain between the two peaks in the PDF. Fig. 4 shows a plot

of the average distance moved by the cold chain (in units of inverse

temperature) with number of temperature levels for the two cases

of restricted (solid) and unrestricted (dashed) temperature jumps.

As is clearly seen, the efficiency of the unrestricted case increases

with n in a simple fashion and avoids the need for the careful tuning

apparent in the restricted case. In all of our experiments we choose

n after some experimentation in this way. Since most implementa-

tions of PT are likely to be on parallelized hardware, there is little

additional cost in increasing the number of temperature levels and

hence tuning can be straightforward. Dettmer & Dosso (2012) also

implement PT by allowing transitions between multiple temperature

levels and found it to be beneficial in geoacoustic inverse problems.

3.2 Parallel Tempering for probabilistic sampling

To illustrate the effectiveness of PT on a more challenging problem,

we applied it to the trans-dimensional inversion of seismic receiver

functions (Bodin et al. 2012b). In a trans-dimensional inversion, the

number of unknowns is also unknown and an ensemble of solutions

can be obtained by sampling with a Markov chain over a variable

dimension parameter space (see Sambridge et al. 2006; Hopcroft

et al. 2007; Gallagher et al. 2009, 2011; Dettmer & Dosso 2012;

Bodin et al. 2012a, for some recent examples). One aspect of this

problem is the need for efficient sampling, particularly in the model

dimension parameter. The problem setup is illustrated in Fig. 5(a)

which is identical to that described by Bodin et al. (2012b).

In brief, the parametrization consists of a 1-D shear wave velocity

profile as a function of depth made from NL layers, each of which

has a velocity parameter and an interface depth as unknown, (Vs, i,

ci), (i = 1, . . . , NL), where NL is a variable. As shown in Fig. 5(a),

each interface depth is defined as the midpoint of consecutive nodes

at ci. The likelihood function takes the familiar Gaussian form

p(d|m) =
1

√

(2π )N |Cd |

× exp
{

−1/2(d − dp(m))T C−1
d (d − dp(m))

}

, (16)

where d is the synthetic receiver function, m the model, dp(m)

the predicted receiver function from the model, Cd is the noise

covariance matrix and N is the number of data values (= number of

samples in each receiver function × number of receiver functions).

The data noise covariance matrix represents the standard devi-

ation of the noise and correlation parameters in time. The noise
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standard deviation parameter is also treated as an unknown, σ and

we write

Cd = σ 2C̃d , (17)

where C̃d is the correlation matrix of the synthetic data. In this

synthetic problem, the true model is the 6 layer shear wave velocity

profile shown in Fig. 5(b) representing a total of 12 model param-

eters plus the data noise standard deviation. The receiver function

with noise added, Fig. 5(c) acts as the data for our experiments and

was calculated with the algorithm of Shibutani et al. (1996) with

true noise value of σ = 0.01. The matrix C̃d represents the temporal

correlation of the noise and is non-diagonal. Here, we fix it at the

true value, meaning that only the size of the noise, σ , is sampled

over and not the correlation parameters. The a priori PDF is uni-

form in all variables between fixed bounds which are: 2.0 km s−1 ≤

Vs, i ≤ 5.0 km s−1, 0 km ≤ ci ≤ 60 km, 10−3 s ≤ σ ≤ 10−1 s. This

setup is identical to earlier work. See eqs (4) and (5) of Bodin et al.

(2012b) for further details.

To illustrate the multimodal character of the data misfit func-

tion, we plot the −log-likelihood about a randomly chosen point

in parameter space. Fig. 6 shows four panels each of which is pro-

duced by changing a single model parameter while keeping all other

parameters fixed. Figs 6(a) and (b) show the effect on the data mis-

fit, −log (p(d|m), by varying the velocity, Vi, of an upper crustal and

mid-crustal layer, respectively. Figs 6(c) and (d) show how the cor-

responding node depth parameters, ci, influence the data misfit. The

multimodal character of this conditional likelihood is clearly evi-

dent. In the numerical experiments that follow each Markov chain is

initiated at a random point derived from a uniform prior and so the

landscapes seen in Fig. 6 are likely to be typical of that experienced

during early stages of the McMC chains. From a sampling perspec-

tive, such likelihood functions are reminiscent of the toy problem in

Fig. 3(a), with peaks replaced by troughs, and represent a challenge

in drawing unbiased samples. From an optimization perspective, the

multimodal character would largely preclude the use of ‘downhill’

gradient-based algorithms due to a likely entrapment in secondary

minima.

The Bayesian inference problem is to sample the multimodal

a posteriori PDF, p(m|d), for this problem setup with a variable

number of layers. The birth–death McMC implementation of Bodin

et al. (2012b) is used to do this and constitutes the within-chain

sampler. In this case, perturbations of the model consist in equal

proportion of a layer birth, layer death, as well as change of the

velocity parameter within a layer using a Gaussian proposal dis-

tribution. The mean of the proposal distribution is equal to the

velocity parameter value immediately prior to the perturbation, and

the standard deviations are tuned a priori as proposed by Rosenthal

(2000).

In all the examples presented here, we choose to only temper the

likelihood function, p(d|m), rather than the full a posteriori PDF,

p(m|d). This is because explicit evaluation of the prior PDF was

not required in the sampling algorithm of Bodin et al. (2012b),

which constitutes the within-chain sampler. In trans-dimensional

inversion, the prior PDF may significantly influence the number

of unknowns in the model and so without tempering we expect a

more limited influence on the ability of the Markov chain to jump

dimensions. An explicitly defined prior for this 1-D spatial problem

is possible (see Hopcroft et al. 2007; Steininger et al. 2013), and

with this tempering could be applied. With no tempering of the

prior, the acceptance term (11) becomes

α(i, j) = 1 ∧

[

p̃(d|m j )

p̃(d|mi )

]1/Ti
[

p̃(d|mi )

p̃(d|m j )

]1/T j

. (18)

Our primary interest is to examine the effect of introducing ex-

change swaps into the ensemble of random walkers that would

otherwise be independent. To do this we performed an experiment

with 380 tempered McMC chains with 25 per cent at T = 1 and

the remainder with temperatures generated randomly according to

a log-uniform distribution in the range 1 ≤ T ≤ 1000. The upper

limit in T was chosen somewhat arbitrarily but is sufficiently large

to ensure that the corresponding walker is uniformly random. All

Figure 5. (a) Parametrization of the trans-dimensional 1-D velocity profile. Layers are represented by nodes at position ci spaced equidistant between interfaces

at depths zi = 1
2

(ci+1 + ci ). The ith layer has velocity parameter Vs, i; (b) shows the 1-D velocity profile used to calculate the synthetic receiver function in the

right panel. (c) Noise is added using the approach of Shibutani et al. (1996) and this becomes the synthetic data for the numerical example.
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(a)

Figure 6. Profiles of changes in the negative log-likelihood (or data misfit) through a randomly chosen point in parameter space for the receiver function

problem described in Fig. 5. Panels (a) and (b) show the effect on the misfit when a single velocity parameter in the model is varied and all other parameters are

kept fixed. The randomly chosen reference model has values of 2.60 km s−1 and 3.73 km s−1, respectively. Panels (c) and (d) are the same but for two interface

depth parameters with the random model at 16.68 km and 27.96 km, respectively. The location of the reference model is indicated by a solid dot. The character

of the likelihood surface varies dramatically from multimodal, but relatively smoothly varying, as in (a), to combinations of smooth and high-frequency

oscillations, (c) and (d).

chains were initiated randomly using the prior. In the first experi-

ment, exchange swaps are only allowed after 105 McMC steps have

been completed in order to examine the effect of PT.

Fig. 7 shows results of some average properties of the cold chains

at T = 1. In the upper panel, the average −log-likelihood (or re-

ceiver function misfit) is plotted as a function of chain step, while

the middle panel shows the average number of layers in the trans-

dimensional Markov chains and the lower panel the standard devia-

tion of the receiver function noise. Fig. 7 shows that in all three cases

the chains begin to pass through the initial ‘burn-in’ phase, typified

by a reduction in average data misfit. For the first 105 chain steps

no exchange swaps are allowed and all chains work independently.

In this stage then standard McMC is being used. PT begins at 105

steps and a significant influence on the Markov chain is observed

as the chains start to communicate through exchange swaps. It is

seen that both the −log-likelihood and the average data noise pa-

rameter decrease virtually instantaneously. Changes in the average

number of layers are more subtle, but in all three cases the variance

of the mean also becomes larger, suggesting more mixing within

the chains. This result suggests that the convergence of the McMC

process is significantly accelerated by PT.

Results of a second experiment are shown in Fig. 8. In this case,

the average −log-likelihood is compared between two separate runs.

The solid black curve shows a PT run from Fig. 7, only now with

exchange swaps present from the start and the temperature range

1 ≤ T ≤ 50. The grey curve is the average of 380 independent

McMC chains all at T = 1. We emphasize here that the total amount

of work in each ensemble (represented by the number of chain steps

x number of chains) is identical between these two, however, PT

shows markedly improved convergence. An estimate of the gradi-

ent of McMC curve in Fig. 8 after 4 × 105 steps suggests that

approximately 10 times the number of chain steps would be re-

quired to reduce the average −log-likelihood to the value of the PT

at 4 × 105 steps. In terms of this measure, convergence of PT is at

least 10 times faster than the non-tempered McMC.

Fig. 9 contains Bayesian a posteriori PDFs derived from both

McMC and PT ensembles. Figs 9(a) and (b) show information on

the shear wave velocity as a shaded image of stacked marginals.

The left panel in each set shows marginals of the a posteriori PDF

of shear wave velocity profiles, Vs, aligned in depth with warmer

colours representing higher relative probability. The marginal image

appears to be better resolved with PT sampling than non-tempered

McMC which is considerably more blurred. The middle panels

show the peak of each marginal represented as a single velocity

depth model. In each case the thicker piecewise curve is the true

one. Again the PT result is closer to the truth than that of non-

tempered McMC although the difference is less pronounced. Since

the interface depth position is variable, then in the right-hand panel,
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Figure 7. Comparison of average convergence properties for non-tempered

versus tempered Markov chains. Results show averages of the 95 chains at

temperature, T = 1. Panel (a) is the negative log-likelihood; (b) is the number

of layers in the earth model and (c) is the estimated standard deviation

of the noise. In all cases, the horizontal axis is the number of steps of

the Markov chain. Exchange swaps between chains are only allowed after

1 × 105 steps have elapsed. The insets show more detail in the region of the

transition between non-tempered McMC and Parallel Tempering. The effect

of allowing exchange swaps between chains clearly produces a dramatic

acceleration of convergence which is reflected in the behaviour of all three

parameters.

the a posterior PDF profile for the interface depths is shown. Again

the PT appears better converged with PDF peaks at the true depths

more pronounced than in the McMC case. Fig. 9(c) shows the

a posteriori marginal PDF of the number of layers and the standard

deviation of the data noise, both of which are peaked about the

true solutions of NL = 6 and σ = 0.01, respectively. For reference

Fig. 9(d) shows the fit of the original receiver function dashed and

that calculated from the model within the ensemble with maximum

a posteriori PDF. The closeness of fit indicates that the chain has

converged. All of the properties of the ensemble displayed suggest

that the use of PT has accelerated convergence of the Markov chains.

As noted above, PT is naturally a multichain technique, whereas

McMC could be run as a single chain. An alternate comparison

with equal numbers of likelihood evaluations would be between the

PT results as in Fig. 8 and a single McMC chain run for 380 times

as long. By that stage one might well expect the McMC chain to

have also converged, in which case one could argue that McMC

is able to do equally as well as PT. This would be true and in

fact we have not done that experiment because it is impractical to

Figure 8. Negative log-likelihood as a function of chain step for two sam-

pling algorithms. The grey curve is the average of 380 non-tempered McMC

chains (all at T = 1) and black is an average of 95 tempered chains (T = 1)

when exchange swaps are allowed between 380 chains with temperatures

spanning the range 1.0 ≤ T ≤ 50.0. The Parallel Tempering converges at

least 10 times faster in this case. See text for details.

do so. Calculations here are feasible because they are performed

on parallel computer architectures which ideally suits a multichain

framework, because each chain can be handled simultaneously by

a separate processor. A single McMC chain run for 380 times as

many steps could not take advantage of hardware parallelism and

hence would take 380 times as long on a single processor which

is a significant disadvantage. Furthermore, experience shows that

multiple independent McMC chains are usually more robust than

single chains in that the latter can experience exponentially long

wait times sampling deep secondary maxima in the PDF.

Fig. 10 shows results of a third experiment with trans-dimensional

sampling where the McMC and PT Markov chains are initiated at

the same model, which is the maximum likelihood (ML) model from

the second experiment. Here the number of layers of the shear wave

model is displayed for a single random walker. Separate panels show

how the dimension parameter changes for the non-tempered McMC

walker (upper) and PT (lower) over a window of the cold Markov

chain. By initiating the two chains from the same point we can

examine the effect of dimension mixing. Ideally, one would prefer

higher mixing rates which means the chain successfully transitions

to as many different values of NL, which are consistent with the

data and prior PDF. As can be seen the frequency of dimension

changes is much higher for PT than McMC. For this window the

PT chain changes dimension 90 times over the range 8 ≤ NL ≤

14, whereas the non-tempered McMC changes dimension 10 times

between 12 ≤ NL ≤ 13. As noted above, these results are achieved

without tempering the prior PDF which suggests that the broader

dimension sampling is driven in response to the data. This result

demonstrates the superior dimension mixing ability of PT, which is

consistent with the results of Dettmer & Dosso (2012) who observed

a similar effect.

Fig. 11 shows a matrix representing the rates of successful tran-

sitions between temperature levels for the PT algorithm in the sec-

ond experiment. Here the temperature range of 1–50 is divided

into 16 regularly spaced bins on a log-uniform axis. The inten-

sity of shade in each pixel represents the success rate of exchange

swaps between chains whose temperatures are in the respective

bins. Fig. 11 appears to show a healthy degree of mixing across all
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Figure 9. Results of the two sampling algorithms shown in Fig. 8(a) shows the case for the Parallel Tempering algorithm and (b) for the non-tempered McMC

sampler. Both after 300 000 McMC steps, following 100 000 burn-in steps. Figures are similar in format to that of Bodin et al. (2012b). Displayed are marginal

PDFs of the shear wave velocity (left panels); peaks of those marginal PDFs compared to the true solution (middle panels) and PDFs of the interface depths

(right panels). The PT solution is better resolved indicating more efficient sampling of the parameter space. Parts (c) and (d) show additional results for the PT

case. Panels show the a posteriori marginal for the numbers of layers with true value of 6, the noise parameter marginal centred on true value 0.01 s and the fit

of the maximum likelihood model (solid) compared to the original noisy receiver function (dashed).

temperature levels. High values in the off-diagonal positions also in-

dicate that many successful exchange swaps have occurred between

non-neighbouring temperature levels, which provides some justifi-

cation for allowing this to happen in the first place. As the chain pro-

gresses the models in each chain are likely to move across all tempe-

rature levels and thereby more rapidly explore the parameter space.

3.3 Multimodal optimization

The final numerical example is a demonstration of PT applied to

global optimization. Here the setup is described in Fig. 12, where the

data consist of 18 receiver functions recorded at points along a 2-D

profile, as shown in Fig. 12(b), and we seek to recover the best fitting

laterally varying 2-D velocity model shown in Fig. 12(a). Here the

parametrization of the model consists of six 1-D piecewise constant

control models. As before, these are parametrized by a combination

of depth nodes and shear wave velocities pairs, (Vs, i, ci), with one

per layer. At locations between each pair of control profiles the shear

wave velocity is constructed via linear interpolation, while beyond

the first and last control model no lateral gradients are assumed.

An approximation is introduced to the governing physics so that the

receiver function at any point along the profile is only dependent

on the 1-D shear wave model immediately beneath the receiver

location. This has the effect of allowing standard, and rapid, 1-D

synthetics to be used.

The 18 receiver locations are indicated by the dots along the

surface of the profile in Fig. 12(a). Overall, there are 36 structural

parameters representing velocities and interface depths, which are

again controlled by nodal parameters in each layer, as in Fig. 5.

The influence of the control models on the receiver locations is
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Figure 10. Comparison of dimension mixing ability of a non-tempered

McMC chain (upper) and Parallel Tempering(lower) for trans-dimensional

receiver function sampling. The y-axis in both cases is the number of layers

in a McMC run (upper panel) and PT run (lower panel), while the x-axis is the

chain step. The non-tempered chain makes only 10 changes in the number

of layers, whereas the tempered chain makes about an order of magnitude

more transitions in this window. In this test both chains are initiated at the

same best data fit model found by the Parallel Tempering algorithm solution

shown in Fig. 9.

indicated by a series of dotted lines in the upper panel of Fig. 12(a).

As can be seen, receiver functions depend on at most two control

models, while each control model influences between four and five

receiver functions. From left to right the control models form a 2-D

profile containing several dipping layers in shear wave velocity. The

combined effect is a multimodal optimization problem for structural

and data noise parameters.

Here, the dimension is fixed and we minimize the likelihood func-

tion only. Another simplification from the earlier sampling problem

is that we solve for the noise parameter σ by setting its value to the

ML estimate throughout, that is, we find σ in (17) which maximizes

Figure 11. Probability transition matrix between 16 temperature bins for

all 380 chains of the Parallel Tempering algorithm in the receiver func-

tion example. Temperature bins span T = 1–50 and are log-uniformly dis-

tributed. Warmer colours indicate higher rates of successful transitions be-

tween chains in corresponding bins. Successful jumps are seen to occur

between chains at similar temperatures and off-diagonal elements increase

in size with temperature indicating significant, and desirable, mixing of the

chains across multiple temperature levels.

(16). It can be shown (see Appendix B) that the ML estimate of σ

is

σ (m) =

[

1

N
rT C̃−1

d r

]1/2

, (19)

where the residual vector, r = d − dp(m) and data vector d is a

concatenation of the 18 receiver functions, Fig. 12(b), and dp(m)

are the corresponding predictions from the model m. Substitution

of (19) into (16) and dropping additive constants gives a modi-

fied −log-likelihood (data misfit) expression which is independent

of the noise parameter σ

− log p(d|m) =
N

2
log

(

rT C̃−1
d r

)

. (20)

For details see Appendix B. This can be a useful substitution for

many inverse problems where data variances are poorly known.

For our test problem, it reduces the dimension of the parameter

space while automatically solving for the noise parameter during

the optimization. Previously this approach has been used by Dosso

& Wilmut (2006) to good effect for non-linear inverse problems in

ocean acoustics (see also Dosso et al. 2012).

Parameters of the six control models are sought which minimize

misfit between the 18 observed and predicted receiver functions

simultaneously, by optimization of (20). Results from our PT algo-

rithm are displayed in Figs 13 and 14. Here, as before, we make use

of 380 McMC chains with a temperature ladder spanning 1.0 ≤ T ≤

50, and 95 chains fixed at T = 1. Each chain is initiated at a random

velocity model calculated from uniform random variables in the

range 0 km ≤ ci ≤ 60 km for each depth node and 2.0 km s−1 ≤

Vs, i ≤ 5.0 km s−1 for each velocity parameter. These are quite wide

bounds and hence initial models in each chain are typically very

poor fits to the data.

Within-chain steps were performed with the same McMC algo-

rithm used in previous experiments. Exchange swaps were proposed

uniform randomly between all pairs of temperature levels. Fig. 13

shows three curves of the data misfit as a function of chain step. The

solid ‘staircase’ curve is the lowest value of the −log-likelihood ac-

cording to expression (20) as a function of chain step; the thick black

line is the average value over the cold chains and the grey curve is

the average over chains with temperatures in the range 1.5 ≤ T ≤

2.5. Note that due to the form of (20) values of −log-likelihood can

become negative when data residuals, r, are small. Fig. 13 shows

that while the optimum model is largely converged after 25 per cent

of the steps, the ensemble of models at T = 1 show some statistical

fluctuations and continue to reduce throughout. As expected, mod-

els at higher temperature have notably slower convergence due to

the tempered Markov chain being more explorative.

Fig. 14(a) shows best fit solutions found for the six control mod-

els (solid curves) together with the true solutions (dashed), while

Fig. 14(b) contains a comparison of the corresponding predicted

and original receiver functions. All synthetic data is fit very well in

this case and the recovered models are close to true values. Given

that the true model is unlikely to be at the global minimum of the

objective function (20) due to added noise, the fit is sufficiently

good to conclude that the algorithm has found the global solution.

Overall, this example shows that PT is able to optimize complicated

multimodal functions.

4 D I S C U S S I O N

The results of experiments presented here indicate that exchange

swaps between tempered McMC chains is an effective mechanism
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Figure 12. (a) 2-D profile of the laterally varying wave speed model used in the optimization test. The six 1-D control models are shown as a function of

position. Velocity values and interface positions vary linearly along the profile between control models. The velocity axis applies to the first model only.

Depth range is not to the full extent of the model. Locations of 18 receivers are represented by dots at zero depth. (b) Synthetic receiver functions with added

noise calculated at the 18 receiver locations. Each receiver function is calculated from the 1-D model beneath its location, which is determined through linear

interpolation of neighbouring control models. The interdependence of earth models and receiver functions is indicated by horizontal bars in the panel above

part (a).

Figure 13. Convergence of negative log-likelihood as a function of chain

step for the PT algorithm. The solid (staircase) curve is the lowest data

misfit across all chains. The black line is the average data misfit across the

95 chains at the lowest temperature (T = 1). The grey line is the average data

misfit across chains in temperature bins 2–4, corresponding to temperatures

1.5 ≤ T ≤ 2.5. The optimum model converges by 5 × 105 steps, whereas,

as expected, the convergence rates of the ensembles are ordered inversely

with temperature because higher temperatures are more explorative of the

parameter space.

for increasing efficiency in sampling algorithms, as well as a novel

approach to global optimization. Several numerical examples are

presented to illustrate the central idea. These are intended to be

illustrative. In particular, it is not argued that PT should necessarily

replace alternate approaches for the inversion of receiver functions.

Convergence can often be achieved for this problem with existing

trans-dimensional McMC samplers, as proposed by Bodin et al.

(2012b), provided they are run for long enough. The intention here

is to demonstrate the potential of PT in optimization and sampling

of multimodal functions and thereby encourage further applications

to geoscience problems.

An interesting feature of PT is that it is in essence a ‘meta’-

algorithm, in that it incorporates a McMC sampler at its cen-

tre, but is not dependent on any details of that algorithm. This

is clearly demonstrated in the pseudo-code representation of the

algorithm shown in Appendix C. PT can be applied to fixed or

trans-dimensional within-chain sampling, use any form of model

perturbation or indeed any form of model parametrization. The

exchange-swapping process merely requires multiple chains to ex-

ist that are swapped in pairs using the corresponding Metropolis–

Hastings rule (11). This has considerable advantages in software

construction because libraries can be written that make no assump-

tion about the nature of the parameter space. Real, integer or com-

binatorial unknowns can be treated equally well. Furthermore, it

is always possible to apply an exchange-swapping process to any

existing McMC sampler, and hence investment in refining such al-

gorithms for a particular problem is not lost. The generality of PT

is an appealing feature.

While we argue that PT may be used to accelerate convergence

of McMC algorithms, many other techniques exist which have the

same goal. An area of much current focus is the choice of proposal

distribution used for the within-chain sampling. This decision has

been shown to have considerable effect on convergence rates of

McMC algorithms (Dosso & Wilmut 2006). In our experiments,

there is a single structural parameter per layer and so a 1-D pro-

posal Gaussian distribution is used to perturb layers independently.
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370 M. Sambridge

Figure 14. (a) Maximum likelihood solution for the six 1-D control models found by the PT algorithm. Recovered models are solid and are an excellent fit to

the original profiles (dashed). (b) Predicted (solid) and original (dashed) receiver functions, showing all major features fit to a high level. All other details are

as in Fig. 12.

Alternate proposal distributions include multidimensional Gaus-

sians based on linearized a posteriori model covariances (Malin-

verno 2002; Dosso & Wilmut 2006; Minsley 2011) and those which

dynamically detect the local scale and shape of the target distribution

during the random walk. Examples of which are delayed rejection

(Tierney & Mira 1999; Mira 2001; Haario et al. 2006), ‘multiple

try’ or ‘snooker’ moves which utilize the entire history of ensemble

to create model perturbations (Laloy & Vrugt 2012), and schemes

suited to cases where the target PDF may be approximated as a

mixture of Gaussians (Craiu et al. 2009; Bai et al. 2011). The fo-

cus of this paper, however, is on the effect of introducing exchange

swaps into the ensemble and not the nature of the proposal dis-

tribution itself. As noted above, PT is independent of the choice

of within-chain sampler and hence these adaptive proposal distri-

butions could be used together with a tempering framework. For

example, it would make sense to make the within-chain proposal

distributions a function of temperature of the chain, something not

done in our experiments, so that higher temperature chains tend to

propose larger steps in model space while lower temperature chains

propose smaller steps.

In optimization, PT is widely applicable. For example, it could

be applied to any problem where, say SA is used, thereby taking

advantage of the same central Markov chain approach but with par-

allel exchange swaps present and governed by the acceptance rule

(12). More generally, one could imagine applying exchange swaps

to any existing numerical algorithm (not just an McMC sampler),

which sampled, or optimized, tempered probability distributions in

the form of (3) or (1), respectively. In this way, PT could be general-

ized for use with other direct search optimization methods, however,

this aspect does not appear to have been explored to date.

The retention of ‘detailed balance’ in PT, which keeps the swap-

ping process in equilibrium, is in principle an advantage over SA.

However, this does not mean that PT will always outperform SA

or ST in any particular application. There are many examples

of successful applications of SA to optimization problems in the

geosciences, where the lack of equilibrium in the Markov chain

as temperatures are reduced is not seriously detrimental to perfor-

mance. However, in general, too rapid a cooling is known to cause

disequilibrium in SA, with entrapment in secondary minima the

likely result (Aarts & Korst 1989). PT offers an alternate in these

cases.

While we have presented five separate numerical examples show-

ing applications of PT in various situations, these are clearly not

exhaustive. For example, we have not provided numerical exam-

ples comparing PT with alternate approaches for parameter search

and optimization, which is beyond the scope of this paper. In ad-

dition to SA and ST, another search algorithm which has found

several applications in the geosciences is the neighbourhood algo-

rithm (NA) of Sambridge (1999). In this case a few comments are

possible. Specifically, NA, like PT, is an ensemble-based parameter

search technique, but one which is restricted to real-valued param-

eter spaces of fixed dimension. NA has the property of being driven

only by a ranking of models in parameter space according to an

objective function. Since a change of temperature as shown in (1)

does not change the rank of models in an ensemble, then NA is un-

affected by tempering. A second observation is that NA has largely

found success in problems where the numbers of unknowns is rela-

tively small, say less than 50. PT, on the other hand, may be applied

to any problem where SA can be used, and there are applications

across the sciences where these run to the hundreds to thousands

of unknowns (Sen & Stoffa 2013). The NA and tempering do not

appear to be readily combined and one might expect the latter to

find application in a broader class of problems.

The central aim of this paper has been to show how the effi-

ciency of randomized sampling is improved through tempering of

probability distributions, (3) and (1). Taking a broader view, we can

recognize that tempering is in essence just one way of replacing

a difficult multimodal sampling, or optimization problem, with a

series of less difficult versions. In the author’s view, this might be a

principal with general applicability for non-linear inverse problems.

For example, if it is possible to replace a single difficult problem

with a family of related versions of the problem with decreasing

complexity, then considering them in unison may pay benefits. For

example, in parameter search and sampling, solutions to simplified

cases can provide useful starting points for more complex prob-

lems. The key feature of PT is that all such problems are tackled

at once with information continually exchanging between random

pairs.
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5 C O N C LU S I O N

A discussion of algorithms to sample-tempered PDFs is presented.

Certain multimodal optimization and probabilistic sampling prob-

lems common in geophysical treatments of inverse problems may be

addressed by sampling an augmented model space consisting of the

original model parameters and an additional temperature variable.

The technique known as PT is described and illustrated through

several numerical examples. A key element of this approach is the

use of exchange swaps between pairs of Markov chains each sam-

pling a tempered version of the target probability distribution. These

allow sampling of the augmented parameter space while retaining

detailed balance and hence convergence to stationary distributions

(and global minima). A practical solution is proposed to the ques-

tion of how to define a temperature ladder upon which PT may be

performed, which requires some adjustments to the standard version

of the algorithm, to allow transitions between arbitrary, rather than

adjacent temperature levels. Results of numerical tests suggest that

inclusion of exchange swaps provides significant benefits in terms

of acceleration of convergence of Markov chain samplers. Since the

tempering framework is independent of the choice of McMC algo-

rithm used to sample the parameter space, it may be combined with

the most appropriate sampling algorithm for any given problem.

The results here provide encouragement for future applications of

PT more broadly within the geosciences, which to date have been

almost entirely absent.
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Atchadé, Y.F., Roberts, G.O. & Rosenthal, J.S., 2011. Towards optimal

scaling of metropolis-coupled Markov chain Monte Carlo, Stat. Comput.,

21(4), 555–568.

Bai, Y., Craiu, R.V. & Di Narrzo, F., 2011. Divide and conquer: a mixture-

based approach to regional adaptation for MCMC, J. Comp. Graph. Stat.,

20(1), 63–79.

Beck, J.L. & Au, S.-K., 2002. Bayesian updating of structural models and

reliability using Markov chain Monte Carlo simulation, J. Eng. Mech.,

128, 380–391.

Bina, C.R., 1998. Free energy minimization by simulated annealing with

applications to lithospheric slabs and mantle plumes, Pure appl. Geophys.,

151, 605–618.

Bodin, T., Sambridge, M., Rawlinson, N. & Arroucau, P., 2012a. Transdi-

mensional tomography with unknown data noise, Geophys. J. Int., 189,

1536–1556.
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A P P E N D I X A : M E T RO P O L I S – H A S T I N G S

S A M P L E R S

A1 Within-chain sampling

A Markov chain Monte Carlo algorithm is a method for drawing

random samples of a multidimensional parameter vector, x, from

an arbitrary normalized target probability density distribution, π (x).

An up to date discussion of McMC samplers as well as much of

the recent research in the area can be found in Brooks et al. (2011).

Here, we provide a brief summary of the main elements. An McMC

algorithm starts at an initial point, x0 and generates a new dependent

vector x1 using a Metropolis–Hastings (M-H) sampler.

The M-H sampler consists of two steps: the first is to generate a

proposed new random vector x′ and the second is to decide whether

to accept or reject it. If accepted the chain moves to x′, if rejected it

stays at its original position x. In the first step, the random vector x′

is drawn from the distribution q(x′|x). Here, it is assumed that some

method is available to do this. An example is a multidimensional

Gaussian distribution centred on x for which convenient algorithms

exist (see Press et al. 1992):

q(x′|x) =
1

√

(2π )N |�|
exp

{

−1/2(x′ − x)T �−1(x′ − x)
}

. (A1)

Having drawn the new vector x′, this is accepted with probability

α(x′|x). To ensure convergence to the target PDF, π (x), the M-H

rule is used to determine the acceptance probability

α(x′|x) = 1 ∧

{

π (x′)q(x|x′)

π (x)q(x′|x)
|J |

}

, (A2)

where |J| is the determinant of the Jacobian between the space in

which x and x′ lies. Typically, these are the same space and so |J| = 1.

The distribution q(x|x′) is the proposal probability for the reverse

step from x′ to x, and since often this is symmetrical as in (A1)

the proposal ratio cancels. Markov chains that involve transitions

between dimension can be dealt with in the same way, only here the

Jacobian may not always be unity (see Hopcroft et al. 2007; Bodin

et al. 2012a,b, for examples).

After many steps of the M-H sampler, the Markov chain formed

in this way has the history xi (i = 1, . . . ), and provided (A2)

is satisfied, the distribution will converge to the target π (x). In

practice, one has to collect a subset of the samples in the chain by

ignoring the initial vectors generated in the ‘burn-in’ phase, because

these are dependent on the initial model, and also ‘thin the chain’

by keeping only every nth sample, thereby reducing correlation

between vectors. The within-chain sampling used in all algorithms

described in this paper follow this structure.

A2 Acceptance rule for an exchange swap

In parallel tempering exchange swaps occur between a pair of levels

in a temperature ladder, and, in this case, the vector x describes the

joint system of model vectors at all levels of the ladder, x = [mi],

(i = 1, . . . , n), where mi is the state of the model vector in chain i.
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The target PDF, π (x), then becomes the joint distribution over all

chains

π (x) =

n
∏

i=1

p̃(mi |d)1/Ti

c(Ti )
, (A3)

where c(Ti) are normalizing constants

c(Ti ) =

∫

p̃(m|d)1/Ti dm. (A4)

In an exchange swap, the model vectors of only two chains alter,

all others are kept constant. For an exchange between models mi

at temperature Ti and mj at Tj, the state of the system prior to

swap is x = [mi, mj] and after is x′ = [mj, mi]. For simplicity of

notation, we drop variables at all other temperature levels as they

are unchanged by the swap. In an exchange swap, the proposal

probability is symmetric (q(x′|x) = q(x|x′)) and Jacobian equal to

unity, and so combining this information and substituting (A3) into

(A2), the M-H rule for calculating the acceptance probability for

this type of transition becomes

α(i, j) = 1 ∧

{

p̃(mi |d)1/T j c(Ti )

p̃(mi |d)1/Ti c(T j )
×

p̃(m j |d)1/Ti c(T j )

p̃(m j |d)1/T j c(Ti )

}

, (A5)

which is eq. (10) of the main text and simplifies to

α(i, j) = 1 ∧

[

p̃(m j |d)

p̃(mi |d)

]1/Ti
[

p̃(mi |d)

p̃(m j |d)

]1/T j

, (A6)

which is eq. (11) of the main text.

A3 Acceptance rule for optimization

We aim to show that for an optimization problem that the general

M-H rule (A2) is equivalent to (12). In this case, the model vector

x is the same as for sampling above and so the corresponding

normalized target PDF becomes

π (x) =

n
∏

i=1

e−φ(mi )/Ti

c(Ti )
, (A7)

where now the normalizing constants are

c(Ti ) =

∫

e−φ(mi )/Ti dmi . (A8)

As before, exchange swaps occur between models mi at temperature

Ti and mj at Tj, and the state of the joint system moves from x = [mi,

mj] to x′ = [mj, mi]. Substituting (A7) into (A2) gives

α(i, j) = 1 ∧

{

e−φ(mi )/T j

e−φ(mi )/Ti
×

e−φ(m j )/Ti

e−φ(m j )/T j
×

c(Ti )c(T j )

c(T j )c(Ti )

}

, (A9)

which reduces to

α(i, j) = 1 ∧ exp
{

(1/Ti − 1/T j )(φ(mi ) − φ(m j )
}

, (A10)

and this is eq. (12) of the main text.

A P P E N D I X B : M A X I M U M L I K E L I H O O D

E S T I M AT I O N O F N O I S E PA R A M E T E R S

By substituting (17) into the general likelihood expression (16), we

get an expression for the likelihood which depends on the unknown

variance, σ 2, and the assumed known data correlation matrix, C̃d ,

p(d|m) =
1

√

(2π )N σ 2N |C̃d |

exp

{

−
1

2σ 2
rT C̃−1

d r

}

, (B1)

where the residual vector r = d − dp(m). In situations where the data

noise σ is not known, it can be solved for together with the model m,

either in a Bayesian framework (as in Bodin et al. 2012a), or using

a maximum likelihood approach as shown here. In particular, we

follow Dosso et al. (2012) and find the value of σ which maximizes

(B1). To simplify algebra, we first take logs of (B1) which gives

− log p(d|m)= N log σ +
1

2σ 2
rT C̃−1

d r+
1

2
log[(2π )N |C̃d |]. (B2)

An optimal value for σ is found by differentiating (B2) with respect

to σ and setting to zero

∂

∂σ
[− log p(d|m)] =

N

σ
−

1

σ 3
rT C̃−1

d r = 0, (B3)

⇒ σ 2 =
1

N
rT C̃−1

d r, (B4)

⇒ σ =

[

1

N
rT C̃−1

d r

]1/2

, (σ > 0), (B5)

which is eq. (19) of the main text. To find the modified likelihood

expression, we substitute this expression for σ into (B2) and get

− log p(d|m) = N log

[

1

N
rT C̃−1

d r

]1/2

+
N

2
+

1

2
log[(2π )N |C̃d |], (B6)

⇒ − log p(d|m) =
N

2
log

(

rT C̃−1
d r

)

+

{

N

2
(1 − log N ) +

1

2
log[(2π )N |C̃d |]

}

.

(B7)

The term in curly brackets does not depend on the residual vector r

and so we write

− log p(d|m) =
N

2
log

(

rT C̃−1
d r

)

+ Const, (B8)

which gives

p(d|m) ∝ exp

{

−
N

2
log

(

rT C̃−1
d r

)

}

, (B9)

which is eq. (20) of the main text. Note that (B9) can also be written

as

p(d|m) ∝
(

rT C̃−1
d r

)−N/2
. (B10)

A P P E N D I X C : PA R A L L E L T E M P E R I N G

P S E U D O - C O D E

The pseudo-code below shows the basic structure of a Parallel Tem-

pering algorithm. Upon initialization, the n-vector T contains the

preset temperatures of the n chains, m is the number of within-chain

steps and nb is the number of within-chain burn-in steps executed be-

fore results are collected. The user-supplied routine ‘AdvanceChain’

performs within-chain McMC sampling by updating the model in

the ith temperature level over the j time step and returns the updated

value of the target PDF, π i, j. This routine also stores any results

along the chain in a form suitable for the parameter space. The

function U(a, b) represents a random draw from a uniform PDF

between a and b. The pseudo-code shows that the PT routine is

independent of both the details of the McMC sampler and also the

dimension and nature of the parameter space.
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374 M. Sambridge

Algorithm 1 Exchange swapping McMC chains in a tempered space
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