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Abstract. This paper presents an edge-based parallel

code for the data computation that arises when

applying one of the most popular electromagnetic

methods in geophysics, namely, the controlled-source

electromagnetic method (CSEM). The computational

implementation is based on the linear Edge Finite

Element Method in 3D isotropic domains because it

has the ability to eliminate spurious solutions and is

claimed to yield accurate results. The framework

structure is able to exploit the embarrassingly-parallel

tasks and the advantages of the geometric flexibility

as well as to work with three different orientations

for the dipole, or excitation source, on unstructured

tetrahedral meshes in order to represent complex

geological bodies through a local refinement technique.

We demonstrate the performance and accuracy of our

tool on the Marenostrum supercomputer (Barcelona

Supercomputing Center) through scaling tests and

canonical tests, respectively.

Keywords. Parallel computing, geophysics, edge-based
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1 Introduction

In the geophysics forward modeling context

around the oil wells, the electric resistivity is a

parameter that plays an important role. The

Marine Controlled-Source Electromagnetic Method

(CSEM) has emerged as a useful exploration

technique for mapping offshore hydrocarbon

reservoirs and characterizing gas hydrates bearing

shallow sediments [4]. In a standard configuration,

the Marine CSEM uses a deep-towed horizontal

electric dipole (HED) to transmit electromagnetic

signals into the seawater and sediments below the

mudline [23].

An edge-based parallel code for numerical

simulation of marine CSEM surveys in 3D

isotropic structures is presented. In order to

represent complex bodies with high fidelity we used

unstructured tetrahedral meshes. The heart of our

computational solution is based on the Edge Finite

Element Method (EFEM) because it has the ability

to eliminate spurious solutions and is claimed to

yield accurate results. The framework structure is

able to exploit the embarrassingly-parallel tasks,

or tasks where there is no dependency (or

communication) between those parallel tasks, and

the advantages of the geometric flexibility as well

as to work with three different orientations for the

dipole (HED).

Marine CSEM response for a single HED at

a single frequency requires a forward modeling

whose computing can easily overwhelm single core

and modest multi-core computing resources [17].

In fact, the actual execution of real-life scale sim-

ulations of electromagnetic geophysical problems

requires using HPC because typical executions in-

volve over 100,000 realizations, each dealing with

several millions of degrees of freedom. To alleviate

these issues, our parallel work-flow is focused

on such edge tasks as the edges-elements array

connectivity, the edge data computation (length,

unit vector, local/global edge direction), physical

properties at each edge (electric resistivity, primary

electric field), and the electric field interpolation.

Regarding the computational burden, only six

unknowns are required for each element (Nédélec

tetrahedral elements of lower order). It is worth

nothing that the linear vectorial Lagrange elements

or any other consistently linear 3D-vector functions
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over a tetrahedral carry twelve unknowns, three at

each of its four vertices. However, the state of

the art is marked by a relative scarcity of robust

edge-based codes to simulate these problems.

This may be attributed to the fact that not all

numerical approaches are well-suited for the latest

computing architectures. For that reason, the

software stack presented here was designed taking

into account an architecture-aware approach.

We structure the paper as follows: in Section

2 we describe the background theory of marine

CSEM. In Section 3 we present the formulation of

electromagnetic (EM) field equations in isotropic

domains. Parallel framework is described in

Section 4. The performance and efficiency of the

code are investigated using a 3D canonical model

in Section 5. All experiments were performed on

the Marenostrum supercomputer with two-8 cores

Intel Xeon processors E52670 at 2.6 GHz per

node. The last section is dedicated to conclusions.

2 Marine Controlled-source
Electromagnetic Method

The Marine Controlled-source Electromagnetic

Methods (CSEM) are a type of geophysical

strategies to study the subsurface electrical

conductivity distribution with an ample range of

applications. CSEM techniques can be divided

into two groups depending on the domain in which

the collected data is interpreted: time domains

(TDEM) or frequency domains (FDEM). In the case

of oil prospecting, marine CSEM surveys are done

predominantly using FDEM [2, 14].

In the marine CSEM, also referred to as

seabed logging [12], a deep-towed electric dipole

transmitter is used to produce a low frequency

EM signal (primary field) which interacts with the

electrically conductive Earth and induces eddy

currents that become sources of a new EM signal

(secondary field). The two fields, the primary one

and the secondary one, add up to a resultant field,

which is measured by remote receivers placed

on the seabed. Since the secondary field at

low frequencies, for which displacement currents

are negligible, depends primarily on the electric

conductivity distribution of the ground, it is possible

to detect thin resistive layers beneath the seabed

by studying the received signal [15]. Operating

frequencies of transmitters in CSEM may range

between 0.1 and 10 Hz, and the choice depends

on the model dimensions. In most studies, typical

frequencies vary from 0.25 to 1 Hz, which means

that for source-receiver offsets of 10-12 km, the

penetration depth of the method can extend to

several kilometers below the seabed [1, 4, 6, 15].

The disadvantage of the marine CSEM is its

relatively low resolution compared to seismic

imaging. Therefore, the marine CSEM is almost

always used in conjunction with seismic surveying

as the latter helps to constrain the resistivity

model. Figure 1 depicts the marine CSEM

which is nowadays a well-known geophysical

prospecting tool in the offshore environment and

a commonplace in industry; examples of that can

be found in [9, 10, 18, 14, 22].

The Marine CSEM is a viable and cost-effective

oil exploration technique. When integrated with

other geophysics data, mainly, seismic information,

CSEM surveys are promising for adding value in

shallow/deep waters. The outcomes and analysis

of modeling with CSEM produce a more robust

understanding of the prospection.

3 Edge Finite Element Approximation

The 3D EM modeling requires solving diffusive

Maxwell equations in a discretized form. The

most popular numerical methods for EM forward

modeling are Finite Difference (FD), Finite Element

Method (FEM), and Integral Equation (IE). Among

them, the FEM is more suitable for modeling

EM response in complex geometries. However,

for accurate computations, the divergence free

condition for the EM fields in the source free

regions needs to be addressed by an additional

penalty term, commonly called Gauge condition, to

alleviate possible spurious solutions [13, 15].

As a result, in FEM the use of Edge-based

FEM (EFEM), also called Nédélec elements,

has become very popular for solving EM fields

problems. In fact, EFEM is often said to be

a cure for many difficulties that are encountered

(particularly eliminating spurious solutions) and is

claimed to yield accurate results [13, 16, 21]. The

basis functions of Nédélec elements are vectorial
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Fig. 1. Marine CSEM

functions defined along the element edges. The

tangential continuity of either electric or magnetic

field is imposed automatically on the element

interfaces while the normal components are still

can be discontinuous [13]. As a result, EFEM has

the capability to model the frequency/time domain

EM fields in inhomogeneous complex bodies at

any resistivities contrasts and at any survey types.

Therefore, our code is based on the Nédélec

elements formulation by [7, 8].

In geophysical applications, the low frequency

EM field satisfies the following Maxwell’s equa-

tions:

∇× E = iωµ0
H, (1)

∇×H = Js + σE, (2)

where we adopt the harmonic time dependence

e−iωt , ω is the angular frequency, µ0 is the free

space magnetic permeability, Js is the induced

current in the conductive earth, and σ is the

background conductivity. Actually, our formulation

works for general isotropic domains.

In EM field formulations with FEM and EFEM

and in order to capture the rapid change of the

primary current, the anomalous formulations are

desirable [5]. In the anomalous field formulation

the total field is decomposed into primary field

(background) and secondary field [24]:

E = Ep + Es, (3)

σ = σp +∆σ. (4)

Based on this formulation, one can derive the

following equation for the secondary electric field:

∇×∇× Es − iωµσEs = iωµ∆σEp. (5)

In 5, the source term is the primary electric field,

which is much smoother than the source current.

In this sense, our formulation is able to work with

three different orientations for the HED, which are

given by [8].

Therefore, the primary field is calculated

analytically using a horizontal layered-earth model

and the secondary field is discretized by linear

Nédélec elements. For this purpose, we first

replace the following continuous condition:

E ∈ H(curl; Ω) : ∇× Ep = ψ, (6)

fixing the normal component (n̂) of ∇ × E in each

point of the surface with the discrete condition:
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∫
Epi

(∇× Ep) · n̂dS =

∫
Epi

ψ · n̂dS ∀Epi
∈ Ω,

(7)

stating that 6 is satisfied on average on each face

element of Ω. We end up in all cases with one

or several relations linking the integral of ∇ × Ep

on a surface to the integral of a given function ψ.

Applying Green’s theorem and making use of the

fact that the line integral of Nédélec elements is

one on edge and zero on the others [13], we find:

∫
EΩ

(∇× Ep) · n̂dS =

∫
∂Ω

Ep · tdl (8)

=
∑
i

∫
ri

Ep · tdl (9)

=
∑
i

±di, (10)

where ri are the edges of the boundary ∂Ω and di
is the associated dofs. Finally, the following system

of equations is obtained:

d0,i +
∑
i

cijdi = 0, (11)

where the coefficients cij = ±1 depending on the

relative orientation of the edges and the contours

(n̂), and the independent terms d0,i are the integral

of the electric field E through a face or a surface. In

order to improve the accuracy, we used Gaussian

quadrature points of different order to evaluate the

integral (10).

Homogeneous Dirichlet boundary conditions are

applied to the outer boundaries of the model.

The EFEM discretization results in a linear

equation system, which is solved using the iterative

Quasi Minimal Residual Method (QMR) and the

Biconjugate gradient Method (BCG) [3].

4 Framework

Despite the popularity of the EFEM, there

are few implementations of it. Furthermore,

the 3D modeling of geophysical EM problems

can easily overwhelm single core and modest

multi-core computing resources [17]. In fact,

the actual execution of real-life scale simulations

of electromagnetic geophysical problems requires

using HPC because typical executions involve over

100,000 realizations, each dealing with several

millions of degrees of freedom. To alleviate these

issues, our parallel framework is able to exploit the

embarrassingly-parallel tasks, or tasks where there

is no dependency (or communication) between

those parallel tasks.

Fig. 2. Software stack. Green dashed: pre-processing

stage, red dashed: forward modeling, blue dashed: post-

processing stage

Figure 2 shows the software stack of our

solution. Specific details and features of each

module are as follows.

1. Mesh. This module reads geometric and
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topological properties of an FEM mesh: how

the elements are connected and where their

nodes are located. Our implementation is able

to read as input nodal-based meshes in three

different formats: Netgen, Gambit, and Neutral

format [7].

2. Mesh refinement. To increase the solution

accuracy, our framework uses a uniform

refinement. In tetrahedral meshes, this

approach results in 8 times more tetrahedral

elements.

3. Counterclockwise numbering. In order to get

a consistent notation in the whole domain, this

module sets the node numbering within each

element in a counterclockwise direction.

4. Edges computation. In EFEM formulations,

the unknowns are associated to edges instead

of the nodes. Because most of the

FEM codes were developed for node-based

formulations, it is necessary to develop a

code to convert node numbering into edge

numbering. Therefore, this module computes

a matrix to represent every element by its

edges and other matrix to describe every edge

by its two nodes with dimensions (6× TT ) and

(2×TE), respectively, where TT is the number

of elements and TE is the total number of

edges. These matrices define the global/local

edge direction in the mesh [7, 13].

5. Primary field computation. This module

computes the primary field on each edge ac-

cording to the formulation in [8]. Furthermore,

this module computes others edge values

such as edge length and unit edge vector,

which are critical for the interpolation stage,

through the vector basis functions defined

in [7, 8].

6. Sigma edges computation. This module

computes the sigma value for each edge. In

the formulation of our geophysical application,

this operation can be summarized by the

following expression:

SE

i =

∑N
j=1 S

e
j

N
,

where SE
i is the sigma value of i-th edge, N

is the number of elements that share the i-th

edge, and Se
j is the prescribed value of sigma

for the j-th element in the mesh.

7. Assembly. This module assembles the system

matrix whose general form is Ax = b. In

electromagnetic simulations, and particularly

in geophysical prospecting through EM such

as CSEM, the matrix A is large, sparse,

complex, and symmetric; the vector x contains

the unknowns coefficients, and the vector

b stores the contributions of the primary

field. To exploit special properties of EFEM

matrices, the parallel assembly process uses

a Compressed Row Storage (CRS).

8. Boundary conditions (BC). Before the system

of equations is ready to be solved, the

imposition of BC is needed. Actually, our code

works with Dirichlet BC and their imposition is

accomplished by setting [13]

bind(i) = v(i),

Aind(i),ind(i) = 1,

Aind(i),j = 0,

bj = bj −Aj,ind(i) · v(i),

Aj,ind(i) = 0,

for j 6= ind(i), where ind(i) is a vector

that stores the global edge indexes residing

on the boundaries, and v(i) is a vector that

contains the prescribed values of x. Different

techniques are described in [19].

9. Solver. In FEM or EFEM applications, the

solvers are frequently iterative, but sometimes

one may also want to use direct solvers.

This module is able to work with two iterative

solvers: BCG and QMR. Since the framework

is based on an abstract data structure, it is

possible to use other solvers with little effort.

10. Interpolation. This module computes the

electric response for an array of receivers.

The interpolation process uses the vectorial

functions defined in [7, 8] because these

automatically enforce the divergence free

conditions for EM fields. Moreover, the
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continuity of the tangential EM is satisfied

automatically.

11. Output. Once a solution of EFEM problem on

a given mesh has been obtained, it should

be post-processed by using a visualization

program. Our framework does not do the

visualization by itself, but it generates output

files (vtk format) with the final results. It also

gives timing values in order to evaluate the

performance.

Table 1. Main physical parameters

Parameter Value

Domain dimensions (xyz-km) 3.5, 2.5, 3.200

Sea’s electric resistivity 0.3 σ/m
Sediments electric resistivity 1 σ/m
Oil/gas electric resistivity 100 σ/m
Background electric resistivity 0.3 σ/m
Dipole position (xyz-km) 1.75, 1.25, .95

Dipole current 1 C/m
Dipole frequency .1 ω

In order to meet the high computational

cost of EFEM for EM fields in geophysical

applications, actually our code is based on a

shared memory parallel model defined by the

OpenMP standard [20]. OpenMP has been widely

adopted in the scientific computing community, and

most vendors support its Application Programming

Interface (API) in their compiler suites. OpenMP

offers not only parallel programs portability but,

since it is based on directives, it also represents a

simple way to maintain a single code for the serial

and parallel version of an application.

To exploit the advantages of geometric flexibility,

our parallel approach is focused on embarrassingly

parallel tasks, or tasks where there is no

dependency (or communication) between those

parallel tasks. Namely, the minimum level of

computing work is related to the edges in the mesh.

Examples of embarrassingly parallel modules are

computation of edges, primary field computation,

and sigma edges computation. Another parallel

task is interpolation, the only difference lies in

the parallelism level because it works over the

number of receivers (points) instead of the number

of edges.

A detailed description of the main algorithms of

our code can be found in [8].

5 Results

To verify the accuracy and performance of our

modeling, we used the model defined in Figure 3.

Our code is able to work with three different dipole’s

orientations (x-oriented, y-oriented and z-oriented)

according to the formulation in [7, 8]. This source

transmits a carefully designed low-frequency EM

signal into the subsurface. The main physical

parameters for our test are described in Table 1.

The experiments were performed on the

Marenostrum supercomputer with two-8 cores Intel

Xeon processors E52670 at 2.6 GHz per node. To

increase the solution accuracy, our implementation

used a non-uniform refinement.

Fig. 3. Layer model (2D slice)

Table 2 summarizes the results of our tests. For

each experiment, the problem size stays fixed but

the number of processing units is increased (the

strong scaling approach). The parallel efficiency is

given by χ = S/(n ·Sn) ·100, where S is the amount

of time to complete a work unit with 1 processing

unit, n is the number of processing units, and Sn

is the amount of time to complete the same unit of

work with n processing units. In Table 2 the time is

given in seconds.

From the results in Table 2 it is easy to see that in

our experiments the minimum execution time is not

limited by the communication overhead, as a result,

we achieved a quasi linear speed-up. The latter
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Table 2. Timers: summary of results

Test 1: 1,330 elements, 1,986 edges

# processors 1 2 4 8 16 32 64

Time 118.756 60.2278 30.7845 15.7147 7.8802 3.9740 2.0671

Parallel efficiency % 100.00 98.58 96.44 94.46 94.18 93.38 89.76

Test 2: 10,640 elements, 14,101 edges

# processors 1 2 4 8 16 32 64

Time 1,352.21 685.12 345.47 177.45 90.74 46.45 23.76

Parallel efficiency % 100.00 98.69 97.85 95.25 93.13 90.97 88.92

Test 3: 85,120 elements, 105,958 edges

# processors 1 2 4 8 16 32 64

Time 5,530.29 2,864.23 1,440.25 731.26 368.27 191.17 97.83

Parallel efficiency % 100.00 96.54 95.98 94.53 93.84 90.40 88.32

Test 4: 680,960 elements, 820,860 edges

# processors 1 2 4 8 16 32 64

Time 45,512.17 23,694.04 11,978.32 6,062.24 3072.54 1,595.36 807.23

Parallel efficiency % 100 96.04 94.98 93.84 92.57 89.14 88.09

Test 5: 5,447,680 elements, 6,460,856 edges

# processors 1 2 4 8 16 32 64

Time 568,946.1 297,764.8 151,024.4 76,148.2 38,696.2 19,843.4 10,293.7

Parallel efficiency % 100 95.53 94.18 93.39 91.89 89.59 86.36

issue is critical because if the computation time in

each processor is smaller than the communication

time, the speed-up can saturate. Table 2 also

shows the total number of tetrahedral elements

(TT ) and the total number of edges (TE), which

is a measure of required storage space during

run-time. TT and TE were determined by

successively refined meshes.

In order to validate our numerical formulation,

the components of Ee obtained from equation 3

versus components of Eh obtained by EFEM are

shown in Figure 4. For the sake of clarity, Figure 4

only includes the results of Test 5 for an x-directed

dipole. It is easy to see that our approximation

converges to the desired solution when the number

of dofs grows (TT ≈ 5.5 with TE ≈ 6.5 for Test 5).

In Table 3 we show the errors for the components

of Eh. Following the ideas of [11], the errors of

the numerical solution Eh with respect to the exact

solution Ee obtained from equation 5 are measured

in L1-norm, L2-norm, and L∞-norm.

Errors in Table 3 demonstrate that edge ele-

ments of lower-order reach the desired accuracy

when the number of edges is increased (TE or dofs

in the mesh).

6 Conclusions

The electromagnetic methods are an estab-

lished tool in geophysics, finding application in

many areas such as hydrocarbon and mineral

exploration, reservoir monitoring, CO2 storage

characterization, geothermal reservoir imaging,

and many others. In particular, the marine CSEM

has become an important technique for reducing
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Fig. 4. Total electric field components. Comparison between solution Eh (edge elements) from Test 5 and the exact

solution Ee (analytic)

Table 3. Errors in L1-norm, L2-norm, and L∞-norm for solution Eh with respect to the exact solution Ee

Test Exyz L1-norm L2-norm L∞-norm

1

x 2.317 · 10−8 7.277 · 10−8 4.841 · 10−8

y 1.783 · 10−8 6.335 · 10−7 3.633 · 10−8

z 1.620 · 10−7 6.883 · 10−8 3.475 · 10−8

2

x 5.671 · 10−11 2.171 · 10−11 3.128 · 10−11

y 7.192 · 10−11 1.981 · 10−11 2.881 · 10−11

z 7.592 · 10−11 2.018 · 10−11 2.917 · 10−11

3

x 5.551 · 10−14 1.363 · 10−13 5.581 · 10−14

y 3.599 · 10−14 9.131 · 10−14 3.691 · 10−14

z 2.805 · 10−13 7.785 · 10−14 5.525 · 10−14

4

x 1.930 · 10−18 1.192 · 10−18 2.906 · 10−18

y 2.683 · 10−18 6.863 · 10−18 1.731 · 10−18

z 2.678 · 10−18 6.527 · 10−17 2.337 · 10−17

5

x 1.812 · 10−22 4.284 · 10−22 1.786 · 10−22

y 5.623 · 10−23 1.275 · 10−23 5.032 · 10−23

z 1.400 · 10−22 1.275 · 10−22 9.118 · 10−22
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ambiguities in data interpretation in hydrocarbon

exploration.

Considering the societal value of exploration

geophysics, we presented an edge-based parallel

code for the forward modeling of the marine CSEM

in 3D isotropic structures. The framework is based

on unstructured tetrahedral meshes because these

have the ability to represent complex bodies with

high fidelity. The heart of our computational

solution is based on EFEM because it can

eliminate spurious solutions and is claimed to yield

accurate results.

Recent trends in parallel computing techniques

were investigated for their use in mitigating

the computational overburden associated with

the electromagnetic modeling. Therefore, our

parallel work-flow is focused on such edge

tasks as edges-elements array connectivity, edge

data computation (length, unit vector, local/global

edge direction), physical properties at each edge

(electric resistivity, primary electric field), matrix

assembly, and the electric field interpolation. As

a result, we obtained a parallel framework whose

main modules are flexible and simple.

Concerning the computational burden, only six

unknowns are required for each element (Nédélec

tetrahedral elements of lower order). It is worth

noting that the linear vectorial Lagrange elements

or any other consistently linear 3D-vector functions

over a tetrahedral carry twelve unknowns, three at

each of its four vertices. In addition, the software

stack presented here was designed taking into

account an architecture-aware approach.

The efficiency and accuracy of the code were

evaluated through scalability tests (strong scaling)

and error-norms for different mesh sizes. The

results show not only a good parallel efficiency of

our code but also an acceptable accuracy in the

numerical approximation.

All the experiments were performed on the

Marenostrum supercomputer at the Barcelona

Supercomputing Center (www.bsc.es).

Future work will be aimed at the implementation

of the anisotropy cases and at application of

MPI communications which are needed to use

distributed memory platforms.
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16. Nédélec, J.-C. (1980). Mixed finite elements in R3.

Numerische Mathematik, Vol. 35, No. 3, pp. 315–

341.

17. Newman, G. (2014). A review of high-performance

computational strategies for modeling and imaging

of electromagnetic induction data. Surveys in

Geophysics, Vol. 35, No. 1, pp. 85–100.

18. Newman, G., Commer, M., & Carazzone, J.

(2010). Imaging CSEM data in the presence of

electrical anisotropy. Geophysics, Vol. 75, No. 2,

pp. F51–F61.

19. Nguyen, T. (2006). Finite Element Meth-

ods: Parallel-Sparse Statics and Eigen-Solutions.

Springer.

20. OpenMP Architecture Review Board (2015).

OpenMP application program interface.

21. Rognes, M., Kirby, R., & Logg, A. (2009). Efficient

assembly of H(div) and H(curl) conforming finite

elements. SIAM Journal on Scientific Computing,

Vol. 31, No. 6, pp. 4130–4151.

22. Weiss, C. & Newman, G. (2002). Electromagnetic

induction in a fully 3-D anisotropic earth. Geo-

physics, Vol. 67, No. 4, pp. 1104–1114.

23. Ying, L. & Yuguo, L. (2012). A parallel finite

element approach for 2.5 D marine controlled

source electromagnetic modeling. Geophysics,

Vol. 72, No. 2, pp. WA51–WA62.

24. Zhdanov, M. (2009). Geophysical electromagnetic

theory and methods, volume 43. Elsevier.

Octavio Castillo Reyes received his bachelor degree

from the Xalapa Institute of Technology, Mexico. He is

currently studying PhD in Computer Architecture at the

Polytechnic University of Catalonia (Barcelona, Spain).

He develops his research work in the Department

of Computer Applications in Science & Engineering

(CASE) of the Barcelona Supercomputing Center -

National Supercomputing Center (BSC-CNS).

Josep de la Puente is a senior researcher at BSC,

leader of the geophysical efforts at the Repsol-BSC

Research Center, and expert on Discontinuous Galerkin

methods for computational seismology using HPC

platforms.

David Modesto is a postdoc junior researcher at BSC.

David Modesto received his PhD on Civil Engineering

with honors from the Polytechnic University of Catalonia.

His main research topics are real-time generation of

numerical solutions for wave agitation problems in

harbors, reduced order algorithms with user friendly

interactions, acceleration of processes related to coastal

applications, and development of new harbor models.

Vladimir Puzyrev is a senior researcher at BSC who

received awards from the National Academy of Sciences

of Ukraine for his scientific work, and is currently

developing massively parallel modelling and inversion

algorithms for on surface resistivity measurements,

namely, controlled-source electromagnetics and magne-

totellurics.
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