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ABSTRACT
This paper presents a parallel visualization pipeline imple-
mented at the Pittsburgh Supercomputing Center (PSC) for
studying the largest earthquake simulation ever performed.
The simulation employs 100 million hexahedral cells to model
3D seismic wave propagation of the 1994 Northridge earth-
quake. The time-varying dataset produced by the simula-
tion requires terabytes of storage space. Our solution for
visualizing such terascale simulations is based on a parallel
adaptive rendering algorithm coupled with a new parallel
I/O strategy which effectively reduces interframe delay by
dedicating some processors to I/O and preprocessing tasks.
In addition, a 2D vector field visualization method and a
3D enhancement technique are incorporated into the paral-
lel visualization framework to help scientists better under-
stand the wave propagation both on and under the ground
surface. Our test results on the HP/Compaq AlphaServer
operated at the PSC show that we can completely remove
the I/O bottlenecks commonly present in time-varying data
visualization. The high-performance visualization solution
we provide to the scientists allows them to explore their
data in the temporal, spatial, and variable domains at high
resolution. The new high-resolution explorability, likely not
available to most computational science groups, will help
lead to many new insights.
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puting, MPI, scientific visualization, parallel I/O, parallel
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ume rendering

1. INTRODUCTION
Large-scale computer modeling of the earthquake-induced
ground motion in large heterogeneous basins and analysis
of the soil-structure interaction can help understand earth-
quake and reduce its risk to the general population. The
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simulation results can guide development of more rational
seismic provisions for building codes, leading to safer, more
efficient, and economical structures in earthquake-prone re-
gions. However, a complete quantitative understanding of
strong ground motion in large basins requires simultaneous
consideration of 3D effects of earthquake source, propaga-
tion path, and local site conditions. The large scale associ-
ated with the modeling places enormous demands on com-
putational resources.

A multidisciplinary team of researchers [24, 3] has been de-
veloping tools to model ground motion and structural re-
sponse in large heterogeneous basins, and apply these tools
to characterize the seismic response of large populated basins
such as Los Angeles. To model at the needed scale and
accuracy, they have created some of the largest unstruc-
tured finite element simulations ever performed by utilizing
massively parallel supercomputers. Consequently, a serious
challenge they face is visualizing the output of these very
large, highly unstructured simulations.

An effective way to understand earthquake wave propaga-
tion is to volume render the time history of the 3D dis-
placement and velocity fields. However, interactive ren-
dering of time-dependent unstructured hexahedral datasets
with 107 − 108 elements (anticipated to grow to 109 over
the next several years) presents a major challenge. In par-
ticular, what makes time-varying volume data visualization
hard is the need to constantly transfer each time step of
the data from disk to memory to carry out the rendering
calculations. This I/O requirement, if not appropriately ad-
dressed can seriously hamper interactive visualization and
exploration for discovery. Past visualizations were limited
to downsized versions of the data on a regular grid. The
development of advanced algorithms and software for par-
allel visualization of unstructured hexahedral datasets that
scale to the very large grid sizes required will significantly
assist their ability to interpret and understand earthquake
simulations.

This paper presents the design and performance of a parallel
visualization pipeline for time-varying unstructured volume
data generated from terascale earthquake simulations. In
our previous work [16], a parallel volume renderer was devel-
oped for visualizing 3D unstructured volume data generated
from the same, but smaller scale, earthquake simulation [24].
The renderer performed satisfactorily for modest data sizes
containing ten-million cells and could deliver rendering rates



of about 2 seconds per fame when using up to 128 proces-
sors of the HP AlphaServer operated at PSC. As the data
size grows the primitive I/O scheme we chose ceases to work
well. Even though a parallel file system was used, the I/O
cost became so high that it totally dominated the overall
cost. The interframe delay for rendering 100 million data
cells became 15-20 seconds, which is not acceptable.

Our new parallel visualization pipeline design not only re-
moves the I/O bottleneck but also facilitates the prepro-
cessing calculations required to derive more sophisticated
or expressive visualization rendering lighting, feature en-
hancement, and vector fields. The pipeline incorporates I/O
strategies that adapt to the data size and parallel system
performance such that I/O and data preprocessing costs can
be effectively hidden. Interframe delay becomes completely
determined by the rendering cost. Consequently, as long as
a sufficient number of rendering processors are used, desired
framerates can be obtained. We demonstrate this new par-
allel I/O solution implemented in MPI I/O [8] for making
volume visualization of the highest resolution earthquake
simulation performed to date.

2. PREVIOUS WORK
The research problem we address has multiple facets includ-
ing large time-varying data, parallel I/O, parallel rendering,
unstructured grids, and vector fields, none of which can be
neglected if our goal is to derive a usable solution. Little
previous research has been done to address all aspects of
the problem in the context of visualization.

2.1 Timevarying data
Visualizing time-varying data presents two challenges. The
first is the need to periodically transfer sequences of time
steps to the processors from disk through a data server.
The second is the need for an exploration mechanism ac-
companied by an appropriate user interface for tracking and
interpreting the temporal aspects of the data. We have fo-
cused on I/O and aim to hide the I/O cost to reduce in-
terframe delay. For interactive browsing in both the spatial
and temporal domains of the data, a minimum of 2–5 frames
per second is needed. McPherson and Maltrud [22] develop
a visualization system capable of delivering realtime ani-
mation of large time-varying ocean flow data. The system
exploits the high performance volume rendering of texture-
mapping hardware on four InfiniteReality pipes attached to
an SGI Origin 2000 with enough memory to hold thousands
of time steps of the data. The ParVox system [13] is designed
to achieve interactive visualization of time-varying volume
data in a high-performance computing environment. Highly
interactive splatting-based rendering is achieved by overlap-
ping rendering and compositing, and by using compression.

A survey of time-varying data visualization strategies devel-
oped more recently is given in [17]. One very effective strat-
egy is based on a hardware decoding technique that keeps
the data compressed until reaching the video memory for
rendering [14]. Even though encoding methods can signifi-
cantly reduce the data size, the preprocessing cost and ad-
ditional data storage requirements are not always desirable
and affordable. In the absence of support for a high-speed
network and parallel I/O, a particularly promising strategy
for achieving interactive visualization is to perform pipelined

rendering. Ma and Camp [18] show that by properly group-
ing processors according to the rendering loads, compressing
images before delivering, and completely overlapping the up-
loading, rendering, and delivering of the images, interframe
delay can be kept to a minimum. Reinhard et al. [25] use
a data partitioning approach to enable highly efficient ray
traced isosurface visualization of time-varying data.

2.2 Parallel I/O
In the study of parallel rendering algorithms, I/O cost is
often ignored. The most common strategy is to overlap
communication and computation, which does not solve the
problem of disk contention. In our previous work [16], we
show that the use of multiple I/O nodes can maximize band-
width and reduce latency. We experimentally determine the
number of I/O nodes required. In this work, we study this
I/O issue further and develop two parallel I/O strategies. In
particular, we show the number of I/O nodes can be analyt-
ically computed.

The MPI I/O interface [8] supports a suite of parallel I/O
operations but very little use of MPI I/O has been found
in parallel visualization applications. As described in Sec-
tion 5.3, our work relies on MPI I/O extensively.

Data file formats such as HDF [9] and netCDF [12] that
are widely used by scientific applications have parallel I/O
support . However, our earthquake simulation data files
are in neither HDF nor NetCDF so we had to develop new
parallel I/O strategies through MPI I/O.

2.3 Parallel and distributed rendering
Our approach to the large data problem is to distribute both
the data and visualization calculations to multiple proces-
sors of a parallel computer. In this way, we not only can vi-
sualize the dataset at its highest resolution, but also achieve
interactive rendering rates. The parallel rendering algorithm
thus must be highly efficient and scalable to a large number
of processors. Ma and Crockett [20] demonstrate a highly ef-
ficient, cell-projection volume rendering algorithm using up
to 512 T3E processors for rendering 18 million tetrahedral el-
ements from an aerodynamic flow simulation. They achieve
over 75% parallel efficiency by amortizing the communica-
tion cost and using a fine-grain image-space load partition-
ing strategy. Parker et al. [23] use ray tracing techniques
to render images of isosurfaces. Although ray tracing is a
computationally expensive process, it is highly parallelizable
and scalable on shared-memory multiprocessor computers.
By incorporating a set of optimization techniques and ad-
vanced lighting, they demonstrate interactive, high-quality
isosurface visualization of the Visible Woman dataset using
up to 124 nodes of an SGI Reality Monster with 80%–95%
parallel efficiency. Wylie et al. [30] show how to achieve scal-
able rendering of large isosurfaces (7–469 million triangles)
and rendering performance of 300 million triangles per sec-
ond using a 64-node PC cluster with a commodity graphics
card on each node. The two key optimizations they use are
lowering the size of the image data that must be transferred
among nodes by employing compression, and performing
compositing directly on compressed data. Bethel et al. [4]
introduce a very unique remote and distributed visualiza-
tion architecture as a promising solution to very large scale
data visualization.



2.4 Unstructuredgrid data
To efficiently visualize unstructured data, additional infor-
mation about the structure of the mesh needs to be com-
puted and stored, which incurs considerable memory and
computational overhead. For example, ray tracing needs
explicit connectivity information for each ray to march from
one element to the next [15]. The rendering algorithm in-
troduced by Ma and Crockett [19] requires no connectiv-
ity information. Since each tetrahedral element is rendered
independently of other elements, data distribution can be
done in a more flexible manner. Chen, Fujishiro, and Naka-
jima [6] present a hybrid parallel rendering algorithm for
large-scale unstructured data visualization on SMP clusters
such as the Hitachi SR8000. Their three-level hybrid par-
allelization consists of message passing for inter-SMP node
communication, loop directives by OpenMP for intra-SMP
node parallelization, and vectorization for each processor.
A set of optimization techniques are used to achieve max-
imum parallel efficiency. In particular, due to their use of
an SMP machine, dynamic load balancing can be done ef-
fectively. However, their work does not address the problem
of rendering time-varying data.

2.5 Vector field
A variety of techniques have been developed for rendering of
vector fields. We adopt a texture-based method called Line
Integral Convolution (LIC) [5]. The input to LIC is a vector
field and a white noise image. Visualization is generated
by first tracing a streamline both forward and backward
for each data point and then convolving in one dimension
along the streamline. By using a periodic filter kernel, an
animation giving an impression of the flow direction and
structure can be made. Texture-based methods can also be
used to efficiently depict time-dependent vector fields [26,
10, 7] and can be made highly interactive [29].

3. EARTHQUAKEINDUCED GROUND MO

TION MODELING
Modeling and forecasting earthquake ground motion in large
basins is a challenging and complex task. The complexity
arises from several sources. First, multiple spatial scales
characterize the basin response: the shortest wavelengths
measure in tens of meters, whereas the longest measure in
kilometers, and basin dimensions are on the order of tens
of kilometers. Second, temporal scales vary from the hun-
dredths of a second necessary to resolve the highest fre-
quencies up to several minutes of shaking within the basin.
Third, many basins have highly irregular geometry. Fourth,
the soil properties are highly heterogeneous. Fifth, strong
earthquakes give rise to nonlinear material behavior. And
sixth, geology and source parameters are only indirectly ob-
servable, and thus introduce uncertainty into the modeling
process.

Simulating the earthquake response of a large basin is ac-
complished by numerically solving the partial differential
equations (PDEs) of elastic wave propagation [2]. An finite
element method employing an unstructured mesh is used
for spatial approximation, and an explicit central difference
scheme is used in time. The mesh size is tailored to the local
wavelength of propagating waves via an octree-based mesh
generator [28]. Even though using an unstructured mesh

may yield three orders of magnitude fewer equations than
with structured grids, a massively parallel computer still
must be employed to solve the resulting dynamic equations.

The earthquake modeling team is currently performing sim-
ulations in the greater LA basin to 10 meters at the finest
resolution with 100 million unstructured hexahedral finite
elements, a factor of 4000 smaller than a regular grid would
require. These include simulations of the 1994 Northridge
mainshock to 1 Hz resolution, the highest resolution ob-
tained to date. Despite the large degree of irregularity of
the meshes, the codes are highly efficient: close to 90% par-
allel efficiency is regularly obtained in scaling up from 1
to 2048 processors on the HP/Compaq AlphaServer-based
parallel system at the Pittsburgh Supercomputing Center.
Node performance is also excellent for an unstructured mesh
code, permitting sustained throughputs of nearly one ter-
aflop per second on 2048 processors. A typical simulation
requires 25,000 time steps to simulate 40 seconds of ground
shaking, and requires wall-clock time on the order of several
hours, depending on the material damping model used, size
of the region considered, number of processors (between 512
and 2048), and output statistics required. Figure 1 displays
eight selected time steps from the simulation rendered using
our visualization system.

4. THE PARALLEL RENDERING METHOD
The basic architecture of our parallel visualization solution
is shown in Figure 2. It is essentially a parallel pipeline and
becomes the most efficient when all pipeline stages are filled.
The input processors read data files from the storage device
which in our design must be a parallel file system, prepare
the raw data for rendering calculations, and distribute the
resulting data blocks to the rendering processors. The ren-
dering processors produce volume-rendered images for its
local data blocks, perform image compositing, and deliver
the images to the output processors which then send the
images to a display or storage device.

Since the mesh structure never changes throughout the sim-
ulation, a one-time preprocessing step is done to generate a
spatial (octree) encoding of the raw data. The input proces-
sors use this octree along with a workload estimation method
to distribute blocks of hexahedral elements among the ren-
dering processors. Each block of elements is associated with
a subtree of the global octree. This subtree is delivered to
the assigned rendering processor for the corresponding block
of data only once at the beginning since all time steps data
use the same subtree structure. Non-blocking send and re-
ceive operations are used for the blocks distribution.

In addition to determining the partitioning and distribu-
tion of data blocks, each input processor also performs a
set of calculations to prepare the data for rendering. Typi-
cal calculations include quantization (from 32-bit to 8-bit),
differencing to derive gradient vectors for lighting or rates
of change for temporal domain enhancement, and texture
synthesis for depicting vector fields. Lighting and temporal
domain enhancement are optional. As we will show later,
the number of preprocessing calculations can influence the
optimal system configuration for rendering. Note that it
is often more convenient and economical to conduct these
preprocessing tasks at the input processors rather than the



Figure 1: Visualization of velocity magnitude for selected time steps from the earthquake simulation. Left:
time steps 50, 75, 100, 125. Right: time steps 150, 200, 250, 350.



Figure 2: The architecture of the parallel visualiza-
tion solution. The input processors are mainly re-
sponsible for uploading each time steps of the data.
They are also used for calculations that are easier
or only possible to do before the data are split and
distributed to the rendering processors. The Out-
put processors deliver the final rendered images to
a display or storage device.

Figure 3: Top: high-resolution rendering (level 13).
Bottom: Adaptive rendering (level 8). Both images
were rendered at 1024×1024 pixels. The bottom
image reveals almost the same details as the top
image while being generated 3–4 times faster.

rendering processors. First, data replication is avoided be-
cause the input processors have access to all the needed data.
Second, as with I/O, the calculations become free because
of the parallel pipelining.

The number of rendering processors used is selected based on
the rendering performance requirements. After each render-
ing processor receives a subset of the volume data through
the input processors, our parallel rendering algorithm per-
forms a sequence of tasks: view-dependent preprocessing,
local volume rendering, image compositing, and image de-
livery. Before the local rendering step begins, each render-
ing processor conducts a view-dependent preprocessing step
whose cost is very small and thus negligible. As described
later, this preprocessing is used to optimize the image com-
positing step. While rendering calculations are carried out,
new data blocks for subsequent time steps are continuously
transferred from the input processors in the background. As
expected, overlapping data transport and rendering helps
lower interframe delay.

4.1 Adaptive rendering
Rendering cost can be cut significantly by moving up the
octree and rendering at coarser-level blocks instead. This
is done for maintaining the needed interactivity for explor-
ing in the visualization parameter and data spaces. A good
approach is to render adaptively by matching the data res-
olution to the image resolution while taking into account
the desired rendering rates. For example, when rendering
tens of millions of elements to a 512×512 pixels image, ren-
dering at the highest resolution level does not reveal more
details unless a close-up view is selected. One of the calcula-
tions that the view-dependent preprocessing step performs
is to choose the appropriate octree level. The savings from
such an adaptive approach can be tremendous and there is
very little impact on the level of information presented in
the resulting images, as shown in Figure 3. Presently the
appropriate level to use is computed based on the image
resolution, data resolution, and a user-specified limit to the
number of elements that project to the same pixel.

4.2 Enhancement rendering
Because of the large dynamic range of the data, it is often
difficult to follow time-varying phenomena. For example,
half way into the simulated period, direct volume rendering
reveals very little variation in the domain without modifying
the opacity mapping used. We have employed a new tempo-
ral domain filtering method to enhance the wave propaga-
tion throughout the whole time period [16]. The enhance-
ment is done locally by using values in either the previous
or the next time step, or both. As a result, both large-scale
and small-scale wave propagations are captured in the pic-
ture. The user can turn the enhancement on and off during
interactive viewing to ensure a correct interpretation of the
data. The cost of computing this enhancement is small, and
the input processors are excellent for such preprocessing cal-
culations. Figure 4 contrasts the images rendered with and
without enhancement for one of the later time steps.

4.3 Vector field rendering
In the earthquake ground motion modeling, the computa-
tional mesh is most dense near the ground surface. More



Figure 4: Visualization of time step 200. Top: with-
out enhancement. Bottom: with enhancement. The
enhancement brings out the wave propagation.

than 20 percents of mesh points are near the surface re-
gions. There is thus a strong interest in understanding the
characteristics of the various scalar and vector fields near the
ground surface. We have attempted to add the capability of
visualizing vector field on the surface using LIC.

In our approach, a quadtree is first constructed to organize
all nodes on the top surface. For each time step, the 2D vec-
tor field on the surface is extracted from the raw 3D vector
fields. Since the extracted vector field is on an irregular grid,
to simplify the later LIC calculations a 2D regular-grid vec-
tor field is derived using the underlying quadtree. This step
can done either as a preprocessing step or on the fly. The
resolution of the 2D regular-grid vector filed is determined
by the image size and the adaptive levels selected by the
user. During rendering time, the LIC images can be directly
computed from the vector field on the Input processors. The
resultant images are then sent to the Output processors to
be composited with the volume rendered images (see Fig-
ure 2). Since the I/O processors execute concurrently with
the rendering processors, it is possible to hide the cost of
vector field rendering if a sufficient number of Input proces-
sors are used.

4.4 Parallel image compositing
The parallel rendering algorithm is sort-last which thus re-
quires a final compositing step involving inter-processor com-
munication. Most parallel image compositing algorithms

were designed to achieve high efficiency on specific network
topology [21, 11, 1]. We have adopted SLIC [27] which is
an optimized version of the direct send compositing method
to offer maximum flexibility and performance. The direct
send method has each processor send pixels directly to the
processor responsible for compositing them. This approach
has been widely used; it is easy to implement and does not
require a special network topology. With direct send com-
positing, in the worst case there are n(n−1) messages to be
exchanged among n compositing nodes. For low-bandwidth
networks, care should be taken to avoid many-to-one or
many-to-many communication.

SLIC uses a minimal number of messages to complete the
parallel compositing task. The optimizations are achieved
by using a view-dependent precomputed compositing sched-
ule. Reducing the number of messages that must be ex-
changed among processors should be beneficial since it is
generally true that communication is more expensive than
computation. The preprocessing step to compute a com-
positing schedule for each new view introduces very low
overhead, generally under 10 milliseconds. With the result-
ing schedule, the total amount of data that must be sent
over the entire network to accomplish the compositing task
is minimized. According to our test results, SLIC outper-
forms previous algorithms, especially when rendering high-
resolution images, like 1024×1024 pixels or larger. Since
image compositing contributes to the parallelization over-
heads, reducing its cost helps improve parallel efficiency.

5. I/O STRATEGIES
Our objective is to make the rendering performance inde-
pendent of the I/O requirements. This is possible if some
form of parallel I/O support is available. The computing en-
vironment at PSC has several parallel file systems connected
by high-speed networks. We have studied how to effec-
tively utilize these high performance computing resources.
Our designs use parallel pipelining. In addition to employ-
ing multiple rendering processors, multiple input processors
are used to maximize data rates with concurrent reads and
writes [31]. The parallel pipelining becomes the most effi-
cient when the I/O costs are hidden so that the rendering
time dominates the overall turnaround time and interframe
delay.

5.1 1D input processors (IDIP)
To maximize bandwidth utilization of the parallel file sys-
tem, it is advantageous to use multiple I/O processes with
each processor reading and preprocessing a complete, single
time step of the data. In this way, best performance can
be achieved if Tf + Tp = Ts(m − 1) where Tf is the time
to fetch the data, Tp the preprocessing time, Ts the time to
send the data to a rendering processor, and m the number of
processors used. As a result, the number of input processors

which should be used is m =
Tf +Tp

Ts
+ 1. This would elimi-

nate the idle time of a rendering processor between receiving
two consecutive time steps, as shown in Figure 5. When Ts

is smaller than the rendering time Tr which normally is the

case, we can let m =
Tf +Tp

Tr
+ 1 instead, which allows us

to use fewer input processors but still keep the rendering
processors busy.



Figure 5: Overlapping I/O and rendering calcula-
tions. Only when I/O time is not larger than the
rendering time can we effectively hide the I/O cost.

5.2 2D input processors (2DIP)
The strategy 1DIP works well until Ts become larger than
Tr. That is, even though we can increase the rendering rates
by using more rendering processors, the 1DIP approach lim-
its how much we can reduce Ts. We have investigated an
alternative design which uses a two-dimensional configura-
tion of input processors. Basically , there are n groups of m

input processors. Each group of processors is responsible for
reading, preprocessing, and distributing one complete time
step of the data.

Since each time step of the data is distributed among all the
rendering processors, with m input processors working on
one time step, it takes about Ts

′ = Ts

m
time for the m input

processors to deliver the data blocks. Now we can control m

to keep Ts
′ smaller than Tr so it becomes possible to make

the rendering processors busy all the time. Note that in this

way we also spread the preprocessing cost and Tp
′ =

Tp

m
.

Given Ts
′ ≤ Tr and Ts

′ = Ts

m
, we can obtain m ≥ Ts

Tr
.

Similarly as with 1DIP, we let Tf
′ + Tp

′ = Ts
′(n − 1). Con-

sequently, n =
(Tf

′+Tp
′)

Ts
′ + 1. When Ts

′ = Tr, m = Ts

Tr
and

n =
(Tf

′+Tp
′)

Tr
+ 1. Assume each input processor deals with

exactly 1
m

of the data. Then ideally Tp
′ =

Tp

m
and Tf

′ =
Tf

m
.

Thus, n =
(Tf /m+Tp/m)

Tr
+ 1 =

(Tf +Tp)

Ts
+ 1. In summary,

to render a time-varying dataset, we can therefore use 1DIP
when Tr is greater than Ts; otherwise, 2DIP should be used.
Figure 6 contrasts 1DIP and 2DIP configurations.

5.3 File reading strategies
MPI-IO, the I/O part of the MPI-2 standard [8], is an inter-
face designed for portable, high-performance I/O. For exam-
ple, it provides Data Sieving to enable more efficient read
of many noncontiguous data and Collective I/O to allow
for merging of the I/O requests from different processors
and servicing the merged request. Our designs use both
Data Sieving and Collective I/O for 2DIP. However, we have
also developed an alternative approach which experimen-
tally proves to be more efficient for reading noncontiguous
data. Our design requires a parallel file system with a high
bandwidth.

In the 2DIP case, m input processors fetch, preprocess, and
distribute one time step dataset. Recall that, as a load bal-

Figure 6: The 1DIP and 2DIP configurations. With
1DIP, each input processor fetches one time step of
the data so m time steps are fetched concurrently.
With 2DIP, each group of input processors fetches
one time step so n time steps are read concurrently.

ancing strategy, each rendering processor receives multiple
octree blocks which spread the spatial domain of the data.
In order to make data subsets ready for each rendering pro-
cessor, each input processor must reconstruct the hexahe-
dral cell data from the node data according to the octree
data. Since the node data is stored as a linear array on the
disk, each processor must make noncontiguous reads to re-
cover the cell data for each octree block. The parallel I/O
support offered by MPI-IO makes this task easier.

The biggest bottleneck is reading data from the disk stor-
age system to the input processors. While it is clear using
multiple input processors helps increase the bandwidth, we
are interested in determining the minimal number of input
processors that must be used for a preselected renderer size
to achieve the desired frame rates. Parallel reads may be
done in the following two ways.

5.3.1 Single collective and noncontiguous read.
In the first strategy, we rely on MPI-IO support. All in-
put processors fetch a roughly equal number of hexahedral
cells from the disk. Grouping of the cell data is done ac-
cording to the octree data and the load balancing strategy.
To avoid duplicating node data, octree data are merged for
each rendering processor. Each of the m input processors
uses

• MPI TYPE CREATE INDEXED BLOCK to derive a
data type (e.g., an array of node data) from the octree
data. The derived data type describes one reading
pattern;

• MPI FILE SET VIEW to set the derived data type as
the reading pattern of the current input processor; and

• MPI FILE READ ALL to collectively read the data
along with other input processors.

At the end, each input processor has a subset of the cur-
rent time step of the cell data to be distributed among the



Figure 7: Octree blocks are assigned to rendering
processors according to a load balancing strategy.
Using the second reading method, the node data
belonging to the octree block k is likely to be spread
across multiple input processors. There is a merging
process at every rendering processor to gather all
the relevant node data.

rendering processors.

5.3.2 Independent contiguous read.
In this case, each input processor independently reads the
contiguous 1

m
of a time step of the node data. Both the

node data and the octree data are 1D arrays as shown in
Figure 7. The node data of a particular octree block k likely
spread across multiple input processors. Each input proces-
sor therefore scans through the octree data and creates a
mapping between its local node data and the corresponding
octree blocks. Each input processor then forwards both the
node data and the map to the rendering processors accord-
ing to a load balancing strategy. Each rendering processor
has to merge the incoming data to form complete local oc-
tree blocks of data. No communication between processors
are needed for the merge operations. This strategy is su-
perior if the overhead of collective I/O would become too
high.

6. TEST RESULTS
We present the performance of our parallel visualization
pipeline on LeMieux, an HP/Compaq AlphaServer with 3,000
processors operated at the Pittsburgh Supercomputing Cen-
ter for the visualization of time-varying ground motion sim-
ulation data consisting of 100 million hexahedral elements.
Each time step of the data to be transferred is about 400
megabytes.

Figure 8 shows rendering performance using 64 rendering
processors with the 1DIP strategy. The image size is 512×512.
The rendering time is about 2 seconds, and the total time

1DIP strategy for rendering 512X512 image
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Figure 8: 64 rendering processors using the 1DIP
strategy. Image resolution is 512×512. With 12 in-
put processors, the total time due to I/O and pre-
processing is reduced to about 2 seconds, very close
to the rendering time.

due to I/O and preprocessing is about 22 seconds if only a
single input processor is used. Preprocessing cost includes
the time to do volume partitioning, load balancing, and
quantization. In Figure 8, we can see when using 12 in-
put processors the total time due to I/O and preprocessing
becomes very close to the rendering time, making possible
hiding of the I/O and preprocessing cost.

Figure 9 compares 1DIP and 2DIP. Recall that the pur-
pose of using 2DIP is to employ multiple input processors
to fetch a single time step of the data for further cutting
down the sending time, in contrast to 1DIP which concur-
rently reads multiple time steps. The test results show that
when rendering time is low 2DIP should be used so that
the I/O and preprocessing cost can be effectively hidden.
Note that in this set of tests, Independent Contiguous Read
was used for 2DIP since according to our previous study it
is superior to Collective Noncontiguous Read. A thorough
performance study of the 1DIP and 2DIP I/O strategies is
presented in [31].

When adaptive rendering is used, I/O cost can be reduced
significantly by using adaptive data fetching. That is, only
data cells at the selected level are fetched from the disk
by the input processors using MPI I/O. Our test results
show that when rendering 512×512 images using 1DIP and
adaptive level 8 with 64 rendering processors, only four in-
put processors are needed to reach the best possible parallel
pipelining. Without using adaptive fetching, as shown pre-
viously in Figure 8, 12 input processors are needed.

In 3D graphics, lighting is employed to help convey shape
and orientation information. In the context of flow visu-
alization, lighting helps illustrate feature surfaces and their
spatial relationship. Adding lighting requires calculations of
gradient information to approximate local surface orienta-
tion plus solving the lighting equation at each sample point.
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Figure 9: Comparing 1DIP and 2DIP using 128
rendering processors for rendering 512×512 images.
The rendering time is reduced to about 1 second.
In this case, overlapping rendering and I/O is only
possible with 2DIP.

Using 1DIP to render 512x512 image with lighting
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Figure 10: Rendering 256×256 images with lighting
and adaptive fetching. The cost of adding lighting
is high so fewer input processors, 3 and 4, are re-
quired when using 64 and 128 rendering processors,
respectively.

Using the input processors to compute gradients requires
transmitting the gradient vectors to the rendering proces-
sors. It is thus advantageous to compute gradient on the
rendering processors. Figure 10 shows the cost of rendering
with lighting using 64 and 128 rendering processors. In both
cases, a much smaller number of input processors are needed
because of the higher cost of rendering and using adaptive
featching. Figure 11 contrasts the images rendered with and
without lighting.

Adding 2D LIC images can be done as a preprocessing step
and handled by the Input processors. Figure 12 shows the
cost of making simultaneous surface LIC and volume visu-
alization using 64 rendering processors with 1DIP strategy.
When 16 input processors are used, computing the LIC im-
ages, other preprocessing, and I/O essentially become free.
Figure 13 displays four selected time steps of simultaneous
scalar and vector fields visualization. Figure 14 shows the
LIC image for time step 200 and two close-up views. When

Figure 11: Top: with lighting. Bottom: without
lighting. Adding lighting results in visualization
showing the flow structure with greater clarity.
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Figure 12: The cost of making simultaneous sur-
face LIC and volume visualizations using 64 render-
ing processors with 1DIP strategy. When 16 input
processors are used, the cost of computing the LIC
images and the I/O can be completely hidden.



the interframe delay can be cut below 1-2 seconds, it is pos-
sible for the user to explore the temporal, spatial, and vari-
able domains of the simulation. Such a capability was not
previously available for datasets at this scale.

7. CONCLUSIONS AND FUTURE WORK
We have developed a highly efficient parallel visualization
pipeline based on an effective processor partitioning scheme
which facilitates overlapping I/O operations, preprocessing,
and rendering. This parallel visualization solution also in-
corporates adaptive rendering, a highly efficient parallel im-
age compositing algorithm, and new I/O strategies to make
possible near-interactive visualization of terascale earthquake
simulations. Our performance study using LeMieux at the
PSC demonstrates convincing results, and also reveals the
interplay between data transport strategy and interframe
delay.

We have addressed the I/O problem of massively parallel
rendering. We have demonstrated that using multiple data
servers, adaptive fetching, and MPI I/O helps not only re-
moves the I/O bottleneck, but also hides preprocessing cost.
Presently, the input processors also handle load balancing
statically. We plan to investigate a fine-grain load redis-
tribution method and study how to reduce its overhead as
much as possible.

Presently, the image compositing cost is about constant. We
believe compression can help lower communication cost to
make the overall compositing scalable to large machine sizes.
Our preliminary test results show a 50% reduction in the
overall image compositing time with compression.

We have not exploited the SMP features of LeMieux, which
we believe could allow us to accelerate the rendering calcu-
lations while reducing communication cost. The result will
be a more scalable renderer offering higher frame rates.

Adaptive rendering will continue to play a major role in our
subsequent work. As shown, full rendering and adaptive
rendering often result in visually indistinguishable results,
but the savings in rendering cost can be tremendous. Our
further study in this direction will focus on how adaptive
rendering can be done with minimal user intervention and
perception of level switching.

Our ultimate goal is to perform simulation-time visualiza-
tion allowing scientists to monitor the simulation, make im-
mediate decisions on data archiving and visualization pro-
duction, and even steer the simulation. To achieve such
an ambitious goal, we have started by first developing a
highly efficient parallel visualization algorithm that is capa-
ble of delivering interactive rendering of terascale datasets,
scalable to large MPP systems, and easily coupled with ex-
tended capabilities such as vector field rendering. It is also
essential to develop appropriate user interfaces and interac-
tion techniques for interactive browsing in both the spatial
and temporal domains of the data.

Finally, the parallel simulation and renderer will run si-
multaneously on either the same machine or two different
machines connected with a high-speed network interconnect
permitting remote interaction with the simulation and vi-

Figure 13: Simultaneous volume rendering (without
lighting) and surface LIC visualization for selected
time steps: 50, 100, 150, and 200.



Figure 14: LIC image of the ground surface at time
step 200. The bottom 2 images show increasingly
close-up views of the field.

sualization. We will therefore also investigate the use of a
graphics-enhanced PC cluster as a dedicated visualization
server. The question then is whether our I/O strategies can
keep up with hardware accelerated rendering.
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