A Parallel VLSI Architecture for a Digital Filter of Arbitrary Length Using Fermat Number Transforms'

T. K. Truong
Communications Systarns Research Section

I. S. Reed, C. S. Yeh, and H. M. Shao
University of Southern Califormia

In this paper a parallel architecture is developed to compute the linear convohution of two sequences of arbitrary lengths using the Fermat number transform (FNT). In particular a pipeline structure is designed to compute a 128 -point FNT. In this FNT, only adjitions and bit motations are required. A standard barrel shifter circuit is modified so tha. it performs the required bit rotation operation.

The overtup-save method is generalized for the FNT to compute a linear conwolution of arbitrary length. A parallei -initecrure is developed to realize this type of overlap-save merhod using one FNT and several inverse FNTs of 128 points. The generatized overlapsave method alleviares the usual dynamic range limitation in FNTS of it transform lengths. Its architecture is regular. simple. and expandable, and therefore illy suirable for VLSI implementation

I. Introduction

Fermat number transforms (FNTs) were developed to compute cyclic convelutions (Refs 1-3). A cyctic convolution of two sequences can be obtained by taking the inverse FNT of the product of the FNTs of these two sequences.

FNTs over certain transform lengths have the advantage over most number-theoretic transforms in that no multiplications are required. McClelland (Ref. 4) designed a hardware syste... to realize a 64 -point 17 -bit FNT that used commercially available ECL IC chips. For this purpose he developed a

[^0]new binaiy number representation and the binary arithmetic operations modulo a Fermat number (Refs. 4, 5). The Fermat number transform can be applied to digital filtering (Refs. 2,3), image processing (Refs. 6, 7), X-ray reconstruction (Ref. 8), and to the encoding and decoding of certain ReedSolomon codes (Refs. 9, 10).

In this paper, a pasallel architecture is designed to realize a digital filter of arbitrary length using the FNT. In Section II, a pipeline structure is used to compute a 128 -point FNT. Only additions and bit rotations are required in this structure. The bit rotation operations are implemented by a modification of a standard barrel shifter circuit (Ref. 11). In Section III, the overlap-save method is generalized to compute the linear convolut.itl of a digital filtering system. Then a parallel architecture is desigied to realize the generalized overlap-save
method using one FNT and several inverse FNTs of 128 points. The circuit design of an FNT butterfly is given in the Appendix.

II. A Paraliel Structure for Computing a 128-Point FNT

Let $F_{t}=22^{t}+1$ be the t Fermat number where $t \geqslant 0 . F_{t}$ is a prime number for $0 \leqslant t \leqslant 4$. Let $\left\{x_{n}\right\}$ be a N-point sequence of integer numbers, where $0 \leqslant x_{n} \leqslant F_{t}-1,0 \leqslant n \leqslant$ $N-1$, and N is a power of 2 . The Fermat number transform $\left\{X_{k}\right\}$ of $\left\{x_{n}\right\}$ over F_{r} is defined as follows:

$$
\begin{equation*}
X_{k} \equiv \sum_{n=0}^{N-1} x_{n} a^{n k}\left(\bmod F_{z}\right), k=0,1, \ldots, N-1 \tag{1}
\end{equation*}
$$

where $0 \leqslant X_{k} \leqslant F_{t}-1$ and α is an N th root of unity. That is. N is the least positive integer such that $\alpha^{N} \equiv 1\left(\bmod F_{z}\right)$. The corresponding inverse FNT is the following:

$$
\begin{equation*}
x_{n} \equiv\left(\frac{1}{N}\right) \sum_{k=0}^{N-1} X_{k} \alpha^{n k}\left(\bmod F_{t}\right), n=0,1, \ldots, N-1 \tag{2}
\end{equation*}
$$

In order that a cyclic convolution can be computed by the FNT pair in Eqs. (1) and (2), N depends on the F_{t} and α chosen (Refs. 2, 3). More details of an FNT can be found in (Refs. 2 and 3).

In this paper F_{p}, α, and N are selected specifically to be $F_{5}=2^{32}+1, \sqrt{2}$, and 128 respectively. That is, the data of this FNT are integers between 0 and 2^{32}. Hence 33 bits are required to represent a number. The transform length of this FNT is 128 . In an FNT over F_{r}, the quantity $\sqrt{2}$ represents the integer $2^{2^{t-2}}\left(2^{2-1}-1\right)($ Refs 2,3$)$. For $t=5$, since $2^{32} \equiv$ $-1\left(\bmod F_{5}\right) \cdot \sqrt{2}=2^{24}-2^{8}=2^{24}+2^{40}$. A conservative value of the dynamic range (Ref. 12) is $\sqrt{2^{32} /\left(2^{8}\right)} \cong 2^{12}$. This value is sufficiently large for a number of applications.

Since the FNT has a mathematical algorithm similar to the FFT. an FFT-type structure can be applied to perform a fast FNT. Figure 1 shows a pipeline structure (Ref. 13) for computing a 128 -point FNT over F_{5}. The radix- 2 decimation-intime (DIT) technique is used in this structure. The structure for performing an iverse FNT is the mitror image of the circuit shown in F_{1}, 1 if the tadix. 2 decimation-in-frequency (DIF) technique is used.

In Fig. $1 z^{-1}$ denotes a j-step delay element, which can be realized by a set of j first-in-first-out (FIFO) registers. The
symbolic diagram and operations of a DIT FNT butwerfly are shown in Fig. 2. The design C. DIT FNT butterfly is glvea in the Appendix. A similar DIF FNT butterfly was designod in Ref. 4.

In Fit. $1, S W_{i}$ is a shuffle-exchange switch controlled by the control signal S_{i} for $1 \leqslant i \leqslant 6$. The operations of the $S W_{i}$ are shown in Fig. 3. The S_{i} 's can be implemented simply by a 6 -stage up-counter if no buffer registers are used in the FNT butterflies (Ref. 13). With the buffer registers in the buiterflies, delay elements are needed at the outputs of the counter, as shown in Fig. 4, for the purpose of synchronization.

In the next section the overiap-save method (Ref. 13) is generalized to implement a digital filter of arbitrary length using one FNT and several inverse FNTs of 128 points over $F_{\mathbf{s}}$. Then a parallel VLSI architecture is designed to realize this overlap-save method using the FNT structure designed above.

III. A Digital Fitter Architecture of Arbitrary Length Using the FNT

In the previous section F_{r}, α, and N are chosen to be F_{s}, $\sqrt{2}$, and 128 respectively. $N=128$ is the maximum transform length over F_{5} (Refs. 2, 3), and 2^{12} is the dynamic range. One could increase the transform length by choosing F_{i} for $t \geqslant 6$. In so doing, however, at least $2^{6}+1=65$ bits are required to represent a number. Altematively, one could use a specific α, where α is not a power of $\sqrt{2}$, over F_{3} or F_{4} to increase the transform length. In such a case a complete multiplication is required. In addition, the dynamic range is used up readily. To remedy this difficulty, the overlap-save method is generalized to compute the linear convolution of a digital filter of arbitrary input data and filter lengths. A parallel architecture is developed to realize this generalized overlap-save method using the 128 -point FNT structure designed in the previous section.

Let $\left\{x_{n}\right\}$ and $\left\{h_{m}\right\}$ be the input and filter sequences of a digital filter, respectively, where $0 \leqslant n \leqslant N-1$ and $0 \leqslant m \leqslant$ $M-1$. The output sequence $\left\{v_{k}\right\}$ of the filter is the linear convolution of $\left\{x_{n}\right\}$ and $\left\{h_{m}\right\}$, where $0 \leqslant k \leqslant N+M-1$ (Ref.13). It is shown (Ref. 13) that such a linear convolution can be obtained by coniputing a cyclic convolution. For purposes of expositicn it is assumed that $N=1024$ and $M=256$ in the following argument.

In order to use 128 -point FNTs to compute $\left\{y_{k}\right\}$, four 128-point subfilters $\left\{h_{m}^{1}\right\},\left\{h_{m}^{2}\right\},\left\{h_{m}^{3}\right\}$ and $\left\{h_{m}^{4}\right\}$ are formed by partitioning $\left(h_{m}\right.$ \} as follows:

$$
h_{m}^{1}= \begin{cases}h_{m+64(-1)} & \text { for } 0 \leqslant m \leqslant 63 \tag{3}\\ 0 & \text { ior } 64 \leqslant m \leqslant 127\end{cases}
$$

for $1 \leqslant i \leqslant 4$. Next the overlapsave method (Ref. 13) is used to compute the linear convolution $\left\{y_{k}\right\}$ of $\left\{x_{n}\right\}$ and $\left\{h_{m n}\right\}$ by using the cyclic convolution technique, where $1 \leqslant i \leqslant 4$ and $0 \leqslant k \leqslant 1087$. To accomplish this $\left\{x_{n}\right\}$ is sectioned into 128point subsequences with 64 points of $\left\{x_{n}\right\}$ overlapped between two consecutive subsequences. That is $\left\{x_{n}\right\}$ is sectioned into $\left\{x_{m}^{1}\right\}=\left\{x_{m}\right\},\left\{x_{m}^{2}\right\}=\left\{x_{m+64}\right\}, \ldots,\left\{x_{m}^{15}\right\}=\left\{x_{m+696}\right\}$, where $0 \leqslant n \leqslant 1023$ and $0 \leqslant m \leqslant 127$. Then $\left\{y_{k}^{i}\right\}$, for $1 \leqslant$ $i \leqslant 4$, is computed by overlapping the cyclic convolution of $\left\{h_{m}^{i}\right.$ \} and $\left\{x_{m}^{i}\right\}$ for $1 \leqslant j \leqslant 15$ using 128 -point FNTS. Finally the output sequence $\left\{y_{k}\right\}$, for $0 \leqslant k \leqslant 1024+256-1=1279$, results evidently from $\left\{y_{k}^{i}\right\}$ for $1 \leqslant i \leqslant 4$ by the following equation:

$$
\begin{align*}
y_{k} & =y_{k}^{1}+y_{k}^{2} z^{-64}+y_{k}^{3} z^{-128}+y_{k}^{4} z^{-192} \\
& =\left(y_{k}^{1}+y_{k}^{2} z^{-64}\right)+\left(y_{k}^{3}+y_{k}^{4} z^{-64}\right) z^{-128} \tag{4}
\end{align*}
$$

The relationship between $\left\{y_{k}\right\}$ and $\left\{y_{k}^{d}\right\}$ for $1 \leqslant i \leqslant 4$ is illustrated in Fig. 5 Other cases of the generalized overlap-save method are constructed in a similar manner.

In Fig. 6 is shown the block diagram of an architecture for the generalized overlap-save method of a digital fiter using one FNT and four inverse FNTs of 128 points. In this system the DIT and DIF techniques are used for the FNT and inverse FNTs, respecaively. In the generalized overlap-save method, one of the two outputs of the inverse FNT butterfly in the last stage is not needed. Hence, the inverse FNT butterfly in the
last stage is a degenorative butterify circutt, and the deliny clements associated with this butterfily sircutt are not noodod. The H_{1}^{\prime} 's in Fig 6 are the FNTs of $\left(h_{m}^{\prime}\right)$. The $(1 / N)$ factor in Eq. (2) is incorporated into the $\mathrm{H}_{k}^{\mathrm{m}} \mathrm{s}$. These $\mathrm{H}_{\mathrm{k}} \mathrm{\prime}$'s cm be precomputed and stared in the system. The adders in Fig. 6 perform normal hiaary additions, not addtions motuto F_{r}.

The advantage of the generalized overlapseve mothod for implementing a digital filter using FNT transforms are the followeng: (1) It requires no multiplications. Only additions a. I bit rotations are noeded. (2) It allevites the usual dynamic range limitation for long sequence FNTs. (3) It utaizes the FNT and inverse FNT circuits 100% of the time. (4) The lengths of the input data and filter sequences can be arbitrary and different.

IV. Conclusion

A pipeline structure is developed to compute a 128 -point Fermat number transform. In this 128 -point FNT, only additions and bit rotations are required. A barrel shifter circuit is modified to perform the multiplication of an integer by a power of 2 modulo a Fermat number. The overlap-save method is generalized to compute the linear convolution of a digital filter with arbitrary input data and filter lengths. An architecture is developed to realize this generalize 1 overiapsave method by a simple combination of one 128 -point FNT and several inverse FNT structures. This realization alleviates the dynamic range limitations of the FNT with a long transform length. The architecture is simple and regular, and hence suitable for VLSI implementation.

References

1. Rader, CM., "Discrete Convolutions Via Mersenne Transforms," IEEE Thens. Computers, Vol. C-21, No. 12, pp. 1269-1273, Dec. 1972.
2. Agarwal, R. C., and Burrus, C. S., 'Fast Convolution Uaing Fermat Number Transforms with Applications to Digital Fittering," IEEE Trams. Acoustic. Speed, and Signel Processing, Vol. ASSP-22, No. 2, pp. 87-97, April 1974.
3. Agarwal, R. C., and Burrus, C. S., "Number Theoretical Transforms to Implereent Fast Digital Convalution," Proc. IEEE, Vol. 63, No. 4, pp. 550-560, April 1975.
4. McClellan, J. H., "Hardware Realization of A Fermat Number Transform," ${ }^{\text {TE }}$ IEE Thens Acoustic, Speed, and Sienal Processing, Vol. ASSP-24, No. 3, pp. 216-225, June 1976.
5. Leibowitz, L. M., "A Simplified Binary Arithmetic For The Fermat Number Transform," IEEE Thans. Acoustic, Speed, and Sisnal Processing, Vol. ASSP-24, No. S, pp. 356-359. Oct. 1976.
6. Reed, I. S., Truong. T. K., Kwoh, Y. S., and Hall, E. L., "Image Processing by Transforms Over A Finite Field," IEEE Thans. Computers, Val. C-26, No. 9, pp. 874-881, Sep. 1977.
7. Rader. C. M.. "On the Application of the Number Theoretic Methods of High Speed Convolution to Two-Dimensional Filtering." IEEE Trams. Circuits and Systems, Vol. CAS-22. No 6. pp. 575. June 1975.
8. Reed, I. S., Kwoh, Y. S., Truong, T. K., and Hall, E. L., "X-Ray Reconstruction by Finite Field Transforms," IEEE Trans. on Nuclear Science, Vol. NS-24, No. 1, Feb. 1977.
9. Reed, I. S., Truong, T. K., and Welch, L. R., "The Fast Decoding of ReedSolomon Codes Using Fermat Number Transforms," IEEE Thens. Information Theory, Vol. IT-24, No. 4. pp. 497499, July 1978.
10. Roots, H. F. A., and Best, M. R., "Concatenated Coding on a Spacecraft-to-Ground Telemetry Channel Performance," Processing ICC 81, Denver, CO. 1981.
11. Mead. C. A., and Conway, L. A., Irtoctuction to VLSI Systems, Addison-Welsey, Reading. Mass., 1980.
12. Reed. I. S., and Truong. T. K., "The Use of Finite Field to Compute Convolutions," IEEE Thans Information Theory, Vol. IT-21, No. 2, pp. 208-213, March 1975.
13. Rabiner, L. R.. and Gold, B., Theory and Application of Digital Signal Processing. Prentice-Hali, Inc., Englew:ood Cliffs, New Jersey, 1975.

ORIGNAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY.

Fig. 2. (a) The symbolic diagrem and (b) operations of a DTT FNT butterthy

(a)

(b)

Fig. 3. A shutfeexchange switch. (a) Direct connection. (b) Crossed connnection

Fig. 4. A G-stage up-counter used to generate the control signale S; in Fig. 1

ORIGINAL PÄCE is OF POOR QUALITY

Fig. 5. The example of the generallaed overlap-ave method in Eq. (4)

CRIGINAL PAGE is OF POOR QUALTTY

THE PNT OF THE FILTER SEQUENCE

Fig. 6. A raalization of a digital fither with a filtor saquance of 266 points by using the generalteed overtap-save mathod end thry FNT technlque

Appendix

In this appendix a circuit is dosigned to implement a DIT FNT butterfly shown in Fig. 2. A similar DIF FNT butterfly was designed in Ref. 4. To efficiently perform the FNT, number representations have been proposed (Refs. 4, 5) for binary arithmetic operations modulo F_{r}. The diminished-1 representation proposed by Liebowitz (Ref. 5) is used in the following design. Let A be represented by $\left[\begin{array}{lllll}a_{32} & a_{31} & \ldots & a_{1} & a_{0}\end{array}\right]$, where $0 \leqslant A \leqslant 2^{32}$ and a_{i} is the th bit of A. Table A-1 shows the correspondence between decimal numbers in a normal binary representation and their values in the diminished-1 representation. The most significant hitt (MSB) a_{32} can be viewed as the zero-detection bit in the diminished-1 representation.

Two basic binary arithmetic operations modulo r_{t} with $\alpha=\sqrt{2}$ are addition and multiplication by a power of 2 . Other operations can be expressed in terms of these two operations. In the following, some dzicis of these operations are described brietly. More specifics can be found in Ref. 5.
(1) Addition: Let $S=A+B$. If $A=0$, then $S=B$. If $B=0$, then $S=A$. If neither A nor B equals 0 , add $\left[a_{31}\right.$ $\left.a_{30} \ldots a_{1} a_{0}\right]$ and $\left[b_{31} b_{30} \ldots b_{1} b_{0}\right]$. Then complement the carry and add it to the previous sum. This yields S.
(2) Multiplication by a power of 2 : Let $B=A \cdot 2^{C}$. If $A=0$, then $B=0$. If $A \neq 0$, left rotate $\left[a_{31} a_{3 G} \ldots\right.$ $a_{1} a_{0}$] C bit positions, but complement the value of bit 31 when it is rotated to bit position 0 , and set $b_{32}=0$.
(3) Negation: Since $2^{32} \equiv-1\left(\bmod F_{5}\right),-A=A \cdot 2^{32}$. Hence if $A \neq 0,-A=\left[a_{32} \bar{a}_{31} \bar{a}_{30} \ldots \bar{d}_{1} \bar{a}_{0}\right]$ where \bar{a}_{1} denotes the complement of a_{i}. If $A=0$, then $-A=0$.
(4) Multiplication by $\sqrt{2}$: Since $\sqrt{2}=2^{24}+2^{40}, A \cdot \sqrt{2}=$ $A \cdot 2^{24}+A \cdot 2^{40}$.
(5) Multiplication by a power of $\sqrt{2}$: Let $B=A \cdot(\sqrt{2})^{C}$. If C is even, then $B=A \cdot(2)^{C / 2}$. If C is odd, then $B=\left(\begin{array}{ll}A & \sqrt{2}\end{array}\right) \cdot 2^{(C-1) / 2}$.

In Fig. A-1 is shown a block diagram of an FNT butterfly shown in Fig. 2. In this design, A, B, D, and E are 33 -bit data, and C is the 7 -bit exponent $n k$ in Eq. (1). Two realizations of an FNT adder can be found in Ref. 4. Figure A-2 shows a passtransistor full-adder, which requires less silicon area. The multiplier in Fig. A. 1 is used to multiply a number by a power of 2 modulo F_{5}. Figure A-3 shows a block diagram of this multiplier. The shifter in Fig. A-3 is a modification of a barrel shifter (Ref. 11) for performing bit rotation operations.

For purposes of illustration, consider the simple FNT over $F_{0}=2+1$. In such an FNT butterfly the functional table and circuit of a modified barrel shifter are shown in Fig. A-4, where the inputs are $\left[b_{1} b_{0}\right]$ and $\left[s_{3} s_{2} s_{1} s_{0}\right]$, and the outputs are $\left[b_{1}^{\bullet} b_{0}^{\circ}\right]$.

ORIGINAL PAGE IS OF POOR QUALTTY

Table A-1. The correspondence among decimal numbers, their vilues in the normal blnary representation, and in the dilminished-1 representation

Dr:imal number	Normal binary representation							Diminished-1 representation						
	a_{32}	a_{31}	${ }^{\text {a }} 3$	\cdots	a_{2}	a_{1}	a_{0}	a_{32}	a_{31}	${ }^{a_{30}}$	\cdots	a_{2}	a_{1}	a_{0}
0	0	0	0	\ldots	0	0	0	1	0	0	...	0	0	0
1	0	0	0	\ldots	0	0	1	0	0	0	\cdots	0	3	0
2	0	0	0	...	0	1	0	0	0	0	\cdots	0	0	1
-				-							-			
-				-							-			
,				-							.			
$2^{32}-2$	0	1	1	\ldots	1	1	0	0	1	1	\ldots	1	0	1
2^{32}-1	0	1	1	.	1	1	1	0	1	1	\ldots	1	1	0
2^{32}	1	0	0	\cdots	0	0	0	0	1	1	\ldots	1	1	1

ORIGINAL PAEE IS OF POOR QUALITY

Fig. A-: A block diagram of a DIT FNT butterity

Fig. A-2. A peas-trensistor .H-ader

Flg. A.3. A clrcuit to perforrt 'e $\mathbf{2}^{\text {c }}$

ORIGABAL PACE IS OF POOR QUALITY

Fis. A-4. (a) The functione' table and (b) clrect of a moditiod berrei shifin.:

[^0]: 'This work was supported in past hy the JPL Difector's Dascretwary I und. I YR?

