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Abstract

This chapter presents an approximate dynamic programming-based dynamic fleet management
model that can handle random load arrivals, random travel times and multiple vehicle types. Our
model decomposes the fleet management problem into a sequence of time-indexed subproblems
by formulating it as a dynamic program and uses approximations of the value function. To handle
random travel times, the state variable of our dynamic program includes all individual decisions
over a relevant portion of the history. We propose a sampling-based strategy to approximate the
value function under this high-dimensional state variable in a tractable manner. Under our value
function approximation strategy, the fleet management problem decomposes into a sequence of
time-indexed min-cost network flow subproblems that naturally yield integer solutions. Moreover,
the subproblem for each time period further decomposes by the locations, making our model
suitable for parallel computing. Computational experiments show that our model yields high-
quality solutions within reasonable runtimes.



1 Introduction and Relevant Literature

Although the majority of the dynamic fleet management models assume that the travel times are

deterministic, there are a variety of applications where traffic jams, equipment failures and undesir-

able weather conditions create substantial variability in the travel times. Furthermore, even if these

events are rare, the travel times may appear to be random to the modeler, since they depend on

factors outside the scope of the model, such as the skill level of the drivers and the schedules of the

ferryboats that are used by the vehicles to cross waterways. This chapter presents an approximate

dynamic programming-based model for the dynamic fleet management problem with random load

arrivals, random travel times and multiple vehicle types.

The work we present in this chapter is motivated by the empty railcar allocation setting. In the

car allocation business, the railroad company receives car requests from its clients on a daily basis.

These requests are for a particular number of cars of a particular type, at a particular operating

station and on a particular date. The company decides which cars should be used to satisfy the

requests and tries to get these cars to the clients. After using the cars for a certain amount of time,

the clients return the cars to the company. To serve the clients in a prompt manner and to offset

the imbalances between where the requests originate and where the cars are returned, the company

continuously repositions the empty cars. Due to limited train capacities and shifting local train

schedules, the travel times can be highly variable.

The strategy that we propose in this chapter has ties with the previous research. Godfrey and

Powell (2002a) and Godfrey and Powell (2002b) propose approximate dynamic programming-based

models for fleet management problems with random load arrivals, deterministic travel times and a

single vehicle type. Topaloglu and Powell (2006) extend this work to problems with multiple vehicle

types. The idea in these models is to decompose the fleet management problem into time-indexed

subproblems by formulating it as a dynamic program and to use approximations of the value function.

We employ a similar strategy here but we use a new dynamic programming formulation to handle

random travel times and multiple vehicle types. The difficulty in handling random travel times arises

from the fact that when a vehicle is dispatched from a particular origin to a particular destination,

it is not known when the vehicle will reach its destination. Consequently, the state variable in our

dynamic programming formulation keeps track of all individual decisions over a relevant portion of

the history. This increases the number of dimensions of the state variable but we show that one can

approximate the value function in a tractable manner under this high-dimensional state variable.

In two recent companion papers (see Topaloglu and Powell (2006) and Topaloglu (2005)), we

address random load arrivals and random travel times in more restricted settings. One of our goals
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here is to extend these papers and other earlier work in the following four dimensions to build fleet

management models that can simultaneously handle random load arrivals, random travel times and

multiple vehicle types. 1) We devise a value function approximation strategy under which the sub-

problems that need to be solved for each time period reduce to min-cost network flow problems

that yield integer solutions naturally. If one naively attempts to generalize the earlier models to

handle multiple vehicle types, then the subproblems that need to be solved for each time period

reduce to min-cost integer multicommodity network flow problems, in which case obtaining integer

solutions may be difficult. 2) We use separable approximations of the value function and there are

other fleet management models that use such value function approximations. One can argue that

separable approximations work well because the fleet management problem is “inherently separable”

by the geographical locations due to the fact that the vehicles located at different locations can

serve different sets of loads. However, it is difficult to claim that the fleet management problem is

“inherently separable” by the vehicle types when there are multiple types of vehicles that can exist

at the same location and compete to serve the same set of demands. In this case, the success of

separable approximations is not as obvious. Our computational experiments indicate that separable

approximations can work well even in the presence of multiple vehicle types. 3) Our model decom-

poses the fleet management problem by locations as well as by time periods. In particular, it solves

one subproblem for each time period-location pair, and in a certain time period, the subproblems

corresponding to different locations can be solved in parallel. When coupled with the fact that these

subproblems are min-cost network flow problems, this parallelization opportunity gives our model a

significant runtime advantage. Even for problems with deterministic load arrivals or deterministic

travel times or a single vehicle type, our model may be preferable due to its runtime advantage. 4)

As a byproduct of parallelization, making the decisions for different locations by solving independent

subproblems accurately mimics the decision-making process in many applications. Freight carriers

usually have multiple dispatchers responsible from managing the vehicles at different locations and

each dispatcher pays little attention to the other dispatchers when making its vehicle allocation de-

cisions. Our model allows each dispatcher to concentrate only on the location that it is responsible

from and the dispatchers coordinate their decisions through the value function approximations.

Fleet management models have a long history and comprehensive reviews can be found in Dejax

and Crainic (1987), Powell (1988), Powell, Jaillet and Odoni (1995) and Crainic and Laporte (1998).

We restrict our review to the most relevant literature. Early fleet management models appear as

the first applications of linear programming and min-cost network flow algorithms (see Dantzig and

Fulkerson (1954), Ferguson and Dantzig (1955), White and Bomberault (1969) and White (1972)).

These models formulate the problem over a state-time network, where the nodes represent the supply

of vehicles at different locations and at different time periods, and the arcs represent the vehicle
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movements. They assume that the load arrivals over the entire planning horizon are known in

advance or incorporate the uncertain future load arrivals through their expected values. In practice,

solving these models often requires integer programming techniques because the network structure

is quickly lost when one attempts to address multiple vehicle types or load pick up windows (see

Abara (1989) and Hane, Barnhart, Johnson, Marsten, Nemhauser and Sigismondi (1995)). Not

too far from the state-time network models are the myopic assignment models that solve a simple

assignment problem for each time period (see Powell (1988) and Powell (1996)). These models do

not incorporate the uncertain future load arrivals at all and only work with what is known with

certainty, which is justified by the fact that the carriers receive the shipment requests far in advance.

They are easy to implement, and especially for this reason, they are widely used in practice.

A second class of fleet management models attempt to address the randomness in the load arrivals

explicitly. The earliest examples of these models assume that a constant fraction, say βijt, of the

empty vehicles available at location i at time period t is repositioned to location j. In this case, the

fleet management problem can be formulated as a nonlinear program to find the best values for these

fractions (see Jordan and Turnquist (1983) and Powell (1986)). Recent models address the random-

ness in the load arrivals by decomposing the problem into time-indexed subproblems and assessing

the impact of the current decisions on the future through value functions. Due to the large number

of decision variables and possible load realizations, classical dynamic programming techniques are

not feasible for computing the value functions and most of the effort revolves around approximating

the value functions in a tractable manner (see Frantzeskakis and Powell (1990), Crainic, Gendreau

and Dejax (1993), Carvalho and Powell (2000), Godfrey and Powell (2002a), Godfrey and Powell

(2002b) and Adelman (2004)). The model we present in this chapter falls in this category.

Myopic assignment models remain applicable when the travel times are random. Other than these

straightforward models, we are not aware of a fleet management model that can handle random

travel times. Laporte, Louveaux and Mercure (1992) and Kenyon and Morton (2003) consider

random travel times in the context of the vehicle routing problem. Their work does not apply to

the fleet management problem because they focus on building fixed vehicle routes that yield the

best average performance, whereas the fleet management setting requires continuous management

of the vehicles. Parallelization and distributed computing have not seen much attention in the area

of transportation. These concepts usually appear as a byproduct of an algorithmic strategy such as

Lagrangian relaxation or Dantzig-Wolfe decomposition. For example, Chien, Balakrishnan and Wong

(1989) and Fumero and Vercellis (1999) propose decomposition strategies for inventory distribution

problems motivated by Lagrangian relaxation. Bourbeau, Crainic and Gendron (2000) parallelize

branch-and-bound for a large-scale fleet management application.
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2 Problem Description

We have a heterogeneous fleet of vehicles to serve the loads that occur at different locations in a

transportation network over a finite planning horizon. At every time period, a random number of

loads enter the system, and we need to decide which loads we should carry and to which locations

we should reposition the empty vehicles. We are interested in maximizing the total expected profit

over the planning horizon. We define the following.

T = Set of time periods in the planning horizon, T = {1, . . . , T} for some finite T .

V = Set of vehicle types.

I = Set of locations in the transportation network.

L = Set of movement modes using which a vehicle can move from one location to another,

L = {0, 1, . . . , L} for some finite L. Movement mode 0 always corresponds to empty

repositioning. The other modes correspond to carrying different types of loads. We

elaborate on the concept of movement modes below.

xv
ijlt = Number of vehicles of type v dispatched from location i to j at time period t under

movement mode l.

cv
ijlt = Profit from dispatching one vehicle of type v from location i to j at time period t

under movement mode l.

Dijlt = Random variable for the number of loads that need to be carried from location i to

j at time period t and that correspond to movement mode l.

τij = Random variable for the number of time periods required to move from location i

to j. We assume that 1 ≤ τij ≤ τ for some finite τ .

Whenever we have l ∈ {1, . . . , L}, the decision variable xv
ijlt captures the number of vehicles of type

v carrying a load of type l from location i to j at time period t, and the profit from each one of

these loads is cv
ijlt. If it is not feasible to use a vehicle of type v to carry a load of type l, then we

assume that cv
ijlt = −∞ for all i, j ∈ I, t ∈ T . The decision variable xv

ij0t captures the number of

vehicles of type v moving empty from location i to j at time period t, and the cost of each one of

these movements is −cv
ij0t. Since the empty movements are not bounded, we have Dij0t = ∞ for all

i, j ∈ I, t ∈ T . One advantage of our notation is that it does not require making a distinction between

empty and loaded movements. For example, we can succinctly write the profit at time period t as
∑

i,j∈I
∑

l∈L
∑

v∈V cv
ijlt xv

ijlt and the number of vehicles of type v leaving location i at time period t

as
∑

j∈I
∑

l∈L xv
ijlt. Finally, we note that the decision variable xv

ii0t captures the number of vehicles
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of type v held at location i at time period t. For notational uniformity, we let τii = 1 for all i ∈ I,

although the travel time from a location to itself is, of course, 0 in reality.

By suppressing some of the indices in the variables above, we denote a vector composed of the

components ranging over the suppressed indices. For example, we have xt = {xv
ijlt : i, j ∈ I, l ∈

L, v ∈ V} and Dt = {Dijlt : i, j ∈ I, l ∈ L}. We reserve the letters s, t and u to index the time

periods, and if two or three of them are used in the same context, then the ordering s ≤ t ≤ u holds.

3 Model Formulation

We begin by reviewing the fleet management model proposed by Topaloglu and Powell (2006).

Although it is unable to handle random travel times, this model gives a good starting point.

3.1 Deterministic Travel Times

To capture the state of the vehicles, we define the following.

rv
iut = Right before making the decisions at time period t, the number of vehicles of type

v that are inbound to location i and that will reach location i at time period u.

Since τij ≤ τ for all i, j ∈ I, a vehicle dispatched to location i before time period t reaches its

destination before time period t+τ . Therefore, we have rv
iut = 0 for all i ∈ I, v ∈ V, u = t+τ, . . . , T ,

and the vector rt = {rv
iut : i ∈ I, v ∈ V, u = t, . . . , t + τ − 1} completely defines the state of the

vehicles right before making the decisions at time period t. We note that r1 = {rv
iu1 : i ∈ I, v ∈

V, u = 1, . . . , τ} gives the initial position of the vehicles and is a part of the problem data. Due to

the decisions made before the beginning of the planning horizon of the problem, rv
iu1 can be greater

than 0 for some i ∈ I, v ∈ V, u > 1.

Since rv
itt captures the number of vehicles of type v available at location i at time period t, the

set of feasible decisions for any state vector rt and load realizations Dt is given by

X (rt, Dt) =
{

xt :
∑

j∈I

∑

l∈L
xv

ijlt = rv
itt i ∈ I, v ∈ V (1)

∑

v∈V
xv

ijlt ≤ Dijlt i, j ∈ I, l ∈ L (2)

xv
ijlt ∈ Z+ i, j ∈ I, l ∈ L, v ∈ V

}
, (3)

where the left side of (1) accounts for the total number of vehicles of type v leaving location i and

the left side of (2) accounts for the total number of vehicles carrying a load of type l from location i
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to j. Given the decisions xt and the state vector rt at time period t, the state of the system at the

beginning of the next time period is given by

rv
ju,t+1 =

∑

i∈I

∑

l∈L
1τij (u− t) xv

ijlt + rv
jut j ∈ I, v ∈ V, u = t + 1, . . . , t + τ, (4)

where we assume that τij is deterministic, and 1a(b) takes value 1 when a = b and takes value 0

otherwise. We bring (1)-(4) together by

Y(rt, Dt) =
{

(xt, rt+1) : xt ∈ X (rt, Dt)

rv
ju,t+1 =

∑

i∈I

∑

l∈L
1τij (u− t) xv

ijlt + rv
jut j ∈ I, v ∈ V, u = t + 1, . . . , t + τ

}
,

whereby (xt, rt+1) ∈ Y(rt, Dt) means that the decisions xt are feasible when the state of the system is

rt and the realization of the loads is Dt, and applying the decisions xt on the state vector rt generates

the state vector rt+1 for the next time period. Using rt as the state variable, the problem can be

formulated as a dynamic program as

Vt(rt) = E
{

max
(xt,rt+1)∈Y(rt,Dt)

ct · xt + Vt+1(rt+1) | rt

}
, (5)

where Vt(·) is the value function at time period t (see Puterman (1994)). For any system state rt and

load realizations Dt, the optimal decisions for time period t can be found by solving the subproblem

Vt(rt, Dt) = max
(xt,rt+1)∈Y(rt,Dt)

ct · xt + Vt+1(rt+1). (6)

Due to the so-called curse of dimensionality, solving (5) in order to compute {Vt(·) : t ∈ T } is usually

intractable. Motivated by the fact that the value function is piecewise-linear concave, Topaloglu and

Powell (2006) propose replacing the value function Vt(·) with a separable piecewise-linear concave

approximation V̂t(·) of the form

V̂t(rt) =
∑

i∈I

∑

v∈V

t+τ−1∑
u=t

V̂ v
iut(r

v
iut), (7)

where each V̂ v
iut(·) is a single-dimensional piecewise-linear concave function. Consequently, they

propose solving the approximate subproblem

Ṽt(rt, Dt) = max
(xt,rt+1)∈Y(rt,Dt)

ct · xt + V̂t+1(rt+1) (8)

to make the decisions at time period t, where Ṽt(rt, Dt) is simply a place-holder for the optimal

objective value. Their approach solves the problem above for different values of rt and Dt, and

iteratively improves the quality of the value function approximations. Our strategy closely parallels

this approach, however we use a new state variable and a new method to improve the quality of the

value function approximations. Closing this section, we note that, due to constraints (4), solving

problem (8) requires prior knowledge of 1τij (u − t) for all i, j ∈ I, u = t + 1, . . . , t + τ . Therefore,

this model cannot be used when the travel times are random.
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3.2 Random Travel Times

We deal with the random travel times by keeping track of all individual decisions over a relevant

portion of the history. To formalize, we define the following.

fv
ijst = Right before observing the vehicle arrivals and making the decisions at time period

t, the number of vehicles of type v that were dispatched from location i to j at time

period s and that have not reached location j before time period t.

Since τij ≤ τ for all i, j ∈ I, a vehicle dispatched from location i to j before time period t − τ

will reach its destination before time period t. Therefore, we have fv
ijst = 0 for all i, j ∈ I, v ∈ V,

s = 1, . . . , t−τ −1, and the vector ft = {fv
ijst : i, j ∈ I, v ∈ V, s = t−τ, . . . , t−1} gives all decisions

over the portion of the history relevant to the decisions made at time period t. Thus, we use ft as

the state variable in our dynamic programming formulation. We note that f1 = {fv
ijs1 : i, j ∈ I, v ∈

V, s = 1 − τ, . . . , 0} gives the decisions made before the beginning of the planning horizon of the

problem and is a part of the problem data.

Although the vector ft captures the history relevant to the decisions made at time period t, the

number of vehicles available at each location at time period t depends on the realizations of the

travel times and is still a random variable. We define the following random variable.

Av
ijst = Random variable representing the number of vehicles of type v that were dispatched

from location i to j at time period s and that reach location j at time period t.

We note that fv
ijst captures the number of vehicles of type v that were dispatched from location i to

j at time period s and that have not reached location j before time period t, whereas Av
ijst captures

what “portion” of these vehicles actually reach location j at time period t. Therefore, we always

have Av
ijst ≤ fv

ijst. Section 5 gives a careful characterization of possible probability laws that may

govern the random vector At = {Av
ijst : i, j ∈ I, v ∈ V, s = t − τ, . . . , t − 1}. For now, we view At

as a random vector just like Dt whose value becomes known at the beginning of time period t.

Since
∑

j∈I
∑t−1

s=t−τ Av
jist is the number of vehicles of type v available at location i at time period

t, the set of feasible decisions for any state vector ft, arrival realizations At and load realizations Dt

is given by

X (ft, At, Dt) =
{

xt :
∑

j∈I

∑

l∈L
xv

ijlt =
∑

j∈I

t−1∑
s=t−τ

Av
jist i ∈ I, v ∈ V (9)

(2), (3)
}

.
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Given the decisions xt and the state vector ft at time period t, the state of the system at the beginning

of the next time period is given by

fv
ijt,t+1 =

∑

l∈L
xv

ijlt i, j ∈ I, v ∈ V (10)

fv
ijs,t+1 = fv

ijst −Av
ijst i, j ∈ I, v ∈ V, s = t + 1− τ, . . . , t− 1. (11)

In alignment with the definition of fv
ijt,t+1, the right side of (10) computes the number of vehicles

of type v dispatched from location i to j at time period t, whereas the right side of (11) computes

what “portion” of the vehicles of type v that were dispatched from location i to j at time period s

still remain in-transit after observing the arrivals at time period t. We bring (9)-(11) together by

Y(ft, At, Dt) =
{

(xt, ft+1) : xt ∈ X (ft, At, Dt)

fv
ijt,t+1 =

∑

l∈L
xv

ijlt i, j ∈ I, v ∈ V

fv
ijs,t+1 = fv

ijst −Av
ijst i, j ∈ I, v ∈ V, s = t + 1− τ, . . . , t− 1

}
.

Using ft as the state variable, the problem can be formulated as a dynamic program as

Vt(ft) = E
{

max
(xt,ft+1)∈Y(ft,At,Dt)

ct · xt + Vt+1(ft+1) | ft

}
. (12)

For any system state ft, arrival realizations At and load realizations Dt, the optimal decisions for

time period t can be found by solving the subproblem

Vt(ft, At, Dt) = max
(xt,ft+1)∈Y(ft,At,Dt)

ct · xt + Vt+1(ft+1). (13)

We propose using separable value function approximations of the form

V̂t(ft) =
∑

i,j∈I

∑

v∈V

t−1∑
s=t−τ

V̂ v
ijst(f

v
ijst), (14)

where each value function approximation component V̂ v
ijst(·) is a single-dimensional piecewise-linear

concave function with points of nondifferentiability being a subset of integers. The approximation in

(14) seems more complicated than the one in (7), but the next section shows that the approximate

subproblem can be simplified to a great extent due to the separability of the approximation.

4 Structure of the Approximate Subproblems and Parallelization

Replacing the value function Vt+1(·) in (13) by an approximation of form (14), the approximate

subproblem for time period t can be written as

Ṽt(ft, At, Dt) = max
xt,ft+1

∑

i,j∈I

∑

l∈L

∑

v∈V
cv
ijlt xv

ijlt +
∑

i,j∈I

∑

v∈V

t∑

s=t+1−τ

V̂ v
ijs,t+1(f

v
ijs,t+1) (15)

subject to (2), (3), (9), (10)

fv
ijs,t+1 = fv

ijst −Av
ijst i, j ∈ I, v ∈ V, s = t + 1− τ, . . . , t− 1.
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For the model with deterministic travel times in Section 3.1, Topaloglu and Powell (2006) show

that the approximate subproblem (8) is a min-cost integer multicommodity network flow problem.

Since the approximate subproblem (8) “spans” only one time period, it is a small min-cost integer

multicommodity network flow problem, but the multicommodity characteristics still make it difficulty

to obtain integer solutions and bring an unwelcome dimension of complexity. In this section, we show

that the approximate subproblem (15) is a min-cost network flow problem.

We note that the last set of constraints in problem (15) set the decision variables {fv
ijs,t+1 : i, j ∈

I, v ∈ V, s = t + 1− τ, . . . , t− 1} to constants. Therefore, by plugging their values in the objective

function, we can drop these decision variables and the value function approximation components

corresponding to them. This reduces problem (15) to

Ṽt(ft, At, Dt) = max
xt,ft+1

∑

i,j∈I

∑

l∈L

∑

v∈V
cv
ijlt xv

ijlt +
∑

i,j∈I

∑

v∈V
V̂ v

ijt,t+1(f
v
ijs,t+1) (16)

subject to (2), (3), (9), (10).

Section 6 uses the next remark for updating and improving the value function approximations.

Remark 1. Noting constraints (10), the decision variable fv
ijt,t+1 captures the number of vehicles

of type v dispatched from location i to j at time period t. Therefore, V̂ v
ijt,t+1(f) can be interpreted

as the approximation to the expected future benefit from dispatching f vehicles from location i to j

at time period t.

Letting R be the total number of available vehicles, the relevant domain of V̂ v
ijt,t+1(·) is {0, 1, . . . , R}

and we can represent V̂ v
ijt,t+1(·) by a sequence of numbers {ηv

ijt,t+1(r) : r = 1, . . . , R}, where ηv
ijt,t+1(r)

is the slope of V̂ v
ijt,t+1(·) over (r− 1, r). That is, we have ηv

ijt,t+1(r) = V̂ v
ijt,t+1(r)− V̂ v

ijt,t+1(r− 1). In

this case, we can write problem (16) explicitly as

Ṽt(ft, At, Dt) = max
xt,ft+1,zt+1

∑

i,j∈I

∑

l∈L

∑

v∈V
cv
ijlt xv

ijlt +
∑

i,j∈I

∑

v∈V

R∑

r=1

ηv
ijt,t+1(r) zv

ijt,t+1(r) (17)

subject to
∑

j∈I

∑

l∈L
xv

ijlt =
∑

j∈I

t−1∑
s=t−τ

Av
jist i ∈ I, v ∈ V (18)

∑

l∈L
xv

ijlt − fv
ijt,t+1 = 0 i, j ∈ I, v ∈ V (19)

fv
ijt,t+1 −

R∑

r=1

zv
ijt,t+1(r) = 0 i, j ∈ I, v ∈ V (20)

∑

v∈V
xv

ijlt ≤ Dijlt i, j ∈ I, l ∈ L (21)

zv
ijt,t+1(r) ≤ 1 i, j ∈ I, v ∈ V, r = 1, . . . , R (22)

xv
ijlt, zv

ijt,t+1(r) ∈ Z+ i, j ∈ I, l ∈ L, v ∈ V, r = 1, . . . , R. (23)
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Defining three sets of nodes N1 = {(i, v) : i ∈ I, v ∈ V}, N2 = {(i, j, v) : i, j ∈ I, v ∈ V} and N3 =

{(i, j, v) : i, j ∈ I, v ∈ V}, the problem above can be visualized as a min-cost integer multicommodity

network flow problem that takes place over a network with the set of nodes N1
⋃N2

⋃N3
⋃{Φ},

where Φ denotes a dummy root note. In this network, there exists an arc corresponding to each

decision variable in problem (17), and Table 1 shows the “tail” and “head” nodes for each one of

these arcs. Pictorially, problem (17) is the min-cost integer multicommodity network flow problem

shown in Figure 1, where we assume that I = {i1, i2}, L = {l1}, V = {v1, v2} and we label the nodes

by (i, v) ∈ I ×V, (i, j, v) ∈ I2 ×V. Constraints (18), (19) and (20) are respectively the flow balance

constraints for the nodes in N1, N2 and N3. The flow balance constraint for node Φ is redundant

and is not included in problem (17). Constraints (21) put a limit on the total flow over a set of arcs

and seemingly give problem (17) multicommodity characteristics. However, as the next proposition

shows, a simple transformation converts problem (17) into a min-cost network flow problem.

Proposition 1. Problem (17) can be solved as a min-cost network flow problem.

Proof. We combine constraints (19) and (20) into
∑

l∈L xv
ijlt =

∑R
r=1 zv

ijt,t+1(r) to drop the decision

variables fv
ijt,t+1 for all i, j ∈ I, v ∈ V. Adding the combined constraints for all j ∈ I, we can write

constraints (18) as
∑

j∈I
∑R

r=1 zv
ijt,t+1(r) =

∑
j∈I

∑t−1
s=t−τ Av

jist for all i ∈ I, v ∈ V. We define new

decision variables {yijlt : i, j ∈ I, l ∈ L} and split constraints (21) into
∑

v∈V xv
ijlt − yijlt = 0 and

yijlt ≤ Dijlt for all i, j ∈ I, l ∈ L. Therefore, problem (17) can be written as

Ṽt(ft, At, Dt) = max
xt,zt+1,yt

∑

i,j∈I

∑

l∈L

∑

v∈V
cv
ijlt xv

ijlt +
∑

i,j∈I

∑

v∈V

R∑

r=1

ηv
ijt,t+1(r) zv

ijt,t+1(r) (24)

subject to
∑

j∈I

R∑

r=1

zv
ijt,t+1(r) =

∑

j∈I

t−1∑
s=t−τ

Av
jist i ∈ I, v ∈ V (25)

∑

l∈L
xv

ijlt −
R∑

r=1

zv
ijt,t+1(r) = 0 i, j ∈ I, v ∈ V (26)

∑

v∈V
xv

ijlt − yijlt = 0 i, j ∈ I, l ∈ L (27)

yijlt ≤ Dijlt i, j ∈ I, l ∈ L

(22), (23).

Defining three sets of nodes O1 = {(i, v) : i ∈ I, v ∈ V}, O2 = {(i, j, v) : i, j ∈ I, v ∈ V} and

O3 = {(i, j, l) : i, j ∈ I, l ∈ L}, problem (24) is a min-cost network flow problem that takes place

over a network with the set of nodes O1
⋃O2

⋃O3
⋃{Φ}. Table 2 shows the “tail” and “head”

nodes for each one of the arcs corresponding to the decision variables in problem (24). Constraints

(25), (26) and (27) are respectively the flow balance constraints for the nodes in O1, O2 and O3.

Figure 2 shows the general structure of problem (24), where we label the nodes by (i, j) ∈ I × V,
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(i, j, v) ∈ I2 × V, (i, j, l) ∈ I2 × L. 2

The next remark will be useful for updating and improving the value function approximations.

Remark 2. Since problem (17) can be solved as a min-cost network flow problem, we can speak of

the dual solution to problem (17).

The fact that problem (17) naturally yields integer solutions gives our model a dramatic runtime

advantage. Furthermore, the objective function and the constraints of problem (17) decompose by

i ∈ I, which implies that one can obtain a solution to problem (17) by solving |I| smaller subproblems

and these |I| subproblems can be solved in parallel. This parallelization opportunity further boosts

the runtime advantage of our model.

5 Characterizing the Arrival Random Variables

In this section, we describe two possible models for the arrival random variables. The first model

assumes that the travel times for different vehicles are independent, whereas the second model

assumes that the travel times for different vehicles traveling between the same origin-destination

pair are perfectly dependent.

Independent Model. This model assumes that the travel times for different vehicles are indepen-

dent. Given that a particular vehicle was dispatched from location i to j at time period s and it has

not reached location j before time period t, the probability that this vehicle reaches location j at

time period t is P{τij = t − s | τij ≥ t − s}. The number of vehicles of type v that were dispatched

from location i to j at time period s and that have not reached location j before time period t is given

by fv
ijst. A “portion” of these vehicles, which is captured by Av

ijst, reach location j at time period t.

Therefore, under the independent model, the number of vehicles of type v that were dispatched from

location i to j at time period s and that reach location j at time period t is binomially distributed

with parameters fv
ijst and P{τij = t− s | τij ≥ t− s}. In other words, we have

P{Av
ijst = a | fv

ijst = f} =
(

f
a

) [
P{τij = t− s | τij ≥ t− s}

]a [
P{τij > t− s | τij ≥ t− s}

]f−a

for all i, j ∈ I, v ∈ V, s = t − τ, . . . , t − 1 and the random variables {Av
ijst : i, j ∈ I, v ∈ V, s =

t−τ, . . . , t−1} are independent. This model is applicable when the travel times depend on conditions

internal to the vehicles or the drivers, such as breakdowns and skill levels.

Perfectly Dependent Model. This model assumes that all vehicles dispatched from location i to

j at time period s reach location j at the same time period. There are fv
ijst vehicles of type v that

were dispatched from location i to j at time period s and that have not reached location j before

11



time period t. Under this model, either all of these vehicles reach location j at time period t (this

happens with probability P{τij = t − s | τij ≥ t − s}) or none of these vehicles reach location j at

time period t (this happens with probability P{τij > t− s | τij ≥ t− s}). Therefore, we have

P{Aijst = α | fijst = φ} =





1 if α = 0, φ = 0
P{τij = t− s | τij ≥ t− s} if α = φ, φ 6= 0
P{τij > t− s | τij ≥ t− s} if α = 0, φ 6= 0
0 otherwise,

where Aijst = {Av
ijst : v ∈ V}, fijst = {fv

ijst : v ∈ V}, α and φ are |V|-dimensional vectors. We still

assume that the random vectors {Aijst : i, j ∈ I, s = t− τ, . . . , t− 1} are independent. This model

is applicable when the travel times depend on external conditions, such as weather and traffic.

The next remark will be useful for updating and improving the value function approximations.

Remark 3. Under both models, a vehicle dispatched from location i to j at time period s reaches its

destination at time period t with probability P{τij = t− s}. This property holds for the first model

because its probability law is equivalent to using the distribution of τij to sample an independent

travel time for each vehicle dispatched from location i to j. The second model also satisfies this

property because its probability law is equivalent to using the distribution of τij to sample one travel

time for all vehicles dispatched from location i to j at a particular time period.

Clearly, both characterizations of the arrival random variables presented in this section have

limitations and the travel times may have more complex dependencies in reality. For example, we

assume that the travel times for the vehicles that travel between different origin-destination pairs or

that start their trip at different time periods are independent. However, one would expect the travel

times for the vehicles leaving or arriving at the same or nearby locations at the same or nearby time

periods to be strongly correlated, especially if the travel times are affected by external conditions,

such as weather or traffic. Nevertheless, the two characterizations we give serve as a good starting

point. Furthermore, Remark 3 is the only property of these characterizations that we use in the rest

of the paper. Therefore, our model should work with other possible characterizations of the arrival

random variables that satisfy Remark 3.

6 Updating and Improving the Value Function Approximations

The performance of the decisions made by solving approximate subproblems of form (15) depends

on how “well” the value function approximations approximate the exact value function. We propose

a sampling-based strategy that constructs the value function approximations in an iterative manner.

In particular, we let {V̂ n
t (·) : t ∈ T } be the set of value function approximations at iteration n.

12



For each time period t in the planning horizon, we sample a realization of At and Dt, which we

respectively denote by Ãn
t and D̃n

t , and solve the approximate subproblem

(xn
t , fn

t+1) = argmax
(xt,ft+1)∈Y(fn

t ,Ãn
t ,D̃n

t )

∑

i,j∈I

∑

l∈L

∑

v∈V
cv
ijlt xv

ijlt +
∑

i,j∈I

∑

v∈V

t∑

s=t+1−τ

V̂ vn
ijs,t+1(f

v
ijs,t+1), (28)

where fn
1 is initialized to reflect the initial state of the system. We note that solving approximate

subproblems of form (28) for all t ∈ T is equivalent to simulating the behavior of the policy charac-

terized by the value function approximations {V̂ n
t (·) : t ∈ T } under arrival realizations {Ãn

t : t ∈ T }
and load realizations {D̃n

t : t ∈ T }. The idea is to use the primal-dual solutions to the approximate

subproblems to update and improve the value function approximations. The heuristic method that

we use for this purpose is based on the following observations.

Remark 4. Comparing the approximate subproblems in (15) and (16) shows that we only need the

value function approximation components {V̂ v
ijt,t+1(·) : i, j ∈ I, v ∈ V, t ∈ T }. The value function

approximation components {V̂ v
ijs,t+1(·) : i, j ∈ I, v ∈ V, s = t+1− τ, . . . , t− 1, t ∈ T } do not affect

our decisions at all and we do not need to improve them.

Remark 5. At iteration n, we dispatch fvn
ijt,t+1 vehicles of type v from location i to j at time

period t (see (10) and (28)). Recalling the interpretation of V̂ v
ijt,t+1(·) in Remark 1, this implies that

the quantity ηvn
ijt,t+1(f

vn
ijt,t+1 + 1) = V̂ vn

ijt,t+1(f
vn
ijt,t+1 + 1)− V̂ vn

ijt,t+1(f
vn
ijt,t+1) approximates the expected

future benefit from dispatching an additional vehicle of type v from location i to j at time period t.

Remark 6. Noting problem (16), the approximate subproblem solved at time period t is

Ṽ n
t (fn

t , Ãn
t , D̃n

t ) = max
xt,ft+1

∑

i,j∈I

∑

l∈L

∑

v∈V
cv
ijlt xv

ijlt +
∑

i,j∈I

∑

v∈V
V̂ vn

ijt,t+1(fijt,t+1)

subject to
∑

j∈I

∑

l∈L
xv

ijlt =
∑

j∈I

t−1∑
s=t−τ

Ãvn
jist i ∈ I, v ∈ V (29)

(2), (3), (10).

The expression on the right side of constraints (29) is the number of vehicles of different types

available at different locations at time period t. Since we can speak of the dual solution to the

problem above due to Remark 2, we let {θvn
it : i ∈ I, v ∈ V} be the optimal values of the dual

variables associated with these constraints at iteration n. Therefore, θvn
it gives an estimate of the

expected benefit from having an additional vehicle of type v at location i at time period t.

Remark 7. Noting Remark 3, a vehicle dispatched from location i to j at time period t reaches

location j at time period u with probability P{τij = u− t}. In view of Remark 6, this implies that,

at iteration n, we can use ϑvn
ijt =

∑t+τ
u=t+1 P{τij = u− t} θvn

ju to estimate the expected future benefit

from dispatching an additional vehicle of type v from location i to j at time period t.

13



We now put Remarks 4-7 together. At iteration n, we dispatch fvn
ijt,t+1 vehicles of type v from

location i to j at time period t and ηvn
ijt,t+1(f

vn
ijt,t+1 + 1) approximates the expected future benefit

from an additional vehicle of type v dispatched from location i to j at time period t (Remark 5).

Through the solution of the approximate subproblems at iteration n, we estimate the same quantity

by ϑvn
ijt (Remarks 6 and 7). We use this new information to update and improve the value function

approximation component V̂ vn
ijt,t+1(·) through the smoothing method in Figure 3. Step 1 in this

figure smoothes the slope of V̂ vn
ijt,t+1(·) at the relevant point by using the new information. After

smoothing, the function Qvn
ijt,t+1(·) characterized by the sequence of slopes {qvn

ijt,t+1(r) : r = 1, . . . , R}
is not necessarily concave. Therefore, Step 2 projects the function Qvn

ijt,t+1(·) onto the set of single-

dimensional piecewise-linear concave functions with points of nondifferentiability being a subset of

integers. Constraints (34) ensure that the value function approximation component V̂ v,n+1
ijt,t+1(·) at the

next iteration is concave. This updating method is due to Powell, Ruszczynski and Topaloglu (2004).

Figure 4 describes our complete solution methodology.

7 Computational Experiments

In this section, we test the quality of the solutions obtained by our model and investigate how the

runtimes scale with different problem parameters.

7.1 Experimental Setup

We present results on three problem classes. The first problem class includes problems with deter-

ministic load arrivals and deterministic travel times. These problems can be formulated as min-cost

integer multicommodity network flow problems. The second problem class includes problems with

random load arrivals and deterministic travel times. The model in Section 3.1 can be used as a

benchmark for these problems. The third problem class includes problems with random load arrivals

and random travel times. We use the so-called rolling horizon strategy and an extension of the

model in Section 3.1 as benchmarks for these problems. We include problems with deterministic

travel times in our experimental setup because there exist a variety of solution methods for these

problems. This enables us to carefully test the performance of our model. All of the algorithms were

coded in JAVA 1.4.1 and ran on a Pentium IV Windows XP PC with 2.4 GHz CPU and 1 GB RAM.

In our experimental setup, we generate one basic problem and modify its certain attributes to

generate different test problems. All of our test problems involve 5 vehicle types and 6 movement

modes, one of which corresponds to empty repositioning and the other 5 correspond to serving

different types of loads. In practice, the number of load types can be on the order of hundreds, but
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our model scales well with the number of load types since the number of dimensions of the state

variable does not depend on the number of load types. We let cv
ij0t = −c0 δ(i, j) for all i, j ∈ I,

v ∈ V, t ∈ T , where c0 is the “per-mile” empty repositioning cost and δ(i, j) is the distance between

locations i and j. In practice, empty repositioning costs are often incurred on a “per-mile” basis.

Letting C be a 5 × 5-dimensional matrix, we let cv
ijlt = r δ(i, j) Cv

l − c0 δ(i, j) for all i, j ∈ I,

l ∈ {1, . . . , 5}, v ∈ V, t ∈ T , where r is the revenue applied on a “per-mile” basis and Cv
l ∈ [0, 1]

is the (v, l)-th entry of the matrix C. Consequently, there are more and less suitable vehicle types

for each load type. Table 3 gives the different values we use for the matrix C. In practice, Cv
l may

capture the willingness of the dispatcher to use a vehicle of type v to cover a load of type l, rather

than a monetary discounting factor. The number of loads for each origin-destination pair, movement

mode and time period is sampled from the Poisson distribution with the appropriate mean. The

Poisson assumption is reasonable in many practical settings. We use the method described in Godfrey

and Powell (2002a) to generate test problems where the number of loads inbound to a particular

location is negatively correlated with the number of loads outbound from that location. We expect

these problems to require plenty of empty repositioning movements in the optimal solution and

naive solution methods should not give satisfactory results for them. We use (T, |I|, f,D, c0, C) ∈
{30, 60, 90}×{10, 20, 40}×{100, 200, 400}×{2000, 4000, 6000}×{1.6, 4, 8}×{C1, C2, C3, C4} to denote

the attributes of our test problems, where the six dimensions respectively describe the number of time

periods in the planning horizon, the number of locations in the transportation network, the size of

the fleet, the expected number of loads over the planning horizon, the “per-mile” empty repositioning

cost and the matrix characterizing the compatibility between the vehicle and load types. Our basic

test problem, which is the first test problem reported in Tables 4, 5 and 6, involves 60 time periods,

20 locations, 200 vehicles, 4000 loads, empty repositioning cost of 4 and matrix C1 from Table 3.

7.2 Computational Results

This section describes our computational results on the three aforementioned problem classes.

Problems with Deterministic Load Arrivals and Deterministic Travel Times. These prob-

lems can be formulated as a min-cost integer multicommodity network flow problem as

max
x

∑

t∈T

∑

i,j∈I

∑

l∈L

∑

v∈V
cv
ijlt xv

ijlt (30)

subject to −
∑

j∈I:
t−τji≥1

∑

l∈L
xv

jil,t−τji
+

∑

j∈I

∑

l∈L
xv

ijlt =
∑

j∈I:
t−τji≤0

fv
ji,t−τji,1 i ∈ I, v ∈ V, t ∈ T

∑

v∈V
xv

ijlt ≤ Dijlt i, j ∈ I , l ∈ L, t ∈ T ,

where we assume that the load arrivals and the travel times are deterministic, and we omit the
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integrality and nonnegativity constraints for brevity. The first set of constraints in problem (30) are

the flow balance constraints. The expression on their right side is the number of vehicles of type v

that reach location i at time period t and that were dispatched before the beginning of the planning

horizon. As mentioned in Section 3.2, f1 = {fv
ijs1 : i, j ∈ I, v ∈ V, s = 1 − τ, . . . , 0} is a part of

the problem data. We apply the algorithm in Figure 4 for 250 iterations and compare the objective

value at the final iteration with the objective value of problem (30). Table 4 shows the ratio of

the two objective values (multiplied by 100), along with the runtime per iteration of the algorithm

in Figure 4. For majority of the test problems, our model yields results within 2% of the optimal

solution. The runtime per iteration for our model increases linearly with the number of time periods

and almost quadratically with the number of locations. We emphasize that the reported runtimes

are for a serial implementation where the subproblems corresponding to different locations are solved

sequentially. If one were to solve the subproblems corresponding to different locations in parallel,

then the runtime per iteration would increase linearly with the number of locations as well. Figure 5

shows the progress of the objective value as a function of the iteration number for two test problems.

The objective value increases smoothly over the first 50 iterations and stabilizes.

Problems with Random Load Arrivals and Deterministic Travel Times. For these prob-

lems, we use the model described in Section 3.1 as a benchmark. Topaloglu and Powell (2006)

compare this model with a variety of benchmarks and report that it yields high-quality solutions.

In a stochastic setting, testing our model or the model described in Section 3.1 requires two sets of

iterations. The first set of iterations, which we refer to as the training iterations, follow the algorithm

in Figure 4 by solving the approximate subproblem (15) (or the approximate subproblem (8) if we are

using the model in Section 3.1) for all time periods and updating the value function approximations.

In the second set of iterations, which we refer to as the testing iterations, we stop updating the value

function approximations and simply simulate the behavior of the policy characterized by the value

function approximations obtained during the training iterations. The goal of the testing iterations

is to evaluate the quality of the value function approximations that are obtained during the training

iterations. We use 250 training iterations and 100 testing iterations.

In Table 5, the first column shows the ratio of the average objective values obtained in the testing

iterations by our model and by the model described in Section 3.1 (multiplied by 100), whereas the

second and third columns show the runtimes per iteration for the two models. For this problem class,

our model lags behind the benchmark strategy with comparable runtimes. However, we emphasize

that a parallel implementation speeds up the runtimes of our model by a factor of |I|, but this is not

possible for the model described in Section 3.1.
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Problems with Random Load Arrivals and Random Travel Times. The first benchmark

method we use for these problems is a common engineering practice called the rolling horizon strat-

egy (see Topaloglu (2005)). This strategy assumes that future random variables will take on their

expected values. It makes the decisions at time period t by solving a deterministic problem that

“spans” the time periods t, t+1, . . . , t+N , where N is the rolling horizon length. In particular, for a

given state vector ft, arrival realizations At and load realizations Dt at time period t, the N -period

rolling horizon strategy makes the decisions at time period t by solving the problem

max
x

t+N∑
u=t

∑

i,j∈I

∑

l∈L

∑

v∈V
cv
ijlu xv

ijlu (31)

subject to
∑

j∈I

∑

l∈L
xv

ijlt =
∑

j∈I

t−1∑
s=t−τ

Av
jist i ∈ I, v ∈ V (32)

−
∑

j∈I:
u−τ̄ji≥t

∑

l∈L
xv

jil,u−τ̄ji
+

∑

j∈I

∑

l∈L
xv

ijlu =
∑

j∈I:
u−τ̄ji≤t−1

[
fv

ji,u−τ̄ji,t −Av
ji,u−τ̄ji,t

]

i ∈ I, v ∈ V, u = t + 1, . . . , t + N (33)
∑

v∈V
xv

ijlt ≤ Dijlt i, j ∈ I, l ∈ L
∑

v∈V
xv

ijlu ≤ E {Dijlu} i, j ∈ I, l ∈ L, u = t + 1, . . . , t + N,

where we use τ̄ij to denote the expected value of τij . The problem above includes decision variables

for time periods t, t + 1, . . . , t + N , but we only implement the decisions corresponding to time

period t and re-solve a similar problem when making the decisions for the next time period. Since
∑

j∈I
∑t−1

s=t−τ Av
jist gives the number of vehicles of type v available at location i at time period

t, constraints (32) state that the total number of vehicles of type v that leave location i at time

period t equals the number of vehicles of type v that are available at location i at time period t.

Constraints (33) are the flow balance constraints analogous to the first set of constraints in problem

(30). The expression fv
ji,u−τ̄ji,t

− Av
ji,u−τ̄ji,t

on their right side is the number of vehicles of type v

that were dispatched from location j to i at time period u− τ̄ji and that have not reached location i

after having observed the arrivals at time period t. The rolling horizon strategy assumes that these

vehicles will reach location i at time period u (= u − τ̄ji + τ̄ji). Since we solve problem (31) after

having observed the realizations of the random variables at time period t, the right side of constraints

(33) involves known constants. The second benchmark strategy we use is a heuristic extension of

the model described in Section 3.1. In particular, since this model cannot accommodate random

travel times, we assume that the travel times take on their expected values and make the decisions

accordingly. Topaloglu (2005) explains in detail how one can heuristically use the model described in

Section 3.1 in the presence of random travel times. In Table 6, the first column shows the ratio of the

average objective values obtained in the testing iterations by our model and by the rolling horizon
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strategy, whereas the second column shows the ratio of the average objective values obtained in the

testing iterations by our model and the model described in Section 3.1 (all ratios are multiplied by

100). The third, fourth and fifth columns show the runtimes per iteration for the three models. The

results indicate that our model performs noticeably better than both strategies. Interestingly, the

runtimes for the rolling strategy can depend on the choice of the matrix C, but this does not seem

to be an issue for our model. Also, with increasing number of locations, it is clear that implementing

the rolling horizon strategy will be difficult.

8 Conclusions and Research Prospects

This chapter presented a dynamic fleet management model that can handle random load arrivals,

random travel times and multiple vehicle types. Computational experiments showed that our model

provides high-quality solutions within reasonable runtimes. An important feature of our model is

that it decomposes the fleet management problem by time periods and by locations. When there are

multiple dispatchers responsible from managing the vehicles at different locations, this feature allows

them to concentrate on the vehicle supplies only at their own locations and they can coordinate their

decisions with the help of the value function approximations.

The fleet management context provides a rich and challenging research area. There has been

much advance in the last two decades but many practical issues remain unresolved. For example,

we are not aware of a large-scale fleet management model that can handle load pick up and delivery

windows and advance load information in a satisfactory manner, especially when the load arrivals

are random. We heuristically used our model with some success in the presence of load pick up

windows by simply keeping the loads in the system as long as their pick up windows are not expired.

Nevertheless, the sound way to address load pick up and delivery windows is to include the loads in

the state variable in the dynamic programming formulation, but it is not clear how to approximate

the value function when the state variable includes this extra load dimension. Other important

issues that need attention are incorporating the terminal capacities, balancing the allocation of the

vehicles over the network and the simultaneous management of different types of resources such

as trucks, containers and drivers. The approximate dynamic programming paradigm combines the

intelligence of optimization with the flexibility of simulation, and may provide remedies for some of

these unresolved issues.
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9 List of Tables

Arc “Tail” node “Head” node
xv

ijlt (i, v) ∈ N1 (i, j, v) ∈ N2

fv
ijt,t+1 (i, j, v) ∈ N2 (i, j, v) ∈ N3

zv
ijt,t+1(r) (i, j, v) ∈ N3 Φ

Table 1: Incidence relationships of the arcs corresponding to the decision variables in problem (17).

Arc “Tail” node “Head” node
zv
ijt,t+1(r) (i, v) ∈ O1 (i, j, v) ∈ O2

xv
ijlt (i, j, v) ∈ O2 (i, j, l) ∈ O3

yijlt (i, j, l) ∈ O3 Φ

Table 2: Incidence relationships of the arcs corresponding to the decision variables in problem (24).

C1 C2 C3 C4

1 0.8 0.5 0.3 0 1 0 0 0 0 1 0.5 0 0 0 1 1 1 1 1
0.7 1 0.8 0.3 0 1 1 0 0 0 0.5 1 0.5 0 0 1 1 1 1 1
0.6 0.6 1 0.5 0.5 1 1 1 0 0 0 0.5 1 0.5 0 1 1 1 1 1
0 0.4 0.7 1 0.5 1 1 1 1 0 0 0 0.5 1 0.5 1 1 1 1 1
0 0.4 0.6 0.6 1 1 1 1 1 1 0 0 0 0.5 1 1 1 1 1 1

Table 3: Matrices characterizing the compatibility between vehicle and load types.
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Perf. CPU (sec.)
Problem rat. our model

(60, 20, 200, 4000, 4, C1) 99.04 3.7

(30, 20, 200, 2000, 4, C1) 98.63 1.9
(90, 20, 200, 6000, 4, C1) 98.76 6.0

(60, 10, 200, 4000, 4, C1) 99.53 1.2
(60, 40, 200, 4000, 4, C1) 98.97 14.3

(60, 20, 200, 4000, 4, C2) 98.94 3.8
(60, 20, 200, 4000, 4, C3) 98.83 3.6
(60, 20, 200, 4000, 4, C4) 99.24 3.8

(60, 20, 100, 4000, 4, C1) 97.09 3.1
(60, 20, 400, 4000, 4, C1) 98.66 3.9

(60, 20, 200, 4000, 1.6, C1) 98.71 3.8
(60, 20, 200, 4000, 8, C1) 99.12 3.8

Table 4: Results for problems with deterministic load arrivals and deterministic travel times.

Perf. CPU (sec.) CPU (sec.)
Problem rat. our model model in §3.1

(60, 20, 200, 4000, 4, C1) 96.09 3.7 3.4

(30, 20, 200, 2000, 4, C1) 95.13 1.9 1.8
(90, 20, 200, 6000, 4, C1) 92.40 6.0 5.7

(60, 10, 200, 4000, 4, C1) 97.01 1.2 0.9
(60, 40, 200, 4000, 4, C1) 95.62 14.3 10.1

(60, 20, 200, 4000, 4, C2) 96.88 3.8 4.6
(60, 20, 200, 4000, 4, C3) 95.16 3.6 2.9
(60, 20, 200, 4000, 4, C4) 98.47 3.8 5.2

(60, 20, 100, 4000, 4, C1) 95.78 3.1 3.3
(60, 20, 400, 4000, 4, C1) 96.53 3.9 3.1

(60, 20, 200, 4000, 1.6, C1) 95.39 3.8 3.7
(60, 20, 200, 4000, 8, C1) 94.72 3.8 3.5

Table 5: Results for problems with random load arrivals and deterministic travel times.

Perf. rat. Perf. rat. CPU(sec.) CPU (sec.) CPU(sec.)
Problem roll. hor. model in §3.1 our model roll. hor. model in §3.1

(60, 20, 200, 4000, 4, C1) 105.21 103.84 3.7 237.1 3.4

(30, 20, 200, 2000, 4, C1) 107.02 101.54 1.9 128.7 1.8
(90, 20, 200, 6000, 4, C1) 103.17 103.28 6.0 334.9 5.7

(60, 10, 200, 4000, 4, C1) 100.27 99.34 1.2 82.2 0.9
(60, 40, 200, 4000, 4, C1) 105.92 104.29 14.3 1106.4 10.1

(60, 20, 200, 4000, 4, C2) 103.85 102.17 3.8 1549.0 4.6
(60, 20, 200, 4000, 4, C3) 108.05 101.14 3.6 233.5 2.9
(60, 20, 200, 4000, 4, C4) 104.16 102.72 3.8 967.5 5.2

(60, 20, 100, 4000, 4, C1) 106.89 105.99 3.1 274.9 3.3
(60, 20, 400, 4000, 4, C1) 100.96 100.45 3.9 231.8 3.1

(60, 20, 200, 4000, 1.6, C1) 104.15 103.61 3.8 228.3 3.7
(60, 20, 200, 4000, 8, C1) 101.53 102.43 3.8 244.2 3.5

Table 6: Results for problems with random load arrivals and random travel times.
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10 List of Figures
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Figure 1: Problem (17) as a min-cost integer multicommodity network flow problem.
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Figure 2: Problem (24) as a min-cost network flow problem.

Step 1. For all r = 1, . . . , R, let

qvn
ijt,t+1(r) =

{
(1− αn) ηvn

ijt,t+1(r) + αn ϑvn
ijt if r = fn

ijt,t+1 + 1
ηvn

ijt,t+1(r) if r ∈ {1, . . . , fvn
ijt,t+1, f

vn
ijt,t+1 + 2, . . . , R},

where αn ∈ [0, 1] is the smoothing constant at iteration n.

Step 2. Let the vector ηv,n+1
ijt,t+1 = {ηv,n+1

ijt,t+1(r) : r = 1, . . . , R}, which characterizes the value function
approximation component V̂ v,n+1

ijt,t+1(·) at the next iteration n + 1, be

ηv,n+1
ijt,t+1 = argmin

z

R∑

r=1

[
z(r)− qvn

ijt,t+1(r)
]2

subject to z(r)− z(r − 1) ≤ 0 r = 2, . . . , R. (34)

Figure 3: A smoothing method to update the value function approximation component V̂ vn
ijt,t+1(·).
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Step 1. Initialize n = 1. Initialize {V̂ vn
ijt,t+1(·) : i, j ∈ I, v ∈ V, t ∈ T } to piecewise-linear concave

functions with points of nondifferentiability being a subset of integers (possibly 0).

Step 2. Initialize t = 1. Initialize fn
1 to reflect the initial state of the system.

Step 3. Given fn
t , let Ãn

t and D̃n
t respectively be samples of At and Dt.

Step 4. Solve the approximate subproblem (15). Let

(xn
t , fn

t+1) = argmax
xt,ft+1

∑

i,j∈I

∑

l∈L

∑

v∈V
cv
ijlt xv

ijlt +
∑

i,j∈I

∑

v∈V

t∑

s=t+1−τ

V̂ vn
ijs,t+1(f

v
ijs,t+1)

subject to
∑

j∈I

∑

l∈L
xv

ijlt =
∑

j∈I

t−1∑
s=t−τ

Ãvn
jist i ∈ I, v ∈ V (35)

∑

v∈V
xv

ijlt ≤ D̃n
ijlt i, j ∈ I, l ∈ L

fv
ijs,t+1 = fvn

ijst − Ãvn
ijst i, j ∈ I, v ∈ V, s = t + 1− τ, . . . , t− 1

(3), (10).

Let {θvn
it : i ∈ I, v ∈ V} be the optimal values of the dual variables associated with constraints

(35).

Step 5. Increase t by 1. If t ≤ T , then go to Step 3.

Step 6. For all i, j ∈ I, v ∈ V, t ∈ T , let ϑvn
ijt =

∑t+τ
u=t+1 P{τij = u− t} θvn

ju .

Step 7. For all i, j ∈ I, v ∈ V, t ∈ T , use ϑvn
ijt and ηvn

ijt,t+1 = {ηvn
ijt,t+1(r) : r = 1, . . . , R} in the smoothing

method in Figure 3 to obtain the value function approximation component V̂ v,n+1
ijt,t+1(·) that will

be used at the next iteration.

Step 8. Increase n by 1. If one more iteration is needed, then go to Step 2.

Figure 4: The complete solution method.
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Figure 5: Progress of our model as a function of the iteration number for two test problems.
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