
A Parallelizable Enciphering Mode

Shai Halevi∗ Phillip Rogaway†

June 17, 2003

Abstract

We describe a block-cipher mode of operation, EME, that turns an n-bit block cipher into
a tweakable enciphering scheme that acts on strings of mn bits, where m ∈ [1..n]. The mode is
parallelizable, but as serial-efficient as the non-parallelizable mode CMC [6]. EME can be used
to solve the disk-sector encryption problem. The algorithm entails two layers of ECB encryption
and a “lightweight mixing” in between. We prove EME secure, in the reduction-based sense of
modern cryptography. We motivate some of the design choices in EME by showing that a few
simple modifications of this mode are insecure.

Key words: Block-cipher usage, cryptographic standards, disk encryption, modes of operation,
provable security, sector-level encryption, symmetric encryption.

∗IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA, shaih@watson.ibm.com
http://www.research.ibm.com/people/s/shaih/

†Department of Computer Science, University of California, Davis, CA 95616, USA, and Department
of Computer Science, Faculty of Science, Chiang Mai University, 50200 Thailand, rogaway@cs.ucdavis.edu

http://www.cs.ucdavis.edu/~rogaway



Contents

1 Introduction 1

2 Preliminaries 2

3 Specification of EME 3

4 Security of EME 3

5 Proof Ideas 5

6 Some Insecure Modifications 6
6.1 The “extra” block-cipher call is needed . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.2 Necessity of the Length Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

References 8

A Extending EME to Longer Messages 9

B Proof of Theorem 1 — Security of EME 11
B.1 The game-substitution sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
B.2 Analysis of the non-interactive game . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



1 Introduction

Tweakable enciphering schemes and their use. A tweakable enciphering scheme is a func-
tion E that maps a plaintext P into a ciphertext C = ET

K(P ) under the control of a key K and
tweak T . The ciphertext must have the same length as the plaintext and there must be an in-
verse DT

K to ET
K . We are interested in schemes that are secure in the sense of a tweakable, strong

pseudorandom-permutation (±p̃rp): an oracle that maps (T, P ) into ET
K(P ) and maps (T, C) into

DT
K(C) must be indistinguishable (when the key K is random and secret) from an oracle that

realizes a T -indexed family of random permutations and their inverses. A tweakable enciphering
scheme that is secure in the ±p̃rp-sense makes a desirable tool for solving the disk-sector encryption
problem: one stores at disk-sector location T the ciphertext C = ET

K(P ) for plaintext P . The IEEE
Security in Storage Working Group [8] plans to standardize a ±p̃rp-secure enciphering scheme.

Our contribution. This paper specifies EME, which is a simple and parallelizable tweakable
enciphering scheme. The scheme is built from a block cipher, such as AES. By making EME par-
allelizable we accommodate ultra-high-speed mass-storage devices to the maximal extent possible
given our security goals. When based on a block cipher E: {0, 1}k × {0, 1}n → {0, 1}n our mode
uses a k-bit key and 2m+1 block-cipher calls to encipher an mn-bit plaintext in a way that depends
on an n-bit tweak. We require that m ∈ [1..n].

The name EME is meant to suggest ECB-Mix-ECB, as enciphering under EME involves ECB-
encrypting the plaintext, a lightweight mixing step, and another ECB-encryption. For a description
of EME look ahead to Figures 1 and 2.

We prove that EME is secure, assuming that the underling block cipher is secure. The proof
is in the standard, provable-security tradition: an attack on EME (as a ±p̃rp with domain M =
{0, 1}n ∪ {0, 1}2n ∪ · · · ∪ {0, 1}n2

) is shown to imply an attack on the underlying block cipher (as a
strong PRP with domain {0, 1}n).

We go on to motivate some of the choices made in EME by showing that other choices would
result in insecure schemes. Finally, we suggest an extension to EME that operates on sectors that
are longer than mn bits.

Cmc mode. The EME algorithm is follow-on work to the CMC method of Halevi and Rogaway [6].
Both modes are tweakable enciphering schemes built from a block cipher E: {0, 1}k × {0, 1}n →
{0, 1}n. But CMC is inherently sequential, as it is built around CBC encryption and decryption.
EME was designed to overcome this limitation, which was seen as potentially problematic for high-
speed encryption devices. The change does not increase the serial complexity; both modes use
2m + 1 block-cipher calls (and little additional overhead) to act on an mn-bit messages.

Further history. Naor and Reingold gave an elegant approach for making a strong PRP on N
bits from a block cipher on n < N bits [13, 14]. Their approach involves a hashing step, a layer
of ECB encryption (say), and another hashing step. They do not give a fully-specified mode, but
they do show how to carry out the hashing step given an xor-universal hash-function that maps N
bits to n bits [13]. In practice, instantiating this object is problematic: to compare well with CMC
or EME one should find a construction that is simple and has a collision bound of about 2−128 and
is more efficient, in both hardware and software, than AES. No such construction is known.

An early, unpublished version of the CMC paper contained buggy versions of the CMC and
EME algorithms. Joux discovered the problem [9] and thereby played a key role in our arriving
at a correct solution. CMC was easily fixed in response to Joux’s attack, but EME did not admit
a simple fix. (Indeed, Section 6.1 effectively proves that no “simple fix” is possible for the earlier
buggy EME construction).

1



Efforts to construct a block cipher with a large blocksize from one with a smaller blocksize go
back to Luby and Rackoff [12], who also put forward the notion of a PRP and a strong PRP. The
concrete-security treatment of PRPs that we use begins with Bellare, Kilian, and Rogaway [2]. The
notion of a tweakable block-cipher is due to Liskov, Rivest, and Wagner [11]. The first attempt
to directly construct an mn-bit block cipher from an n-bit one is due to Zheng, Matsumoto, and
Imai [15]. A different approach is to build a wide-blocksize block-cipher from scratch, as with
BEAR, LION, and Mercy [1, 4].

Discussion. EME has some advantages over CMC beyond its parallelizability. First, it uses a
single key for the underlying block cipher, instead of two keys. All block-cipher calls are keyed by
this one key. Second, enciphering under EME uses only the forward direction of the block cipher,
while deciphering now uses only the backwards direction. This is convenient when using a cipher
such as AES, where the two directions are substantially different, as a piece of hardware or code
might need only to encipher or only to decipher. Finally, we prove EME secure as a variable-input-
length (VIL) cipher and not just as a fixed-input-length (FIL) one. This means that, in an attack,
the adversary may intermix plaintexts and ciphertexts of various lengths.

We comment that the parallelizability goal is arguably of less utility for a ±p̃rp-secure enci-
phering scheme than for some other cryptographic goals. This is because, parallelizable or not,
a ±p̃rp-secure encryption scheme cannot avoid having latency that grows with the length of the
message being processed (to achieve the ±p̃rp security notion one cannot output a single bit of
ciphertext until the entire plaintext has been seen). Still, parallelizability is useful even here, and
the user community wants it [7]. More broadly, EME continues a tradition of trying to make
modes of operation (like CTR mode and PMAC [3]) that achieve parallelizability at near-zero
added computational cost compared to their intrinsically serial counterparts.

2 Preliminaries

Basics. We use the same notions and notation as in [6]. A tweakable enciphering scheme is a
function E: K × T ×M → M where M =

⋃
i∈I{0, 1}i is the message space (for some nonempty

index set I ∈ N) and K �= ∅ is the key space and T �= ∅ is the tweak space. We require that for every
K ∈ K and T ∈ T we have that E(K, T, ·) = ET

K(·) is a length-preserving permutation on M. The
inverse of an enciphering scheme E is the enciphering scheme D = E−1 where X = DT

K(Y ) if and
only if ET

K(X) = Y . A block cipher is the special case of a tweakable enciphering scheme where the
message space is M = {0, 1}n (for some n ≥ 1) and the tweak space is T = {ε} (the empty string).
The number n is called the blocksize.

An adversary A is a (possibly probabilistic) algorithm with access to some oracles. Oracles are
written as superscripts. By convention, the running time of an algorithm includes its description
size. The notation A ⇒ 1 describes the event that the adversary A outputs the bit one.

Security measure. For a tweakable enciphering scheme E: K × T × M → M we consider the
advantage that the adversary A has in distinguishing E and its inverse from a random tweakable
permutation and its inverse:

Adv±p̃rp
E (A) = Pr

[
K

$←K : AEK(·,·) E−1
K (·,·) ⇒ 1

]
− Pr

[
π

$← PermT (M) : Aπ(·,·) π−1(·,·) ⇒ 1
]

The notation show, in the brackets, an experiment to the left of the colon and an event to the
right of the colon. We are looking at the probability of the indicated event after performing the
specified experiment. By X

$←X we mean to choose X at random from the finite set X . By
PermT (M) we mean the set of all functions π: T ×M → M where π(T, ·) is a length-preserving

2



permutation. By Perm(n) we mean all permutations on {0, 1}n. In writing ±p̃rp the tilde serves
as a reminder that the PRP is tweakable and the ± symbol is a reminder that this is the “strong”
(chosen plaintext/ciphertext attack) notion of security. For a block cipher, we omit the tilde.

Without loss of generality we assume that an adversary never repeats an encipher query, never
repeats a decipher query, never queries its deciphering oracle with (T, C) if it got C in response to
some (T, M) encipher query, and never queries its enciphering oracle with (T, M) if it earlier got M
in response to some (T, C) decipher query. We call such queries pointless because the adversary
“knows” the answer that it should receive.

When R is a list of resources and Advxxx
Π (A) has been defined, we write Advxxx

Π (R) for the
maximal value of Advxxx

Π (A) over all adversaries A that use resources at most R. Resources of
interest are the running time t and the number of oracle queries q and the query complexity σn

(where n ≥ 1 is a number). The query complexity σn is measured as follows. A string X contributes
max{|X|/n, 1} to the query complexity; a tuple of strings (X1, X2, . . .) contributes the sum of
the contributions of each string; and the query complexity of an adversary is the sum of the
contributions from all oracle queries plus the contribution from the adversary’s output. So, for
example, an adversary that asks oracle queries (T1, P1) = (0n, 02n) and then (T2, P2) = (0n, ε) and
then outputs a bit b has query complexity 3 + 2 + 1 = 6. The name of an argument (e.g., t or σn)
will be enough to make clear what resource it refers to.

Finite fields. We interchangeably view an n-bit string as: a string; a nonnegative integer less
than 2n (msb first); a formal polynomial over GF(2) (with the coefficient of xn−1 first and the free
term last); and an abstract point in the finite filed GF(2n). To do addition on field points, one xors
their string representations. To do multiplication on field points, one must fix a degree-n irreducible
polynomial. We choose to use the lexicographically first primitive polynomial of minimum weight.
For n = 128 this is the polynomial x128+x7+x2+x+1. See [5] for a list of the indicated polynomials.
We note that with this choice of field-point representations, the point x = 0n−210 = 2 will always
have order 2n − 1 in the multiplicative subgroup of GF(2n), meaning that 2, 22, 23, . . . , 22n−1 are
all distinct. Finally, we note that given L = Ln−1 · · ·L1L0 ∈ {0, 1}n it is easy to compute 2L.
We illustrate the procedure for n = 128, in which case 2L = L<<1 if firstbit(L) = 0, and 2L =
(L<<1) ⊕ Const87 if firstbit(L) = 1. (Here Const87 = 012010413 and firstbit(L) means Ln−1 and
L<<1 means Ln−2Ln−3 · · ·L1L00.)

3 Specification of EME

We construct from block cipher E: K × {0, 1}n → {0, 1}n a tweakable enciphering scheme that we
denote by EME[E] or EME-E. The enciphering scheme has key space K, the same as the underlying
cipher, and tweak space is T = {0, 1}n. The message space M = {0, 1}n ∪ {0, 1}2n ∪ · · · {0, 1}n2

contains any string having any number m of n-bit blocks, where m ∈ [1..n]. An illustration of
EME mode is given in Figure 2. In the figures, all capitalized variables except for K are n-bit strings
(key K is an element of the key-space K). Variable names P and C are meant to suggest plaintext
and ciphertext. When we write ET

K(P1 · · ·Pm) we mean that the incoming plaintext P = P1 · · ·Pm

is silently partitioned into n-bit strings P1, . . . , Pm and when we write DT
K(C1 · · ·Cm) we mean

that the incoming ciphertext C = C1 · · ·Cm is partitioned into n-bit strings C1, . . . , Cm. It is an
error to provide E with a plaintext that is not mn bits for some m ∈ [1 .. n], or to supply D with
a ciphertext that is not mn bits for some m ∈ [1..n].

4 Security of EME

The following theorem relates the advantage an adversary can get in attacking EME[E] to the
advantage that an adversary can get in attacking the block cipher E.

3



Algorithm ET
K(P1 · · ·Pm)

100 L ← 2EK(0n)
101 for i ∈ [1 .. m] do
102 PP i ← 2i−1 L ⊕ Pi

103 PPP i ← EK(PP i)

110 SP ← PPP2 ⊕ · · · ⊕ PPPm

111 MP ← PPP1 ⊕ SP ⊕ T
112 MC ← EK(MP)
113 M ← MP ⊕ MC
114 for i ∈ [2 .. m] do CCC i ← PPP i ⊕ 2i−1M
115 SC ← CCC 2 ⊕ · · · ⊕ CCCm

116 CCC 1 ← MC ⊕ SC ⊕ T

120 for i ∈ [1 .. m] do
121 CC i ← EK(CCC i)
122 Ci ← CC i ⊕ 2i−1 L

130 return C1 · · ·Cm

Algorithm DT
Kt(C1 · · ·Cm)

200 L ← 2EK(0n)
201 for i ∈ [1 .. m] do
202 CC i ← 2i−1 L ⊕ Ci

203 CCC i ← E−1
K (CC i)

210 SC ← CCC 2 ⊕ · · · ⊕ CCCm

211 MC ← CCC 1 ⊕ SC ⊕ T
212 MP ← E−1

K (MC )
213 M ← MC ⊕ MP
214 for i ∈ [2 .. m] do PPP i ← CCC i ⊕ 2i−1M
215 SP ← PPP2 ⊕ · · · ⊕ PPPm

216 PPP1 ← MP ⊕ SP ⊕ T

220 for i ∈ [1 .. m] do
221 PP i ← E−1

K (PPP i)
222 Pi ← PP i ⊕ 2i−1 L

230 return P1 · · ·Pm

Figure 1: Enciphering (left) and deciphering (right) under E = EME[E], where E: K × {0, 1}n → {0, 1}n is a
block cipher. The tweak is T ∈ {0, 1}n and the plaintext is P = P1 · · ·Pm and the ciphertext is C = C1 · · ·Cm.

CCC 4

8L4L2LL

4M 8M2M

8L4LL 2L

MP

MC

SP ⊕ T

SC ⊕ T

CCC 1

PPP1

CC 3

PP3

PPP3

CCC 3

P3

C3

CC 1

PP1

P1

C1

CC 2

PP2

CCC 2

PPP2

P2

C2

PPP4

PP4

CC 4

P4

C4

Figure 2: Enciphering a four-block message P1P2P3P4 under EME. The boxes represent EK and L = 2EK(0n).
We set SP = PPP2 ⊕ PPP3 ⊕ PPP4 and M = MP ⊕ MC and SC = CCC 2 ⊕ CCC 3 ⊕ CCC 4.

4



Theorem 1 [EME security] Fix n, t, σn ∈ N and a block cipher E: K×{0, 1}n → {0, 1}n. Then

Adv±p̃rp
EME[Perm(n)](σn) ≤ 7 σ2

n

2n
and (1)

Adv±p̃rp
EME[E](t, σn) ≤ 7 σ2

n

2n
+ 2 Adv±prp

E (t′, σn) (2)

where t′ = t + O(σn). �

The heart of Theorem 1 is Equation (1), which is given in Appendix B. Equation (2) embodies the
standard way to pass from the information-theoretic setting to the complexity-theoretic one.

5 Proof Ideas

Since the proof in Appendix B is quite long we give a brief sketch here of some of its ideas. We
consider an attack against EME as a game between the attacker and the mode itself, where the
cipher is replaced by a truly random permutation and this permutation is chosen “on the fly”
during this game. We give names to all of the internal blocks that occur in the game, where an
internal block is any of the n-bit values PP i, PPP i, MP , MC , CCC i, CC i that arise as the game
is played. For example, PPPs

i is the PPP i-block of the sth query of the attacker.
As usual with such modes, the core of the proof is to show that “accidental collisions” are

unlikely. An accidental collision is an equality between two internal blocks which is not obviously
guaranteed due to the structure of the mode. Specifically, an equality between the ith blocks
in two different encipher queries P s

i = P t
i implies that we also have the equalities PPs

i = PP t
i

and PPPs
i = PPP t

i and so these do not count as collisions. (And likewise for decipher queries.)
Most other collisions are considered accidental collisions and we show that those rarely happen.1

Showing that accidental collisions are rare is ultimately done by case analysis (but, as usual, it takes
a non-trivial argument to get there). For example, in one case we show that with high probability
PPs

i �= PP t
j ; in another case we show that with high probability PPPs

i �= MC t.
The analysis of most of the cases is standard. Below we illustrate one of the more interesting

cases. We show that for an encipher query P s the block MPs does not collide with any of the
previous MPr blocks(cf. Claim 7 in Appendix B). This is easily seen if any of the plaintext blocks
P s

i is a “new blocks” (i.e., different than P r
i for all r < s). But we need to show it also for the

case where the plaintext P s was obtained by “mix-and-matching” blocks from previous plaintext
vectors. So let r < s be the last plaintext that share some blocks with P s, i.e., P r

i = P s
i for some

index i. This means that all the blocks P s
i appeared in queries no later than r (and some of them

appeared in the r’th query). If queries s and r sport the same plaintext vectors, P r = P s, and differ
only in the tweak values, T r �= T s, then we clearly have MPr ⊕ MPs = T r ⊕ T s �= 0. So assume
that P r �= P s, let Eq be the set of indexes where they are equal, and denote Dr = {1..mr} − Eq
and Ds = {1..ms} − Eq . That is, P r

i = P s
i exactly for all i ∈ Eq , which means that all the blocks

P s
i for i ∈ Ds appeared in queries before query r. This, in turn, implies that the value of PPPs

i for
any i ∈ Ds depends only on things that were determined before query r.

Assume that query r was decipher and that MC r did not accidentally collide with anything,
so MPr was chosen “almost at random” during the processing of query r. We show that the sum
MPs ⊕ MPr can be expressed as aMPr +β, where a �= 0 is a constant and β is some expression that

1 Actually, we only care about collisions between two values in the domain of π or between two values in its range;
collisions between a domain value and a range value, such as PPs

i = CC r
i , are inconsequential and we ignore those.

5



only depends on things that were determined before the choice of MPr. Thus, the sum MPs ⊕ MPr

is rarely zero. If ms and mr are the lengths (in blocks) of queries r and s we can write this sum as

MPs ⊕ MPr = T s ⊕
ms∑
i=1

PPPs
i ⊕ T r ⊕

mr∑
i=1

PPPr
i = T r ⊕ T s ⊕

∑
i∈Ds

PPPs
i ⊕

∑
i∈Dr

PPPr
i

= things-that-were-determined-before-query-r ⊕
∑
i∈Dr

PPPr
i

Assuming that Dr is non-empty, it is sufficient to show that we can express
∑

i∈Dr
PPPr

i = aMPr+β
where a is non-zero and β only depends on things that were determined before the choice of
MPr(cf. Claim 2 in Appendix B). There are two cases in this proof, depending on whether 1 ∈ Dr

or not, but they both boil down to the same point: since we use the value 2i−1(MC s ⊕ MPs) to
mask the CCC i block, the sum of PPPr

i ’s can be written as∑
i∈Dr

PPPr
i = some-expression-in-the-CCC r

i ’s-and-MC r ⊕
(∑

i∈D′
2i−1

)
MPr

where D′ is also a non-empty set, D′ ⊆ [1..mr], and so the coefficient of MPr in this expression is
non-zero. The case where query r is encipher is a bit longer, but it uses similar observations.

One last “trick” that is worth mentioning is the way we handle an adaptive adversary. To bound
the probability of accidental collisions we analyze this probability in the presence of an augmented
adversary, that can specify both the queries and their answers. That is, we let the adversary specify
the entire transcript (with some minor restrictions) then choose some “permutation” π that maps
the given queries to the given answers, and then consider the probability of accidental collisions.
Clearly, this augmented adversary is no longer adaptive, hence the analysis becomes more tractable.

6 Some Insecure Modifications

In this section we justify two of our design choices by showing that changing them would result in
insecure schemes. Specifically, we show that the block-cipher call that sits in between the two ECB
layers is effectively unavoidable, and we show that that the length restriction m < n also is needed.

6.1 The “extra” block-cipher call is needed

The EME construction has three block-cipher invocations in its “critical path” (that is, the con-
struction is depth-3 in block-cipher gates). We now show that, in some sense, this is the best that
you can do for a constructions of this type. Specifically, we show that for a construction of the type
ECB-Mix-ECB, implementing the intermediate mixing layer by any linear transformation always
results in a insecure scheme. This remains true even for an untweakable scheme, even when one
considers only fixed-input-length inputs, even when each block-cipher call in each ECB encryption
layer uses an independent key, and even if the linear transformation in the middle is key-dependent.
This result implies that, as opposed to the Hash-Encrypt-Hash approach that was proven secure
by Naor and Reingold [14], the “dual” approach of Encrypt-Hash-Encrypt will not secure under
typical assumptions.2

Formally, fix m, n ∈ N with m ≥ 2, and let E: K × {0, 1}n → {0, 1}n be a block cipher. The
scheme E = BrokenEME is defined on message space {0, 1}mn and key space K2m ×K′ where K′ is
a set of invertible linear transformations on {0, 1}mn. BrokenEME is keyed with 2m independent
keys K1, . . . , Km, K ′

1, . . . , K
′
m ∈ K, and with an invertible (possibly secret) linear transformation3

2 This may seem somewhat surprising, as one may think that Encrypt-Hash-Encrypt should be at least as secure
since it uses “more cryptography”.

3 In fact, it is easy to see that the attack described below works also when T is an affine transformation.

6



T : {0, 1}mn → {0, 1}mn. To encipher a plaintext P = P1 · · ·Pm ∈ {0, 1}mn we do the following:

Set PPP i = Eki(Pi) for i = 1 . . . m. Let PPP = PPP1 · · ·PPPm be the concatenation of the
PPP i blocks (PPP ∈ {0, 1}mn).
Apply the linear transformation T to obtain CCC = CCC 1 · · ·CCCm = T (PPP).
Set Ci = Ek′

i
(CCC i) for i = 1 . . . m. The ciphertext is the concatenation of all the Ci blocks,

C = C1 · · ·Cm ∈ {0, 1}mn.

Deciphering is done in the obvious way.
We now give an adversary A that attacks the mode, distinguishing it from a truly random

permutation and its inverse using only four queries. Denote the adversary with it’s oracles as
AE D. The adversary A picks two mn-bit plaintexts that differ only in their first block, namely
P 1 = P1P2 · · ·Pm and P 2 = P ′

1P2 · · ·Pm (with P1 �= P ′
1). Then A queries its oracle as follows:

(1) Let C1 = C1
1 · · ·C1

m ←E(P 1) and let C2 = C2
1 · · ·C2

m ←E(P 2).
(2) Create two “complementing mixes” of the two ciphertexts, for example C3 = C2

1C1
2 · · ·C1

m and
C4 = C1

1C2
2 · · ·C2

m.
(3) Let P 3 = P 3

1 · · ·P 3
m ←D(C3) and let P 4 = P 4

1 · · ·P 4
m ←D(C4).

If the plaintext vectors P 3 and P 4 agree in all but their first block then A outputs 1 (“real”)
while otherwise it outputs 0 (“random”). To see that this works, we denote the intermediate
variables in the four queries by PPP i

j and CCC i
j (i = 1..4 and j = 1..m) and denote the “vector

of differences” between PPP1 and PPP2 by DP = DP1 · · ·DPm
def= PPP1 ⊕ PPP2. Since P 1

and P 2 agree everywhere except in their first block, it follows that also the “vector of differences”
DP is zero everywhere except in the first block. Similarly, we denote the “vector of differences”
between CCC 1 and CCC 2 by DC = DC 1 · · ·DCm

def= CCC 1 ⊕ CCC 2 and since we computed
CCC i = T (PPP i) and T is a linear transformation, it follows that DC = T (PPP1) ⊕ T (PPP2) =
T (PPP1 ⊕ PPP2) = T (DP). Recall now that for any j ∈ [1..m] we have either C3

j = C1
j and C4

j =
C2

j , or C3
j = C2

j and C4
j = C1

j . It follows that for all j, CCC3
j ⊕ CCC4

j = CCC1
j ⊕ CCC2

j = DC j ,
namely CCC 3 ⊕ CCC 4 = DC . Putting this together we now compute PPP3 ⊕ PPP4 as:

PPP3 ⊕ PPP4 = T−1(CCC 3) ⊕ T−1(CCC4)
= T−1(CCC 3 ⊕ CCC 4) = T−1(DC ) = T−1(T (DP)) = DP

This means that PPP4
j = PPP3

j for j = 2..m, and therefore also P 4
j = P 3

j for all but the first block.

6.2 Necessity of the Length Restriction

Recall that EME is defined on message space M =
⋃

m∈[1..n]{0, 1}mn. Here we show that the
restriction m ≤ n is justified. In fact, we do not know whether allowing m = n + 1 breaks the
security of EME, but we can show that allowing m = n + 2 permits easy distinguishing attacks.
The details of the attack depend somewhat on the representation of the field GF(2n). Below
we demonstrate it for n = 128, where the field GF(2128) is represented using the polynomial
P128(x) = x128 + x7 + x2 + x + 1.

Assume that m ≥ n + 2 and let J be a nonempty proper subset of the indexes from 2 to m,
J ⊂ {2, 3, . . . , m}, J �= ∅, such that in the field GF(2n) we have

∑
j∈J 2j−1 = 0. For example, when

GF(2128) is represented using P128, we have

2129 + 28 + 23 + 22 + 21 = 2(2128 + 27 + 22 + 21 + 20) = 0

so we can set J = {130, 9, 4, 3, 2}. The attack proceeds as follows:

7



(1) Pick an arbitrary tweak T . All the queries in the attack will use the same tweak T . (In
other words, the attack works also when EME is used as an untweakable scheme.) Pick two
plaintext vectors that differ only in their first block, P 1 = P1P2 . . . Pm and P 2 = P ′

1P2 · · ·Pm

(with P1 �= P ′
1).

(2) Encipher both plaintext vectors to get C1 = E(T, P 1) and C2 = E(T, P 2).

(3) Create a ciphertext vector C3 such that C3
j =

{
C1

j if j ∈ J

C2
j if j /∈ J

.

(4) Decipher C3 to get P 3 = D(T, C3).
Output 1 (“real”) if P 3 and P 2 agree in all the blocks j ∈ ([2..m] \ J) and output 0 (“random”)
otherwise. To see that this works we denote the intermediate variables in the three queries by
PPP i

j and CCC i
j and MP i and MC i and M i (i = 1..3 and j = 1..m).

We note that PPP1
j = PPP 2

j for all j ∈ [2..m], and in particular for all j ∈ J . Also, from the
construction of C3 we get that CCC3

j = CCC1
j for j ∈ J and CCC3

j = CCC2
j for j /∈ J . Thus

MC2 ⊕ MC3 =

T ⊕
m∑

j=1

CCC2
j

 ⊕

T ⊕
m∑

j=1

CCC3
j


=

∑
j∈J

(
CCC2

j ⊕ CCC3
j

)
=

∑
j∈J

(
CCC2

j ⊕ CCC1
j

)
=

∑
j∈J

(
(PPP 2

j ⊕ 2j−1M2) ⊕ (PPP 1
j ⊕ 2j−1M1)

)
=

∑
j∈J

(
2j−1M2 + 2j−1M1

)
= (M2 + M1)

∑
j∈J

2j−1 = 0

So we have MC 3 = MC 2 and therefore also MP3 = MP2 and M3 = M2. Thus for any j /∈ J , j > 1
we have PPP3

j = CCC 3
j ⊕ 2j−1M3 = CCC 2

j + 2j−1M2 = PPP2
j and therefore also P 3

j = P 2
j .

References

[1] R. Anderson and E. Biham. Two practical and provably secure block ciphers: BEAR and
LION. In Fast Software Encryption, Third International Workshop, volume 1039 of Lecture
Notes in Computer Science, pages 113–120, 1996. www.cs.technion.ac.il/∼biham/.

[2] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining mes-
sage authentication code. Journal of Computer and System Sciences, 61(3):362–399, 2000.
www.cs.ucdavis.edu/∼rogaway.

[3] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message authen-
tication. In L. Knudsen, editor, Advances in Cryptology – EUROCRYPT ’01, volume 2332 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

[4] P. Crowley. Mercy: A fast large block cipher for disk sector encryption. In B. Schneier,
editor, Fast Software Encryption: 7th International Workshop, volume 1978 of Lecture
Notes in Computer Science, pages 49–63, New York, USA, Apr. 2000. Springer-Verlag.
www.ciphergoth.org/crypto/mercy.

[5] S. Duplichan. A primitive polynomial search program. Web document. Available at
http://users2.ev1.net/∼sduplichan/primitivepolynomials/primivitePolynomials.htm, 2003.

8



[6] S. Halevi and P. Rogaway. A tweakable enciphering mode. In D. Boneh, editor, Advances
in Cryptology – CRYPTO ’03, volume 2729 of Lecture Notes in Computer Science. Springer-
Verlag, 2003. Full version available on the ePrint archive, http://eprint.iacr.org.

[7] J. Hughes. Personal communication, 2002.

[8] IEEE. Security in Storage Working Group (SISWG). See www.siswg.org. Call for algorithms
at www.mail-archive.com/cryptography@wasabisystems.com/msg02102.html, May 2002.

[9] A. Joux. Cryptanalysis of the EMD mode of operation. In Advances in Cryptology – EURO-
CRYPT ’03, volume 2656 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[10] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search. Journal of
Cryptology, 14(1):17–35, 2001. Earlier version in CRYPTO ’96. www.cs.ucdavis.edu/∼rogaway.

[11] M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. In Advances in
Cryptology – CRYPTO ’02, Lecture Notes in Computer Science. Springer-Verlag, 2002.
www.cs.berkeley.edu/∼daw/.

[12] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM J. of Computation, 17(2), April 1988.

[13] M. Naor and O. Reingold. A pseudo-random encryption mode. Manuscript, available from
www.wisdom.weizmann.ac.il/∼naor/.

[14] M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-Rackoff
revisited. Journal of Cryptology, 12(1):29–66, 1999. (Earlier version in STOC ’97.) Available
from www.wisdom.weizmann.ac.il/∼naor/.

[15] Y. Zheng, T. Matsumoto, and H. Imai. On the construction of block ciphers provably secure
and not relying on any unproved hypotheses. In Advances in Cryptology – CRYPTO ’89,
volume 435 of Lecture Notes in Computer Science, pages 461–480. Springer-Verlag, 1989.

A Extending EME to Longer Messages

The restriction on the message size of EME, m ≤ n, means, for example, that when using AES
as the underlying cipher one cannot encrypt messages longer than 2KB. In some applications this
restriction could be problematic. We now describe EME+, an extension of EME that can be used
to handle message of practically any length (as long as it is an integral number of blocks).

The idea is to divide the m-block input into “chunks” of at most n blocks each such that in
each “chunk” we use construction similar to EME. Specifically, in the first “chunk” we use exactly
the same construction as in EME. In all the other “chunks” we use a similar construction, except
that we replace the addition of SP ⊕ T and SC ⊕ T (before and after the block encryption on the
“special line”) by addition of the first mask M1 (both before and after the block encryption).

We specify in Figure 3 both the forward direction of our construction, E = EME+[E], and its
inverse D. An illustration of EME+ mode is given in Figure 4. One observes that EME+ is a
“proper extension” of EME in that when we use it on a message of length m ≤ n blocks, we get
back the original EME mode.

Although we have not written a proof of security for EME+ we expect that such proof can be
written. One would follow the arguments in the proof for the basic EME in Appendix B, except
that one needs to analyze a few more cases in the case analysis(specifically in the proof of Claim 7)
.

9



Algorithm ET
K(P1 · · ·Pm)

100 L ← 2EK(0n)
101 for i ∈ [1 .. m] do
102 PP i ← 2i−1 L ⊕ Pi, PPP i ← EK(PP i)

110 MP1 ← PPP1 ⊕ PPP2 ⊕ · · · ⊕ PPPm ⊕ T
111 MC 1 ← EK(MP1), M1 ← MP1 ⊕ MC 1

112 for i ∈ [2..n] do CCC i ← PPP i ⊕ 2i−1M1

113 for j ∈ [2 .. �m/n�] do
114 MP j ← PPP (j−1)n+1 ⊕ M1

115 MC j ← EK(MP j), Mj ← MP j ⊕ MC j

116 CCC 1+(j−1)n ← MC j ⊕ M1

117 for i ∈ [2 + (j − 1)n .. jn] do
118 CCC i ← PPP i ⊕ 2i−1 mod nMj

119 CCC 1 ← MC 1 ⊕ CCC 2 ⊕ · · · ⊕ CCCm ⊕ T

120 for i ∈ [1 .. m] do
121 CC i ← EK(CCC i), Ci ← CC i ⊕ 2i−1 L

130 return C1 · · ·Cm

Algorithm DT
Kt(C1 · · ·Cm)

200 L ← 2EK(0n)
201 for i ∈ [1 .. m] do
202 CC i ← 2i−1 L ⊕ Ci, CCC i ← E−1

K (CC i)

210 MC 1 ← CCC 1 ⊕ CCC 2 ⊕ · · · ⊕ CCCm ⊕ T
211 MP1 ← E−1

K (MC 1), M1 ← MC 1 ⊕ MP1

212 for i ∈ [2..n] do PPP i ← CCC i ⊕ 2i−1M1

213 for j ∈ [2 .. �m/n�] do
214 MC j ← CCC (j−1)n+1 ⊕ M1

215 MP j ← E−1
K (MC j), Mj ← MC j ⊕ MP j

216 PPP1+(j−1)n ← MP j ⊕ M1

217 for i ∈ [2 + (j − 1)n .. jn] do
218 PPP i ← CCC i ⊕ 2i−1 mod nMj

219 PPP1 ← MP1 ⊕ PPP2 ⊕ · · · ⊕ PPPm ⊕ T

220 for i ∈ [1 .. m] do
221 PP i ← E−1

K (PPP i), Pi ← PP i ⊕ 2i−1 L

230 return P1 · · ·Pm

Figure 3: Enciphering (left) and deciphering (right) under E = EME+[E], where E: K×{0, 1}n → {0, 1}n is a
block cipher. The tweak is T ∈ {0, 1}n and the plaintext is P = P1 · · ·Pm and the ciphertext is C = C1 · · ·Cm.

. . .

. . .

L

Pn+2

Cn+2

CCn+2

CCCn+2

PPPn+2

PPn+2PPn+1

PPPn+1

CCCn+1

CCn+1

Cn+1

Pn+1

C2

P2

CC 2

CCC 2

PPP2

PP2

2n+1L

2n+1L

2M2

M1

M1

2nL

2nL2L

2L

2M1

MC 2

MP2

2n−1L

2n−1L

Pn

Cn

2n−1M1

PPn

PPPn

CCCn

CCn

MP1

MC 1

SC ⊕ T

L

SP ⊕ T

P1

C1

PPP1

PP1

CCC 1

CC 1

Figure 4: Enciphering an (n + 2)-block message under EME+. The boxes represent EK and L = 2EK(0n).
We set SP = PPP2 ⊕ · · ·PPPm, Mi = MP i ⊕ MC i, and SC = CCC 2 ⊕ · · · ⊕ CCCm.

10



B Proof of Theorem 1 — Security of EME

Our proof of security for EME is divided into two parts: in Section B.1 we carry out a game-
substitution argument, reducing the analysis of EME to the analysis of a simpler probabilistic
game. In Section B.2 we analyze that simpler game. Before we begin we first recall a little lemma,
saying that a (tweakable) truly random permutation looks very much like an oracle that just returns
random bits (as long as you never ask pointless queries). So instead of analyzing indistinguishability
from a random permutation we can analyze indistinguishability from random bits.

Let E: K × T × M → M be a tweaked block-cipher and let D be its inverse. Define the
advantage of distinguishing E from random bits, Adv±r̃nd

E , by

Adv±r̃nd
E (A) = Pr[K $←K : AEK(·,·) DK(·,·) ⇒ 1 ] − Pr[A$(·,·) $(·,·) ⇒ 1 ]

where $(T, M) returns a random string of length |M |. We insist that A makes no pointless queries,
regardless of oracle responses, and A asks no query (T, M) outside of T × M. We extend the
definition above in the usual way to its resource-bounded versions. We have the following lemma,
whose (standard) proof can be found, for example, in the full version of [6].

Lemma 2 [±p̃rp-security ≈ ±r̃nd-security] Let E: K×T ×M → M be a tweaked block-cipher
and let q ≥ 1 be a number. Then |Adv±p̃rp

E (q) − Adv±r̃nd
E (q)| ≤ q(q − 1)/2N+1 where N is the

length of a shortest string in M. �

B.1 The game-substitution sequence

Fix n, σn, and q. Let A be an adversary that asks q oracle (none pointless) and has query
complexity σn. Our goal is to show that Adv±r̃nd

EME[Perm(n)](A) ≤ 2 Pr[ NON2 sets bad ] + qσn

2n where
NON2 is some probability space and “ NON2 sets bad ” is an event defined there. Later we bound
Pr[ NON2 sets bad ], and, putting that together with Lemma 2, we get Equation (1) of Theorem 1.

Game NON2 is obtained by a game-substitution argument, as carried out in works like [10].
The goal is to simplify the rather complicated setting of A adaptively querying its oracles, and to
arrive at a simpler setting where there is no adversary and no interaction—just a program that
flips coins and a flag bad that does or does not get set.

Game EME1. We begin by describing the attack scenario of A against EME[Perm(n)] as a
probabilistic game in which the permutation π is chosen “on the fly”, as needed to answer the
queries of A. Initially, the partial function π: {0, 1}n → {0, 1}n is everywhere undefined. When we
need π(X) and π isn’t yet defined at X we choose this value randomly among the available range
values. When we need π−1(Y ) and there is no X for which π(X) has been set to Y we likewise
choose X at random from the available domain values. As we fill in π its domain and its range thus
grows. In the game we keep track of the domain and range of π by maintaining two sets, Domain
and Range, that include all the points for which π is already defined. We let Domain and Range be
the complement of these sets relative to {0, 1}n. The game, denoted EME1, is shown in Figure 5.
Since game EME1 accurately represent the attack scenario, we have that

Pr[AEπ Dπ ⇒ 1 ] = Pr[AEME1 ⇒ 1 ] (3)

Game RND1. We next modify game EME1 by omitting the statements that immediately follow
the setting of bad to true. (This is the usual trick under the game-substitution approach.) Namely,
before we were making some consistency checks after each random choice π(X) = Y

$←{0, 1}n to

11



Subroutine Choose-π(X):

010 Y
$←{0, 1}n; if Y ∈ Range then bad ← true , Y

$← Range

011 if X ∈ Domain then bad ← true , Y ← π(X)
012 π(X) ← Y , Domain ← Domain ∪ {X}, Range ← Range ∪ {Y }; return Y

Subroutine Choose-π−1(Y ):

020 X
$←{0, 1}n; if X ∈ Domain then bad ← true , X

$← Domain

021 if Y ∈ Range then bad ← true , X ← π−1(Y )
022 π(X) ← Y , Domain ← Domain ∪ {X}, Range ← Range ∪ {Y }; return X

Initialization:
030 bad ← false; for all X ∈ {0, 1}n do π(X) ← undef

031 EZ $←{0, 1}n; L ← 2EZ
032 π(0n) ← EZ ; Domain ←{0n}; Range ←{EZ}

Respond to the s-th adversary query as follows:

An encipher query, Enc(T s;P s
1 · · ·P s

ms):
110 for i ← 1 to ms do
111 Let r = r[s, i] be the smallest index s.t. P s

i = P r
i

112 if r < s then PPs
i ← PPr

i , PPPs
i ← PPPr

i

113 else PPs
i ← P s

i ⊕ 2i−1L; PPPs
i ← Choose-π(PPs

i )

120 MPs ← PPPs
1 ⊕ PPPs

2 ⊕ · · · ⊕ PPPs
ms ⊕ T s

121 MC s ← Choose-π(MPs)
122 for i ∈ [2 .. m] do CCC s

i ← PPPs
i ⊕ 2i−1(MPs ⊕ MC s)

123 CCC s
1 ← MC s ⊕ CCC s

2 ⊕ · · · ⊕ CCC s
m ⊕ T

130 for i ← 1 to ms do
131 CC s

i ← Choose-π(CCC s
i ); Cs

i ← CC s
i ⊕ 2i−1L

140 return C1 · · ·Cms

A decipher query, Dec(T s;Cs
1 · · ·Cs

ms) :

210 for i ← 1 to ms do
211 Let r = r[s, i] be the smallest index s.t. Cs

i = Cr
i

212 if r < s then CC s
i ← CCr

i , CCC s
i ← CCC r

i

213 else CC s
i ← Cs

i ⊕ 2i−1L; CCC s
i ← Choose-π−1(CC s

i )

220 MC s ← CCC s
1 ⊕ CCC s

2 ⊕ · · · ⊕ CCC s
ms ⊕ T s

221 MPs ← Choose-π−1(MC s)
222 for i ∈ [2 .. m] do PPPs

i ← CCC s
i ⊕ 2i−1(MPs ⊕ MC s)

223 PPPs
1 ← MPs ⊕ PPPs

2 ⊕ · · · ⊕ PPPs
m ⊕ T

230 for i ← 1 to ms do
231 PPs

i ← Choose-π−1(PPPs
i ); P s

i ← PPs
i ⊕ 2i−1L

240 return P1 · · ·Pms

Figure 5: Game EME1 describes the attack of A on EME[Perm(n)], where the permutation π is chosen “on the
fly” as needed. Game RND1 is the same as game EME1, except we do not execute the shaded statements.

12



Initialization:

000 bad ← false; EZ $←{0, 1}n; Domain ← Range ←{0n,EZ}; L ← 2EZ

Respond to the s-th adversary query as follows:

An encipher query, Enc(T s;P s
1 · · ·P s

ms):
110 for i ← 1 to ms do
111 Let r = r[s, i] be the smallest index s.t. P s

i = P r
i

112 if r < s then PPs
i ← PPr

i , PPPs
i ← PPPr

i

113 else PPs
i ← P s

i ⊕ 2i−1L; if PPs
i ∈ Domain then bad ← true

115 PPPs
i

$←{0, 1}n; if PPPs
i ∈ Range then bad ← true

116 Domain ← Domain ∪ {PP s
i }, Range ← Range ∪ {PPPs

i}
120 MPs ← PPPs

1 ⊕ PPPs
2 ⊕ · · · ⊕ PPPs

ms ⊕ T s; if MPs ∈ Domain then bad ← true

121 MC s $←{0, 1}n; if MC s ∈ Range then bad ← true
122 Domain ← Domain ∪ {MPs}, Range ← Range ∪ {MC s}
123 for i ∈ [2 .. m] do CCC s

i ← PPPs
i ⊕ 2i−1(MPs ⊕ MC s)

124 CCC s
1 ← MC s ⊕ CCC s

2 ⊕ · · · ⊕ CCC s
m ⊕ T s

130 for i ← 1 to ms do
131 Cs

i
$←{0, 1}n;

132 CC s
i ← Cs

i ⊕ 2i−1L; if CC s
i ∈ Range then bad ← true

133 if CCC s
i ∈ Domain then bad ← true

134 Domain ← Domain ∪ {CCC s
i}, Range ← Range ∪ {CC s

i}
140 return C1 · · ·Cms

A decipher query, Dec(T s;Cs
1 · · ·Cs

ms), is treated symmetrically

Figure 6: Game RND2 is indistinguishable from Game RND1 but chooses some of its variables in different order.

see if this value of Y was already in use, or if π was already defined at X, and we reset out choice
of Y as needed. Now we still make these checks and set the flag bad, but we do not reset the chosen
value of Y . This means that π may end up not being a permutation, and moreover we may reset
its value on previously chosen points.

Still, the games EME1 and RND1 are syntactically identical apart from what happens after
the setting of the flag bad to true. Once the flag bad is set to true the subsequent behavior of the
game does not impact the probability that an adversary A interacting with the game can set the
flag bad to true. This is exactly the setup used in the game-substitution method to conclude that

Pr[AEME1 ⇒ 1 ] − Pr[ARND1 ⇒ 1 ] ≤ Pr[ARND1 sets bad ] (4)

Game RND2. We now make three adversarially-invisible changes to game RND1. First, we note
that the function π (and its inverse) are never used in game RND1, so we just remove them from
the code. Next, instead of choosing CC s

i
$←{0, 1}n and then setting Cs

i ← CC s
i ⊕ 2iL (in encipher

queries, line 131), we will now choose Cs
i

$←{0, 1}n and then set CC s
i ← Cs

i ⊕ 2iL. Clearly, this
change preserves the distribution of all these variables. The analogous comments apply to the
choice of PPs

i and P s
i in decipher queries; we could just as well have chosen P s

i at random and
defined PPs

i using it. The last change that we make is to artificially add 0n also to the Range set,
and the value EZ (which was meant to represent π(0n)) to the Domain set. This last change is
meant to make the encipher and decipher directions completely symmetric, so that we can reduce
the number of cases that we need to handle in the analysis to come. Note that this last change has

13



no effect on the answers that are returned to the adversary. Its only effect is to slightly increase
the probability that the flag bad is set.

The resulting game RND2 is described in Figure 6. (In that figure we did not bother describing
the decipher queries, as they are completely symmetric to the encipher queries.) It is clear that
the changes we made do has no effect on the probability that A returns one (as they do not change
anything in the interaction between A and its oracles), and they can only increase the probability
of setting flag bad. Hence we conclude that

Pr[ARND1 ⇒ 1 ] = Pr[ARND2 ⇒ 1 ] and Pr[ARND1 sets bad ] ≤ Pr[ARND2 sets bad ] (5)

We note that in game RND2 we respond to any m-block Enc-query by returning nm random bits,
C1 · · ·Cm. Similarly, we respond to any m-block Dec-query by returning nm random bits, P1 · · ·Pm.
Thus RND2 provides an adversary with an identical view to a pair of random-bit oracles,

Pr[ARND2 ⇒ 1 ] = Pr[A±r̃nd ⇒ 1 ] (6)

Combining Equations 3, 4, 5, and 6, we thus have that

Adv±r̃nd
EME[Perm(n)](A) = Pr[AEME1 ⇒ 1 ] − Pr[ARND2 ⇒ 1 ]

= Pr[AEME1 ⇒ 1 ] − Pr[ARND1 ⇒ 1 ]
≤ Pr[ARND1 sets bad ]
≤ Pr[ARND2 sets bad ] (7)

Our task is thus to bound Pr[ARND2 sets bad ].

Game RND3. Next we reorganize game RND2 so as to separate out (i) choosing random values
to return to the adversary, (ii) defining intermediate variables, and (iii) setting the flag bad.

We remarked that game RND2 returns mn random bits in response to any m-block query.
Now, in game RND3, shown in Figure 7, we make that even more clear by choosing the necessary
Cs = Cs

1 · · ·Cs
ms or P s = P s

1 · · ·P s
ms response just as soon as the sth query is made. Nothing else is

done at that point except for recording if the adversary made an Enc query or a Dec query.
When the adversary finishes all of its oracle queries and halts, we execute the “finalization”

step of game RND3. First, we go over all the variables of the game and determine their values, just
as we do in game RND2. While doing so, we collect all the values in the sets Domain and Range,
this time viewing them as multisets D and R, respectively. When we are done setting values to all
the variables, we go back and look at D and R. The flag bad is set if (and only if) any of these
multisets contains some value more than once. This procedure is designed to set bad under exactly
the same conditions as in game RND2. The following is thus clear:

Pr[ARND2 sets bad ] = Pr[ARND3 sets bad ] (8)

Game NON1. So far we have not changed the structure of the games at all: it has remained an
adversary asking q questions to an oracle, our answering those questions, and the internal variable
bad either ending up true or false. The next step, however, actually gets rid of the adversary, as
well as all interaction in the game.

We want to bound the probability that bad gets set to true in game RND3. We may assume that
the adversary is deterministic, and so the probability is over the random choices P s $←{0, 1}nms

and
Cs $←{0, 1}nms

that are made while answering the queries (in lines 011 and 021), and the random

14



Respond to the s-th adversary query as follows:

An encipher query, Enc(T s;P s
1 · · ·P s

ms):
010 tys ← Enc

011 Cs = Cs
1 · · ·Cs

ms
$←{0, 1}nms

012 return Cs

A decipher query, Dec(T s;Cs
1 · · ·Cs

ms):
020 tys ← Dec

021 P s = P s
1 · · ·P s

ms
$←{0, 1}nms

022 return P s

Finalization:
First phase

050 EZ $←{0, 1}n; L ← 2EZ ; D ← R ←{0n,EZ} // D,R are multisets

051 for s ← 1 to q do
100 if tys = Enc then
110 for i ← 1 to ms do
111 Let r = r[s, i] be the smallest index s.t. P s

i = P r
i

112 if r < s then PPs
i ← PPr

i , PPPs
i ← PPPr

i

113 else PPs
i ← P s

i ⊕ 2i−1L; D ← D ∪ {PPs
i}

114 PPPs
i

$←{0, 1}n; R ← R ∪ {PPPs
i}

120 MPs ← PPPs
1 ⊕ PPPs

2 ⊕ · · · ⊕ PPPs
ms ⊕ T s; D ← D ∪ {MPs}

121 MC s $←{0, 1}n; R ← R ∪ {MC s}
122 for i ∈ [2 .. m] do CCC s

i ← PPPs
i ⊕ 2i−1(MPs ⊕ MC s)

123 CCC s
1 ← MC s ⊕ CCC s

2 ⊕ · · · ⊕ CCC s
m ⊕ T s

130 for i ← 1 to ms do
131 CC s

i ← Cs
i ⊕ 2i−1L; R ← Range ∪ {CC s

i}
132 D ← Domain ∪ {CCC s

i}
200 The case tys = Dec is treated symmetrically

Second phase

300 bad ← (some value appears more than once in D)
or (some value appears more than once in R)

Figure 7: Game RND3 is adversarially indistinguishable from game RND2 but defers the setting of bad.

choices EZ $←{0, 1}n, PPPs
i

$←{0, 1}n, MPs $←{0, 1}n, MC s $←{0, 1}n, and CCC s
i

$←{0, 1}n that
are made in the first finalization phase (lines 050, 113, 120, 213, and 220). We will now eliminate
the coins associated to lines 011 and 021. Recall that the adversary asks no pointless queries.

We would like to make the stronger statement that for any set of values that might be returned
to the adversary at lines 011 and 021, and for any set of queries (none pointless) associated to
them, the finalization step of game RND3 rarely sets bad. However, this statement isn’t quite true.
For example, assume that r-th and s-th queries (r < s) are both encipher queries, and that the
random choices in line 011 specify that the i’th ciphertext block in the two answers is the same,
Cr

i = Cs
i . Then the flag bad is sure to be set, since we will have a “collision” between CC r

i and CC s
i .

Formally, since in line 131 we set CC r
i = Cr

i ⊕ 2i−1L = Cs
i ⊕ 2i−1L = CC s

1, and since both CC r
i

and CC s
i are added to R we would set bad when we examine their values in line 300. A similar

example can be shown for decipher queries. We call such collisions immediate collisions. Formally,
an immediate collision happens whenever we have Cr

i = Cs
i (r < s) and query s is an encipher

15



050 EZ $←{0, 1}n; L ← 2EZ ; D ← R ←{0n,EZ} // D,R are multisets

051 for s ← 1 to q do
100 if tys = Enc then
110 for i ← 1 to ms do
111 Let r = r[s, i] be the smallest index s.t. Ps

i = Pr
i

112 if r < s then PPs
i ← PPr

i , PPPs
i ← PPPr

i

113 else PPs
i ← Ps

i ⊕ 2i−1L; D ← D ∪ {PPs
i}

114 PPPs
i

$←{0, 1}n; R ← R ∪ {PPPs
i}

120 MPs ← PPPs
1 ⊕ PPPs

2 ⊕ · · · ⊕ PPPs
ms ⊕ Ts; D ← D ∪ {MPs}

121 MC s $←{0, 1}n; R ← R ∪ {MC s}
122 for i ∈ [2 .. m] do CCC s

i ← PPPs
i ⊕ 2i−1(MPs ⊕ MC s)

123 CCC s
1 ← MC s ⊕ CCC s

2 ⊕ · · · ⊕ CCC s
m ⊕ Ts

130 for i ← 1 to ms do
131 CC s

i ← Cs
i ⊕ 2i−1L; R ← Range ∪ {CC s

i}
132 D ← D ∪ {CCC s

i}
200 else (tys = Dec)
210 for i ← 1 to ms do
211 Let r = r[s, i] be the smallest index s.t. Cs

i = Cr
i

212 if r < s then CC s
i ← CC r

i , CCC s
i ← CCC r

i

213 else CC s
i ← Cs

i ⊕ 2i−1L; R ← R ∪ {CC s
i}

214 CCC s
i

$←{0, 1}n; D ← D ∪ {CCC s
i}

220 MC s ← CCC s
1 ⊕ CCC s

2 ⊕ · · · ⊕ CCC s
ms ⊕ Ts; R ← R ∪ {MC s}

221 MPs $←{0, 1}n; D ← D ∪ {MPs}
222 for i ∈ [2 .. m] do PPPs

i ← CCC s
i ⊕ 2i−1(MPs ⊕ MC s)

223 PPPs
1 ← MPs ⊕ PPPs

2 ⊕ · · · ⊕ PPPs
m ⊕ Ts

230 for i ← 1 to ms do
231 PPs

i ← Ps
i ⊕ 2i−1L; D ← D ∪ {PPs

i}
232 R ← Range ∪ {PPPs

i}
300 bad ← (some value appears more than once in D)

or (some value appears more than once in R)

Figure 8: Game NON1 is based on game RND3 but now τ = (ty,T,P,C) is a fixed, allowed transcript.

query, and whenever we have P r
i = P s

i (r < s) and query s is a decipher query. The probability of
an immediate collision in game RND3 is at most

q∑
s=1

ms(s − 1)
2n

<
q

2n

q∑
s=1

ms =
qσn

2n

We make from the Finalization part of game RND3 a new game, game NON1 (for “noninteractive”).
This game silently depends on a fixed transcript τ = 〈ty,T,P,C〉 with ty = (ty1, · · · , tyq), T =
(T1, · · · , Tq), and P = (P1, · · · , Pq), and C = (C1, · · · , Cq) where tys ∈ {Enc, Dec}, Ts ∈ {0, 1}n,
and Ps = Ps

1 · · ·Ps
ms and Cs = Cs

1 · · ·Cs
ms for |Pr

i | = |Cr
i | = n. This fixed transcript may not specify

any immediate collisions or pointless queries; we call such a transcript allowed. Thus saying that τ
is allowed means that for all r < s we have the following: if tys = Enc then (i) (Ts, Ps) �= (Tr, Pr)
and (ii) Cs

i �= Cr
i for any i ∈ [1..m]; while if tys = Dec then (i) (Ts, Cs) �= (Tr, Cr) and (ii) Ps

i �= Pr
i

for any i ∈ [1..m]. Now fix an allowed transcript τ that maximizes the probability of the flag bad

16



050 EZ $←{0, 1}n ; L ← 2EZ ; D ←{0n,EZ}

051 for s ← 1 to q do
100 if tys = Enc then
110 for i ← 1 to ms do
111 Let r = r[s, i] be the smallest index s.t. Ps

i = Pr
i

112 if r < s then PPs
i ← PPr

i , PPPs
i ← PPPr

i

113 else PPs
i ← Ps

i ⊕ 2i−1L; D ← D ∪ {PPs
i}

114 PPPs
i

$←{0, 1}n

120 MPs ← PPPs
1 ⊕ PPPs

2 ⊕ · · · ⊕ PPPs
ms ⊕ Ts; D ← D ∪ {MPs}

121 MC s $←{0, 1}n

122 for i ∈ [2 .. m] do CCC s
i ← PPPs

i ⊕ 2i−1(MPs ⊕ MC s)
123 CCC s

1 ← MC s ⊕ CCC s
2 ⊕ · · · ⊕ CCC s

m ⊕ Ts

130 for i ← 1 to ms do D ← D ∪ {CCC s
i}

200 else (tys = Dec)
210 for i ← 1 to ms do
211 Let r = r[s, i] be the smallest index s.t. Cs

i = Cr
i

212 if r < s then CCC s
i ← CCC r

i

213 else CCC s
i

$←{0, 1}n ; D ← D ∪ {CCC s
i}

220 MC s ← CCC s
1 ⊕ CCC s

2 ⊕ · · · ⊕ CCC s
ms ⊕ Ts

221 MPs $←{0, 1}n ; D ← D ∪ {MPs}
222 for i ∈ [2 .. m] do PPPs

i ← CCC s
i ⊕ 2i−1(MPs ⊕ MC s)

223 PPPs
1 ← MPs ⊕ PPPs

2 ⊕ · · · ⊕ PPPs
m ⊕ Ts

230 for i ← 1 to ms do PPs
i ← Ps

i ⊕ 2i−1L; D ← D ∪ {PPs
i}

300 bad ← (some value appears more than once in D)

Figure 9: Game NON2. Twice the probability that bad gets set in this game bounds the probability that bad
gets set in game NON1. We highlight random selection by shading, and statements that grow D by boxing.

being set. This one transcript τ is hardwired into game NON1. We have that

Pr[ARND3 sets bad ] ≤ Pr[ NON1 sets bad ] +
qσn

2n
(9)

This step can be viewed as conditioning on the presence or absence of an immediate collision,
followed by the usual argument that an average of a collection of real numbers is at most the
maximum of those numbers. One can also view the transition from game RND3 to game NON1 as
augmenting the adversary, letting it specify not only the queries to the game, but also the answers
to these queries (as long as it does not specify immediate collisions or pointless queries). In terms of
game RND3, instead of having the oracle choose the answers to the queries at random in lines 011
and 021, we let the adversary supply both the queries and the answers. The oracle just records
these queries and answers. When the adversary is done, we execute the finalization step as before
to determine the bad flag. Clearly such an augmented adversary does not interact with the oracle
at all, it just determines the entire transcript, giving it as input to the oracle. Now maximizing
the probability of setting bad over all such augmented adversaries is the same as maximizing this
probability over all allowed transcripts.

17



Game NON2. Before we move to analyze the non-interactive game, we make one last change,
aimed at reducing the number of cases that we need to handle in the analysis. We observe that due
to the complete symmetry between D and R, it is sufficient to analyze the collision probability in
just one of them. Specifically, because of this symmetry we can assume w.l.o.g. that in game NON1

Pr[some value appears more than once in D] ≥ Pr[some value appears more than once in R]

and therefore Pr[ NON1 sets bad ] ≤ 2 · Pr[some value appears more than once in D].
We therefore replace the game NON1 by game NON2, in which we only set the flag bad if there

is a collision in D. We now can drop the code that handles R, as well as anything else that doesn’t
affect the multiset D. The resulting game is described in Figure 9, and we have

Pr[ NON1 sets bad ] ≤ 2 · Pr[ NON2 sets bad ] (10)

B.2 Analysis of the non-interactive game

In the analysis we view the multiset D as a set of formal variables (rather than a multiset containing
the values that these variables assume). Namely, whenever we set D ← D∪{X} for some variable X
we think of it as setting D ← D ∪ {“X”} where “X” is the name of that formal variable. Viewed
in this light, our goal now is to bound the probability that two formal variables in D assume the
same value in the execution of NON2. We observe that the formal variables in D are uniquely
determined by τ—they don’t depend on the random choices made in the game NON2; specifically,

D = {Zero,EZ} ∪ {MPs | s ≤ q}
∪ {PPs

i | tys = Dec, i ≤ ms} ∪ {PPs
i | tys = Enc, i ≤ ms, s = r[s, i]}

∪ {CCC s
i | tys = Enc, i ≤ ms} ∪ {CCC s

i | tys = Dec, i ≤ ms, s = r[s, i]}

(where “Zero” is a formal constant that always assumes the value 0n). We view the formal variables
in D as ordered according to when they are assigned a value in the execution of game NON2. This
ordering too is fixed, depending only on the fixed transcript τ . Our goal is to show the following:

Throughout the remainder of this section, in all probability claims, the implicit experiment is
that of game NON2. We adopt the convention that in an arithmetic or probability expression, a
formal variable implicitly refers to its value. For example, Pr[X = X ′] means the probability that
the value assigned to X is the same as the value assigned to X ′. (At times we may still write “X”
to stress that we refer to the name of the formal variable X, or value(X) to stress that we refer to
the value of X.) The rest of this section is devoted to case analysis, proving the following claim:

Claim 1 For any two distinct variable X, X ′ ∈ D we have that Pr[X = X ′] ≤ 2−n.

Before proving Claim 1, we show how to use it to complete the proof of Theorem 1. Due to our
conventions on how to measure the query complexity there are no more than 2σn +1 variables in D

so the union bound gives us that

Pr[ NON2 sets bad ] ≤
(

2σn + 1
2

)
/2n (11)

Combining Lemma 2 with Equations 7, 8, 9, 10 and 11 we are done:

Adv±p̃rp
EME[Perm(n)](A) ≤ Adv±r̃nd

EME[Perm(n)](A) + q(q − 1)/2n+1

≤ 2 · Pr[NON2 sets bad] + qσn/2n + q(q − 1)/2n+1

18



≤ 2 ·
(

2σn + 1
2

)
/2n + qσn/2n + q(q − 1)/2n+1

≤ (2σn + 1)(2σn) + σ2
n + 0.5σ2

n

2n

≤ 7 σ2
n

2n

Since A was an arbitrary adversary with query complexity of σn we are done.

The case analysis. We now need to prove Claim 1. We first prove a few claims (Claims 4
through 7 below), each covering some special cases of collisions, and then go through a systematic
case analysis, showing that all possible cases are indeed covered by these claims.

Inspecting the code of game NON2 we see that the only random choices in the game are the
selection EZ $←{0, 1}n in line 050, the selections PPPs

i
$←{0, 1}n and MC s $←{0, 1}n on encipher

(lines 114, 121), and the selections CCC s
i

$←{0, 1}n and MPs $←{0, 1}n on decipher (lines 213, 221).
Specifically, the variables that are directly chosen at random are EZ , the variables PPPs

i from
encipher queries such that s = r[s, i], the variables CCC s

i from decipher queries such that s = r[s, i],
the variables MPs from encipher queries, and the variables MC s from decipher queries. Hereafter
we refer to these variables as the free variables of the game, and we let F denote the set of them:

F = {EZ} ∪ {MPs | tys = Dec} ∪ {MC s | tys = Enc}
∪ {PPPs

i | tys = Enc, i ≤ ms, s = r[s, i]}
∪ {CCC s

i | tys = Dec, i ≤ ms, s = r[s, i]}

The value of any other variable in the game can be expressed as a function in these free variables.
In fact, the bulk of the argument below is to show that for any pair of variables in D, either their
sum is some non-zero constant, or else it depends linearly on at least one free variable. We first
prove a little helpful observation.

Claim 2 If r is an encipher query (tyr = Enc) and I ⊆ [1..mr] is a non-empty set, then we have∑
i∈I CCC r

i = aMC r + β, where a �= 0 is a constant (that depends on the set I) and β is an
expression involving only constants and free variables that are determined before MC r in the game
NON2.

Likewise, if r is a decipher query (tyr = Dec) and I ⊆ [1..mr] is a non-empty set, then∑
i∈I PPPr

i = aMPr +β, where a �= 0 is a constant and β is an expression involving only constants
and free variables that are determined before MPr in the game NON2.

Proof : We prove here only the first assertion. The proof of the other assertion is completely
symmetric. Since r is an encipher query, then the values of all the CCC r

i ’s except the first (i.e.,
i ∈ [2..mr]), are set in line 122, CCC r

i ← PPPr
i ⊕ 2i−1(MPr ⊕ MC r). If 1 /∈ I then we have∑

i∈I

CCC r
i =

∑
i∈I

PPPr
i ⊕ 2i−1(MPr ⊕ MC r)

= things-that-were-determined-before-MC r ⊕
(∑

i∈I

2i−1

)
MC r

and the coefficient of MC r is non-zero since I is non-empty.4

4 Here we use the fact that mr ≤ n.

19



For the case where 1 ∈ I, since in line 123 we set CCC r
1 ← MC r ⊕

∑mr

i=2 CCC r
i , we get∑

i∈I

CCC r
i = CCC r

1 ⊕
∑

i∈I, i�=1

CCC r
i

=

(
MC r ⊕

mr∑
i=2

CCC r
i

)
⊕

∑
i∈I, i�=1

CCC r
i

= MC r ⊕
∑

i/∈I, 2≤i≤mr

CCC r
i

= MC r ⊕
∑

i/∈I, 2≤i≤mr

PPPr
i ⊕ 2i−1(MPr ⊕ MC r)

= things-that-were-determined-before-MC r ⊕

1 ⊕
∑

i/∈I, 2≤i≤mr

2i−1

MC r

and again, the coefficient of MC r is non-zero.

To simplify the case analysis to come, we consider, for each variable X ∈ D, the last free
variable (in the ordering of the game NON2) that X depends on, denoted φ(X). Formally, we have
a function φ: D → F ∪ {none} that is defined as follows:

• As “Zero” is a constant, we denote φ(Zero) = none.

• For the formal variables EZ ,PPs
i ∈ D, this last free variable is EZ , φ(EZ ) = φ(PPs

i ) = EZ .

• For a formal variable CCC s
i ∈ D this last free variable φ(CCC s

i ) is either CCC s
i itself (on

decipher)5 or MC s (on encipher). (The last assertion is a corollary of Claim 2 for I = {i}.)

• The rules for MPs are a bit more involved. Clearly, on decipher we have φ(MPs) = MPs. For
encipher, recall that we set (in line 120) MPs ← Ts ⊕

∑m
i=1 PPPs

i , so the last free variable
that MPs depends on, is the “last of the free variables that any PPPs

i depends on”.

Each of these PPPs
i ’s can either be a free variable itself (if this is a “new block”, s = r[s, i]),

or it can be set equal to some prior PPPr
i (if r = r[s, i] < s). In the latter case, PPPr

i is either
a free variable (if query r is encipher), or else it depends on MPr (if query r is decipher). To
define φ(MPs), we therefore denote

rmax[s] def= max{ r[s, i] | 1 ≤ i ≤ m} , imax[s] def= max{ i | r[s, i] = rmax[s]}

and then, on encipher (tys = Enc) we have

φ(MPs) =

{
MP rmax[s] if tyrmax[s] = Dec

PPP rmax[s]
imax[s] if tyrmax[s] = Enc

A summary of all these cases appears in Figure 10. We stress that just like the sets D and F,
the function φ too depends only on the fixed transcript τ and not on the random choices in the
game NON2. Justifying the name “last free variable” we observe the following, which follows from
the preceding discussion:

5 Note that CCC s
i ∈ D, which means that Cs

i is “a new block”, s = r[s, i].

20



φ(Zero) = none Z

φ(EZ ) = EZ EZ

φ(PPs
i ) = EZ if tys = Dec or s = r[s, i] PP

φ(CCC s
i ) =

{
CCC s

i if tys = Dec and s = r[s, i]
MC s if tys = Enc

CCC1

CCC2

φ(MPs) =


MPs if tys = Dec

MP rmax[s] if tys = Enc and tyrmax[s] = Dec

PPP rmax[s]
imax[s] if tys = Enc and tyrmax[s] = Enc

MM1

MM2

MM3

Figure 10: Defining the last free variable, φ(X), associated to formal variable X ∈ D. Transcript τ =
(ty,T,P,C) has been fixed and it determines r[·, ·], rmax[·] and imax[·].

Claim 3 Let X ∈ D be a formal variable, and let Y = φ(X). If Y �= none then the value
that X assumes in game NON2 can be expressed as value(X) = a · value(Y ) ⊕ β where a �= 0 is
a constant (that depends on the name of the formal variable X and the fixed transcript τ ) and β
is an expression involving only constants and free variables that are determined before Y in the
game NON2. �

As an immediate corollary of Claim 3, we get the following.

Claim 4 Let X, X ′ ∈ D be formal variables such that φ(X) �= φ(X ′). Then Pr[X = X ′] = 2−n.

Proof : let Y = φ(X) and let Y ′ = φ(X ′), and assume that Y ′ occurs before Y in NON2. By Claim 3
above, we have X ⊕ X ′ = a ·Y ⊕ β ⊕ a′ ·Y ′ ⊕ β′ where a �= 0 is a constant, and β ⊕ a′ ·Y ′ ⊕ β′

is an expression involving only constants and free variables that are determined before Y . As the
value of Y is chosen at random from GF(2n), independently of the other free variables, it follows
that Pr[X = X ′] = 2−n.

Claim 4 leaves us with the task of analyzing collisions between variables that depend on the same
last free variable. These are handled in the next three propositions.

Claim 5 Let X, X ′ ∈ D be two distinct formal variables, such that φ(X) = φ(X ′) = EZ . Then
Pr[X = X ′] ≤ 2−n.

Proof : Recall that L = 2EZ . The types of collisions that we need to analyze are either EZ vs. PPs
i

for some PPs
i ∈ D, or PPs

i vs. PPs′
i′ for PPs

i ,PPs′
i′ ∈ D. We start with collisions of the type PPs

i

vs. PPs′
i′ . If i �= i′ then we have

PPs
i ⊕ PPs′

i′ = (Ps
i ⊕ 2i−1L) ⊕ (Ps′ ′

i ⊕ 2i′−1L) = Ps
i ⊕ Ps′ ′

i ⊕ (2i ⊕ 2i′)EZ

and as i �= i′, the coefficient of EZ is non-zero, and therefore Pr[PPs
i ⊕ PPs′

i′ = 0n] = 2−n. If i = i′

and s′ < s then necessarily Ps
i �= Ps′

i′ . (Otherwise, either query s is encipher, in which case r[s, i] < s

21



and PPs
i /∈ D, or query s is encipher, which means that the transcript τ specifies an immediate

collision.) Therefore, with probability one we have PPs
i ⊕ PPs′

i′ = (Ps
i ⊕ 2i−1L) ⊕ (Ps′

i ⊕ 2i−1L) =
Ps

i ⊕ Ps′
i �= 0. For the other type of collisions, EZ vs. PPs

i , we have

PPs
i ⊕ EZ = (Ps

i ⊕ 2i−1L) ⊕ EZ = (Ps
i ⊕ 2iEZ ) ⊕ EZ = Ps

i ⊕ (1 ⊕ 2i)EZ

and again, since i ≥ 1 the coefficient of EZ is non-zero.

Claim 6 For any two distinct variables CCC s
i ,CCC s′

i′ ∈ D with φ(CCC s
i ) = φ(CCC s′

i′ ), Pr[CCC s
i =

CCC s′
i′ ] = 2−n.

Proof : By inspecting Figure 10, we see that for two variable CCC s
i ,CCC s′

i′ ∈ D, the equality
φ(CCC s

i ) = φ(CCC s′
i′ ) implies that s = s′, and that this is a encipher query, tys = Enc (in which

case φ(CCC s
i ) = φ(CCC s′

i′ ) = MC s).

By Claim 2 (with I = {i, i′}), we can write CCC s
i ⊕ CCC s

i′ = aMC s + β where a is a non-zero
constant and β is an expression involving only constants and variables that were determined before
MC s. Hence we have

Pr[CCC s
i = CCC s′

i′ ] = Pr[aMC s + β = 0n] = Pr[MC s = a−1β] = 2−n

since MC s is a free variable.

The most involved case to analyze (indeed, the one that embodies the “real reason” that EME
is secure) is collisions of the type MPs = MPs′ . These are analyzed in Claim 7 below.

Claim 7 For any two distinct variables MPs,MP t ∈ D with φ(MPs) = φ(MP t), it holds that
Pr[MPs = MP t] ≤ 2−n.

Proof : Fix some s < t such that φ(MP t) = φ(MPs). In Figure 10 we see that the equality
φ(MPs) = φ(MP t) implies that the later query t must be encipher (i.e., tyt = Enc), and either
query s is decipher with rmax[t] = s, or query s is encipher with rmax[t] = rmax[s].

If the plaintext vectors in both queries are the same (i.e., they have Ps = Pt) then it must be that
the tweaks differ between them, Ts �= Tt (since the transcript τ does not specify pointless queries).
From Ps = Pt it follows that PPPs

i = PPP t
i for all i, and therefore with probability one we have

MPs ⊕ MP t = Ts ⊕ Tt �= 0.

So from now on we assume that Ps �= Pt. Let E be the set of indexes where Ps, Pt are equal,
E

def= { i ≤ min(ms, mt) | Ps
i = Pt

i}. We note that the sum MPs ⊕ MP t can be written as

MPs ⊕ MP t = Ts ⊕
ms∑
i=1

PPPs
i ⊕ Tt ⊕

mt∑
i=1

PPP t
i

= Ts ⊕ Ts′ ⊕
∑

i≤ms,i/∈E

PPPs
i ⊕

∑
i≤mt,i/∈E

PPP t
i (12)

where the last equality is justified since Ps
i = Pt

i implies PPPs
i = PPP t

i.

We first analyze the case where query s is decipher, tys = Dec, and furthermore Ps is not a proper
prefix of Pt. Since query s is decipher, we have in this case rmax[t] = s, which means that all the
blocks Pt

i already appeared in queries no later than s, namely r[t, i] ≤ s for all i ∈ [1..mt]. Since for

22



any i /∈ E we have Ps
i �= Pt

i, it follows that for these indexes we have r[t, i] < s (if r[t, i] is defined
at all). Thus we get

MPs ⊕ MP t = Ts ⊕ Tt ⊕
∑

i≤ms,i/∈E

PPPs
i ⊕

∑
i≤mt,i/∈E

PPP t
i

= Ts ⊕ Tt ⊕
∑

i≤ms,i/∈E

PPPs
i ⊕

∑
i≤mt,i/∈E

PPP r[t,i]
i

= things-that-were-determined-before-query-s ⊕
∑

i≤ms,i/∈E

PPPs
i (13)

Since Ps is not a proper prefix of Pt, it follows that the set Ds
def= {1..ms} − E is non-empty.

And since query s is decipher, we can apply Claim 2 to conclude that
∑

i∈D PPPs
i = aMPs + β

where a �= 0 and β depends only on things that were determined before MPs. Combining this with
Equation (13) we conclude that MPs ⊕ MP t = aMPs + β′ for the same non-zero constant a, where
β′ is a different expression, but it still depends only on things that were determined before MPs.
Therefore, Pr[MPs = MP t] = 2−n.

Next we analyze the cases where wither query s is encipher, tys = Enc, or Ps is a proper prefix of
Pt. Recall that query t is encipher, so each PPP t

i is either a free variable (if it is a “new block”,
r[t, i] = t) or else it is identically set to equal PPP r[t,i]

i (if r[t, i] < t). And in the case where query s
is encipher, then the same holds for each PPPs

i . Either way, we can re-write Equation (12) as

MPs ⊕ MPs′ = Ts ⊕ Tt ⊕
∑

i≤ms,i/∈E

PPP r[s,i]
i ⊕

∑
i≤mt,i/∈E

PPP r[t,i]
i (14)

(In the case that query s is decipher and Ps is a proper prefix of Pt, the equality follows since
the summation on i ≤ ms, i /∈ E ranges over an empty set.) Recall that by definition we have
r[s, i] = r[t, i] if and only if i ∈ E. Let query r be “the last query that MPs ⊕ MP t depends on”,
and let Is, It be the sets of indexes of PPPs

i ’s and PPP t
i ’s that “come from query r”. That is, we

define

R
def= {r[s, i] | i ≤ ms, i /∈ E} ∪ {r[t, i] | i ≤ mt, i /∈ E}, r

def= max(R)

and then Is
def= { i ≤ ms | i /∈ E, r[s, i] = r }, It

def= { i ≤ mt | i /∈ E, r[t, i] = r }
From this definition it follows that the sets Is, It are disjoint (since r[s, i] �= r[t, i] for i /∈ E), and
their union is non-empty (since R is non-empty). Using these notation we can rewrite Equation (14)

MPs ⊕ MP t = Ts ⊕ Tt ⊕

∑
i∈Is

PPP r[s,i]
i ⊕

∑
i≤ms,i/∈(E∪Is)

PPP r[s,i]
i

 (15)

⊕

∑
i∈It

PPP r[t,i]
i ⊕

∑
i≤mt,i/∈(E∪It)

PPP r[t,i]
i


= things-that-were-determined-before-query-r ⊕

∑
i∈Is∪It

PPPr
i

If query r is decipher, tyr = Dec, we can use Claim 2 to conclude that
∑

i∈Is∪It
PPPr

i = aMPr + β
where a �= 0n and β only depends on things that are determined before MPr, and since MPr is a
free variable, it follows that Pr[MPs = MP t] = 2−n. If query r is encipher, tyr = Enc, then all the
variables PPPr

i , i ∈ Is ∪ It, ar free variables, and again we have Pr[MPs = MP t] ≤ 2−n.

23



Proof of Claim 1. All that is left now is to verify that Claims 4 through 7 above indeed cover
all the possible types of collisions between X, X ′ ∈ D. So let X, X ′ ∈ D be two distinct variables.
We partition the analysis to four cases, depending on the “type” of the variable X.

X = “Zero”. Here X is the only variable in D with φ(X) = none, so φ(X) �= φ(X ′). By Claim 4,
we have Pr[X = X ′] = 2−n.

X = “EZ” or X = “PP s
i ”. In this case we have φ(X) = EZ . If φ(X ′) �= EZ then again we get

Pr[X = X ′] = 2−n from Claim 4. On the other hand, if φ(X ′) = φ(X) = EZ then Claim 5
gives us Pr[X = X ′] ≤ 2−n.

X = “CCCs
i ”. In this case φ(X) ∈ {CCC s

i ,MC s}. Again, if φ(X ′) �= φ(X) then we get the usual
Pr[X = X ′] = 2−n from Claim 4. So assume that φ(X ′) = φ(X) ∈ {CCC s

i ,MC s}. This
means that X ′ is also of the form “CCC t

j”, so from Claim 6 we have Pr[X = X ′] ≤ 2−n.

X = “MPs”. In this case φ(X) ∈ {MPr: r ≤ q} ∪ {PPPr
i : r ≤ q, i ≤ mr}. As usual, if

φ(X ′) �= φ(X) then we have Pr[X = X ′] = 2−n from Claim 4. So assume that φ(X ′) = φ(X).
This means that X ′ is also of the form “MP t”, so from Claim 7 we have Pr[X = X ′] ≤ 2−n.

This completes the proof of Claim 1.

24


