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A Parameter Study of 

Localization 

Extensive work has been done on the vibration characteristics of perfectly periodic 
structures. Disorder in the periodic pattern has been found to lead to localization in 
one-dimensional periodic structures. It is important to understand localization be­
cause it causes energy to be concentrated near the disorder and may cause an overes­
timation of structural damping. A numerical study is conducted to obtain a better 
understanding of localization. It is found that any mode, even the first, can localize 
due to the presence of small imperfections. © 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Several approaches have been used to analyze 
the dynamic behavior of periodic and near-peri­

odic structures. The periodic nature of the struc­

ture is used to reduce the amount of computation 

required to find the solution. However, as a pre­

vious review by Mester and Benaroya (1995) sub­

stantiates, structures with slight deviations from 
a perfectly periodic pattern may have drastically 

different modal behavior than predicted by the 

periodic methods. Qualitatively, a localization 

criteria has been found to be the ratio between 

the amount of disorder and coupling strength. 

Although this criteria has been identified, work 

still needs to be done so that localization can be 

better understood, predicted quantitatively, and 

incorporated into the design process. 

This work examined the difference between 

the mode shapes of periodic and near-periodic 

structures. The analysis illustrates the errors 

caused by not modeling small deviations when an 

idealized perfectly periodic model is assumed. 
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These errors only occur for certain structures 

possessing particular characteristics. The identifi­

cation of these critical parameters governing this 

localization phenomenon has been continued. 
This investigation is based on a simulation of the 

one-dimensional structure in Fig. 1, consisting of 

10 masses. Each mass represents the inertial 

properties of a substructure. Masses are attached 
to neighboring masses by a coupling spring, 

which represents the coupling stiffness between 

substructures. To represent the stiffness ofa sub­
structure, the mass is attached to a spring whose 

other end is fixed. The structure is assumed un­
damped. 

GENERAL METHOD OF SOLUTION 

The equation of motion for the structure shown 
in Fig. 1 is 

[M]{i} + [K]{x} = {O}, (1) 
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FIGURE 1 Baseline structure 

where 

~ 1, {x} = {~l}, 
mnJ x" 

and 

K; -k2 0 

-k2 

[K] = 

-kn 

0 -kn K; 

The mass matrix, [M], is a diagonal matrix and 

the stiffness matrix, [K], is a tridiagonal matrix, 

where K; = ki + Ki + k i+ 1• The number of de­

grees of freedom, n, is taken to be 10 in this 
study. To obtain the natural frequencies, OJ, and 

modes shapes, {EV}, of the structure, the eigen­

value problem 

[02[M] + [K]]{EV} = 0 (2) 

needs to be solved by finding the values of 0 2 

that satisfy 

det 10j[M] + [K]I = 0, for j = 1 ... n. (3) 

Mter the O/s have been determined, their corre­

sponding mode shapes, EV, can be found from 

Eq. (2). The modes are ordered according to 

their frequencies, from the smallest frequency to 
the largest frequency. 

The baseline structure in Fig. 1 is varied in 

different ways to observe how these changes af­

fect the behavior of the mode shapes. Both a 

deterministic and stochastic model are consid­

ered. The deterministic model has a single pre de-

termined imperfection, while the stochastic 

model has a uniform random distribution of im­
perfections. 

One parameter used to measure the deviation 

from an ideally periodic structure is the stiffness 

imperfection ratio (SIR). The SIR, SIR = !:l.K/ 

Knominal, is the ratio of the greatest allowable 
change in a dynamic property to the nominal 

value of that dynamic property. A parameter that 

previously has been found to impact on the local­

ization phenomena is the coupling stiffness ratio 

(CSR). This is the ratio of the nominal coupling 

stiffness between bays to the nominal bay stiff­

ness, CSR = kC,om;j Knominal. A new parameter 
that is explored here is the disorder direction. 

The disorder direction simply indicates whether 

an imperfection increases or decreases the value 
of a dynamic property of a substructure. This 

study is confined to changes in stiffness. The dis­

order direction parameter is only applicable to 

the deterministic studies, because in the random 

analysis the stiffness values are randomly distrib­

uted about a nominal mean. However, the deter­
ministic case gives insight to the random behav­

ior, which will be discussed later. 

Mode localization is the confinement of the 
near-periodic structure's mode shape to only a 

part of the structure in comparison with the 

mode shape of the perfectly periodic structure's 

mode shape. This is characterized by a mode 

shape that has sections that lie near the horizon­

tal line y = 0 for the imperfect structure but not 
for the perfectly periodic structure. Figure 2 

gives an excellent illustration. The mode shape 

shown by the x 's is a highly localized mode. The 

mode shape drawn by the +'s is also localized, 

because the left half of the mode is nearly zero 

when compared with the mode shape of the ide­

alized structure, represented by the O's. Al­

though both mode shapes are localized, it is easy 
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FIGURE 2 First mode shape with a disorder of 

ISIRl = 10% at bay 5 and CSR = 1%. (x) 8 disorder 

direction; (0) no imperfections; (+) EB disorder direc­
tion. 

to see that the localization is not to the same 
degree. 

To quantify the degree of localization, a math­

ematical method needs to be introduced to mea­

sure this quantity. The degree of localization, 0", 

is computed as 

_ L7=1 lai,jl 

O"j - ~n I I' 
.:. i= I {3 i,j 

(4) 

where ai,j is the ith element of the jth mode for 

the imperfect structure and {3i,j is the correspond­

ing element of the perfectly periodic structure. 
This method simply adds up the distance from 

y = 0 to the points of the mode shape. This 

method generally works well, because a localized 
mode has many points that are very close to y = 

O. Thus, lower O"'s imply greater amounts of lo­

calization and higher 0"' S mean less modallocali­
zation. Returning to the example of Fig. 2, 0" for 

the mode shape drawn by the x 's is 40.7%, and 0" 

is 79.6% for the other localized mode shape. 

DISORDER DIRECTION AND LOCATION 
ANALYSIS 

In this section, the effect of disorder direction 

and disorder location is examined. A disorder in 

a periodic structure is defined as a deviation from 

the nominal value of a structural property, i.e., 

stiffness, mass, or geometry. The disordered 

property is either greater than or less than the 
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nominal value. The disorder direction is defined 

as positive (+ ) when the disorder is greater than 

the nominal value, and negative (-) when the 

disorder is less than the nominal value. Two "de­

viated" structures are modeled in Fig. 1 by either 

increasing or decreasing the cell stiffness of a 

single bay from the nominal stiffness by an equal 

amount. The resulting structures are then ana­

lyzed using the method described above. In the 

following figures, the points marked by +, 0, 

and x represent mode shapes for a positive dis­

order direction (+), no disorder (0), and a nega­

tive disorder direction (-), respectively. For 0", 

the subscripts - and + indicate the degree of 
mode localization for a negative and a positive 

disorder direction, respectively. 

Disorder Direction 

To isolate the effect of disorder direction, the 

location of the disorder is restricted to the fifth 
mass while the parameters CSR and SIR are 

varied. Selected results are shown in Figs. 2-12. 

The mode shapes for both an increased and de­

creased stiffness, as well as the nominal stiff­
ness, are depicted in Figs. 2-4 for SIR = 1, 5, 

and 10%, respectively. The percent change of the 

modal amplitudes of each mass in these figures is 
given in Table 1. 

In the case of very weak imperfection, SIR = 

1%, there is a slight localization of the mode 

(0" _ = 85%), as shown in Fig. 3. The modal am­

plitude of the fifth mass increases by 61% while 

Model 

x 

/ 

I 

, 
0.05 

.x I X 

- + - - - + - - - ""+- - - -../ 

x· ·x 

~~~;~----~------~~----~~;~.~*"--~~ 

Bay. 

FIGURE 3 First mode shape with a disorder of 

ISIRI = 1% at bay 5 and CSR = 1%. (x) 8 disorder 

direction; (0) no imperfections; (+) EB disorder direc­

tion. 
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Table 1. Percent Change in First Modal Amplitudes from Baseline for CSR = 1% 

Disorder Direction 

SIR = 1% SIR = 5% SIR = 10% 

Mass EEl 8 EEl 

1 0.764 -47.698 -56.702 

2 -4.74 - 39.199 -60.507 

3 -13.935 -22.469 -66.689 

4 -26.896 7.561 -75.031 

5 -43.834 61.312 -85.27 

6 -9.122 -0.304 -23.513 

7 18.285 -33.524 29.652 

8 39.256 -52.083 72.968 

9 54.134 -62.423 105.073 

10 63.04 -67.676 124.831 

the modal amplitudes of the other masses de­

crease for the case of decreased stiffness (nega­

tive disorder direction). The mode corresponding 

to increased stiffness does not become localized 

(U" + = 101 %), but the mode shape changes such 

that the modal amplitudes of the masses to the 

left of the imperfection diminish slightly while 

those of the masses to the left increase slightly. 

By increasing the imperfection, SIR = 5% 

(Fig. 4) the localization becomes more pro­

nounced. The modal amplitude of the fifth mass 

increases by 128%, while the rest of the modal 

amplitudes are negligible for the case of ( -) dis­

order direction (U" _ = 48%). For the case of (+) 

disorder direction, the modal amplitudes of the 

masses to the left of the fifth mass become negli-
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FIGURE 4 First mode shape with a disorder of 

ISIRI = 5% at bay 5 and CSR = 1%. (x) 8 disorder 

direction; (0) no imperfections; (+) EEl disorder direc­

tion. 

8 EEl 8 

-98.938 -76.862 -99.922 

-97.019 -79.01 -99.583 

-88.911 -82.485 -96.987 

-52.157 -87.142 -74.72 

128.302 -92.803 134.62 

-56.033 -27.32 -76.768 

-90.786 29.849 -97.497 

-97.864 76.886 -99.702 

-99.426 111.983 -99.959 

-99.795 133.673 -99.992 

gible (-99.8%) with respect to the masses on the 

right of the fifth mass. In essence, the mode be­

comes localized to the right part of the system 

(U"+ = 85%). 

An increase to an imperfection of SIR = 10% 

(Fig. 2) causes little change from the results 

given by SIR = 5%. The mode shapes for the two 

cases are the same, although the case of greater 

imperfection has slightly greater extremes (U" + = 

80%, U" _ = 41%). That is, the masses that had 

increased modal amplitudes in the case of SIR = 

5% have slightly greater modal amplitudes. The 

modal amplitudes that were negligible remain 

negligible. These results for the negative disorder 

direction agree with results found by other inves­

tigators, e.g., Cha and Pierre (1991): as the 
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FIGURE 5 First mode shape with a disorder of 

iSIRI = 5% at bay 5 and CSR = 10%. (x) 8 disorder 

direction; (0) no imperfections; (+) EEl disorder direc­

tion. 
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FIGURE 6 Selected modes for /SIR/ = 5% at bay 5 

and CSR = 1%. (x) 8 disorder direction: (0) no im­

perfections; (+) E8 disorder direction. 

strength of the imperfection increases, the locali­

zation of modes increases. 

Coupling Strength 

The effect of coupling strength is shown in Figs. 

4 and 5 where the SIR = 5%. In Fig. 4, the cou­

pling strength is weak, CSR = 1%, and the 

modes localize due to the imperfection in the 

structure. However, by increasing the coupling 

strength by an order of magnitude to CSR = 10% 

(Fig. 5) the modes of the disordered structures 

approach the mode shape of the perfect struc­

ture. This also agrees with previously observed 

behavior (Hodges, 1982) that as the coupling 

strength increases, mode localization decreases. 

A noteworthy observation from this study is 

found by looking at Figs. 6 and 7. The first mode 

in both figures localizes to a greater extent for a 

negative disorder direction (a-- = 48 and 41 %), 

than for the positive disorder direction (a-+ = 85 

and 80%). The last mode (lOth) behaves in a con­

verse manner. The last mode localizes more due 

to a positive disorder direction (a-+ = 48 and 

41%) than when the disorder direction is negative 

(a-_ = 85 and 80%). A similar effect can be seen 

on the natural frequencies (refer to Table 2). The 

first mode has a shift of -1.7 and -4.23% in its 

natural frequency due to a negative disorder di­

rection for SIR = 5 and 10%, respectively. The 

10th mode's natural frequency is shifted, 1. 7 and 

3.9% by a positive disorder direction. These 

shifts are significant when compared to the rest 

of the modes that have natural frequency shifts 
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FIGURE 7 Selected modes for iSIR/ = 5% at bay 5 

and CSR = 10%. (x) 8 disorder direction; (0) no 

imperfections; (+) E8 disorder direction. 

of less than 0.15%. These observations are gener­

alized as follows. A decrease in stiffness has a 

greater effect on the lower modes of the struc­

ture: the lower the mode, the greater the effect. 

The converse is also true. That is, an increase in 

stiffness causes a more pronounced change, the 

higher the mode. Thus it follows that the modes 

in the center are not greatly affected by a change 

in stiffness. Also, the change tends to be approxi­

mately the same whether the stiffness is in­

creased or decreased for these central modes. 

Disorder Location 

The mode shape generally localizes at the loca­

tion of the disorder. Mode localization is when 

portions of the mode, which are not originally 

zero for the idealized structure, become nearly 

equal to zero by the inclusion of an imperfection 

in the analysis. Naturally, the nonzero portion of 

Table 2 Percent Change in Natural Frequency from 

Baseline, CSR = 1% 

Disorder Direction 

SIR = 5% SIR = 10% 

Mode E8 8 E8 8 

1 0.08 -1.7 0.09 -4.23 
3 0.13 -0.13 0.15 -0.14 
5 0.11 -0.12 0.13 -0.14 
7 0.08 -0.08 0.07 -0.09 

10 1.7 -0.08 3.9 -0.09 
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FIGURE 8 First mode shape with a disorder of 

ISIR! = 5% at bay 1 and CSR = 1%. (x) 8 disorder 

direction; (0) no imperfections; (+) EB disorder direc­

tion. 

the mode is the region considered to be localized. 

In other words, the modal energy becomes con­

fined to that area. A mathematical description of 

the localized region is given as follows: 

(5) 

So, the jth mode of the disordered system is lo­

calized in the bays where the modal amplitude is 

equal to or larger than the corresponding modal 

amplitude of the idealized structure. This can be 

0.15 

0.1 

0.05 

~ 
C. 
E 0 .. 
a; 

" 0 
::;; 

·0.05 

~,t 
·0.15 

Mode 3 

, , 

Bay # 

, 
T , 

x· x 

10 

FIGURE 9 Third mode shape with a disorder of 

ISIRI = 5% at bay 1 and CSR = 1%. (x) 8 disorder 

direction; (0) no imperfections; (+) EB disorder direc­

tion. 
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ISIRI = 5% at bay 3 and CSR = 1%. (x) 8 disorder 

direction; (0) no imperfections; (+) EB disorder direc­

tion. 

seen in Figs. 2 and 8-12. In the case where the 

disorder is located in the first bay (Fig. 8) the first 

mode shape localizes for the case of decreased 

stiffness ((]' _ = 41%), but increasing the stiffness 

has virtually no effect ((]' + = 96%). The same 

holds true for the third mode shape with respect 

to increasing the stiffness ((]' -'- = 97%, Fig. 9). 

However, decreasing the stiffness does not local­

ize the mode shape ((]' _ = 95%), but the mode 

shape is altered such that it appears to be more 

like the perfect second mode shape (refer to Fig. 

13). 
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FIGURE 11 Third mode shape with a disorder of 

ISIRI = 5% at bay 3 and CSR = 1%. (x) 8 disorder 

direction; (0) no imperfections; (+) EB disorder direc­

tion. 



For the case where the disorder is located at 
bay 3 (Fig. 10), similar results are obtained. 

Again, the first mode shape is localized at bay 3 

for decreased stiffness (rr _ = 48%). The effect on 

the first mode shape of increasing the cell stiff­

ness is that the modal amplitude of bays 1, 2, and 

3 are insignificant compared to the rest of the 

structure, confining most of the modal energy to 

the right of bay 3 (rr + = 88%). The third mode 

shape for a disorder located at the third bay (Fig. 

11) localizes to the left of bay 3 for increased 

stiffness (rr + = 70%) and to the right of bay 3 for 

decreased stiffness (rr _ = 88%). 

Finally, for an imperfection with a negative 

disorder direction located at the fifth bay, the 

first mode shape (Fig. 2) localizes at the disorder, 

while most of the response is to the right of the 
fifth bay when the disorder direction is reversed. 

Also, the third mode shape for a disorder at the 

fifth bay (Fig. 12) behaves similarly to the case 

above when the disorder is located at the third 

bay. That is, the mode localizes to one side due 

to a positive disorder and to the other side for a 

negative disorder. 

It is interesting to note that the modal ampli­

tude of the mode increases as the number of bays 

over which the energy is confined decreases. For 
example, comparing Figs. 11 and 12, the maxi­

mum modal amplitude of the third mode shape, 

for the increased stiffness case, is approximately 
50% greater when the disorder is at the third bay 

as when the disorder is at the fifth bay. This 

seems intuitive due to the conservation of en-
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FIGURE 12 Third mode shape with a disorder of 
ISIRI = 5% at bay 5 and CSR = 1%. (x) e disorder 
direction; (0) no imperfections; (+) EEl disorder direc­
tion. 
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ergy. The energy in the first case is confined over 

three bays, while in the second case it is confined 
over six bays. 

RANDOM DISTRIBUTION OF 
STIFFNESS PROPERTIES 

This analysis is a generalization of the previous 

single disorder studies. In this case, the masses 

of the baseline structure (Fig. 1) are attached to 

springs that have randomly distributed stiffness 

properties. The probability distribution for the 

stiffness is modeled as uniform, which is a rea-

-~~------------------------1 

-1 L.--'---'-_~""""'''''''' __ ''''''''''''''-' 

1 S 9 10 

Bay' 

FIGURE 14 Mode 1 random stiffness SIR = 1%. 
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sonable choice where only a range is known for 

the parameter. 

Some results are shown in Figs. 14-16. In 

each of the three figures, the first mode shape is 

plotted. The natural frequencies of each bay of 

the structures depicted in Figs. 14-16 are given 

in Tables 3-5, respectively. Four orders of mag­

nitude are considered for the coupling stiffness 

ratio ranging from O. I to 1000% in each of the 

figures. In Fig. 14, the stiffnesses of the springs 

vary uniformly (±1%) about their nominal value, 

SIR = I %. The nominal value of the coupling 

springs, kcnom ' is 1. The nominal value of the cell 

stiffness is determined by the coupling stiffness 

ratio (Knom = kcnjCSR). The modes only be­

come localized for the two weakest coupling 

cases of CSR = 0.001 and 0.01. 

As the strength of the disorder increases (Fig. 

15) to SIR = 5%, the localization of the mode for 

CSR = 0.01 becomes more pronounced. Also, 

the mode for CSR = 0.1 becomes localized. An 

observation, seen in Fig. 15, is that the mode 

tends to localize at the bays that have the lowest 

natural frequencies. For the mode associated 

with CSR = 0.001, the mode localizes in bay 7, 

:I 3 .. 5 6 7 • , 10 

Bay # 

FIGURE 16 Mode 1 random stiffness SIR = 10%. 

which has a natural frequency of 30.87. Simi­

larly, the mode for CSR = 0.01 localizes at bay 

10, which has a natural frequency of 9.75. Mode 

1 for the structure with CSR = 0.1 is partially 

localized about bay 4. The natural frequency of 

bay 4 is 3.10. The next lowest natural frequency 

is 3.12 in bay 2. 

Finally, at SIR = 10%, the first mode localizes 

for the three structures that have CSR of 0.001, 

0.01, and 0.1 (Fig. 16). Again the modes localize 

in the bays with the lowest natural frequencies. 

For CSR = 0.001, the frequency of the localized 

bay is 30.03, which is the lowest of all the bays. 

The lowest bay natural frequency of the structure 

with CSR = 0.01 is 9.76 in bay 8. The localization 

of the first mode of the structure with CSR = 0.1 

is located in the second and third bay, which are 

the two lowest natural bay frequencies. 

This behavior is similar to that exhibited by 

the disorder direction analysis in the preceding 

section. In the deterministic case, the mode lo­

calizes at the bay where the disorder occurs for a 

negative disorder direction. The negative disor­

der effectively lowers the natural frequency of 

the disordered bay relative to the rest of the 

Table 3 Natural Frequencies of Bays of Structure with Uniform Random Distribution of SIR = 1% 

Bay No. 

CSR 2 3 4 5 6 7 8 9 10 D. 

0.001 31.61 31.78 31.70 31.53 31.73 31.62 31.47 31.65 31.63 31.73 31.50 

0.01 10.02 10.03 9.96 9.98 9.98 9.96 10,03 10.01 9.98 9.95 9.99 

0.1 3.17 3.15 3.16 3.15 3.17 3.16 3.16 3.17 3.16 3.16 3.17 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 

10 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.43 
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Table 4 Natural Frequencies of Bays of Structure with Uniform Random Distribution of SIR = 5% 

CSR 2 3 4 5 

0.001 31.55 32.38 32.00 31.14 32.15 

0.01 10.08 10.17 9.80 9.91 9.89 

0.1 3.21 3.12 3.17 3.10 3.20 

1 1.01 1.00 1.01 0.98 0.98 

10 0.31 0.31 0.32 0.32 0.32 

structure. Hence, slight deviations in the natural 

frequencies of the bays significantly change the 

mode shapes of the structure. It seems that the 

location of the modal localization may be deter­

mined by finding the bay with the lowest natural 

frequency. 

SUMMARY 

Methods such as transfer matrices, wave propa­
gation, and power propagation for the analysis of 

periodic and near-periodic structures have been 

explored in the literature. These studies have 

shown that small imperfections in weakly cou­

pled structures cause localization of energy 

about the imperfection. 
This study shows that slight deviations from a 

perfectly ordered structure cause substantial 

changes in the structural mode shapes. A mathe­

matical definition for mode localization was in­

troduced. Also, the region of modal confinement 

was defined. It was also demonstrated that the 

localization phenomenon is not limited to long 

structures. Even the first mode of a short struc­
ture can localize from the presence of most (' 'en­

gineering") imperfections. As a result, the actual 

response of a structure may be quite different 

Bay No. 

6 7 8 9 10 n 

31.62 30.87 31.74 31.67 32.16 30.90 

9.82 10.17 10.05 9.88 9.75 9.83 

3.17 3.15 3.19 3.15 3.17 3.17 

1.00 0.98 0.98 1.02 1.02 1.03 

0.32 0.32 0.32 0.31 0.32 0.43 

than that predicted by a periodic analysis 

method. Thus, in designing and/or controlling a 

structure, it is important to account for imperfec­

tions. Also, it has been shown that the high and 

low modes are more susceptible to imperfections 

than the central modes. An important finding is 

that the sensitivity to imperfections of the end 

modes is disorder direction dependent. The de­

terministic study shows that the disorder loca­

tion has a direct effect on mode localization, 

such that the mode localizes either at the disor­

der or to one side of the disorder, depending on 

the disorder direction. The trends shown in this 
study give a better understanding of mode locali­

zation. 
The random disorder distribution is found to 

be the generalization of the deterministic study. 

Again, the first and last modes are more sensitive 
to imperfection, as it is in the deterministic case. 

The mode localization seems to occur in the bays 

that have extreme natural frequencies. This may 

prove to be useful in nondestructive testing and 
locating imperfections that develop during the 

life of near-periodic structures. 

The next step in this study is to determine the 

overall response of a near-periodic structure to 

determine how the localized modes influence the 
response. Also, efforts to develop possible con­

trol strategies in which this type of behavior is 

advantageous will be pursued. 

Table 5 Natural Frequencies of Bays of Structure with Uniform Random Distribution of SIR = 10% 

Bay No. 

CSR 2 3 4 5 6 7 8 9 10 n 

0.001 30.39 30.03 31.72 31.94 30.55 31.47 30.19 32.51 31.69 32.79 30.06 

0.01 10.45 10.04 9.96 10.36 10.28 10.49 10.11 9.76 10.33 9.88 9.85 

0.1 3.22 3.00 3.09 3.19 3.27 3.16 3.24 3.15 3.24 3.19 3.13 

1 1.02 1.01 0.96 0.99 1.00 1.02 0.97 1.00 1.02 0.96 1.03 

10 0.30 0.32 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.32 0.42 
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