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Abstract

Dance movements are a complex class of human behavior which convey forms of non-verbal and subjective

communication that are performed as cultural vocabularies in all human cultures. The singularity of dance forms imposes

fascinating challenges to computer animation and robotics, which in turn presents outstanding opportunities to deepen

our understanding about the phenomenon of dance by means of developing models, analyses and syntheses of motion

patterns. In this article, we formalize a model for the analysis and representation of popular dance styles of repetitive

gestures by specifying the parameters and validation procedures necessary to describe the spatiotemporal elements of

the dance movement in relation to its music temporal structure (musical meter). Our representation model is able to

precisely describe the structure of dance gestures according to the structure of musical meter, at different temporal

resolutions, and is flexible enough to convey the variability of the spatiotemporal relation between music structure and

movement in space. It results in a compact and discrete mid-level representation of the dance that can be further

applied to algorithms for the generation of movements in different humanoid dancing characters. The validation of our

representation model relies upon two hypotheses: (i) the impact of metric resolution and (ii) the impact of variability

towards fully and naturally representing a particular dance style of repetitive gestures. We numerically and subjectively

assess these hypotheses by analyzing solo dance sequences of Afro-Brazilian samba and American Charleston, captured

with a MoCap (Motion Capture) system. From these analyses, we build a set of dance representations modeled with

different parameters, and re-synthesize motion sequence variations of the represented dance styles. For specifically

assessing the metric hypothesis, we compare the captured dance sequences with repetitive sequences of a fixed dance

motion pattern, synthesized at different metric resolutions for both dance styles. In order to evaluate the hypothesis of

variability, we compare the same repetitive sequences with others synthesized with variability, by generating and

concatenating stochastic variations of the represented dance pattern. The observed results validate the proposition that

different dance styles of repetitive gestures might require a minimum and sufficient metric resolution to be fully

represented by the proposed representation model. Yet, these also suggest that additional information may be required

to synthesize variability in the dance sequences while assuring the naturalness of the performance. Nevertheless, we

found evidence that supports the use of the proposed dance representation for flexibly modeling and synthesizing

dance sequences from different popular dance styles, with potential developments for the generation of expressive and

natural movement profiles onto humanoid dancing characters.

1 Introduction
The process of generating human-like motions plays a

key role in robotics, computer graphics, computer

games and virtual reality systems. The modeling and

generation of expressive and natural forms of human

motion has an impact on our knowledge about human

behaviors and on the application of this knowledge in

science and technology. Dance movements are a com-

plex class of human motions that offer infinite forms of

expressiveness and modes of nonverbal communication

that are distributed in cultural vocabularies enriched

with interactions with music and other modalities.

These characteristics impose fascinating challenges to
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robotics and outstanding opportunities to deepen our

understanding about the phenomenon of dance.

In [1], Naveda and Leman proposed a topological spa-

tiotemporal method to analyze the relationships between

gesture, space and music in popular dance styles charac-

terized by repetitive movement patterns in synchrony

with temporal regularities in music. In [2], we explored

this method of analysis to model a mid-level dance repre-

sentationa and synthesize beat-synchronous dance

sequences of Afro-Brazilian samba. This article extends

the latter by making use of the proposed representation

model to investigate two hypotheses: that (i) there is a

minimum and sufficient temporal metric resolution

required to represent a style of repetitive dance gestures,

and that (ii) spatiotemporal variabilityb is an essential

quality that relates to expressiveness in dance, and conse-

quently to more naturalness in a dance display. In addi-

tion, this article proposes an alternative method to

synthesize the spatiotemporal variability observed in the

recorded dance performance from an improved formali-

zation of the representation. By also proposing improved

quantitative metrics of similarity and variance we com-

pare the real dance performances against synthesized

dance sequences of the analyzed dance style, using differ-

ent parameters as independent variables (i.e., different

parameterizations). Finally, this article introduces strate-

gies to manipulate our representation model in order to

reproduce these dance styles onto different humanoid

dancing characters. The method was applied to two dif-

ferent popular dance styles characterized by repetitive

gestures, in particular the Afro-Brazilian samba and the

American Charleston dances.

The article is structured as follows: the remainder of this

section describes the concept of musical meter, refers to

previous spatiotemporal representations of dance gestures

and introduces methods in recent literature used for mod-

eling and synthesizing dance movements onto robotic and

computer animation characters based on captured dance

movements. Additionally, it summarizes the proposed

method for analyzing and representing dance sequences of

popular dance styles and the evaluation methods used for

assessing the proposed representation model according to

the stated hypotheses. Section 2 specifies the details of the

recording, analysis and representation of popular dance

motion data tested on Afro-Brazilian samba and American

Charleston. It additionally describes means to parameter-

ize our representation model and re-synthesize variations

of the analyzed dances from it, also offering a solution to

synthesize the same level of variability observed in the

recorded dances. Section 3 describes our evaluation

method as the procedures undertaken for assessing and

validating our representation model according to the sta-

ted hypotheses. Section 4 presents and discusses the

achieved results in accordance with these hypotheses, and

presents some paths for future work, namely introducing

strategies to manipulate our representation model towards

generating dance sequences onto different humanoid dan-

cing characters. Finally, Section 5 summarizes and con-

cludes this article.

1.1 Related work

A number of studies have used recordings of human

movement in an attempt to investigate how expressiveness

and meaning can be attached to artificial motion profiles

of robotic and computer animated characters (e.g., [3-6]).

However, the manipulation of pre-recorded sequences of

movements is time-consuming and highly dependent on

the context in which the movement was recorded, which

narrows the range of applications and interactions.

From a psychophysical perspective, a great part of the

experience of motion can be described by the dimensions

of space, which is considered the medium for the deploy-

ment of movement, and by the time, which is considered

the medium for segmentation and synchronization of

movement [1]. One could then attempt to model and gen-

erate dance movements by means of generative algo-

rithms, but modeling expressiveness depends on deeper

knowledge on the nature and structure of dance behaviors.

This kind of knowledge would involve models for biome-

chanics, kinematic representations of dance displays, and

multimodal interactions, which are not easily formalized

from an algorithmic perspective nor easily implemented

from the viewpoint of applied robotic applications.

State-of-the-art applications in robotics and computer

animation frequently use symbolic dance representations

made of primitive motions synchronized with music [7].

Primitive motions represent characteristic postures (key-

poses) of a given dance style. These are typically selected

from the movement by identifying sudden trajectory

changes in the motion profile. For example, [3,8] segmen-

ted movement sequences of real Japanese folk dancers

according to the minimum velocities of their end-effectors’

(hands and feet) trajectories. The resulting key-poses were

clustered and interpolated a posteriori for generating var-

iations of the captured dance. Similarly, [9] extracted

motion key-poses by means of motion rhythm and inten-

sity features calculated from local minima in the motion

signal (stop motions), which were based on the Laban’s

concept of “weight effort” [10]. On the other hand, [4,11]

generated rhythmic motion patterns, such as dancing and

locomotion, by clustering and interpolating unlabeled

MoCap segments as “motion beats”. Motion beats corre-

sponded to moments of rapid change in the motion signal,

given by zero-crossings of the second derivative of all

joints’ orientation. After retrieving motion features and

different musical cues, e.g., beats, pitch, intensity and

chord progression, methods for matching and aligning

the dance movement with music typically apply signal
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alignment and optimization techniques, such as time-

warping [4,6], dynamic programming [5], and genetic algo-

rithms [11].

The majority of these studies seem to be mainly cen-

tered on a linear concept of time and a strictly determinis-

tic concept of gesture (e.g., fixed key-poses). In other

words, time is always represented as a monochronic

sequence and movements are often represented as fixed

poses in space. Such a concept of time might contrast

with the structure of musical time, which is usually based

on concurrent temporal regularities (see the concept of

meter in the next section) and has a strong influence on

the structure of traditional and popular dance styles.

Literature in the field of dance ethnology and gesture/

movement analysis points out that the universe of dance

and movement extrapolate the notion of precision in

space [1,12] and that reasoning in dance is much more

diverse than the key-pose paradigm [13]. As such, a more

comprehensive modeling of dance should involve more

flexible (i.e., variable) representations of the use of space

while manipulating time according to temporal cues of the

musical rhythm. In great part of the popular or traditional

dances, gestures are often deployed through synchroniza-

tion with events in music, which are traditionally orga-

nized by the musical meter. The question is how both

space and musical meter can be articulated in a compact

and parameterizable representation of a dance perfor-

mance situated in a particular dance style, and how to re-

synthesize dance sequences from the latter representation

model. These processes should induce the observed level

of naturalness, expressiveness and musical synchronization

of the original movement, while keeping the overall spatio-

temporal structure of the analyzed dance style.

1.2 Spatiotemporal representation of musical meter and

dance

A significant part of dance styles depends on the structure

of musical meter, which organizes dance choreographies,

the timing of the gestures, and the music structure itself.

The concept of musical meter captures the idea that

rhythm and temporal regularities are organized as hier-

archical structures in music, resembling a hierarchical

structure of beats and metric levels depicted as a grid, as

represented in Figure 1a. In this representation, the estab-

lishment of temporal regularities caused by past and pre-

sent events (metric accents) reinforce or conflict with the

metric structure [14,15].

The concept of meter proposed by Lerdahl et al. [14] is

expressed in the structure seen in Figure 1a. It indicates

that meter is organized in hierarchies composed of layers

(vertical axis) of periodic and symmetric metric accents

distributed through time (horizontal axis). However,

when dance gestures are synchronized with musical

meter, it can be said that the meter becomes integrated

with dance in the spatiotemporal domain. Because dance

and music share the same time domain, regular events in

the musical tessiture are reflected as regularities in the

use of space. Figure 1b illustrates the process in which

metric accents are projected onto the dance trajectories

in the spatiotemporal domain.

Spatiotemporal representations of dance are not new

and several forms of representation have been proposed so

far. Figure 2 shows a chronological prospect of some of

these representations, which denote a long term effort to

represent dances. Note that, given the complexity of dance

engagement, none of the approaches managed to provide

a complete solution for a representation of the dance
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Figure 1 Spatiotemporal representation of musical meter and dance: (a) Hierarchical representation of the structure of meter (based on

[14]), with a period of 2 beats. From top to bottom, each hierarchical metric level is subdivided or grouped in other levels. (b) Spatiotemporal

representation of metric accents in a dance gesture.
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structure. For example, the lack of systematic representa-

tion of all body articulations in time (e.g., the first and

third graphs [16,17] in Figure 2), the lack of representation

of cross modal interactions with music and other modal-

ities (e.g., fourth and fifth graphs [18,19] in Figure 2), the

absence of representations of the variability of the dance

gesture (e.g., the first, second and third graphs [16,17,20]

in Figure 2) and the lack of structural models, at some of

the representations in Figure 2, indicate how the represen-

tation of dance is often complex. Thus, in order to render

expressive beat-synchronous dance movements we needed

to extend the existing representations into a novel spatio-

temporal model (see Section 2.2) that would consider all

of the following: (i) the possibility of resynthesis of original

motions; (ii) encoding motion trajectories and musical

time (meter) in the same representation; (iii) accounting

for the variability of dance sequences; (iv) support of

multi-modal parameterizations for assessing different

hypotheses.

1.3 Method

The method, depicted in Figure 3, involves analysis and

representation of dance sequences and the evaluation pro-

cedures necessary to validate the proposed representation

model. The analysis and representation are applied to

motion capture recordings of dance performances of pop-

ular dance styles and the process of validation compares

different parameters applied to the representation model

according to a set of evaluation criteria. The parameteriza-

tion of the representation model, related to the chosen

metric resolution and representation of variability, com-

pose our set of independent variables used to test hypoth-

eses that assess the feasibility of our model towards fully

and naturally representing a dance style of repetitive

gestures.

The processes of analysis and representation include four

stages: (i) data acquisition, (ii) data analysis, (iii) parameter-

ization of the representation model, and (iv) the final repre-

sentation of the dance style. The process of validation

involves the synthesis of dance sequences from different

choices of parameters, and the comparison against the cap-

tured dance sequence through a set of evaluation criteria.

Our evaluation method consists of numerical and subjec-

tive assessments. In the numerical evaluation we consider

the degree of variance and correlation of both synthesized

and captured joint trajectories in relation to the conse-

quent dimensionality and level of reduction provided by

the representation model. In the subjective assessment we

evaluated the degree of similarity between captured and

synthesized dance sequences by asking fifteen subjects to

measure their subjective similarity. The dance perfor-

mances of Afro-Brazilian samba and American Charleston

were synchronized to their respective music styles. These

dances were recorded with a MoCap system and the musi-

cal pieces were manually annotated by experts.

2 Dance movement analysis and parameterizable
spatiotemporal representation
2.1 Recording procedures

The recorded dances were performed by two professional

female dancers, one specialized in Afro-Brazilian dances

and other in old/traditional dances. The first dancer per-

formed simple dance gestures in samba-no-pé style,

which is the most recognizable and popular sub-style of

the Afro-Brazilian samba dances. The second dancer per-

formed dance gestures in the basic American Charleston

style. After a few trial runs without any limitations, the

dancers were instructed to dance the standard steps of

the style without exhibiting improvisations, turns or

embellishments.

Tomlinson

1795

Jensenius

2006

Palazzi & Shaw

2009

Saint-Léon

1852

Laban

1947

Figure 2 Five different spatiotemporal representations of the dance gesture: (a) Tomlinson [16] proposed representations that guide steps

distributed in the dance floor; (b) Saint-Leon and Pappacena [20] developed a mixture of musical score and figurative descriptions of key-poses

to represent music and dance in the same process; (c) Laban [49] developed the labanotation method, perhaps the most disseminated form of

dance notation; (d) Jensenius [18] developed a representation based on video recordings whose pixels are collapsed and inform about

movement in time; (e) Palazzi and Shaw [19] used videogrammetry to create a set of 3D video representations of dance.
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The musical stimulus used in the samba recording was

composed of looped samples of a samba percussion

ensemble (surdo, tamborim and caxixi) sequenced at 80

BPM (beats-per-minute). The musical stimulus used in

the Charleston recording was composed of phrases of

Charleston music exhibiting a mean tempo of 111 BPM.

2.1.1 Motion capture data acquisition

The dance recordings of samba and Charleston were

respectively performed in Brazil and Belgium, both with

an 8-camera MoCap system setup (Optitrack/Natural

Point [21]). The dance movements were recorded at a

frame rate of 60 Hz and upsampled to 100 Hz in the

editing phase. The motion data was synchronized with

the musical stimulus used in the recording and the

motion trajectories of each recorded dance sequence

were normalized in relation to the centroid of the body,

frame per frame. This process subtracted the effect of

the movement of the whole body on the trajectories of

the limbs. The sequences were imported into Matlab

and edited using the MoCap Toolbox [22]. This process

resulted in one dance sequence of samba and one other

of Charleston, both synchronized to music, to be further

analyzed.

2.1.2 Annotation data

The musical sequences were manually annotated by

experts and all metric accents (here described as time

points and classes of musical levels) classified using

Sonic Visualizer [23]. From the beat annotation we

derived both a macro level (by downsampling it into

bars of 2 beats) and micro levels of the musical meter

(by upsampling it into half-beat, quarter-beat, and

eighth-beat levels). These levels encompass the resolu-

tion of the metric parameters that are used to parame-

terize our dance representation model, considering bar

levels (i.e., the size of the metric cycles in which the

meter is decomposed) of 2 beats for samba and 4 beats

for Charleston. Previous knowledge about the Jazz

(which includes the Charleston dance styles) and Afro-

Brazilian culture (which includes the samba dance

styles)c indicate that their couple music forms have the

metrical characteristics indicated in this study, more

specifically the organization of the subdivisions of the

beat in 1/4th beat divisions in both styles and the metri-

cal properties mentioned before. A schematic descrip-

tion of these metric levels (hereafter named metric

classes) in the time/metric domain is shown in Figure 1

and Figure 4.

2.2 Analysis and parameterizable spatiotemporal

representation of the dance movement

Our representation model is build upon a method that

analyzes the spatiotemporal relationships between music

and use of space in popular dance styles [1]. This

method, denominated Topological Gesture Analysis

(TGA), maps the structure of musical gestures into

topological spaces.
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Figure 3 Workflow of the method: (a) dance analysis and representation, and (b) validation of the proposed representation model according

to different hypotheses.
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As depicted in Figure 4, the TGA method relies on a

projection of musical cues (here, metrical classes–see

Figure 4a) onto trajectories (see Figure 4c), which, by

definition, generates a combined spatiotemporal repre-

sentation using musical and choreographical informa-

tion. Considering that the use of space in dance is

Figure 4 Projection of musical cues (metric classes) onto the dance trajectories. Firstly, (a) the annotation of metric structure of the (b)

music is synchronized with the MoCap recording. These cues are projected onto (c) the movement vectors (in the example, right hand

movements) as different classes of points (e.g., 1st beat, 2nd beat–respectively described as 1 and 2 in the figure). Finally, (d) the point clouds

are discriminated using LDA analysis which guarantees the separation of point-clouds into (e) topologies. In this study we assumed a spherical

distribution for the point clouds whose radius is defined by the average of the Euclidean distances from all points of the class to the mean.
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organized according (or in synchrony) to the projected

musical cues it is likely that the projection of points

generate clusters in space, or point clouds (Figure 4d),

which can be clustered, discriminated and organized in

different geometries or representations [24]. Since we

assumed that the modalities of audio and movement are

intrinsically interdependent and synchronized, we pro-

jected a set of W annotated metric classes, decomposed

into C metric cycles and matching Q = W * C time

points in the audio, onto the 3d trajectories of dance.

This resulted in a sequence of metric classes, M = [m1, .

. ., mW, . . ., m1, . . ., mW, . . . ], that match a set of

time-points in the audio given by T = [t1, . . ., tQ]. Sub-

sequently, they are projected onto a set of Q 3D points,

P, given by the 3d coordinates of the motion trajec-

tories, Z, occurring at the time-points of T, such as P =

[[Zx(t1), Zy(t1), Zz(t1)], . . ., [Zx(tQ), Zy(tQ), Zz(tQ)]].

The set of points P results in point clouds that charge

the dance space with musical qualities, defining geometries

that we call gesture topologies (see Figure 4e). In short,

they inform how the relationships between the gesture of

the dancer and the respective musical characteristics are

performed in space. Since we are interested in how the

dancer uses the space in relation to classes of the musical

meter (half-beat, 1 beat, 2 beats, etc.), i.e., how the dancer

performs in beat-synchrony, we discriminated the 3d

points of P into W point clouds (i.e., one point cloud, Xm,

per metric class, m), X = [Xm1
, . . . , Xmw

] , by clustering the

points according to their represented metric class, such as

X = [P (t ≡ m1), . . ., P (t ≡ mW)]; where P (t ≡ m) repre-

sents all 3d points whose time occurrence match the con-

sidered metric class m. To improve the discrimination of

these regions (see Figure 4d) we used linear discriminant

analysis (LDA) [25] which guaranteed higher separation

between classes of point-clouds by calculating the between

class variability through the sample covariance of the class

means. From the separation of the classes we discarded

the set of points, L = [Lm 1
, . . . , LmW

] , from X that

could not be discriminated in the LDA, such as

X′ = X − L = [X′
m 1

, . . . , X′
mw′

] , where W’ corresponds to

the number of classes of W that are represented by at least

one point of X after discrimination. Ultimately, from the

discriminated point clouds, X’, we delimited W’ topological

regions (i.e., W’ topologies) given by uniform spherical dis-

tributions. The radius of each spherical distribution, Vm, is

defined by the mean of the Euclidean distances, Ex′
m,i,µm ,

of all the Im points represented in the given point cloud of

class m, X′
m = [x′

m,1, . . . , x′
m,Im

], to the 3d centroid (i.e.,

center of mass μm) of its distribution (see Figure 4e):

Vm =
4

3
π

(

1

Im

Im
∑

i=1

Ex′
m,i,µm

)

. (1)

The described process was replicated for each of the

dancer’s joint motion trajectories such that the complete

TGA representation conveys one mean 3d value and the

radius of the spherical distribution for each metric class

and each of the 20 joints of the considered body model

(see the considered body model description on Figure 7a).

As described, this dance model offers a compact repre-

sentation of the dance movement in relation to the musi-

cal meter, being at the same time able to describe the

dance according to different levels of the musical meter

(different temporal resolutions), and flexible to convey

variability of the gestures in space. In addition, the model

can be parameterized in different ways since it is able to

provide different variations of the same dance representa-

tion, which may specifically differ in terms of the consid-

ered metric resolution (i.e., by the number of considered

metric classes–see Figure 4a) and in the consideration

and discrimination of spatiotemporal variability (e.g.,

Figure 4e), where spherical distributions are considered

to represent variability). Figure 5 illustrates the final

spherical distributions for the left hand of a dancer pro-

vided by a spatiotemporal representation model of samba

dance parameterized with quarter-beat resolution and

with variability.

2.3 Synthesizing dance sequences

Our TGA model of the dance performances represents a

set of discrete metric classes which intrinsically delineate

likelihoods of key-poses in space, describing pseudo-

unlimited variations of the fundamental postures charac-

teristic of the analyzed dance style. The process of synth-

esis consists in generating and concatenating closed-loop

cycles of the key-poses underlying in the TGA model,

with or without variability, and interpolating them

according to the represented musical meter, at the cho-

sen metric resolution. Consider the example illustrated in

Figure 6: while a representation parameterized with a

1-beat resolution (“beat resolution”) enables the synthesis

of dance sequences with one key-pose interpolated

within the time-interval, ∆t, of one musical beat (i.e., two

different key-poses per metric cycle of two beats), a reso-

lution of quarter-beat provides four key-poses for the

same duration (i.e., eight different key-poses per two-beat

metric cycle). The musical beat-synchrony is therefore

implicitly projected into the gesture itself by assigning

each synthesized key-pose to specific key-frames in the

music, respectively representing each of the annotated

metric classes in the time domain.

Alternatively, the representation can be parameterized

with or without variability, by respectively considering or

ignoring the radii of the spherical distributions repre-

sented in the TGA model (see Figure 4e). Therefore, the

synthesis of dance sequences without variability is built

by concatenating repeated sequences of a fixed dance
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pattern, composed by the same set of key-poses. In this

case, the set of repetitive key-poses is build on the cen-

troids of the TGA distributions for each joint at each

metric class. The method for synthesizing full-body key-

poses with variability is described in detail in Section

2.3.1. For both alternatives, the synthesized key-poses are

interpolated in complete dance instances as described in

Section 2.3.2.

2.3.1 Synthesizing key-poses with variability

The question of synthesizing key-poses with variability

from our representation model can be potentially solved

by, at every metric class, stochastically generating joint

coordinates/rotations that would satisfy both kinematic

constraints and their respective spherical distributions;

preserving both body morphology and the represented

spatiotemporal variability.

Contrarily to [2], the proposed solution is formulated

in quaternion algebra to be directly applied into robotic

and/or computer animated humanoid characters,

enabling an easier and more reliable manipulation of the

dance representation to be applicable onto different

humanoid body models. This process (depicted in

Figure 5 Spatiotemporal dance representation model of samba, parameterized with quarter-beat resolution and variability, within two-beat

metric cycles (i.e., dance represented by the spherical distributions of eight metric classes, which correspond to 1
4
resolution * 2beats): (a) point cloud

representation of the dance gesture of the left hand; (b) point cloud after LDA analysis. Note that classes of points are visually and linearly discriminated

from each other; (c) representation of point clouds as homogeneous spherical distributions around the mean trajectories of the left hand.

time domain New metric

 cycle of 2 beats

half-beat
resolution

1 2 3 4 1

beat
resolution

1 2 1

key-pose interpolation

(joint by joint)

quarter-beat
resolution

1 2 3 4 5 6 7 8 1

∆t = 1 beat

∆t

∆t = 1/2 beat

∆t = 1/4 beat

Figure 6 Synthesis of dance sequences from representation models parameterized with different metric resolutions, within two-beat

metric cycles: concatenating closed-loop cycles of the represented key-poses (i.e., one different key-pose per metric class and one full set of

key-poses per metric cycle), and interpolating them according to the represented musical meter at different metric resolutions.
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Figure 7) involves an initial decomposition of the

MoCap representation of the human body into five

kinematic joint chains, derived from two anchor joints

(hip, at joint 1, and neck, at joint 11). At this stage

every kinematic chain is processed independently by cal-

culating random joint rotations confined by the repre-

sented TGA distributions. The correspondent body

segments are synthesized as the norm of the given unity

vectors according to the original body model (as illu-

strated in Figure 7a). This process is iteratively

computed until all joints of each key-pose can be suc-

cessfully calculated while satisfying the propagated kine-

matic constraints.

In order to ensure that the fixed geometry of the

human body is not violated in the process at any given

metric class, if one segment does not fit both TGA dis-

tributions at its joint extremities the algorithm points all

the following joint rotations (up to the chain extremity)

towards their respective TGA’s centroids. This occurs

when the choice of a random joint position at one

1
1
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9
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13
11

11
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11
17

18

6

19

20

12

14

16

a) Kinematic chains 

b) Propagation of  stochastic processes

c) Calculation of random joint rotations

(detail)

oint 11 to 17

p

Joint 17 to 18 Joint 18 to 19

(0, -1, 0)

c) Calculation of random joint rotations

(d

J

11
1717 1212

matic chains 

Figure 7 Process of key-pose synthesis with variability, from kinematic chains decomposition to the stochastic calculation of the

joints’ rotations. The top graph shows (a) the decomposition of the body model into five kinematic chains, and (b) the sequence of

propagation of stochastic processes along the kinematic chain of the character’s right arm. The bottom graph shows the proposed solution for

generating the key-pose of metric class m with variability, by replicating the same variability observed in the recorded dance. This process can

be implemented by (c) randomly calculating all key-pose’s joint rotations: starting from the anchor segment, sm
0 , at the spine, which links joint 1

to joint 10, to the chain extremity at joint 20, each joint position, pm
j , is randomly calculated inside its respective Cm

j by selecting a random

quaternion, qvsm
j , that describes a possible rotation of that joint segment, sm

j , around its base unity vector, �vsm
j

(given by the last segment

target vector, �v
′
sm
j −1 ), circumscribed by Cm

j .
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segment extremity makes it impossible for the segment,

with fixed length, to reach the other extremity’s distri-

bution. This restriction is mostly caused by the discrimi-

nation of the topologies at the dance analysis stage by

the use of the LDA. In this eventuality, the algorithm

retries the whole process from the beginning (i.e., from

the anchor joint of the considered kinematic chain and

metric class) and keeps trying to accomplish the whole

chain’s constraints and the represented spatiotemporal

variability for a maximum of 25 times (limited due to

the computational overload), saving the resulting key-

poses’ joint positions of each trial. This process is rea-

lized for every metric cycle of the desired dance

sequence, in order to ensure the highest degree of varia-

bility among them. Each cycle is therefore built by the

group of key-poses which, when summed, required the

lowest amount of forced joint positions (i.e., the lowest

amount of joint rotations set towards the centroid of

their respective TGA distributions).

The process of randomly calculating all joint’s rota-

tions (and consequently their 3d coordinates) inside

each body kinematic chain is described in detail as fol-

lows. As illustrated in Figure 7c, for every metric class,

m, the first step consists of determining the possible

variations of the quaternion, qv (i.e., the 3d rotation of a

target unity vector, �v′ , around its base unity vector, �v )

defined between every two body segments. Every two

body segments are defined by the current segment, sm
j ,

which links the formerly assigned joint position, pm
j−1 , to

the current joint coordinates, pm
j , to be randomly calcu-

lated, and the previously processed segment, sm
j−1 , which

links pm
j−1 to the preceding joint position, pm

j−2 , in that

same kinematic chain. pm
j is generated from a rotation

quaternion, qvsm
j , randomly assigned inside the intersec-

tion cap, Cm
j , between the considered TGA distribution,

Tm
j , and a sphere, Jm

j−1, centered on pm
j−1 with radius

equal to the current segment length, lj-1,j.

Initially, the base vector for calculating the orientation of

the spine segment that connects the two anchor joints of

the used body model (joint 1 to joint 10 in Figure 7a) is

considered to be fixed in space at �vsm
0

= (0, −1, 0) . This

anchor segment, sm
0 , is then considered as the initial base

vector of all kinematic chains. From this point on, every

generated target vector is used as the base vector of the

following segment, in a recursive process, up to the extre-

mity segment of the considered kinematic chain. As such,

starting from sm
0 , the possible variations of each segment

rotational quaternion, qvsm
j , are constrained by the former

calculated joint position, pm
j−1 , the former segment unity

vector, �v′
sm
j −1 , (i.e., the current base vector, �vsm

j ), and Cm
j .

The current joint rotation, qvsm
j , is therefore randomly

selected inside a spatial range confined by six extremity

quaternions, qvi
sm
j
, (one maximum and one minimum for

each spatial dimension, d = {x, y, z}). These six qvi
sm
j
are

indicated by the rotation of the current segment, sm
j ,

around its base segment vector, �vsm
j , towards each dimen-

sional extremity, Cext , of Cm
j , as follows (note that for sim-

plification we omitted the m index from all variables in

Equations (2) and (3), although all calculations are relative

to a specific metric class):

⎧

⎪

⎨

⎪

⎩

qvi
sj

= cos
(

α
i
sj−1 ,s

j
/2

)

+ �ui
sj

∗ sin
(

α
i
sj−1 ,sj

/2
)

�v′i
sj

= �v′i
sj+1

= Ci
extj = pj−1 :

Ci
extj = {mind(Cextj) ∪ maxd(Cextj)}; i = 1, . . . , 6

(2)

where �ui
sj
is the unity vector representing the 3d axis

of rotation between both segments, sj-1 and sj, towards

one of the Ci
extj extremities, and α

i
sj−1

,sj
is the corre-

spondent rotation angle.

The second step consists of calculating a random qua-

ternion, qvsm
j , inside the spatial range described by the six

extremity quaternions, qvi
sm
j
(calculated in Equation (2)),

as follows:

⎧

⎪

⎨

⎪

⎩

qv′
sj

= q̄v̄sj
±

[

maxi

(

∣

∣q̄v̄sj

∣

∣ −
∣

∣

∣
qvi

sj

∣

∣

∣

)

∗ rand[0,1]
]

qvsj
=

qv′
sj

∥

∥

∥
qv′

sj

∥

∥

∥

, (3)

where q̄v̄sj is the mean quaternion, representing a

rotation from the last calculated joint, position to the

center of the current spherical cap.

The third and final step consists of calculating the

current joint position, pm
j , based on the obtained target

rotation vector, �v′
sm
j
, the former calculated joint position,

pm
j−1 , and the current segment length, lj−1,j =

∥

∥

∥
�v′

sm
j

∥

∥

∥ , as

follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

pm
j = pm

j−1 + lj−1,j ∗ �v′
sm
j

: pm
j ∈ Tm

j

�v′
sj

=

(

qvsj
∥

∥

∥
qvsj

∥

∥

∥

)

∗ �vsj
∗

(

qvsj
∥

∥

∥
qvsj

∥

∥

∥

)−1

= �vsj+1

. (4)

2.3.2 Motion interpolation between key-poses

In order to synthesize complete dance instances from

the synthesized key-poses, we generated continuous

joint trajectories by recurring to motion interpolation

techniques. Motion interpolation (or blending) is a
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highly discussed topic in computer animation and

robotics literature. Interpolation functions typically

blend point-to-point positions (e.g., key-poses) or

motion primitives into continuous trajectories according

to a set of kinematic and/or dynamic constraints. These

functions can be applied both in the time [11] or fre-

quency [26] domains, to joint/links coordinates or rota-

tions, and assume various forms, ranging from slerps

[11] to hierarchical B-splines [27], B-spline wavelets

[28], and piecewise [5] spline functions.

Considering our application, we selected a linear

point-to-point joint coordinates interpolation between

key-poses. Although this method does not ensure that

the geometry of the humanoid body model is fixed

along the whole synthesized motion sequence (see

Section 3.2 for the imposed body error), it is computa-

tional inexpensive and provides the required reliability

to validate our dance representation model. Yet, the use

of this representation model for the generation of dance

movements onto computer animated or robotic charac-

ters would imply the use of more sophisticated interpo-

lation functions. (Further discussion on this topic is

outside the scope of this article, and left for future

work–see Section 4.5.)

In detail, continuous dance motion trajectories are

synthesized by interpolating all synthesized key-poses in

the order of the represented metric structure, along all

metric cycles of the dance sequence at the defined resolu-

tion. In such a way, the beat-synchrony observed in the

recorded dance is implicitly translated into the interpo-

lated dance sequence.

The motion transition between postures, within all W

metric classes, is generated by interpolating each joint

independently. As such, all joint coordinates, pjx,y,z , are

interpolated between W consecutive pairs of key-frames,

[{t0, t1}, . . ., {tm, tm+1}, . . ., {tW, t0}], (the interpolation

knots) pointed by consecutive pairs of metric classes, m,

by means of a piece-wise cubic spline interpolant, I,

over each joint coordinate dimension, jd, given by (fol-

low Figure 8):

I =
[

Ik

(

jx
)

, Ik

(

jy
)

, Ik

(

jz
)]

, (5)

where m = 0, . . ., W -1; k = 0, . . ., W; d = {x, y, z};

jdÎ [{t0, t1}, . . ., {tm, tm+1}, . . ., {tW, t0}];

and

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Im(jd) = c0 + c1(jd − pm
jd

) + c2(jd − pm
jd

)2 + c3(jd − pm
jd

)3

Im(jd) = Im−1(jd)

I′m(jd) = I′m−1(jd)

I′′m(jd) = I′′m−1(jd)

I′′0(jd) = I′′W(jd) = 0

. (6)

3 Experiments and validation procedures
This section describes the evaluation method for validat-

ing the proposed representation model using recordings

of samba and Charleston dances, which were recorded

and preprocessed as described in Section 2. The pro-

posed evaluation consists of three sections: (i) experi-

mental setup, and (ii) numerical and (iii) subjective

evaluations.

3.1 Experimental setup

The experiments consist of numerical and subjective

assessments that evaluate the capacity of the TGA

model to represent repetitive displays of popular dance

styles according to the proposed hypotheses. The

numerical evaluation includes measures of similarity,

variance, level of reduction, and dimensionality that aim

to describe how dance sequences, synthesized from dif-

ferently parameterized representations and of distinct

dance styles (i.e., samba and Charleston), differ from the

captured data and among each other, and furthermore

what gain can be obtained in terms of data compression

by the use of the proposed representation model. Ulti-

mately, it measures the overall body size error imposed

by our simplistic interpolation method. The subjective

evaluation consist of subjects’ assessment over the visual

similarity between the synthesized and captured dances.

Both these processes aim to investigate the optimal set

of parameters (i.e., the optimal parameterization) neces-

sary to represent each dance style, and consequently to

identify the minimum amount of information necessary

to reliably describe them by means of a compact spatio-

temporal representation, thus validating our model in

respect to the proposed hypotheses.

3.1.1 Hypotheses

In order to validate the proposed representation model

we relied upon two hypotheses: metric resolution and

variability. The remainder of this article addresses the

validity of these hypotheses by proposing a set of para-

meterizations and evaluation criteria to assess our repre-

sentation model.

The confirmation of the hypothesis of metric resolution

should imply that the quantity or density of metric

classes has a positive impact on a full and natural

description of the represented dance. In other words,

there should be a minimum and sufficient temporal

metric resolution required to satisfactorily represent the

dance style, leading to the optimal similarity between

synthesized and captured dances. In order to test this

hypothesis, we varied the metric resolutions (indepen-

dent variable) of the synthesized dance sequences in four

levels: beat, half-beat, quarter-beat, and eighth-beat

resolutions.
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The confirmation of the hypothesis of variability

should imply that spatiotemporal variability in the system

lead to more perceived naturalness and, consequently,

more similarity with the captured dance. We accessed

the impact of this hypothesis by comparing dance

sequences synthesized from representations parameter-

ized with spatiotemporal variability (as described in Sec-

tion 2.3.1) with others built of repetitive sequences of a

fixed pattern (by assuming the centroid of the TGA dis-

tributions for each joint and metric class).

3.1.2 Assessed parameterizations

Table 1 shows the eight parameterizations applied to the

proposed representation model for validating it in respect

to the stated hypotheses. These different parameterizations

were individually applied to the TGA representation

model of each dance style and respectively synthesized

into dance sequences to be numerically and subjectively

evaluated against their respective captured dances. In addi-

tion, we also included an excerpt of the captured dance

sequence of each dance style off-set by one metric cycle

(i.e., by one bar), hereafter denominated “original”

sequence. To ensure that all synthesized sequences are

also aligned with the captured dance sequence the initial

frame of these sequences is mapped to the first metric

class of a metric cycle.

The numerical evaluation assesses dance sequences of 15

s synthesized from all the eight parameterizations described

in Table 1 applied to the TGA representation model, plus

the “original” sequence, against the captured sequence of

each dance style. Due to time constraints the subjective

assessment only considers the most relevant sequences for

measuring the effect of inducing spatiotemporal variability

in the dance representation model. These consist of 30 s

dance sequences synthesized from the four parameteriza-

tions presented in bold in Table 1 applied to the TGA

representation model, plus the “original” sequence.

3.2 Numerical evaluation

3.2.1 Level of similarity

In order to evaluate the level of similarity between the

captured and the synthesized dance sequences we

looked into the literature for measures of interdepen-

dence (synchrony) between signals [29]. From the stu-

died metrics we selected the correlation coefficient,
rs1 ,s2 , which quantifies the linear time-domain correla-

tion between two signals. Between two motion trajectory

signals, s1 and s2, it can be formulated as follows:

rs1 ,s2
=

∑N, J, D
n=1,j=1,d=1 [(s1(n, j, d) − s̄1(j, d))(s2(n, j, d) − s̄2(j, d))]

√

∑N,J,D
n=1,j=1,d=1 (s1(n, j, d) − s′1(j, d))2

∑N, J, D
n=1j=1d=1 (s2(n, j, d) − s̄2(j, d))2

, (7)

where N is the length of the signals (set to 1500

frames - corresponding to 15 s sequences at 100 fps), J

is the total number of joints of the considered body

model (J = 20), D is the number of considered spatial

dimensions (D = 3, for the 3d space), and s̄1 and s̄2 are

the mean frames across all J and D for s1 and s2, respec-

tively. This metric translates both period and phase

interdependence between s1 and s2, resulting in a maxi-

mum of rs1 ,s2
= 1 in the presence of identical signals.

3.2.2 Degree of variability

In order to measure the degree of variability observed in

each dance sequence we looked for the spatiotemporal

variability observed between the motion trajectories of

each individual metric cycle composing the whole dance

Figure 8 Generating one movement cycle of the right hand joint by orderly interpolating the discrete joint positions calculated for all

defined metric classes at different resolutions.

Table 1 Assessed parameterizations for validating the

proposed representation model in respect to the stated

hypotheses

Parameterization Metric resolution Spatiotemporal variability

fixed-1 beat none

fixed-2 half-beat none

fixed-4 quarter-beat none

fixed-8 eighth-beat none

variability-1 beat spherical distribution

variability-2 half-beat spherical distribution

variability-4 quarter-beat spherical distribution

variability-8 eighth-beat spherical distribution

The numerical evaluation considers all the present parameterizations whereas

the subjective assessment only considers the parameterizations in bold.
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sequence. Therefore, we split each dance sequence into

several excerpts corresponding to individual metric

cycles. The 15 s samba sequences, at 80 BPM, were split

into ten complete metric cycles of 2 beats each, whereas

the 15 s Charleston sequences, at 111 BPM, were split

into seven complete metric cycles of 4 beats each. To

measure the spatiotemporal variability between the

motion trajectories, sc, delimited by each metric cycle, c,

we calculated the mean variance, v̄s , among all joints, J,

and spatial dimensions, D, of sc. v̄s is measured in

square millimeters (mm2) and calculated across all

frames, Nc, of each sc between all metric cycles of the

considered sequence’s signal, s, as follows:

v̄s(mm2) =

∑Nc ,J,D
n=1,j=1,d=1

√

1

C − 1

∑C
i=1 (sc(n, j, d) − s̄c(n, j, d))2

J · D · Nc
,

(8)

where s̄c is the mean value of the considered dimen-

sion, {n, j, d}, across all metric cycles of s, and C is the

total number of metric cycles described in s.

3.2.3 Dimensionality

The dimensionality, Dim(J,S,T), of each parameterized

representation model was measured as the number of

spatiotemporal arguments used to describe the full-body

3d trajectories of the whole dance sequence, according

to the defined parameterization. It is described in terms

of the number of joints, J, considered in the used body

model, the number of spatial arguments, S, needed to

represent the dance motion (in the case of the TGA

spherical representation it implies a 3d centroid and the

radius, if emulating variability, for each distribution),

and the used temporal resolution, W, (i.e., number of

metric classes used in the TGA representation):

Dim(J, S, W) = J · S · W. (9)

3.2.4 Reduction

The consequent Reduction of each synthesized dance

sequence measures the degree of data compression of the

used representation model, by comparing the dimension-

ality of the synthesized sequence, Dims(J, Ss, Ws), with that

of the captured dance, Dimo(J, So, Wo). This is always

dependent on the length, N, (in frames) of the synthesized

sequence, as follows:

Reduction =
Dimo(J, So, Wo)

Dims(J, Ss, Ws)
· N. (10)

This criterion represents a measure of efficiency and

compactness of our representation model under the dif-

ferent applied parameterizations.

3.2.5 Interpolation error

We measure the overall interpolation error imposed by

our interpolation method in terms of mean body size

differences between the synthesized and captured body

models. It is calculated as follows:

ei(%) =

⎛

⎝1 −

1
N

∗
∑N

n=1

∑J−1
js=1

∣

∣

∣
pn

s − pn
jS+1

∣

∣

∣

∑J−1
jb=1

∣

∣

∣
pn

jb
− pn

jb+1

∣

∣

∣

⎞

⎠ .100, (11)

where pn
js are the 3d coordinates of the given joint, js,

for the considered frame number, n, of the synthesized

sequence, s, and pn
jo are the same 3d joint coordinates in

the original (i.e., captured) body model, b.

3.3 Subjective evaluation

In the subjective assessment we asked fifteen subjects

(seven Brazilians and eight non-Brazilians) to evaluate

dance sequences of samba dance only. The restriction to

samba on the subjective evaluation was meant to avoid

bias in the evaluation, since the reliance on different

cultural backgrounds could lead to uncontrollable bias

on the comparison between samba and Charleston. The

subjective assessment over Charleston, and other dance

styles, will be considered in future work.

In the training phase of the inquiry we described the

experiment using a training example and a demonstra-

tion of human samba. In the assessment, the subjects

were presented to two series of the five dance sequences

(i.e., ten trials) described in Section 3.1.2. These

included four sequences, each synthesized from one of

the four parameterizations displayed in bold in Table 1

applied to our representation model, plus the “original”

sequence. In order to evaluate the degree of subjective

similarity between the five assessed dance sequences

and the captured dance, we run a user-oriented evalua-

tion over each selected parameterization by randomly

displaying the captured dance sequence followed by one

of its synthesized versions (or the “original” sequence)

or vice-versa. After each trial we asked the subjects (1)

to indicate which of the two sequences they considered

to be the captured sequence and (2) to grade, from 1 to

5, the level of similarity between the considered cap-

tured sequence and the synthesized or the “original”

one.

All dance sequences were displayed through a graphic

animation of the dance movement synchronized with

the used musical stimulus by using an interface based

on the dance analysis suite (DAS) software [30]. The

visual representation of the human body, displayed in

Figure 9, contains a stick figure description of the body

model and a clean graphical environment.

4 Results, discussion and future work
In this section we present and discuss both numerical

and subjective results (from Table 2 and Figure 11,
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respectively) according to the accuracy of our represen-

tation model on reliably representing a particular dance

style in respect to the proposed hypotheses.

4.1 Numeric results

Every dance sequence was synthesized ten times from

the same parameterized representation model, and for

both dance styles. This aimed to improve the results’

precision given the stochastic elements present in our

algorithm, which is responsible for injecting spatiotem-

poral variability into the syntheses. The mean results

across the ten dance sequences synthesized from each

differently parameterized representation are presented in

Table 2. Figure 10 exemplifies the comparison between

an excerpt of the captured sequence of Charleston

(straight line), and synthesized sequences of Charleston

with (dashed line) or without (dotted line) variability,

extracted from the trajectories of the right hand joint

(joint 19), for all considered metric resolutions (see

Table 1). The “original” sequence is unique per dance

style and thus only evaluated once for each style.

Note that the small error imposed by our interpola-

tion method, with a mean of 1.54% among all assessed

sequences (see Table 2), ensures a good approximation

of the synthesized body with the captured, especially at

higher metric resolutions. Its reliability is additionally

supported by the high correlation verified between the

synthesized and captured dance sequences, even sur-

passing the results of the “original” sequence. Such

results validate the application of our simplistic interpo-

lation method for evaluation purposes.

The fact that all the dance sequences synthesized

without variability ("fixed” parameterizations) present

some degree of variability among metric cycles

(although all sets of synthesized key-poses are the same

for all concatenated metric cycles) can be explained by

Figure 9 DAS visualization of a synthesized samba dance

sequence synchronized to music.

Table 2 Correlation coefficient, rs,o, between the joint trajectories of the assessed dance Sequence, s, and the captured

dance sequence, o, and mean variance, v̄s , among the metric cycles composing the assessed sequence in relation to

the dimensionality, Dim, and level of reduction, Reduction, of its respective representation model

Style Sequence rs,o v̄s(mm2) Dim(J,S,W) Reduction ei(%)

samba

original 0.86 646.84 (846.86) 20 × 3 × N 0 NA

fixed-1 0.46 (0.00) 133.12 (527.68) 20 × 3 × 2 = 120 0.50 × N 2.11

fixed-2 0.81 (0.00) 60.45 (314.44) 20 × 3 × 4 = 240 0.25 × N 1.08

fixed-4 0.89 (0.00) 24.56 (66.47) 20 × 3 × 8 = 480 0.13 × N 0.31

fixed-8 0.88 (0.00) 13.73 (31.96) 20 × 3 × 16 = 960 0.06 × N 0.62

variability-1 0.41 (0.01) 539.59 (683.64) 20 × (3 + 1) × 2 = 160 0.38 × N 1.61

variability-2 0.77 (0.01) 258.50 (406.60) 20 × (3 + 1) × 4 = 320 0.19 × N 0.23

variability-4 0.87 (0.00) 131.52 (166.68) 20 × (3 + 1) × 8 = 640 0.09 × N 0.09

variability-8 0.87 (0.00) 64.94 (91.46) 20 × (3 + 1) × 16 = 1280 0.05 × N 0.10

Charleston

original 0.87 3772.72 (5793.63) 20 × 3 × N 0 NA

fixed-1 0.74 (0.00) 157.14 (540.80) 20 × 3 × 4 = 240 0.25 × N 5.82

fixed-2 0.87 (0.00) 21.27 (77.07) 20 × 3 × 8 = 480 0.13 × N 2.31

fixed-4 0.90 (0.00) 6.89 (16.33) 20 × 3 × 16 = 960 0.06 × N 1.93

fixed-8 0.89 (0.00) 7.07 (18.18) 20 × 3 × 32 = 1920 0.03 × N 2.53

variability-1 0.73 (0.01) 319.27 (336.48) 20 × (3 + 1) × 4 = 320 0.19 × N 4.60

variability-2 0.86 (0.00) 241.19 (275.32) 20 × (3 + 1) × 8 = 640 0.09 × N 1.11

variability-4 0.89 (0.00) 88.40 (156.87) 20 × (3 + 1) × 16 = 1280 0.05 × N 0.19

variability-8 0.89 (0.00) 26.16 (65.19) 20 × (3 + 1) × 32 = 2560 0.03 × N 0.05

The mean error caused by the used interpolation method in each synthesized dance sequence is given by ei. The numbers in parentheses refer to the standard

deviation of, respectively, the mean rs,o and the mean v̄s across the ten synthesized dance sequences for each applied parameterization.
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Figure 10 Captured (straight) versus synthesized trajectories of the right hand joint (joint 19) for four metric cycles (delimited by the

vertical lines) of dance sequences of Charleston. The synthesized trajectories are generated from representations parameterized with

(dashed) or without (dotted) variability, at the following metric resolutions: (a) beat–"variability-1"/"fixed-1"; (b) half-beat–"variability-2"/"fixed-2";

(c) quarter-beat–"variability-4"/"fixed-4"; (d) eighth-beat–"variability-8"/"fixed-8”.
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the slightly different time-length of each metric cycle,

which results in slightly different interpolated motion

trajectories. This effect is greater at lower metric resolu-

tions because the interpolation function has less knots

(i.e., less key-poses) which increase the variation of the

synthesized motion trajectories among metric cycles

with different lengths. The same outcome is intrinsically

present in the degree of variability measured in the “ori-

ginal” and all “variability” synthesized sequences, since

all dance sequences of each style share the same meter

in the time-domain.

4.2 Subjective results

A box plot with the overall statistical results of question

(2) (see Section 3.3) for samba is presented in Figure 15.

A box plot provides a graphic visualization of the statis-

tical properties of the data [31]. The explanations in the

graph indicate that the “the notches surrounding the

medians provide a measure of the rough significance of

differences between the values. Specifically, if the

notches about two medians do not overlap in this dis-

play, the medians are, roughly, significantly different, at

about a 95% confidence level.” [32].

The depicted results are discussed in detail in the fol-

lowing Section 4.3 and Section 4.4.

4.3 The impact of metric resolution

When comparing the results of Table 2 in terms of

metric resolution, we observed that the metric level con-

sidered in the representation model plays a fundamental

role in describing and representing the analyzed dance,

which seems to not vary according to the dance style, as

observed by the similar trend of rs,oamong the synthe-

sized sequences of both samba and Charleston. For

synthesized dance sequences of both dance styles we

observed a non-linear relationship between resolution

and similarity with the captured dance which indicates

that when the representation model drops to a certain

threshold of numerical resolution (in the whole process)

it compromises the geometry and shape of the dance

motion trajectories. As observed in the rs,o results of

Table 2 (in bold), this saturation threshold seems to be

defined by a quarter-beat resolution for both samba and

Charleston.

For both samba and Charleston dances, there is an

overall agreement between numerical and subjective

original
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Figure 11 Overall statistical results for the subjective evaluation over the level of similarity of each synthesized dance sequence, plus

the “original” sequence, of samba to the captured dance sequence.
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evaluations that a correct parameterization of our repre-

sentation model feasibly reproduces the captured dance

in terms of similarity. From a numerical point of view

(see Table 2), we could synthesize dance sequences of

each particular dance style, with or without variability,

with an average accuracy of 0.89 ± 0.01 correlation

points. These even outperformed the similarity between

excerpts of the same captured dance sequence (i.e., the

captured vs the “original” sequence), by a maximum dif-

ference of 0.03 points. Yet, this was contradicted by the

subjects’ responses over samba (see Figure 11), by attri-

buting to the “original” sequence the maximum similar-

ity, of 5 points, with the captured dance, and

outperforming the best synthesized dance sequence by,

on average, 1 point. This suggests that subjective rea-

soning may play an important factor while evaluating

similarity between dance patterns. These factors could

be related with the cognitive attention to specific body

parts for determining the dance style or with the influ-

ence of the non-ecological elements of the set up of the

experiment (e.g., the use of a stick figure, backgrounds

and computer simulations).

Although we achieved similar optimal correlations

with dance sequences synthesized from representations

of both dance styles, it seems that there is a minimum

temporal metric resolution required to fully represent

each dance that does not seem to depend on the ana-

lyzed style, at least among samba and Charleston. As

presented in Table 2, for both samba and Charleston

the optimal solution was achieved with a quarter-beat

resolution (i.e., by the “fixed-4” and “variability-4” para-

meterizations). Since we observed no positive effect on

increasing the resolution above quarter-beat for both

dance styles (see Table 2) it seems that there is also a

sufficient (i.e., maximum) metric resolution required to

fully, and consequently naturally, represent a particular

style of repetitive dance gestures.

As a final remark, we verify that metric resolution has

a direct impact on the dimensionality of the proposed

representation model by proportionally decreasing the

compactness of our representation with the increase of

the resolution. The results of Table 2 suggest that the

numerical structure and subjective impact of the ana-

lyzed dance style may be feasibly reproduced by a com-

pact representation model, with a reduction of

information in the order of 13% or 6% the size of the

dance sequence, for samba and Charleston respectively.

The differences in reduction (by a factor of two) is due

to the segmentation of samba in compasses of two beats

and of Charleston in compasses of four beats, which

means that a representation of Charleston requires two

times the number of metric classes required by samba

for encompassing the same metric resolution.

4.4 The impact of variability

The impact of introducing variability in the proposed

representation model towards improving the naturalness

and similarity of the represented dance style with the

captured dance was specifically measured by the numer-

ical correlation and degree of variance, presented in

Table 2, and the subjective reasoning of the inquired

subjects, presented in Figure 11. The numerical results

indicate that the variability imposed by the proposed

stochastic method negatively affected the similarity

between the synthesized joint trajectories and the cap-

tured ones, with an average decrease in correlation of

0.02 ± 0.02 points against dance sequences synthesized

without variability, among all metric resolutions and for

both dance styles. The slight outperformance of the

dance sequences synthesized from representations para-

meterized without variability can be justified by the use

of repeated sequences of a fixed movement pattern

representing the mean joint trajectories among metric

cycles of the analyzed dance, which minimizes the dif-

ference against it. Yet, although the correlation with the

captured dances had been slightly compromised by

introducing variability in our representation model, we

observed a significant increase in variance in compari-

son to the dance sequences synthesized without it. The

mean variance ratio between the dance sequences

synthesized with variability and the ones without it is in

the order of 22.59 ± 12.87%, among all metric resolu-

tions and dance styles. Nevertheless, the results of Table

2 suggest that the induced variance is linearly dispropor-

tional to the parameterized metric resolution, which

reveals a trade-off between the degree of variability and

the degree of similarity with the analyzed dance. There-

fore, at the optimal metric resolution for each dance

style, we could only induce 20.33% and 2.34% of the

variance observed in the captured dance, respectively for

samba and Charleston. This can be justified by the use

of a rough representation of the observed spatiotem-

poral variability through the use of homogeneous sphe-

rical distributions in the TGA analysis. As such, the

validity of using a spherical approximation for repre-

senting the variability of the observed joint trajectories

depends on the uniformity of the analyzed dance style,

justifying the much lower proportion of variability

induced in the synthesized dance sequences of Charles-

ton than of samba (which is proportional to the differ-

ence in variance between the captured sequence of each

dance style). As observed in Table 2, the captured Char-

leston’s dance sequence exhibits approximately six times

the variance of samba’s whereas the optimally synthe-

sized dance sequence of Charleston exhibits approxi-

mately nine times less the variance of the optimally

synthesized dance sequence of samba.
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Ultimately, regarding the subjective assessment over

samba (see Figure 11), we observed that the evaluation

of the “fixed-4” parameterization was consistently less

divergent than the one of “variability-4”, enforcing the

negative effect of the induced variability on feasibly

representing the analyzed dance style. An explanation

for this result may rely on the repetitive nature of the

captured dance, which might imply that periodicity is

considered by the subjects as a key factor in their

assessment. Another justification may be the reliance on

an incomplete representation of the observed variability

by the lack of relative information among the repre-

sented topologies. This factor, combined with the use of

uniform spherical distributions, could potentially lead to

random combinations of movements that are perceived

as unrealistic.

Nevertheless, although the proposed representation of

variability was not convincing, and therefore the hypoth-

esis of variability could not be fully confirmed both in

numeric and subjective terms, there are enough consid-

erations to support the notion that variability may be a

fundamental quality to represent expressiveness of

movement and consequently the naturalness observed in

the performance of any particular dance style of repeti-

tive gestures. By looking into Table 2 and Figure 11, this

can be supported by the correlation “ceiling” at around

0.90 points for dance sequences of both dance styles

synthesized without variability, the great differences in

the variances measured in the synthesized and captured

dance sequences, and the 1 point subjective similarity

difference between the “original” and “fixed-4”

sequences of samba against its captured dance sequence.

4.5 Towards humanoid robot dancing

The topological map provided by the TGA concept in

the proposed dance representation model offers new

perspectives for further manipulation of the dance ges-

ture structure demanded by different motion retargeting

requirements, without compromising the spatiotemporal

structure of the original dance style. Such a parameteriz-

able representation, in combination with the use of a

motion synthesis method based on rotational quater-

nions and the use of a proper rotational joint interpola-

tion method (e.g., slerps), offers a means for retargeting

the captured dance trajectories onto different humanoid

morphologies while over coming the kinematic con-

straints imposed by their body models. Such an applica-

tion can take advantage of the kinematic malleability of

the TGA representation and the flexibility of quaternion

algebra for synthesizing equivalent motion profiles

adjusted to the new body segments’ dimensions, and to

the verified kinematic constraints, in terms of degrees-

of-freedom and rotational limitations. A first approach

towards retargeting beat-synchronous samba dance

movements onto a simulated humanoid robot was

described in [33]. The presented method manipulates

and adapts the represented TGA topologies according

to the target humanoid morphology, in terms of seg-

ment lengths, the number of joints, and the joints’

degrees-of-freedom. From this morphologically adjusted

dance representation we synthesized closed-loop sets of

the represented key-poses (i.e., one set per metric cycle),

and interpolated them, using a sine interpolation func-

tion, according to the original musical meter in order to

replicate the beat-synchrony of the analyzed dance.

A full implementation in a real humanoid robot

requires further considerations that cannot be inferred

from the proposed representation model. These include

offline/online optimization (e.g., [34]) and/or dynamic

control techniques (e.g, [35]) for refining the generated

robot dance motion in order to ensure the humanoid’s

biped balance, avoid self-collisions, and overcome addi-

tional kinematic/dynamic constraints. Since the used

dance representation is fully integrated with a forma-

lized description of the music structure, an autonomous

beat-synchronous robot dancing system will also require

a real-time beat tracker (already developed in [36]) for

synchronizing the generated dance behaviors on-the-fly

to live musical stimuli. This beat-synchrony can be

reproduced at different resolutions according to the

metric parameterization of the TGA model. A design

for improving the real-time beat tracking performance

in the presence of ego-motion noise of a dancing robot

was already proposed and evaluated on [37]. A first

approach towards synchronizing humanoid robot dan-

cing movements to online musical stimuli was also

already implemented on [38].

5 Conclusions
In this study we proposed a parameterizable spatiotem-

poral representation of human dance movements applic-

able for the generation of expressive dance movements

onto different humanoid dancing characters. The pro-

posed dance representation model was assessed accord-

ing to two hypotheses, namely the impact of metric

resolution and the impact of variability towards fully

and naturally representing a particular popular dance

style built on repetitive gestures. The overall results vali-

date the use of the TGA model as a reversible form of

data representation, and consequently compression,

which indicates that it can be applied for motion analy-

sis and synthesis of musically-driven dance styles for

humanoid dancing characters.

The proposed method starts from information of the

captured dance, recorded with a motion capture system

combined with musical information, which is packed

into a spatiotemporal representation of the captured

dance movements in the form of a topological model
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(TGA). This representation was re-synthesized into

dance sequences using different parameterizations and

compared against MoCap recordings of real perfor-

mances of popular dance styles, namely of samba and

Charleston. The results seem to confirm the hypothesis

that there is a minimum and sufficient temporal metric

resolution required to fully represent a particular popu-

lar dance style of repetitive gestures. Specifically, for the

analyzed dance styles of samba and Charleston, quarter-

beat representations offered both a sufficient level of

similarity to the captured dance while consequently

offering a great compression of the captured signal.

Smaller resolutions offer a decreasing reproduction of

the analyzed dance with the trade-off of an increased

compression ratio. Concerning the impact of variability,

both numeric and subjective evaluations pointed to no

positive effects on considering spatiotemporal variability

into our representation model, and that the proposed

representation of variability, at the optimal metric reso-

lution, offers only some extent of the variance observed

in the analyzed dances. This can be justified by the use

of a rough and incomplete representation of the

observed spatiotemporal variability, by the use of homo-

geneous spherical distributions in the TGA model, and

by missing relative information among the represented

topologies. These could lead to random combinations of

movements that are perceived as unnatural and might

generate discrepant motion trajectories.

Further studies are needed in order to clarify the role

of spatiotemporal variability and the importance of spe-

cific body parts in the perception of expressiveness in

popular dance styles. In the future we should also verify

the applicability of the proposed representation model

and hypotheses on other popular dance styles, with dif-

ferent metrical structures (e.g., dances at the 3-beat bar

level of the Waltz music forms).

Endnotes
aDance representation and dance representation model

are used indistinctively throughout the article and refer

to a formalized description or “visualization” of the

dance by means of a systematic analysis of its spatiotem-

poral structure. bThe expression spatiotemporal variabil-

ity refers to the distribution of the positions in space

where the limbs of a dancer hit specific music cues in

time (thus, spatiotemporal variability in dance). It is well

known that dancers and musicians do not perform repe-

titive movements or events at the precise time points or

positions. Such variation is claimed to be related to per-

ceived expressiveness, naturalness and expertise and are

ubiquitous in human performances (see [39-43]). cFor

examples of previous studies that support this assump-

tion in Jazz see [44-46]; for studies in Afro-Brazilian

Music see [39,47,48]
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