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Abstract—Neuroimaging data, such as 3D maps of cortical thickness or
neural activation, can often be analyzed more informative} with respect
to the cortical surface rather than the entire volume of the brain. Any
cortical surface-based analysis should be carried out usghcomputations
in the intrinsic geometry of the surface rather than using the metric
of the ambient 3D space. We present parameterization-basedumerical
methods for performing isotropic and anisotropic filtering on triangulated
surface geometries. In contrast to existing FEM-based metids for
triangulated geometries, our approach accounts for the meic of the
surface. In order to discretize and numerically compute theisotropic
and anisotropic geometric operators, we first parameterizethe surface
using a p-harmonic mapping. We then use this parameterization as our
computational domain and account for the surface metric whie carrying
out isotropic and anisotropic filtering. To validate our method, we
compare our numerical results to the analytical expressiorfor isotropic
diffusion on a spherical surface. We apply these methods tar®othing of
mean curvature maps on the cortical surface, a step commonlgequired
for analysis of gyrification or for registering surface-basd maps across
subjects.

Index Terms—Isotropic, anisotropic diffusion smoothings.p-harmonic
parameterization.

. INTRODUCTION

AUSSIAN kernel smoothing has been widely used in 3D We assume as input a genus zero surface mesh that represents

flow on the surface. We generate a global parameterizatiotheof
surface, compute the metric tensor for the parameterizaind use
this to compute the isotropic and anisotropic diffusion rapars.
We first parameterize the cortical surface using-armonic map-
ping technique. We then resample the surface on a regul@celat
with respect to the 2D parameterization and solve the ecessati
PDEs using this discretization while accounting for gréarmonic
mapping transformation. In the Euclidean case, discrgtizaof
the time derivative in the diffusion equations can be cdrrait
using the Crank-Nicolson method [16] due to its numericaluaacy
and stability. Our approach allows us to generalize thishodtto
non-Euclidean cortical surfaces thus making the methodlestand
accurate. We note that these smoothings, and other timendept
PDEs on manifolds, can be implemented using implicit serfac
representations (i.e., level sets) as described in [18], [19] but in
many applications, data is available on triangulated serfmeshes
rather than on implicit surfaces and it might be advantaggowse
explicit methods such as the one presented here to prodesdatha.

Il. MATHEMATICAL FORMULATION

medical imaging as a tool to increase the signal-to-noitie rathe cortex on which we define a scalar-valued field represgritie

and to generate multiresolution or scale-space repragargaof
images [1]. In many brain imaging applications, neuro-amatal [2],

anatomical or functional image of interest. We also assuraed 2D
coordinate system is assigned to this surface through anetea-

[3], functional [4] or statistical [5], [6] data are definedtivrespect zation process. Our approach to generating this paramatien is
to the non-Euclidean cortical surface and ideally shoulgtoeessed summarized in Section Ill. Our goal is to define filtering gyi@ms on
with respect to the geometry of the surface. The notion ofsGiam the image that are computed with respect to the intrinsiorgy
kernel smoothing in a Euclidean space can be generalizedrteat of the surface, which guarantees that within-surface oista are

surfaces using the heat equation. Thus filtering on curvethces

can be formulated as the process of heat diffusion by exiglici

solving an isotropic diffusion equation with the given dasaan initial
condition [7]. The drawback of this approach is the compiexif
setting up a finite element method (FEM) formulation and cliffly
in making a numerically stable scheme [8]. Here we describe
alternative approach to smoothing using the heat equab@sed on
a parameterized representation of the surface.

Another filtering method, anisotropic filtering or Peronal¥

handled correctly during smoothing.

Throughout this paper we use Einstein’s summation conventi
[20] to simplify the notation. Let/(s,t) be a scalar function which
denotes the image given on the cortical surfateand ¢ denotes
time. I(s,0) represents the original unsmoothed image. d.ef;; :
aJj € {1,2} denote the metric tensor associated wittor a given
coordinate system ang’/ : 4,5 € {1,2} denote the inverse of the
metric g;;.

flow [9], has been widely used in region selective smoothind a A, Isotropic filtering

edge preserving filtering of 2D and 3D images. Anisotropftudion
filtering on non-Euclidean surfaces has been applied togssiog
and modification of surface geometries [10], [11]. In cositrdere
we focus on anisotropic filtering of anatomical or functibimages
which are scalar functions defined on these surfaces. Ir todmlve
the isotropic and anisotropic diffusion equations on nanglrfaces,
the associated Laplace-Beltrami and anisotropic diffusiperators
need to be discretized. The existing approaches to thisatiization
use FEM formulations [12], [13], [7], [14], [15]. FEM methsd
discretize the Laplace-Beltrami operator for isotropicosthing in
the neighborhood of each node in a triangulated mesh. Here
present an alternative numerical method which uses paegiraion
of the cortex. Additionally, we present a parameterizatlmsed
anisotropic diffusion filtering method which computes Rexd/alik
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The isotropic diffusion equation on surfacge with the original
imagel(s,0),s € S as the initial condition, is given by
0
— 1
5 )
whereA is the Laplace-Beltrami operator that generalizes thed-apl
cian in Euclidean space to a Riemannian spéce
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We discretize this operator using discrete approximatiohghe
metric tensor and thus explicitly model the geometry of thdaxe
in our method as described in Sec. lll.

The discretization of the time derivative on the left harabsof (1)
can be carried out by explicit discretization methods fopdmpolic
PDEs. In the explicit scheme for solving (1), times discretized



using a forward difference and(s,n) is used for calculation of Varying the diffusion coefficient with image gradient allewior
the left-hand side of (1), wher&(s,n) denotes the image value atlocally adaptive edge preserving smoothing. Two choicesffaere
iterationn. Let L denote the discretization df and¢ the time step; suggested [9]:

the resulting discretized equation is given by

IVI(s,8)])*
_ fi(s,t) = exp| — (7 9)
I(s,n + 1; I(s,n) _ LI(s,n). ®3) o) ( X
1
Rearranging terms we have the update equation: fas,t) = ( (uw(s Ol ))(1+a) a>0, (10)
exp — LU Nt A I R
I(s,n+1)=1I(s,n) +0LI(s,n). (4) *

where x is referred to as the flow constant. Since these filters are
This is an explicit method for solving the heat equation.c8ithe expressed using PDEs, they generalize to non-EuclidearespBor
diffusion equations are solved iteratively over time, diization the cortical surface, we replace (7) by
of the time derivative is an important consideration as ehisr a OI(s,1) 19 91 (s,1)
possibility of numerical instability. Accumulation and plification — = (\/§D(s,t)g‘w—’> . 11y
of numerical errors at earlier time points results in largeigtions or ot Vg Ou Ou
oscillations in the solution at later time points. Therefahoice of To compute the diffusion constants we also need an estinoétitve
time step becomes critical in the explicit method, whichéserally gradient. We replacé VI(s,t)||*> by the differentiator of the first
used for its speed. There is an upper bound on the choice timeler [20] given by
stepd required for stable solution. Violating this upper boundulés OI(s, ) I(s, 1)
in divergence of the solution. A theoretical upper limit dre tsize V(I (s,t),1(s,t)) = g*? ’ )

e . - ou® oub
of ¢ depends on grid size and the metric tensor coeffici§pis } ) o ) i ) )
and is hard to determine. Violating the upper limit on theueabf With these substitutions, the anisotropic heat equatieveit-defined

§ causes amplification of numerical errors which in turn ressin O the cortical surface independently of the particularpeteriza-
divergence of the solution [16]. In order to overcome thiialilty, ~tion used for its computation. S

here we adapt the Crank-Nicolson scheme to suit our paaticul Similar to the isotropic case in (5), discretization of tewrg and
equation. For the CrankNicolson numerical scheme, a srimai t SPatial derivatives in (7) lead to

step is not required for stability, however it is required moimerical I(s,n+1)—1I(s,n 1 .

accuracy. While it is slower than the explicit method (4)hits the ( ; (o) _ L (s,n) +I(s,n+1))  (13)
advantage of being stable as well as accurate [16]. We natethi
Crank-Nicolson scheme is unconditionally stable, but it oasult in
decaying spurious oscillations if the time step is too lakye chose
time steps ofl0~° which did not result in such oscillations. In this LiI(s,n+1)=ba (14)
case, (1) is discretized as

(12)

where L* denotes anisotropic diffusion operator. After simplifioat
similar to (6), it becomes

where L{ = I — $L* and b* = I(s,n) + $L*I(s,n). Similar
I(s,n+1) —I(s,n) _ lL(I(s,n) +I(s,n+1)). (5) o the isotropic case, the linear system of equations isesobising
4 2 the conjugate gradient method to compute, n + 1) from I(s,n).
Rearranging terms gives: Discretization of the diffusion operatofsand L* is described in the

5 5 next section.
I(s,n+1)— ELI(s,n—i— 1) =1I(s,n) + §Ll(s,n)
Lil(s,n+1) =b, (6) Il1. DISCRETIZATION AND NUMERICAL METHOD
A. Cortical Surface Extraction and Parameterization

whereL, = I — $ L andb = I(s,n)+ £ LI(s,n) This linear system , i
of equations is then solved at each iteration using the gatgu We first extract cortical surface mesh models from MRI forheac

gradient method to computi(s,n + 1) from I(s, n). subject using the BrainSuite software [22], [23], whichlies a 6
stage cortical modeling sequence. First the brain is eddatrom
the surrounding skull and scalp tissues using a combinaticdge

B. Anisotropic filtering detection and mathematical morphology. Next the intessitf the

Anisotropic diffusion filtering of planar images was firstsdebed MRI, are correct.e.d for Iow-frequgncy ‘bias fields’ .resultlr.ﬁg)m
by Perona and Malik [9]. Here we generalize this idea to norBF |nh.0moge.ne|t|es. Each voxel n the correc.t(.ed image .|elm13
Euclidean surfaces [21], which allows us to perform sptigriant according to tissue type using a statistical .classmere@strat.lon of
and image dependent nonlinear filtering of surface comstcaimage _the sggmented_volume toa standar_d atlas 1S then used toatidatly
data within the geometry of the surface itself. The anigptro identify the white matter volume, fill ventricular spacesiaemove

diffusion filter is formulated as a diffusion process that@mages Lhe lijram stefm and cerebellym, fleawlr;g a bmiry vglume v(\;hose
smoothing within regions of slowly varying intensity whilghibiting oundary surface represents Interface between the whitemzn

smoothing across boundaries characterized by large imagkegts. tk;ek?rey rlnatter OII the gerebral fcortex. !tk:s Ilke:y thatl tﬁ;ﬁ:lat[on
The anisotropic diffusion equation has the form: of this volume will produce surfaces with topological Prior

to tessellation, these handles are identified and removiedhatically
01(s, 1) =V - (D(s,))VI(s,1)), ) using a graph-based approach [24]. The resulting binarymelis
ot then tessellated to produce a genus-zero surface.
where the diffusion coefficienb(s, ¢) is a monotonically decreasing We use ap-harmonic map for parameterization in which we
function of image gradient magnitude: minimize ap-harmonic energy function [25], [4] while constraining a
closed curve on the interhemispheric fissure, which divitiesbrain
D(s,t) = f(||VI(s,t)]]). (8) into two hemispheres, to map to the boundary of a unit squirs.



procedure produces a one-to-one mapping from each hemésftha the forward and backward difference operators fordheoordinate,

unit square. Details of this procedure can be found in theefdix. and D£2 and D,’liz, the forward and backward difference operators
The metric coefficients or the coefficients of the first funeatal for the »? coordinate. Explicitly, these operators in matrix form are

form contain information about the intrinsic geometry of $urface. given by following equations:

Let x denote the 3-D position vector of a point on the cortical

surface. Letu',u* denote the coordinates in the parameter space. -1 !f Z:J ) _ )
The metric tensor coefficients required in the computatibrthe 1 if j=i+41andi# 0 mod 256, i <= 256
diffusion operators are given by: DY, (i) = 1 if j=4i—1andi# 1 mod256, i > 256
ax 12 ox II? ut{hJ 1 if j =i+ 2562 andi =0 mod 256, i <= 256>
g1 = Hw ) 922 = HW ) (15) 1 if j=i—256% andi = 1 mod 256, i > 256
0  otherwise,
IOx 0% (19)
= = (= == 16
g12 g21 <au1 " uz > ) ( )
9= g11922 — (912)°, (17) 1 ifi=j
. . o . —1 if j=4—1andi# 1 mod 256, i <= 256
The inverse metric coefficientg” are given by: I J Z an %# mod256 Z,< 526
g2 g2 s gn Db (i) —1 if j=14+ 1 andi # 0 mod 256, ¢ > 256
11 12 21 b = .
g =TS =TT = @g) “FwihJ —1 if j =44 2562 andi = 1 mod 256, i <= 256>
_ . S 2 . . 2
We assume that they are arranged in vectors for numericaputam L Z 2567 and = 0 mod 256, i > 256
tions as described in the next section. 0 otherwise,
(20)
B. Discretization Algorithm L i
. . . . —L me=y
In order to solve the diffusion equations numerically, wedéo oo .
discretize the isotropic and anisotropic Laplace-Beltrapgrators in 1 !f J o Z +256 ands <; 25§ *255 )
(2) and (11). We use the unit-squgseharmonic maps of the trian- D/, (i,5) = 1 if j =i—256 and256” < i <= (256" + 256 x 255)
gulated tessellation of the cortical surface to define a 2&rdinate utty 1 if j =i+ 2562 and256 * 255 < i <= 256>
system [25]. The square maps for each hemisphere are reshomph 1 if j =i—256% andi > (2562 + 256 x 255)
regular 256x256 grid. Note that this resampling can be adh; dis- 0 otherwise

cretization on the triangulated 2D mesh, but we prefer alaeggrid 1)
based method for simplicity. The co-ordinate system wegads the
cortical surface is depicted in Fig. 1. The two squares in(tHeu?)

parameter space represent the two hemispheres incthe?, 3 Lo ifi=j

space. The boundaries of the squares correspond to the aommo —1 if j =14+ 256 andi <= 256
interhemispheric fissure between the two cortical hemigsheA b . . —1 if j=1i—256 and256 < i <= 256>
closed curve is formed at the boundary formed by cutting #m=ug Dy (i) = —1 if j =i+ 256 and 256 < i <= 256 x 255
zero brain surfa_ce into two hemispheres. Thl_s curve is camﬁid _1 if j =i+ 2562 andi > 256 x 255

to map as a unit speed curve to the boundaries of the unit egjuar 0 otherwise

for each of the two hemispheres. One can move continuousiy fr
one hemisphere to the other across this boundary. The reztybdd (22)

relations between the edges of the two squares is depictdidfésent  For discretization of the anisotropic diffusion operateonfi (7),
arrows in Fig 1. Because the interhemispheric fissure is forethe  we compute the conduction functidd(s, t) using (9) and arrange it
boundary of the squares representing the two hemisphemescan in a column, denoted by.

visualize theu' — u® parameter space as two squares placed onThen the isotropic and anisotropic diffusion operatorsgiven by
top of each other and connected at the boundaries of the esyuar

We follow these neighborhood relations when discretizimgy partial D!

derivatives at the boundary of each squares. This allows csrhpute L=¢" (D,’:] D£2) G'G ( 71> , (23)
partial derivatives across the two cortical hemispheregimyathe D
boundary separating them transparent to the numericaktizations. ;
This boundaryless parameter space is then used for ddorethe a _ ~I (S f v (D21

partial derivatives with respect to thé and«? spatial coordinates L=a (Dul Duz) bra (D? ) ’ (24)
in the solution of the differential equations. For instanassume

that f : M — R is a scalar valued function defined on the cortical

u?2

w2

surfaceM . We arrange its discretized representation at each vertex G' = diag(1//9), (25)
in the regular grid of the surface in a vectprIn order to discretize D" = diag([D, D][\/9,/9]) (26)
% by central differences on the entire surface, we calculage t G = diag([/3,/3]) and 7)
usual central differences at the points that are not on thmdery o YV
of the squares. On the boundary points of the squares, wehase t G = (d?ag(gm) d?ag(gm)) ) (28)
connectivity relationship shown in Fig. 1 for the neighbmostl in the diag(g™")  diag(g™)

central difference approximation. Using these relatiovis,compose  |n the discretization, we use forward and backward diffeeen
a forward difference matrixD’, and obtain discretization off- operators alternately in order to keep the numerical teteptd
as Dﬁlf. Similarly, we compose backward difference matriu‘.b%1 derivatives small [16].



Left Hemisphere Right Hemisphere

Fig. 1. (a) A cortical surface extracted from volumetric MB&al using the BrainSuite software; (b) a closed curve in gmife between the two hemispheres
divides the brain in half; this curve is constrained to lietba boundary of the unit square for both hemispheres; (cREheoordinate system resulting from
the p-harmonic mapping of the cortical surface. The mean curgatidi the cortical surface is shown as a scalar image in this@ixe. The different sized
arrows indicate the connectivity along the boundary of thease between the two hemispheres, which is used for congputimerical approximations of
the partial derivatives along this boundary.

The discretization of the isotropic and anisotropic opensatis the 1.4 million node cortical surface with = 4 took 37 secs.

carried out in the following steps: Adding the parameterization step does not add significawatlyhe

1) Parameterize the cortical surface to map it in two squanes total computational cost compared to a direct FEM method, [13
assign it the coordinate system described in the Appendix. [12]. The number of iterations along with the size of the time step

2) Form the forward and backward difference matrifb{ﬁ , Df:z' 0 determines the amount of smoothing applied. Smaller vaidies
Dﬁl ) Dzz and foru! andu? coordinates respectively accordingresult in more numerically accurate solutions wklile thecexien time
to (19), (20), (21) and (22). is directly proportional to. We chose) = 1x10~° andn = 40000.

3) Compute the surface metric coefficientsgii, gi2, g21 and Isotropic diffusion on the resampled surface took 20 minghwi
g2 and also the inverse metric coefficients , ¢'2, ¢°2. This this choice ofn and ¢ while anisotropic diffusion took 1.5 hours.
is done by replacing partial derivatives in (15), (16), (1(@g) The difference in execution times is mainly due to the noedr
by their discrete versions from step 2. nature of the anisotropic diffusion which requires recotapan of

4) Compute the isotropic or anisotropic Laplace-Beltrarpi o the diffusion operator. repeatedly during the iterations. The code
erators using (23) or (24), respectively. For the anisiatropthrough parameterization was implemented in C/C++ witrstatial
diffusion operator (11), we use the conduction functionegiv €ffort directed at optimizing run-times while the diffus® were
by (9), with coefficienty = 0.1. This value was chosen computed in MATLAB and, based on our earlier experience, ae ¢

empirically. expect a several-fold speed up when these are reprogramineetyd
In the case of isotropic diffusion, discretization of thdfution '" C/C++. _ _ o
operator needs to be carried out only once before startiadithe In order to validate the method for isotropic diffusion, werpute

iterations. On the other hand, for anisotropic diffusioe iffusion the impulse responsk; (p, ) of the diffusion operator (heat-kernel)
operator depends of(s,t) and hence needs to be updated b§n @ u_an _sphere. The heat-kern€l(p, q) is defined as the solution
carrying out the last step 4 repeatedly after every time steprder to 10 the initial value problem:
plecre_ase this nu_merlcal cost_, we update the operator arﬁaey 00 Ko(p,q) = 6(p, q): (29)
iterations assuming that the incremental changé(in) is small. oK
The impulse response of the isotropic diffusion filter isvghadn M
Fig. 2 both on the cortical surface and in the parameter spioae ot
hemisphere. It can be seen that use of the surface metrittsrésu 1he heat-kernel on the unit sphere has a closed form arallytic
an impulse response on the cortical surface with a greatgedeof €xpression [26] given by:
circular symmetry. Note that because of the non-linearreatf the C A+ 1 ey
anisotropic diffusion filter, its behavior cannot be fullgazacterized Ki(p,q) = Z ¢ VP2 - q) (31)
by its impulse response. e
wherep is the starting point of the impulse ands the point where
IV. RESULTS measurement of the impulse response is made. In this case, th
We performed numerical studies on an Intel Pentium 4, 3.2 GHanount of spread is governed by timen the diffusion equation
computer with 2 GB of RAM using MATLAB. The cortical surface (1). P are the Legendre polynomials. The impulse response for
was extracted from a 256 x 256 x 170 voxel T1-weighted brain MBifferent values oft is plotted on the unit sphere in Fig. 3. We also
image of a volunteer subject. Processing time from the raw M&alculated the heat kernel using the diffusion filter defiiredec.
volume to extraction of the topologically corrected andsé#iated II-A and compared its accuracy with the analytically congulifilter.
cortex using BrainSuite took 7 mins. The tessellated coitad We used a triangulated mesh witl300, 000 vertices to represent
a total of 1.4 million nodes. The harmonic parameterization of the unit sphere. Each hemisphere was mapped to a unit square b



(b) The heat kernel computed using the Laplace-Beltramratpeon the cortical surface

Fig. 2. The figure depicts the importance of using metric famehts in (2). (a) The impulse response of the isotropic attmag filter computed by solving
the diffusion equation directly with respect to the 2D cadoates without using metric coefficients. Note that the kkris radially symmetric in the flat
space but not symmetric when mapped back to the corticahairf{b) in this case we generate the isotropic smoothingeksvith respect to the intrinsic
geometry of the cortical surface. In this case the kernekapphighly nonsymmetric in the flat space, but becomes syrenvehen mapped back to the
cortical surface.
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Analytically
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Numerically computed using
parameterization based method

(@) (b) ()

Fig. 3. Heat-Kernel on the unit sphere computed using théyticel expression as well as the parameterization basederioal method forr = 0.1 (b)

t = 0.5 and (c)t = 1. The top row shows the heat-kernel computed analyticallyhensphere. The second and third rows show numerically ctedpkernel
on the sphere and in the flat paramater space. The two squaresaps of the upper and lower hemispheres, with the squanedaoy corresponding to a
great circle around the equator of the sphere.



(z,y,2) = (sign(z)z? + sign(y)y®, sign(z)z> — sign(y)y®). This
parameterization was used for the numerical discretimatb the
Laplace-Beltrami operator in (1).

anatomical, functional or statistical data on the cortisalfaces in
situations where selective smoothing is not required. &pfibns
include filtering of functional data when smoothness is neglifor

The root mean square percentage error compared to the iaahlytapplication of parametric random-field methods for contbfalse

expression fot = 0.1,0.5 and1 was2.31, 2.1 and1.32 respectively.
The errors are relatively small and do not appear to incredte
time. Note that since the metric distortion is accounted ifor
the computation of the Laplace-Beltrami operator, the rerresult
from resampling and discretization of the parameterizethse and
numerical approximation of derivatives. In order to stulg behavior
of the numerical errors in our method, we compared the pegen
error in the numerically computed heat-kernel for diffdrstep sizes

positives in multiple hypothesis testing [29].

Anisotropic diffusion filtering can be used for applicatiowhere
region selective smoothing is advantageous, such as falyisy
gyrification of the cortex by mean curvature maps [30], [3BR].
In functional studies involving different visual tasks, rtay be
advantageous to discourage smoothing across differenalvézeas
[33]. These technigues can also be used for multiscale septations
of functional activation [4], statistical data [5] and netanatomical

and grid sizes. As shown in Fig. 4 we can see that this error isvariability [3]. Surface matching across subjects may disoim-

monotonically decreasing function of grid size and a monically
increasing function of step size.

plemented using covariant PDEs, which essentially comfiotes
that are regular with respect to the surface metric, and raariant

We also applied the diffusion operators to mean curvaturpsmato smooth changes in coordinates [4], [3]. In these flowss ialso
computed on the cortical surface. We compute the mean cumevatnecessary to compute the Laplace-Beltrami operators oftanéeld,

using the method described in [27] and resample it on thdaegud.

and it is also possible, by analogy, to regularize higheeotdnsor

However we note that an added advantage of our approachtis¢ha fields using a manifold-derived metric (e.g., for enhanaiffusion

can also compute the mean curvature by using our discrietizat
the metric tensor. In particular,the mean curvatiirean be computed
as:

H= %baﬁgaﬁ, (32)
where thesecond fundamental fori,g is given by
1 |ox ox 0%*x
bas = 7= 5ut T 5uz * Bunou | (33)

The minima and saddle points of the mean curvature of thécabrt
surface are known to follow the sulcal patterns [27] andefwee are
vital features for automatic labeling of the sulci [28]. Hower, as can
be seen in Fig. 5(a), there is a considerable amount of noiskei
mean curvature computed on the cortical surface. This imgrily

due to the fact that the mean curvature is a local feature and [5]

therefore prone to errors in extraction and discretizatiothe cortical
surface. We see that the isotropic diffusion filtering srhestout this
noise, but since this filtering is not region selective, gaablurs the
regions between sulci (positive mean curvature) and gyrgdtive
mean curvature) as seen in Fig. 5(b). On the other hand, teopso
filtering removes noise while carrying out the smoothingyomithin

regions and thus respects boundaries between sulci anGggeen
in Fig. 5(c), thus illustrating the advantage of anisoteofiitering.

V. DISCUSSION

We have described a computational procedure for diffusibn
tering of scalar images defined on non-Euclidean surfacemgla
parameterized representation of the surface, we computdution
to the diffusion equation in which metric tensors are useddmount
for the curvature of the surface and intrinsic distance® f@sulting
diffusions are computed with respect to the intrinsic getoynef the
surface and are therefore independent of the specific péeamaion
used, so long as the parameterization is fine enough. We
presented a Crank-Nicolson type scheme for discretizafidime time
derivative in order to make these filters stable. Our pararizttion-
based method can be used for both isotropic and anisotrdhisidn
smoothing, as we demonstrated by performing these opesatio
mean curvature maps on models of the cerebral cortex. Thé#ines
computational procedures are relatively efficient andlstakquiring
approximately 30 mins of computation for isotropic smonthbn a
single cortex, including the preprocessing time necesgamxtract
the parameterized representation of the cortical surface.

In the context of neuroimaging, isotropic forms of diffusio
described here may be used for spatially invariant smogthuh

fi10]
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tensor images).
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(a) Locally computed (noisy) mean curvature

(c) Anisotropically smoothed mean curvature

Fig. 5. left: The mean curvature of the cortical surfacetplibton a smoothed representation for improved visualizatibcurvature in sulcal folds; right:
The mean curvature plotted in 2D parameter space for a sowgtecal hemisphere. (a) shows the mean curvature mapseosautface and in the flat space
for one hemisphere. (b) Isotropic diffusion filtering sneeg uniformly on the cortical surface thus losing detailtie turvature map while (c) anisotropic
diffusion filtering removes the fine grain noise structurdijlev retaining the larger scale details in the curvature map

formulae for completeness and ease of implementation. €taled linear, its gradient is constant over each trianglso that:
derivation is presented in [25].
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We assume that the mapping functidnis piecewise linear over /||vu|| s Z Izl
. . . . 7
the surface, i.e. it is linear over each triangle. For sucittions, the where th m is over all trianales. The eneray minimizatiis:
gradient operator foi'" triangle is given by ere the sum 1s over all fnangles. the energy a
cretizes to
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5) = L y? - y% y? —y% y% - y% where @' are the values of the maf on the i*" triangle. This
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energy discretization with the unit square mapping coirgtran

the vertices corresponding to corpus callosum is solvedgusi
_ 1 B preconditioned conjugate-gradient minimization metheslutting in
24177 the p-harmonic maps shown in Fig. 1. We use a Jacobi predomeit
for the minimization. The mapping function is integratedoirour
where A’ is the area of trianglé and =, i, zi denote ther,y,> BrainSuite package [22] and is available for download tgtou
coordinates of the:‘" vertex of i*" triangle. Sincei is piecewise http://brainsuite.usc.edu.
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