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A Parameterized Macromodeling Strategy
With Uniform Stability Test

Piero Triverio, Student Member, IEEE, Stefano Grivet-Talocia, Senior Member, IEEE, and
Michel S. Nakhla, Fellow, IEEE

Abstract—This paper presents a strategy for the construction of
parameterized linear macromodels from tabulated port responses.
These macromodels are able to reproduce the input-output be-
havior of the structure of interest both in terms of frequency and
one or more design variables such as geometry and material pa-
rameters. A highly efficient combination of rational identification
and piecewise linear interpolation leads to a macromodel form
which can be cast as a polytopic descriptor form. This in turns
enables the construction of a numerically robust testing procedure,
based on linear matrix inequalities, for the assessment of uniform
model stability within any prescribed region of the parameters
space. Several numerical examples are used to illustrate the theory
on practical application cases.

Index Terms—Descriptor forms, linear macromodeling, param-
eterization, polytopes, scattering, stability.

1. INTRODUCTION AND MOTIVATIONS

HE COMPLEXITY of modern electronic systems calls
for fully automated design and optimization workflows. In
this scenario, the finalization of the physical layout of a given
structure or subsystem results from lengthy optimization pro-
cesses, which select the best candidate among many possible
choices while maximizing some system performance metric.
This optimization is usually performed by repeated system-level
simulations for various combinations of the design variables.
A fundamental enabling factor for the above process is the
availability of models for each structure or component. These
models should be available on-demand for any configuration
of the design variables, typically geometrical parameters such
as interconnect width and spacing or substrate height, or mate-
rial parameters such as conductivity or permittivity. Also, these
models should be available in a form that is compatible with
the adopted system-level solver for the evaluation of the perfor-
mance metric. Circuit solvers of the SPICE class are commonly
used for this task. A model with such features will be denoted
as parameterized macromodel in the following.
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For the nonparameterized case, a large number of results
have been published over the last few years on the subject of
macromodel generation/identification, addressing the stability,
causality, and passivity issues (see, e.g., [1]-[18] and refer-
ences therein). Macromodeling has indeed become a standard
practice in various application areas. A macromodel is typically
created by first running a full-wave simulation tool to extract
the port responses, e.g., the frequency-dependent scattering
matrix of the structure of interest. Then, suitable algorithms
are applied to perform a rational approximation, possibly with
passivity constraints, such that the resulting macromodel can
be cast in SPICE-compatible form. Unfortunately, this process
is not feasible when the structure of interest depends on one or
more design variables, since the entire macromodeling flow,
including the full-wave characterization step, must be repeated
for each different combination of the parameters.

This paper overcomes these problems by suggesting a new
parameterization scheme for linear macromodels. This ap-
proach starts from a restricted set of tabulated port responses,
corresponding to few configurations of the design variables, and
identifies a multivariate model that directly includes the depen-
dence on design variables in a functional form. Parameterized
modeling algorithms have been proposed for transmission
line structures in [19]. For generic linear components such as
connectors, vias, or passive elements, a parametric extension
of the Sanathanan Koerner iteration was introduced in [20] and
further improved in [21]. A similar approach, making use of
orthonormal bases, was presented in [22].

There are several new contributions in this work. First,
a particular functional form of the macromodel is devised
(Section II), based on a combined rational frequency depen-
dence and piecewise linear parameters dependence. A highly
efficient identification process is then applied to derive the
coefficients of the macromodel multivariate expression, which
is valid for any continuous variation of frequency and design
parameters in the range of interest (Section III). A number
of state-space realizations are then constructed, leading to a
parameterized polytopic descriptor form, which mimics the
structure of the well-known modified nodal analysis (MNA)
equations (Section IV). The availability of this form enables
the construction of a parameter-independent algorithm for
checking the uniform stability of the parameterized macro-
model (Section V). This test is based on purely algebraic
conditions, which are solved using convex optimization. There-
fore, no brute-force sampling in frequency and parameters
space is required. Numerical application examples (Section VI)
confirm the excellent performance of the proposed technique.

1521-3323/$25.00 © 2009 IEEE
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II. MODEL FORMULATION

A. Problem Statement

The objective of this work is to develop a robust numerical
algorithm for the generation of parameterized macromodels
starting from tabulated data. The resulting models will re-
produce the external ports behavior of the structure under
investigation as a function of both frequency and one or more
design variables, such as geometry or material parameters. The
most common scenario is to derive input data samples from
repeated full-wave simulations, although the main technique
is applicable independently on the source of the raw structure
characterization. For the sake of simplicity, the presentation
of the main results will consider two design parameters only,
denoted as A and p. All results are however valid in the most
general case and for an arbitrary number of parameters, with
obvious modifications.

The structure under modeling is assumed to have a linear
input—output behavior, with N accessible electrical ports. Our
starting point is the availability of the structure frequency re-
sponses, being known at several frequency points!

we{wr}, k=1,...,k (D

and for different parameters values

xe{ny, I=1,...1 )
wE {pm}, m=1,...,m. 3)

We will denote the available data samples as
Hyim “)

where the subscripts k, [, and m refer, respectively, to the fre-
quency sample wy, and to the two parameters values A; and fi,,.
The grid of available parameters values (A7, i, ) defines a hy-
percube in the parameters space

[/\17 )‘i] X [/1’17 .u’ﬁ’b] (5)

which provides the range of validity of the parameterized
models to be constructed. In summary, we want to derive a
macromodel H(s; A, ;1) which depends continuously on fre-
quency and parameters, and which provides the best possible
approximation to the input data Hy;,,, .

B. Parameterized Model Formulation

One fundamental constraint on the functional form of the
macromodel H(s; A\, 1) is the possibility to synthesize it as a
lumped circuit equivalent, so that it can be easily included in
system-level simulations and optimizations using standard cir-
cuit solvers such as SPICE. This constraint calls for a rational
dependence on frequency, as in most state-of-the-art linear
macromodeling schemes. Rational functions can be specified
in terms of poles/residues, zeros/poles, or numerator/denomi-
nator polynomials. All these formulations suffer from severe

IThroughout the paper, we will always denote the the minimum and max-
imum values taken by a quantity x as  and &, respectively.

ill-conditioning when the dependence of external parameters
is included [20], [21]. Therefore, we adopt the more general
formulation2

Hsia ) — o B n)n(s) ©

2 on Tn(As 1) b (s)

where numerator and denominator are linear combinations of
suitable basis functions {¢,,(s)}. Frequency variations are in-
duced by the basis functions, whereas parameters variations are
induced by their expansion coefficients. It is straightforward to
prove that (6) is a rational function of frequency whenever all
basis functions are rational.

Because of very convenient numerical properties, we choose
{¢n(s)} to be partial fractions associated to a prescribed set of
poles a,,

1, forn =10
Pn(s) = L forn=1,...,n" )

S—an

For the expansion coefficients we adopt instead the representa-
tion

R (A ) = Z Ripqtp(A)€q (1) (8)
Pn(A 1) =Y Tpgthp(MN)q (1) (8b)

p,q

with the parameter-dependent basis functions {¢,(\)}, p =

1,...,p = [ being piecewise linear, given by
B0 = T T, )
ﬁlm,w]m (%)
forp =2,...,p— 1 and by
P1(A) = %I[Al,kg](/\) (%9b)
0N = T Ty () 90)

forp = 1 and p = p. With 14(-) we denote the indicator
function of set A

1, ifzeA

0, otherwise (10)

Ly(z) = {

The basis functions (9) are linear in each interval [A;, A;41] be-
tween the available parameter points. A similar definition is
used for &;(n). The complete model expression including ex-
plicit dependence on all free variables reads

> n.prq BnpaPn (8)¥p(M)Eq (1)
Zn,p,q TrpgPn (8)1hp(MN)Eg (1)

2In order to keep mathematical formulas reasonably compact, the lower and
upper values of summation indexes will be often omitted. The lower value will
be always 1 except for index 7, that will start from O unless explicitly noted. The
upper limit instead will always be the maximum value associated to the index
(i.e.,  for n, p for p,...).

H(s;\p) = (11)
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We remark that the order of numerator and denominator is
the same, since the same basis poles are used. This is indeed the
main enabling factor for the developments of Section IV, which
will show how the basis poles cancel out in the final model ex-
pression. Note however that a different order for numerator and
denominator polynomials is indeed possible. For example, one
may want a numerator degree larger than denominator degree
by one, in order to build macromodels with linear growth for
large frequency (e.g., reproducing purely inductive or capacitive
asymptotic behavior for impedance or admittance forms). This
is easily achieved by adding ¢_1(s) = s to the set of numer-
ator basis functions only. Therefore, without loss of generality,
we will employ throughout the rest of this paper the same set of
basis functions (7) for both numerator and denominator.

III. PARAMETERIZED MODEL IDENTIFICATION

A. Formulation

We present here an advanced identification procedure that al-
lows estimation of the coefficients R4 and 7,4 in (11) from
the raw data (4), while minimizing the modeling error

52 = ZTL Rn(/\l/ﬂm)(]sn(jwk)
l,%;k En r"()‘h /l/m)ébn(jwk)

2

- Hyim (12)

F

where ||-||F denotes the Frobenius matrix norm.3

The numerical minimization of (12) poses two main chal-
lenges.

1) The identification problem is nonlinear, since some of
the unknown coefficients appear at the denominator. This
problem is common to all rational macromodeling algo-
rithms, since the macromodel poles are never known a
priori. Some good solutions are indeed possible, including
the well-known vector fitting (VF) algorithm [3] and the
iterative weighting process known as Sanathanan—Koerner
iteration [2].

2) The number of free variables may grow very large. This
number, which can be explicitly estimated and for the two-
parameters case results Im(n + 1) x (N2 + 1), grows
exponentially with the number of parameters. The direct
solution of (12) in a single step may therefore be unfeasible
due to obvious complexity arguments.

These two challenges are here addressed using a smart formu-
lation of the identification problem, which makes explicit use of
the piecewise linear model structure. We will show in the fol-
lowing paragraphs that the proposed technique results in a great
reduction of the overall computational cost for the identification,
both in terms of CPU and memory requirements. In addition, it
provides a much improved numerical accuracy and robustness
with respect to other approaches.

Thanks to the piecewise-linear parameterization (8), the fol-
lowing interpolation property holds for the model coefficients

Rn<)\l7ﬂm) =Ruim (13)
Tn( ALy m) = Tnim. (14)
3The Frobenius norm of a matrix A is given by ||A||r = /Tr(AAH)

where Tr denotes the matrix trace and the superscript 7 the conjugate transpose.

Therefore, the model response H(s; Aj, i, ) evaluated at the
grid point (A, i1, ) is only function of the few coefficients

{Rnlm } ) {Tnlm }7

with [ and m fixed. Indeed, the modeling error can be written as
sum of independent contributions £2,,

n=0,...,n (15)

1

e=> > e,

(16)
=1 m=1
where
52 _ i Zn Rnlm¢n(jwk> _ Hkl ? (17)
tm h—1 Zn Tnlmqsn(jwk) o F

Each factor £7,, represents the local modeling error at the grid
point (A, i ). Since these local errors are independent, i.e.,
they are functions of separate subsets of model coefficients,
they can be independently minimized. If the minimum of (17) is
achieved for each grid point (A, pt.r, ), the global error (12) will
be also minimized. This observation shows that the minimiza-
tion of the fitting error (12) can be reformulated as /77 indepen-
dent local minimum problems.

Minimization of (17) is a standard, non-parameterized fitting
problem, that tries to match the frequency response Hy,,,, (with
{ and m fixed)

H,,, (jwr) ~ Hygn, (18)
with the transfer function
R’I’L my¥n
Hyp (s) = L Bonimnls) (19)

B En 7"nlm‘;bn(s) .

of a local, nonparameterized model. This reformulation of the
original problem allows to use standard modeling algorithms to
identify parameterized models in the form (6).

B. Fitting Algorithm

The independent local fitting problems (18) and (19) are
not critical, and highly robust and efficient methods exist for
their solution. The VF algorithm [3] is probably the best choice
and will be used here. This method produces a macromodel
in poles/residues form using an iterative poles relocation
procedure, which is well-documented in the literature. When
applied to the raw data Hy;,,, with [ and m fixed, it returns the
individual model

Hi(s) = Qoim + 3 — 200 (20)
n=1

— § — Pnilm

where Qi and p,;,, are respectively the model residues and
poles, with Qg;,,, being the direct coupling constant.

If the above local identification process is applied to each in-
dependent grid point (A, i ), the resulting sets of macromodel
poles

Pion = {pnzm, TL:l,...,’FL} 21

have no relation with each other. It is well known that model
poles are very sensitive quantities to even small variations
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Fig. 1. Sketch of poles location of a fourth-order circuit with varying compo-
nents. Bifurcation effects show that a direct parameterization of the model poles
is nonsmooth and should be avoided.

of the parameters. Bifurcation effects may occur, resulting in
quite irregular variations of each pole in the parameters space.
See Fig. 1 for a graphical illustration on a simple test case. In
addition, the poles/residues form (20) is not fully compatible
with the model representation (6), which is based on a set of
frequency-domain expansion functions {¢,(s)}, which are
defined on a different but common set of poles {a,,}.

Fortunately, there is a full compatibility between (20) and
(19), since a direct conversion can be performed from one
format to the other, and vice-versa. Here, we are interested
in converting (20) into (19). The following theorem provides
the conversion rules for the computation of global coefficients
R..;.m and 7,,;,, from local coefficients Q,,;,,, and p,im,.

Theorem 1: Under the hypothesis that the poles {a,,} are
distinct, the transfer functions

Hi(s) = Qo+ Y - f’p 22)
n=1 "
and
Ry +
HQ(S — 0 Zn 1 ST an (23)
To + Zn 1s Z,n
are equal if
Zrn H pi—aw)=—ro [[(i—an) (4
"z v
forl =1,...,n
R, =r,Hi(an) (25)
forn =1,...,n and
Ro = 70Qo. (26)

Proof: Let us rewrite (23) as ratio of two polynomials by
multiplying numerator and denominator by [/ _, (s — an’)

) - BTl 0 £ L R T (=0
s) =
2 T0 Hn’:l(s — G,n/) + Zn:l Tn H n//;l (8 — a/n’)

27)

To prove the first condition (24) we force the poles of (27) to
equal the poles of (22) by setting to zero the denominator of
(27)fors = p;, withl =1,...,n

n

To H (pl _an

n'=1 n=1

n

Z le—an )=0.

n/=1

n!#£n

3

(28)

This condition allows to compute the denominator coefficients
{rn} of (23) with the solution of a linear system. Since there is
a degree-of-freedom in the coefficients of (23), the value of rg
can be fixed at will. The second condition (25) is obtained by
evaluating Ho(s) = H;y(s) for s = a,, n = 1,...,7, and
from the fact that Ho(a,) = R, /7, as evident from (27).
Finally, condition (26) follows by imposing H;(s) = Hs(s)
for s — oo.

The solution of linear system (24), followed by a direct eval-
uation of (25) and (26) for each grid point (A, yi,,, ) provides the
full set of coefficients R,,;,,, and 7., defining the proposed pa-
rameterized macromodel (6), starting from the collective set of
independent poles and residues obtained by local fitting (19) at
individual grid points.

C. Choice of Basis Poles

We discuss now the choice of basis poles {a,}. We start
noting that these poles are not used in the first stage of the fit-
ting algorithm, the identification of the local models (20), which
is performed using standard VF. Their choice has therefore no
effects on this task. Basis poles come into play later, when all
local models (20) are expressed with respect to the common
basis ¢y, (s) adopted for the final parametric model. The choice
of basis poles a,, should be done in order to optimize the numer-
ical conditioning of basis functions ¢, (s), in order to ease the
conversion from the VF form (20) to (19). It is well known that
the proposed rational basis (7) is well conditioned if the basis
poles a,, are linearly distributed over the available bandwidth
[3]. Therefore, we adopt this rule to displace the basis poles a,,.

To further support this conclusion we devised the following
numerical test on the application example of Section VI-B. We
computed the condition number of the linear system to be solved
in the model conversion (24) for several displacements of the
basis poles a,.

* Linear: Linear displacement over the available bandwidth

suggested in [3].

* Response poles: The basis poles {a,} are chosen as the
poles of one of the available responses, estimated with
standard VF.

e Linear, 10% bandwidth: Linear displacement over one
tenth of the available bandwidth.

e Linear, 10x bandwidth: Linear displacement over ten
times the available bandwidth.

* Linear with close poles: Linear displacement for all poles
except for the first one, placed very close to the second pole
(a1 = 0.99(12).

Table I reports the numerical results of this test, and shows

that the adopted rule (first case) provides the best conditioning
of the model conversion formulas.
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D. Stability Enforcement at Grid Points

Since VF guarantees the stability of the identified model, the
final parameterized model (6) will be stable by construction at
all grid points (A7, f,, ). It is clear that this stability enforcement
process does not guarantee uniform stability of (6) at each point
in the parameters space (5). However, it strongly reduces the
occurrence of stability violations, and can be used to guarantee
stability in the whole parameters range. In fact, if the model
turns out to be unstable in a certain region, the interpolation grid
can be there refined by adding more interpolation points where
stability is preserved by construction, until uniform stability is
achieved. In case of multiple parameters, those that produce the
most relevant variations of the system response should be re-
fined first, since stability violations are unlikely where varia-
tions due to parameters are small. By adding more samples with
respect to these most critical parameters, the cause of stability
loss is removed and the probability of obtaining uniform sta-
bility is maximized.

Such a procedure clearly needs for a reliable algorithm to
test uniform stability and localize possible violations. This need
motivates the developments of Section V, where we present a
robust numerical algorithm for checking the uniform stability
of parameterized models in the form (6), without resorting to
brute-force sampling methods, which are slow and possibly mis-
leading. Before presenting such testing procedures, we need to
further elaborate on the model realization.

IV. MODEL REALIZATION

In this section, a state-space realization of the parameterized
model transfer function (6) is first derived, and then converted to
a descriptor form. This form is very convenient, since it allows
the construction of a uniform stability test for the parameterized
macromodel (6). A brief review of the main definition and prop-
erties of descriptor systems is available in Appendix A.

A. State-Space Realization
In the following derivations, we will adopt the standard nota-

tion for state-space realizations:

H(s) =D+ C(sI - A)™'B [fé ]]:3)} . Q9
A state-space realization for (6) can be obtained if the model

transfer function is interpreted as the ratio of two transfer func-
tions Hy (s, A, ) and Ha(s, A, i)

H;(s; M\ p)
H(s:\ p) = =501 30
S Hy(s; A, 1) G0
where
(A p
Hy (55, 1) = Ro(\, o +Z s_a’ (31)
Hy(s; A\ p) = ro(A p) + Zs—au) (32)

First, we construct two separate state-space realizations for the
numerator and denominator. We have

A1 B
Hi(s; ), 33
(83, m) = [cmm Dlwﬂ &)
. A2 B2
Hy(s34 m)Iy = [Cz(/\di) Dz(/\li)} GY
where
* A; = A, = blkdiag{a,Iy} withn =1,...,7;

e B; = By = [Iy,...,Ix]" is a block-column matrix
obtained by stacking n identity matrices;

* Ci(Ap) = [Ra(A ), Ra(A )]s
° CZ(/\7 /14) [Tl(/\v IJ')IN7 teey ()‘7 /J')IN]’
* Dl(/\lj’) = RO(/\7N)§

* D2<)\7 /1’) = TO()H /L)IN

We remark that, in case of complex poles {a,}, the above
state-space matrices are complex. However, standard coordinate
changes can be applied in the state space such that the realization
is real [23]. Henceforth, we will sometimes omit the dependence
of the matrices C1, Co, Dy, and D5 from A and p, in order to
avoid formulas of excessive length.

Although the denominator function is scalar, its realization
has been chosen to have N ports, in order to be compatible in
size with the realization of the numerator. Then, a realization
for the inverse of Hy(s; A, ) is derived from (34)

A, —-B,D,'Cy | -B,D,~!
D, 'C, | D, !

Hy'(s; A p)Iy < [
(35)

using standard manipulations, see [24] for details. Finally,
H(s; A, p) is realized by cascading (33) and (35) as

H(s; A, 1) = Hi(s; 0, ) Hy (550, )y
A, B D2_102 B;D,!
s 0 A2 — B2D2_102 _B2D2_1
C: DiD,7'C, | DD,

(36)

B. Reduction of the Number of States

The number of state variables in (36) is 2N 71, at least twice as
large than necessary. In fact, it can be easily seen that N7 states
are not controllable and do not contribute to the input-output
transfer function. This is evident if one considers that the poles
of (36) are equal to*

eig{ A1} Ueig{Ay — ByDy™!
= {a,} Ueig{Ay —

(/\, .U')CZ(/\, N)}

B,Dy '\, 1)Ca(A 1)} (37)

while the poles of the original transfer function (6) are
only eig{A, — B2D2_1(A,M)Cg()\,,u)}, i.e., the zeros of
Hy(s; A, pv). Indeed, the poles {a,} cancel out since they are
common to the numerator and the denominator of (6).

The redundant states can be removed if (36) is cast to the
Kalman controllable canonical form [24] with the similarity
transformation

4Note that the poles {a,, } of A are multiple.
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TABLE I
CONDITION NUMBER OF THE LINEAR SYSTEM OF (24) FOR
DIFFERENT DISPLACEMENTS OF BASIS POLES { a, }. RF DEVICE
OF SECTION IV-B 1S CONSIDERED. MINIMUM AND MAXIMUM
VALUES OBSERVED IN THE CONVERSION OF THE DIFFERENT
LOCAL MODELS ARE REPORTED

Displacement Conditioning of (24)
[min,max]
Linear 5 x 10%,3 x 107]

[
Response poles [6 x 10%,3 x 107]
Linear, 10% bandwidth || [1 x 100, 5 x 1019]
Linear, 10x bandwidth [2 x 107,3 x 107]
Linear with close poles [2 x 108, 1 x 10%]

x(t; A, 1) = Tw(t; A, 1) (38)

where z(t; \, 1) denotes the state vector of (36), w(t; A, i) is
the new state vector in a different coordinate system, and the
corresponding transformation matrix reads

Y

with I being the identity matrix of size Nn x Nn. Application
of (38) to (36) leads, after removal of the uncontrollable states,
to the more compact realization

A, —By,D,'Cy | ByDy! 40)
C,-DD,"'C; | DD,

(39)

Hesih ) - |

C. Descriptor Form

The realization (40) does not depend linearly on the matrices
Ci(A, 1), Ca(A, 1), D1(A ), Da(A, ) which are functions
of the parameters A and ;. We now show that a much simpler
realization can be constructed such that linearity is preserved.
This constraint will require to adopt a slightly more general form
of realization, namely a so-called descriptor form, also known
as a differential-algebraic system of equations (DAE) or, in cir-
cuit notation, as a modified nodal analysis (MNA) system. See
Appendix A for details. A few straightforward manipulations
show that the following descriptor system

Ez(t; A, pn) = A\, p)z(t; A, ) + Bu(t)  (4la)
y(t A p) = CA, pw)z(t; A, p) (41b)
with
1 0 [ A, B

o [0 0] AL = [Cz()\,u) Dy(X, )
(42a)

B=| | com=1ei0um i)
(42b)

is equivalent to the realization (40). It is evident that all blocks of
this representation depend linearly on the parameter-dependent
matrices Cq(A, i), Ca(A, 1), D1(A, 1), Da(A, i). Therefore,
this formulation inherits the piecewise linear parameterization
scheme introduced for the model coefficients (8). It is also re-

markable that a large part of this system (the first /N7 equations)
does not depend on the parameters. The above piecewise linear
nature of the parameterized descriptor form is essential for the
development of the uniform stability check, to be introduced in
next Section.

V. UNIFORM STABILITY ASSESSMENT

In this section, we present a purely algebraic method for
checking the stability of parameterized models uniformly with
respect to the parameters A and p. The devised procedure is
based on the descriptor form realization (41), since its matrices
have a very simple dependence on the parameters.

A. Polytopic Nature of the Model Matrices

Starting from (42a) and (42b), it can be easily seen that both
A (), u) and C(A, p) are piecewise linear functions of A and p
and can be expressed as

A\ p) = Z Z Apgthp(AN)Eq(1r)

(43)
p=1q=1
with
A, B,

A, = 44
Pa |: TlquN rﬁquN rOquN ( )

and

P q
C\ )= Z Z Crap(AN)Eq (1) (45)
p=1qg=1

with

Cpq = [Rupq Riipg Ropq] - (46)
Therefore, for each rectangular subdomain

(A 1) € [y Aiga] X [poms tmy1] 47

of the parameters space, the system matrices (42a) and (42b) are
either multiaffine’ in the parameters or constant. In fact, A (X, i)
and C(A, 1) can be written in the subdomain (47) as

A\ p) = Apn (1= X)(1 = ')+ A N (1 — 1)

+ A (L= N + Appy N’ (48)
OO\ 1) = Com(1 = X)(1 = ) + Copa N (1 = 1)
+ Crmt1(1 = X)W + Crprmpr N/ (49)
where
v A=
A1 — N
W= _HZHm (50)
Hm+1 — Hm

Expressions (48) and (49) show that, within each rectangle (47),
A (), ) and C(A, p) take values in the convex hull identified by
the “corner” matrixes

SA function is multiaffine in its arguments if it is linear (affine) in each argu-
ment. Multiaffine functions are also called bilinear functions.
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m]eco{[&m] [&nm].

|:Al,m+l:| . |:Al+l,m+1:| } . (51)

Cim+1 Cit1,m+1

Therefore, the system matrices belong to a so-called convex
polytopic domain. For this kind of systems, conditions for uni-
form stability can be found in the robust control literature [25].
These conditions, which involve the feasibility of certain linear
matrix inequalities (LMI), are reviewed in the following. The
reader is referred to [26], [27] for general concepts about LMIs
and their numerical solution.

B. Uniform Stability

We now consider testing the uniform stability of proposed
macromodels. We have the following result [25], which we re-
port without proof.

Theorem 2: The system (41) is admissible (i.e., stable, reg-
ular and impulse-free, see Appendix A) for all parameter values
in the subdomain (47) if there exist two matrices P = P7 > 0
and Q such that the following set of LMIs holds

(PE" +8Q)TAT + A, (PET +SQ) <0 (52
withp = 1,1+ 1, ¢ = m,m + 1, and where S € RN(@+1xN
is any matrix with full column rank that satisfies ES = 0. The
specific choice of matrix S provides extra degrees-of-freedom
for tuning the performance of the LMI solver. In our case, we
can choose the explicit form S = [0 Iy ], which provides the
simplest expression fulfilling the hypothesis of Theorem 2.

A few comments are in order. It is easily recognized that the
LMI condition (52) collects a set of Lyapunov stability equa-
tions, each corresponding to a “corner” model, extracted from
(41), for the subdomain (47). The theorem states that when
these Lyapunov equations hold simultaneously with common
matrices P and Q, then the model is uniformly stable in the
entire subdomain (47). This condition is very powerful, since
only a feasibility check of LMI condition (52) is required. This
operation can be performed with standard convex program-
ming methods [27] in a finite number of steps. In this work,
we use the well-known SEDUMI solver [28]. We remark that
this procedure avoids possibly unreliable and time consuming
brute-force dense sampling in the parameters space, that have
to scan the whole space to ascertain model stability.

The uniform stability conditions set by Theorem 2 are suf-
ficient but not necessary. Therefore, if these conditions do not
hold in a certain subdomain (47), one cannot conclude that there
is a stability violation for sure. In this case, one can adopt the fol-
lowing strategy to find stability violations. First, the subdomain
(47) is further divided into smaller rectangles, where Theorem 2
is applied in order to detect areas where (6) is surely stable.
Then, if stability is still unknown in some of these small areas, a
local sampling can be there performed to localize possible sta-
bility violations. We remark that this resort to sampling does
not significantly affect the computational cost of the proposed
uniform stability test. If fact, sampling is only applied in some
small zones, where a few check points are sufficient. Moreover,

y|g
1o

Fig. 2. Cross section of the transmission line example. Signal lines are num-
bered; reference conductors are grayed.

since model is likely to be unstable in these areas, only a few
check points must be scanned to find a stability violation and
stop the sweep since the model instability has been proved.

VI. APPLICATION EXAMPLES

A. Coupled Wires With Variable Separation

We consider a multiconductor transmission line composed
by six parallel wires; the conductors are 2 cm long and have
a diameter of 1 mm. The cross section is depicted in Fig. 2 and
depends on the two free variables = and y, which represent the
horizontal and vertical spacing between the conductors. The two
inner conductors are the signal lines, while the other four act
as reference. This example reproduces the simplified geometry
of a high-speed connector, with varying horizontal and vertical
pitch.

The purpose of this example is twofold. First, we want to test
the algorithm accuracy on this four-port structure that exhibits
both large and small .S parameters, being the transmission coef-
ficients and the lines crosstalk. Second, this structure will show
on a practical example the low computational complexity of the
proposed approach, which allows the quick identification of a
two-parameters model for the whole four-port structure.

The scattering parameters of the line were computed up
to 20 GHz for several values of the two design parame-
ters. The horizontal spacing = was swept between 3.5 and
4.5 mm at steps of 0.1 mm. The vertical spacing from 2.5
up to 3.5 mm with the same 0.1-mm step. Out of these re-
sponses, those for © € {3.5,3.7,3.9,4.1,4.3,4.5} mm and
y € {2.5,2.7,2.9,3.1,3.3,3.5} mm were used to identify
a parameterized macromodel, as a multivariate function of
frequency, x and y. The other responses were instead used as a
validation set, in order to assess the model quality in the whole
parameters range once the identification was completed.

A parameterized model of order 16 was identified for the en-
tire four-port structure. The maximum modeling error turned
out to be 9.3 x 1072 on the fitting responses and 9.7 x 103
on the validation responses. The modeling error for all avail-
able configurations of = and y is shown in Fig. 4. Fig. 3 further
demonstrates the excellent accuracy of the computed macro-
model, which is able to precisely reproduce the weak far-end
crosstalk S;,4 between the two signal lines. Thanks to the low
computational complexity of the proposed algorithm, the iden-
tification of the four-port multivariate model took only 19 s on
a 1.8-GHz laptop with 1.5 GB of memory. This is a quite re-
markable result, especially if one considers that previously pub-
lished techniques [20], [21], would have required about 2 GB of
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Fig. 3. Far end crosstalk S;4 for the coupled lines of Fig. 2. The model
response (dash-dot line) is compared with the original data (solid line) for
(z,y) equal to the worst case configuration (3.6,2.5) mm, and the parameters
configurations (4,2.5), (4.4,2.5), (3.8,2.9), (3.5,3), (4.2,3.1), (3.6,3.2), (3.5,3.4),
(4.1,3.4), (4.4,3.5) mm.

SM, error [dB]

Frequency [Hz]

Fig. 4. Modeling error for the far-end crosstalk Sq4 for all available combina-
tions of parameters x and y.

memory just to allocate the matrix associated with the fitting
equations.

The uniform stability of the model in the parameters range
was assessed with the LMI based algorithm proposed in
Section V-B. In all subdomains (47) the model turned out to
be uniformly stable, as further confirmed by Fig. 5, where the
model poles are depicted for several values of the parameters.
A brute-force stability test was also performed by sweeping
the two parameters in (5) at steps of 0.02 mm. Model stability
was confirmed also by this test, that however is less accurate
than the LMI-based test and more time consuming. For this
example, the algorithm devised in Section V-B took only 63 s,
while the brute force check took more than 5 minutes.

\

-1.5 -1
Re{s} [Grad/s]

Fig. 5. Model poles as a function of the parameters « and .

TABLE II
PORTS DESCRIPTION FOR THE RF DEVICE OF SECTION VI-B

Port Description

1,2 Differential input
3,4 Differential output
5 Block enable/disable
6 Power supply (high)
7 Power supply (low)

B. RF Circuit Block

As a second example we consider a seven-ports RF circuit
block located in several multimode GSM and EDGE trans-
ceivers for wireless applications and built in 130 nm CMOS
technology (courtesy of Dr. P. Brenner, Infineon Technologies
AG). A brief description of the circuitry ports is provided in
Table II. The small-signal scattering matrix depends on the bias
level Vp, which is a free parameter ranging from 0.15 V up
to 1 V. The device exhibits a strong nonlinear behavior with
respect to the V parameter and is thus a good benchmark for
the presented technique.

In order to construct a bias-dependent parameterized macro-
model, the scattering parameters of the linearized device were
computed from O up to 40 GHz for increasing bias values Vp
in 25 mV steps. An additional set of responses for intermediate
values of Vp was then used to validate the model quality after
identification.

Fig. 6 compares the transmission coefficient S3; of a param-
eterized model of order 6 with the original data, for the vali-
dation values of V. An excellent match between the model be-
havior and the reference data can be observed, even if the model
response changes quite rapidly, as can be observed in Fig. 7,
where the magnitude of the macromodel S3; parameter is de-
picted versus frequency and V. The computed model turned
out to be very accurate on all 49 elements of the S matrix, with
a maximum error between the model and the validation data of
3.2 x 1073, In Fig. 8 the reflection coefficient at port 4 of the
model is shown versus frequency and parameter V. With the
proposed technique, the model was identified in only 6 s, since
standard VF was applied sequentially to the different responses,
minimizing both computational cost and memory consumption,
that was negligible. This result represents a major improvement
with respect to earlier works on parametric macromodeling [20],
[21] that in this case would require the solution of some fully
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Fig. 6. Real (top) and imaginary (bottom) part of the S3; transmission coef-
ficients of the RF device. Solid lines represent the original data, dash-dot lines
the parametric model response.
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Fig. 7. Magnitude of S3; of the parametric model, versus frequency and V.

coupled least squares problems with about 230 000 constraints
and more than 700 unknowns, for a memory consumption larger
than 1.3 GB.

Finally, application of the uniform stability check proposed in
this paper showed that the computed model is stable uniformly
over the whole parameter range Vg € [0.15,1]V.

VII. CONCLUSION

This paper proposed a new framework for the generation
of parameterized macromodels. A new compact formulation
is introduced for the accurate representation of broadband fre-
quency and design parameters variations in a single multivariate
macromodel expression. Then, an identification algorithm is
presented, allowing for fast and reliable computation of the

1 4

Im{s, )
|
o
N

0.5 2

x 10"

VB[V] 1 4 Frequency [Hz]

Fig. 8. Real (top panel) and imaginary (bottom panel) part of the S44 parameter
for the RF device model.

model coefficients starting from a limited set of tabulated
frequency responses. Finally, the macromodel is cast in a
parameterized polytopic descriptor form. This formulation
leads to a direct and simple method for checking its uniform
stability over the entire range of parameters variation, based
on a purely algebraic procedure that does not require dense
sampling of the parameters space. The numerical examples
show that the presented technique produces very accurate and
reliable models, even for cases that are characterized by strong
parameter-induced variations.

APPENDIX

A. Descriptor Systems

This appendix collects some important concepts on the de-
scriptor representation of linear time-invariant systems used in
the paper. The reader is referred to [25], [29], [30] for more de-
tails and for a comprehensive set of bibliographic references.

The descriptor form is a mathematical representation of sin-
gular systems, that generalizes the very popular state-space rep-
resentation with the introduction of a matrix E

(53a)
(53b)
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with (t) € R™ and rank{E} = r. In general » < n, so this
representation supports singular systems governed by mixed dy-
namic and nondynamic (algebraic) equations, that do not fit in
the state-space formalism. The transfer function G(s) of (53) is
given by [25]

G(s)=C(sE—A)'B (54)

with the poles being the generalized eigenvalues [31] of the ma-
trix pencil (E, A)

p; = zeros{det(sE — A)} (55)

located both at finite and infinite frequency. The behavior of de-
scriptor systems is therefore much richer than state-space sys-
tems, and is classified according to the following properties
[25]:

o regular if det(sE — A) is not identically vanishing;

o impulse-free if deg(det(sE — A)) = r;

* stable if all poles p; have negative real part;

* admissible if regular, impulse-free and stable.
The regularity property ensures the existence and uniqueness of
the solution of (53) for any initial condition, while the impulse-
free property the absence of impulsive modes [25].
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