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Abstract This article presents the results of an experiment that completely mea-
sures the utility function and probability weighting function for different positive and
negative monetary outcomes, using a representative sample of N = 1,935 from the
general public. The results confirm earlier findings in the lab, suggesting that utility is
less pronounced than what is found in classical measurements where expected utility
is assumed. Utility for losses is found to be convex, consistent with diminishing sen-
sitivity, and the obtained loss-aversion coefficient of 1.6 is moderate but in agreement
with contemporary evidence. The estimated probability weighting functions have an
inverse-S shape and they imply pessimism in both domains. These results show that
probability weighting is also an important phenomenon in the general population.
Women and lower educated individuals are found to be more risk averse, in agreement
with common findings. In contrast to previous studies that ascribed gender differ-
ences in risk attitudes solely to differences in the degree utility curvature, however,
our results show that this finding is primarily driven by loss aversion and, for women,
also by a more pessimistic psychological response toward the probability of obtaining
the best possible outcome.
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1 Introduction

After numerous studies systematically falsified the classical expected utility model as
descriptive theory of decision making under risk (Allais 1953; Kahneman and Tversky
1979), various new descriptive theories of individual decision making under risk have
been developed (Starmer 2000). The most prominent of these non-expected utility
models is the prospect theory (Kahneman and Tversky 1979; Tversky and Kahneman
1992).

Prospect theory entails two fundamental breakaways from the classical model.
Instead of defining preferences over wealth, preferences are defined over changes with
respect to a flexible reference point, often taken as the status quo. Decision makers are
assumed to be less sensitive to changes in outcomes further away from this reference
point, which is called diminishing sensitivity, and it is assumed that negative changes
(losses) hurt more than positive changes (gains), a phenomenon called loss aversion.
This generalization helps to explain phenomena such as the equity premium puzzle
(Benartzy and Thaler 1995), downward-sloping labor supply (Goette et al. 2004), the
End-of-the-day-Effect in horse race betting (McGlothlin 1956), and the co-existence
of appreciable small stake- and moderate large stake-risk aversion (Rabin 2000). Fur-
thermore, linearity in probability is replaced by a subjective probability weighting
function that is assumed to have an inverse-S shape, reflecting increased sensitivity
toward changes in probabilities near 0 and 1. This accommodates anomalies of the
classical model such as the Allais paradox (1953), the co-existence of gambling and
insurance, betting on long-shots at horse races (Jullien and Salanié 2000), and the
avoidance of probabilistic insurance (Wakker et al. 1997).1

The generalization that prospect theory entails breaks the one-to-one relationship
between utility curvature and risk attitudes that holds under expected utility. Hence,
in the prospect theory framework, risk attitudes are jointly determined by utility cur-
vature and subjective probability weighting, where outcomes are defined as changes
with respect to the status quo. This adds complexity to the interpretation of the degree
of risk aversion (preferring the expected value of a prospect to the prospect itself), as
it can no longer be summarized into a single index of curvature (Wakker 1994), and it
complicates the empirical determination of risk aversion, because of the simultaneous
confounding effects of utility curvature and subjective probability weighting (Tversky
and Kahneman 1992).

In order to test prospect theory’s hypotheses about the specific functional forms and
to quantify the sources of risk aversion, various authors have attempted to empirically
determine the prevailing shape for the utility- and probability-weighting functions.
These studies deal with the simultaneity problem by either assuming a parametric form
for these functions (Tversky and Kahneman 1992; Camerer and Ho 1994; Tversky and
Fox 1995; Donkers et al. 2001; Harrison and Rutström 2009; Abdellaoui et al. 2008)
or by exploiting a particular design that permits them to be disentangled non-para-
metrically (Wakker and Deneffe 1996; Abdellaoui 2000; Bleichrodt and Pinto 2000;
Abdellaoui et al. 2007b).

1 For a survey of examples of field phenomena that prospect theory can and expected utility cannot explain,
see Camerer (2000).
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Both approaches have their advantages and drawbacks. The parametric approaches
are easy to estimate and interpret, but they suffer from a contamination effect: a mis-
specification of the utility function will also bias the estimated probability weighting
function and vice versa (Abdellaoui 2000). For instance, in the parametric estimation
of prospect theory, Harrison and Rutström (2009) assume the one parameter proba-
bility weighting function introduced by Tversky and Kahneman (1992). This function
may be a misspecification if the true weighting function exhibits underweighting for
intermediate and large probabilities, and minimal overweighting of small probabili-
ties. Moreover, the authors assume the probability weighting function for gains and
losses to be equal. This assumption will directly affect the loss aversion measure if
the degree of pessimism differs between both domains. Donkers et al. (2001) impose
the same restriction and use a one parameter weighting function proposed by Prelec
(1998). Both studies find relatively much utility curvature and a low degree of loss
aversion compared to the non-parametric approaches, which suggests that the prob-
ability weighting function may have been misspecified. Another disadvantage of the
parametric approach is that allowing for unobserved heterogeneity in the model is nec-
essarily parametric which means the results may depend on the choice of the stochastic
error process (Wilcox 2008, p. 265).

The non-parametric methods do not have these problems as no functional forms are
assumed beforehand and estimation is conducted at the individual level allowing for
full heterogeneity. This approach, however, requires data that have a chained nature
which may introduce error propagation leading to less precise inference (Wakker and
Deneffe 1996; Blavatskyy 2006) and, in theory, an incentive compatibility problem
(Harrison and Rutström 2008).

This article aims at combining the best of both approaches by parametrically esti-
mating the complete prospect theory model, thereby allowing for decision errors,
using a rich dataset that permits the identification of prospect theory’s functionals
without making stringent parametric assumptions. The results have relevance for the
empirical issue of whether the utility for losses is convex (Currim and Sarin 1989;
Tversky and Kahneman 1992; Abdellaoui 2000; Etchart–Vincent 2004) or concave
(Davidson et al. 1957; Laury and Holt 2000 (for real incentives only); Fehr-Duda et al.
2006; Abdellaoui et al. 2008) and also whether the prevailing shape of the probabil-
ity weighting function in the population is inverse S-shaped (Kahneman and Tversky
1979; Wu and Gonzalez 1996; Fehr-Duda et al. 2006), linear (Hey and Orme 1994)
or convex (Jullien and Salanié 2000; Goeree et al. 2002; van de Kuilen and Wakker
2009).

The data that are used in this study are obtained from a large representative internet
survey that consists of 27 matching questions per individual. In order to reduce the
dependence on functional form assumptions, we use a three-stage estimation proce-
dure that exploits the (gamble-) trade-off method for the elicitation of utilities. This
method is robust against subjective probability distortion (Wakker and Deneffe 1996)
such that the measurement of utility does not depend on the estimates of the proba-
bility weights. Our stochastic specification allows for decision errors, and it naturally
accommodates the propagation of errors that is introduced by the chaining of the
questions that is at the heart the trade-off method (Blavatskyy 2006). Furthermore,
the data contains background variables that can be linked to the obtained preference
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parameters to shed light on how the various components of risk attitudes vary in the
population. Finally, a randomly assigned scaling-up of the outcomes by a factor 10
allows us to test whether utility curvature and probability weighting are sensitive to
the magnitude of the stakes (Etchart–Vincent 2004).

The analysis confirms and complements the study of Booij and van de Kuilen
(2007), who present non-parametric estimates of utility curvature and loss aversion
obtained from a subset of the same data. The results reiterate their main finding that
utility curvature is close to linear and much less pronounced than suggested by classi-
cal utility measurements that neglect probability weighting. Diminishing sensitivity is
also found, as predicted by prospect theory but contrary to the classical prediction of
universal concavity. Utility for gains and losses is found to be closer to linear compared
to other parametric studies, suggesting these may be misspecified, while our results
are a little more curved compared to the non-parametric estimates. This suggests that
assuming homogeneity leads to a small downward bias, while providing evidence that
error propagation is unlikely to greatly affect the results in the non-parametric analysis.
In addition, we find evidence of an inverted-S shaped probability weighting function
that is more elevated for losses than for gains, suggesting pessimism in both domains.
We do not find evidence that the shape or the degree of elevation of the probability
weighting functions depend on the magnitude of the stakes; however, the weighting
function for gains varies with gender and age. The weighting function for losses seems
unrelated to any background variables. These results confirm the common finding that
females are more risk averse than males; however, but contrary to classical studies
that ascribed this gender difference solely to differences in the degree of utility cur-
vature, our results show that this finding is primarily driven by subjective probability
weighting and loss aversion.

The remainder of this article is organized as follows. Section 2 discusses pros-
pect theory and summarizes the parametric estimates found in the literature. Section 3
presents the experimental method and summary statistics of the data, followed by
the presentation of the econometric specification in Sect. 4. The results are presented
in Sect. 5. Section 6 concludes, followed by the appendix that provides estimates of
sample selection.

2 Prospect theory

2.1 The model

We consider decision under risk, with R the set of possible monetary outcomes of gains
and losses with respect to some wealth level or reference point. The reference point is
assumed to be the status quo, i.e., the current wealth level. A prospect is a finite prob-
ability distribution over outcomes. Thus, a prospect yielding outcome xi with proba-
bility pi (i = 1, . . . , n) is denoted by (p1 : x1, . . . , pn : xn). A two-outcome prospect
(p : x, 1 − p : y) is denoted by (p : x, y) and the unit of payment for outcomes is 1
Euro. In this article, prospect theory refers to the modern (cumulative) version of pros-
pect theory introduced by Tversky and Kahneman (1992), that corrected the original
1979 version for violations of stochastic dominance and, more importantly, can also
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deal with uncertainty, i.e., the case of unknown probabilities. Prospect theory entails
that the value of a prospect with outcomes x1 ≤ · · · ≤ xk ≤ 0 ≤ xk+1 ≤ · · · ≤ xn is
given by:

k∑

i=1

π−
i U(xi ) +

n∑

j=k+1

π+
j U(x j ). (2.1)

Here U: R → R is a continuous and strictly increasing utility function satisfying
U(0) = 0, and π+ and π− are the decision weights, for gains and losses, respectively,
defined by

π−
1 = w−(p1), π+

n = w+(pn)

π−
i = w−(p1 + · · · + pi ) − w−(p1 + · · · + pi−1) for 1 < i ≤ k, and

π+
j = w+(p j + · · · + pn) − w+(p j+1 + · · · + pn) for k < j < n.

(2.2)

Here w+ is the probability weighting function for gains and w− is the probability
weighting function for losses, satisfying w+(0) = w−(0) = 0 and w+(1) = w−(1) =
1, and both strictly increasing and continuous. Thus, the decision weight of a positive
outcome xi is the marginal w+ contribution of pi to the probability of receiving bet-
ter outcomes, and the decision weight of a negative outcome xi is the marginal w−
contribution of pi to the probability of receiving worse outcomes. Finally, note that
the decision weights do not necessarily add up to 1 and that prospect theory coincides
with expected utility if people do not distort probabilities (i.e., w+ and w− are the
identity) and individuals use a fixed reference point in terms of wealth.2

2.2 Parametric specifications

To make the model empirically tractable, several parametric shapes have been proposed
for the utility- and probability weighting functions. The utility function determines
individuals’ attitudes toward additional monetary gains and losses. The curvature of
this function for gains is often modeled by a power function because of its simplic-
ity and its good fit to (experimental) data (Wakker 2008).3 Tversky and Kahneman
(1992) introduced this function for prospect theory, written as U(x) = xα1(x ≥
0) − λ(−x)β1(x < 0). Here, the parameters α and β determine the curvature of the
utility for money gains and losses, respectively. The psychological concept of dimin-
ishing sensitivity implies that both α < 1 and β < 1, i.e., individuals are decreasingly

2 There is a debate in the literature on whether the expected utility model presupposes that outcomes are
defined in terms of final wealth (which precludes reference-dependence) or not. In this article, we consider
expected utility to be defined over wealth (Wakker 2005). See Cox and Sadiraj (2006) and Rubinstein (2006)
for an alternative interpretation of expected utility.
3 Under expected utility, this function implies that an agent is prepared to pay a constant fraction of wealth
to avoid risking a fair gamble over percentages of wealth. For this reason, the power function is commonly
referred to as constant relative risk aversion (CRRA). Under non-expected utility models such as prospect
theory, this designation is no longer appropriate.
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sensitive to changes further away from the reference point. Less frequently used para-
metric specifications of the utility function are the exponential and the expo-power
utility functions. These functions often have a slightly inferior fit. Their properties are
described extensively in Abdellaoui et al. (2007a).

Unfortunately, a commonly accepted definition of loss aversion does not exist in the
literature (Abdellaoui et al. 2007b). The framework that we employ, used by Tversky
and Kahneman (1992), defines loss aversion implicitly as:

λ = −u(−1)

u(1)
. (3.1)

This definition can be seen as an approximation of the definition proposed by
Köbberling and Wakker (2005), who characterize loss aversion as the ratio between
the left and right derivatives of the utility function at zero, i.e., λK W ≡ u′↑(0)/u′↓(0).
Other definitions that have been proposed, such as Kahneman and Tversky’s original
formulation of loss aversion as −u(−x) > u(x) for all x > 0, or a stronger version
formulated by Wakker and Tversky (1993) given by u′(−x) > u′(x) for all x > 0, do
not define a straight index of loss aversion but formulate it as a property of the utility
function over a whole range. An index can then be constructed by taking the mean
or median values of the relevant values of x , but this is not an arbitrary choice mak-
ing comparison between measurements difficult. Hence, we have to be careful with
comparing loss aversion estimates (see Abdellaoui et al. (2007b) for a more extensive
discussion).

The probability weighting function captures the degree of sensitivity toward prob-
abilities. Two distinct properties of this function have been put forward, that can be
given a psychological interpretation. The first property refers to the degree of curva-
ture of the probability weighting function, which reflects the degree of discriminability
with respect to changes in probabilities. This property is closely linked to the notion
of diminishing sensitivity, where the probability of 0 (impossibility) and 1 (certainty)
serve as reference points. According to this psychological hypothesis, people’s behav-
ior becomes less responsive to changes on the probability scale as they move further
away from these reference points. This implies an inverse-S shaped weighting func-
tion, with relatively much curvature near the probability end points and a linear shape
in between. The second property of the probability weighting function refers to its
elevation, which determines the degree of attractiveness of gambling (Gonzalez and
Wu 1999). For gains (losses), a highly elevated probability weighting function implies
that individuals are optimistic (pessimistic), and overweight probabilities relative to
the objective probabilities of gaining (losing).

Several parametric functions have been proposed to describe the probably weight-
ing function (see Stott 2006 for an overview). The most commonly used specification
is the linear-in-log-odds specification, introduced by Goldstein and Einhorn (1987)
(GE-87), and given by:

w(p) = δpγ /(δpγ + (1 − p)γ ).
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The popularity of this function stems from its empirical tractability and the fact that
it has two parameters, γ and δ, that separately control for curvature and elevation,
respectively. Hence, both parameters can readily be given a psychological interpreta-
tion as indexes of discriminability and attractiveness. Another popular specification in
which γ and δ have a similar interpretation is the two-parameter specification proposed
by Prelec (1998) (Prelec-2), given by:

w(p) = exp(−δ(− ln p)γ ).

The GE-87 specification has an inverted-S shape when 0 < γ < 1. An additional (suf-
ficient) condition for the Prelec-2 function is 0 < δ < 1. One-parameter specifications
have also been used to describe the probability weighting function, but these cannot
set curvature and elevation independently. Estimates of these probability weighting
functions will lead to biased inferences if curvature and elevation do not co-vary
accordingly.

2.3 Empirical evidence

Table 1 gives the definition and estimates of the power utility function and some com-
monly used one- and two-parameter probability weighting functions. All the men-
tioned studies estimate prospect theory, albeit with varying (parametric) assumptions,
incentives, tasks, and samples. Although the table is not intended to be exhaustive, it
covers most studies that somehow report a parametric measure of utility curvature, loss
aversion, or probability weighting under prospect theory. Studies that do not report
such estimates are not included in the table, which means that not all the studies men-
tioned in the introduction are listed. If multiple measures of loss aversion are reported,
we take the definition that most closely resembles that of Köbberling and Wakker
(2005).

With respect to the shape of the utility function, the table reveals four notable fea-
tures. First of all, the utility for gains is much closer to linearity (a power equal to
1) than what is found in classical utility measurements that do not take probability
weighting into account. In that literature, estimates just below .5 (Cubitt et al. 2001;
Holt and Laury 2002; Harrison et al. 2005; Andersen et al. 2008) or lower (Barsky
et al. 1997; Dohmen et al. 2006) are common. Second, in all the studies that report
utility curvature for gains and losses, losses are evaluated more linearly than gains,
but utility for losses does display diminishing sensitivity (β < 1) in most studies. This
suggests that people become less sensitive toward additional gains more rapidly as
compared to additional losses. Third, there is some variability in the estimates, but
the power parameters for both domains are always quite close. This suggests that the
differences in the estimates between studies most likely stem from differences in the
elicitation method and the method of analysis. Fourth, there is significant variation in
the coefficient of loss aversion, but it is always estimated to be higher than one.

The table conveys three other notable features with respect to the estimated shape of
the probability weighting function. The predominant shape is inverse-S, with few stud-
ies reporting γ > 1. Also, for studies that report estimates of both domains, elevation
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Table 1 Empirical estimates of prospect theory using different parametric functionals

Functional form Estimates Properties** Authors

Utility α β λ E. T I N

Power:
*U(x) =
xα1(x ≥ 0)−
λ(−x)β1(x < 0)

.88 .88 2.25 md c n 25 Tversky and Kahneman (1992)

.22 ml c n 1497 Camerer and Ho (1994)

.50 ml c n 420 Wu and Gonzalez (1996)

.39 .84 md c n 64 Fennema and van Assen (1998)

.49 md c y 10 Gonzalez and Wu (1999)

.89 .92 md c y 40 Abdellaoui (2000)

.61 .61 ml b n 2593 Donkers et al. (2001)
1.43 md c n 45 Schmidt and Traub (2002)

.97 md c n 35 Etchart–Vincent (2004)
.91 .96 md c n 41 Abdellaoui et al. (2005)
.68 .74 3.2 ml b n 1743 Tu (2005)

1.01 1.05 md c y 181 Fehr-Duda et al. (2006)
.72 .73 2.54 md c n 48 Abdellaoui et al. (2007b)
.81 .80 1.07 ml c y 90 Andersen et al. (2006)
.71 .72 1.38 ml c y 158 Harrison and Rutström (2009)
.86 1.06 2.61 md c y 48 Abdellaoui et al. (2008)

Probability weights. δ+ γ + δ− γ −

TK-92:
w(p) =

pγ

[pγ +(1−p)γ ]
1
γ

.61 .69 c n 25 Tversky and Kahneman (1992)

.56 c n 1497 Camerer and Ho (1994)

.71 c n 420 Wu and Gonzalez (1996)

.60 .70 c y 40 Abdellaoui (2000)

.67 m n 51 Bleichrodt and Pinto (2000)

.76 .76 c y 90 Andersen et al. (2006)

.91 .91 c y 158 Harrison and Rutström (2009)
GE-87:

w(p) =
δpγ

δpγ +(1−p)γ

.84 .68 c n 420 Wu and Gonzalez (1996)

.77 .69 md c n 40 Tversky and Fox (1995)

.77 .44 c y 10 Gonzalez and Wu (1999)

.65 .60 .84 .65 c y 40 Abdellaoui (2000)

.82 .55 m n 51 Bleichrodt and Pinto (2000)
1.10 .84 c n 35 Etchart–Vincent (2004)

.98 .83 1.35 .84 c n 41 Abdellaoui et al. (2005)

.87 .51 1.07 .53 c y 181 Fehr-Duda et al. (2006)
Prelec-1:
w(p) =
exp(−(− ln p)γ )

.74 c n 420 Wu and Gonzalez (1996)

.53 m n 51 Bleichrodt and Pinto (2000)

.413 .413 b n 2593 Donkers et al. (2001)
1.00 .77 b n 1743 Tu (2005)
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Table 1 continued

Functional form Estimates Properties** Authors

Utility α β λ E. T I N

Probability weights. δ+ γ + δ− γ −

Prelec-2:
w(p) =
exp(−δ(− ln p)γ )

1.08 .53 m n 51 Bleichrodt and Pinto (2000)

2.12 .96 ml m y 80 Goeree et al. (2002)
1.76 1.05 md c y 78 van de Kuilen and Wakker (2009)

Notes: Adopted names and notations do not form a convention, and are used for convenience. +/− denote
gains/losses
* The utility functional is specified on the complete real axis, where λ represents the loss-aversion coeffi-
cient. The displayed utility function is based on the assumption α > 0 and β > 0, which is mostly found
empirically. The function has a different specification for other parameter values (Wakker 2008)
** Properties: E(estimator): mean; median (md); maximum likelihood (ml); T(task): choice; matching; both;
I(incentives): yes (random lottery incentive scheme/Becker de Groot-Marschak procedure); no (fixed or no
payment)

is higher in the loss domain. This is intuitively plausible because it suggests that in
both domains individuals display pessimism, i.e., they dislike gambling. Finally, the
estimates of elevation show a little less variability than those of curvature, suggesting
that curvature is harder to identify empirically.

The coefficients of loss aversion reported in Table 1 range from 1.07 to 3.2. Hence,
all the studies find evidence of loss aversion, albeit to varying degrees. This may be
caused by differing definitions of loss aversion and different elicitation contexts. Fig-
ure 1 plots a power utility function and a GE-87 probability weighting function for
gains and losses corresponding to the average of the estimates found in Table 1. The
next section describes the data that will enable us to identify utility curvature and
probability weighting for a representative sample.

3 The data

3.1 Survey design

3.1.1 Participants

For the elicitation of both utility curvature and subjective probability weighting,
we used data collected through the CentERpanel, a representative panel consist-
ing of about 2000 Dutch households. Every weekend, the participants of this panel
complete an internet-questionnaire concerning various socio-economic and psycho-
logical questions. For those households that do not own a computer with a con-
nection to the internet, a special box connected to the television is provided. The
panel has been used by many researchers because of its representative nature, ran-
domization possibilities, and the possibility to link the obtained data to background
characteristics.
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(A) (B)

Fig. 1 Utility and probability weighting functions for average estimates. Note: Figure based on the average
of the estimates from Table 1. (α, β, λ) = (.69, .86, 2.07) and (δ+, γ +, δ−, γ −) = (.76, .69, 1.09, .72)

3.1.2 Procedure

In February 2006, the participants of the panel were asked to balance a total of 27
pairs of (hypothetical) two-outcome lotteries by stating the value that would make
them indifferent between the lotteries in the pair. The respondents were given exten-
sive experimental instructions4 and were then asked to answer a practice question to
familiarize them with the experimental setting. In the instructions, it was emphasized
that there were no right or wrong answers. In the first part of the questionnaire (Q1–
Q16), indifference was obtained through outcome matching, i.e., in Fig. 2a, subjects
were asked to report the (missing) euro amount that would make them indifferent
between the two lotteries, where the parameters (L2, R1, R2) differed between ques-
tions. The wheel in the middle served to explain probabilities to respondents. In the
second part (Q17–Q27), indifference was obtained through probability matching, i.e.,
in Fig. 2b, subjects were asked to report the (missing) probability that would make
them indifferent between the two lotteries, where again the parameters (L2, R1, R2)

differed between questions. After filling in a specific number, the areas in the wheel
were filled accordingly, and the respondent was asked to confirm his choice or recon-
sider.

3.1.3 First Part

Table 2 gives a complete description of the structure of the survey questions. Accord-
ing to Wakker and Deneffe (1996), the questions in the first part were chained, where
the answer xi that was given to one question, was used as the upper right prize in the
next question, holding the other prizes constant (L2 = g, R2 = G). For example, if a
subject reported an indifference value x1=e180 for the prospects (0.5: x1, e12) and
(0.5: e100, e64), this number appeared as the upper prize of the right prospect of
the next matching question, while the alternative prizes of both lotteries remained the
same: (0.5: x2,e12)∼(0.5:e180,e64). The answer x2 was then used in the next ques-
tion and so on. The first set of six questions following the practice question (Q2–Q7)
concern a sequence of gains x1, . . . , x6, followed by a set of six questions (Q8–Q13)
that entail losses y1, . . . , y6(L2 = l, R2 = L).

4 Available from the authors upon request.
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Fig. 2 The framing of the prospect pairs. Note: Frame a above and b below. The specific parameter values
varied between the questions, see Table 2

Table 2 The obtained indifferences

Question Prospect L Prospect R Question Prospect L Prospect R
Part I (p : L1, L2) (p : R1, R2) Part II (L2) (p : R1, R2)

1 (practice) (0.5: a, 10) ∼ (0.5: 50, 20) 17 (practice) (250) ∼ (r: 750,−100)

2 (gains) (0.5: x1, g) ∼ (0.5 : x0, G) 18** (x1) ∼ (p1: x6, x0)

3 (gains) (0.5: x2, g) ∼ (0.5: x1, G) 19** (y1) ∼ (q1: y6, y0)

4 (gains) (0.5: x3, g) ∼ (0.5: x2, G) 20** (x2) ∼ (p2: x6, x0)

5 (gains) (0.5: x4, g) ∼ (0.5: x3, G) 21** (y2) ∼ (q2: y6, y0)

6 (gains) (0.5: x5, g) ∼ (0.5: x4, G) 22** (x3) ∼ (p3: x6, x0)

7 (gains) (0.5: x6, g) ∼ (0.5: x5, G) 23** (y3) ∼ (q3: y6, y0)

8 (losses) (0.5: y1, l) ∼ (0.5: y0, L) 24** (x4) ∼ (p4: x6, x0)

9 (losses) (0.5: y2, l) ∼ (0.5: y1, L) 25** (y4) ∼ (q4: y6, y0)

10 (losses) (0.5: y3, l) ∼ (0.5: y2, L) 26** (x5) ∼ (p5: x6, x0)

11 (losses) (0.5: y4, l) ∼ (0.5: y3, L) 27** (y5) ∼ (q5: y6, y0)

12 (losses) (0.5: y5, l) ∼ (0.5: y4, L)

13 (losses) (0.5: y6, l) ∼ (0.5: y5, L)

14* (gains) (0.5: b, 0) ∼ (0.5: x1, x0)

15* (losses) (0.5: 0, c) ∼ (0.5: y0, y1)

16* (mixed) (0.5: d, y1) ∼ (0.5: x0, y0)

Note: Underlined outcomes are the matching outcomes/probabilities, and questions marked with an asterisk
were presented in randomized order

Under prospect theory, it can be shown that the outcomes of the obtained sequences
are equally spaced in terms of utility. Wakker and Deneffe (1996) named such a
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sequence a standard sequence of outcomes. The final three questions of the first part
(Q14–Q16) give additional information on utility curvature around the zero outcome
and allow for the determination of loss aversion.5

3.1.4 Second Part

The questions of the second part allow for the non-parametric determination of the
subjective probability weighting functions at the individual level if one assumes
that no stochastic errors have been made in the elicitation of the indifference out-
comes (x1, . . . , x6,y1, . . . , y6) in the first part. To see this, consider the domain of
gains and assume that there is no stochastic error component in the subjects’
responses. Then, under prospect theory, the reported probabilities pi satisfy w(pi ) =
((U(xi ) − U(x0))/((U(x6) − U(x0)). Given that the outcomes x0, . . . , x6 comprise
a standard sequence of outcomes, there holds U(xi ) − U(xi ) = U(xi+1) − U(xi ) for
i = 1, . . . , 5. This implies that ((U(xi ) − U(x0))/((U(x6) − U(x0)) = i/6, and hence
w(pi ) = i/6 (Abdellaoui 2000). In the presence of error, however, this correspondence
need no longer hold because the outcomes x0,…, x6, are then, in general, not equally
spaced in utility units. The econometric specification we use explicitly accounts for
this in the analysis of the responses to these questions.

3.1.5 Treatments

In order to test whether the elicited shapes of prospect theory’s functionals are sen-
sitive to the size of the stakes, respondents were randomly assigned to two different
treatments. In the low-stimuli treatment the parameter values were set at G = 64, g =
12, x0 = 100, L = −32, l = −6, and y0 = −50. In the high-stimuli treatment, all
parameter values were scaled up by a factor 10.

3.2 Summary statistics

A total of 1,935 individuals responded to the survey, meaning they logged in to the site
with their ID number. Not all the subjects gave answers to all the questions, leading
to question-specific non-response (denoted by NR). Since we did not force subjects’
answers to be consistent (the subjects could fill in any number) it comes as no sur-
prise that many of them violated dominance, either because of a mistake or because
of misunderstanding (denoted by IR). In the first part, individuals were classified as
being inconsistent if their sequence of stated outcomes was not strictly increasing.
This criterion is stringent, punishing random mistakes. For those who comply with it,
however, we can be confident that they understood the questions.

Contrary to the outcome questions, the order of the probability matching questions
was completely random, meaning that subjects could not have an easy comparison
with questions that had outcomes close in magnitude. This increases the likelihood of
an inconsistent answer. Moreover, these questions are likely to be more cognitively

5 See Booij and van de Kuilen (2007) for a more detailed description of the structure of these questions.
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demanding for respondents. Hence, in part 2, we allowed for one mistake (meaning
a violation of dominance) in the subjects’ answers before classifying them as incon-
sistent. Furthermore, we only considered individuals in the second part if they had
been classified consistent in the first, because the questions in the second part were
determined by the first. Of the remaining data, we removed some outlying answers
that clearly indicated either a mistake or lack of understanding (denoted by Outlier).

Although dropping observations is unfavorable, not imposing consistency by way of
the design of the experiment (recall that the subjects were free to fill in any number) has
some advantages, especially when using a large representative sample. Then, individ-
uals with a good understanding of the questions can reveal themselves by not making
any mistakes. Indeed, there is evidence for university students showing response var-
iability increases with the complexity of the task (Camerer and Hogarth 1999). For
the general public this effect is probably magnified. Using the same internet panel
Von Gaudecker et al. (2008) specifically investigate sample selection for a cognitively
demanding (risk aversion) task, and find that the number of inconsistencies is twice as
large for the general public compared to the standard student subject pool. Similarly,
Guiso and Paiella (2003) and Dohmen et al. (2006) dropped 57% and 61% of their
observations, respectively, for risk aversion questions of lesser complexity posed to a
cross section of the Italian and German public. Hence, miscomprehension is a likely
feature of response behavior in our data. Not imposing consistency by design of the
experiment allows the filtering of those who did not have a good grasp of the questions
from those who did.

In order to control for a potential bias due to selectivity we estimated a sample-
selection equation (see Sect. 7.1) and used the inverse of the predicted probabilities as
weights in the econometric analysis. This procedure yields unbiased estimates if sam-
ple selection is random conditional on the selection variables. The coefficients were
not greatly affected by this procedure, but it increased the obtained standard errors.
Hence, we are confident that the results obtained from the selected sample hold for the
whole sample as well. Booij and van de Kuilen (2007) discuss the sample selection
process in more detail. Table 3 gives the summary statistics of the selected sample.

The table readily shows some apparent features of the data. The differences between
subsequent outcomes of the standard sequence are gradually increasing, suggesting
mild concavity in the utility for gains and mild convexity for losses. Also, the proba-
bilities reported in the gain domain are all uniformly higher than the those in the loss
domain suggesting more elevation in the probability weighting function for losses.
This is consistent with pessimism with respect to gambling in both domains. Finally,
the outcomes between the high and the low treatments are mostly close to a scaling
up by a factor 10, suggesting no difference between treatments.

4 The econometric model

Following Wakker and Deneffe (1996) and Abdellaoui (2000), Booij and van de Kuilen
(2007) exploit the sequential nature of the questions to analyze the shape of the utility
function non-parametrically. This approach has the advantage of being robust against
probability weighting and allowing for full heterogeneity in preferences, i.e., they
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estimate the shape of the utility curve for each individual without making any prior
parametric assumption. The disadvantage of this approach is that individual error is not
explicitly accounted for statistically, and potential error propagation is not modeled.
Also, if errors that generate monotonicity violations are not modeled in the analysis of
the elicited probabilities in the second part (recall that we allow for one monotonicity
violation in the second part), we would get uninterpretable weighting functions. More-
over, Wilcox (2008, pp. 264–265) shows that individual level estimation can suffer
from a finite-sample bias leading to biased predictions. By smoothing out errors, a
parametric approach can alleviate these problems (Currim and Sarin 1989), albeit at
the cost of having to make auxiliary assumptions.

Under prospect theory, as described in section 2.1, the questions in the experiment
yield the following equations

w+(
1
2

)
(U(xi,n) − U(xi−1,n)) =

(
1 − w+(

1
2

))
(U(Gn)

−U(gn)) · eo+
i,n · η+

n i = 1, . . . , 6, (5.1)

w−(
1
2

)
(U(yi,n) − U(yi−1,n)) =

(
1 − w−(

1
2

))
(U(Ln)

−U(ln)) · eo−
i,n · η−

n i = 1, . . . , 6, (5.2)

U(xi,n) − U(x0,n) = w+(pi,n)(U(x6,n)

−U(x0,n)) · ep+
i,n i = 1, . . . , 5, (5.3)

U(yi,n) − U(y0,n) = w−(pi,n)(U(y6,n)

−U(y0,n)) · ep−
i,n i = 1, . . . , 5, (5.4)

w+(
1
2

)
(U(bn) − U(x1,n)) =

(
1 − w+(

1
2

))
U(x0,n) · eb

n, (5.5)

w−(
1
2

)
(U(cn) − U(y1,n)) =

(
1 − w−(

1
2

))
U(y0,n) · ec

n, (5.6)

w+(
1
2

)
(U(dn) − U(x0,n)) = w−(

1
2

)
(U(y0,n) − U(y1,n)) · ed

n , (5.7)

where we allow for a multiplicative stochastic error (e•
i,n), including individual-

specific effects η•
n that capture differences in probability weighting between individ-

uals n. In the superscripts, o and p denote outcomes and probabilities, respectively,
and the + and − signs denote the gain and the loss domain. The letters b, c, and d,

refer to the corresponding loss aversion questions (see Table 2).
The errors are assumed to be independently log-normally distributed with different

variances, i.e., e•
i,n ∼ L N (0, σ •2

i ). This is a Fechner model on the log of the value
scale, similar to the model employed by Donkers et al. (2001).

The consequences of specifying different error structures in models of decision
making under risk has attracted considerable attention since the seminal article by
Hey and Orme (1994). There is, however, currently no consensus in the literature
on what error structure to use (Hey 1995; Loomes and Sugden 1995, 1998;
Carbone and Hey 2000; Hey 2005; Blavatskyy 2007). We chose a multiplicative
specification over an additive one (e.g. Blavatskyy 2006), because it naturally satisfies
monotonicity. An additive specification would require a truncated error distribution to
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satisfy monotonicity (Blavatskyy 2007), which is numerically much more involved.
Also, we chose the common Fechner structure over a random preference specifica-
tion or a “trembling hand” specification, two other popular stochastic models (Wilcox
2008). In the first stochastic framework, it would be hard to eliminate individual effects,
whereas it is unclear how to implement the second in a continuous outcome context.

In order to eliminate the probability weighting terms and potential individual spe-
cific effects, subsequent outcome equations can be divided by one another. In order to
make the current study consistent with Booij and van de Kuilen (2007), loss aversion
is estimated using all the questions around the zero outcome. Taking logarithms then
gives,

εo+
i,n ≡ ln

(
eo+

i+1,n

eo+
i,n

)
= ln

(
U(xi+1,n) − U(xi,n))

U(xi,n) − U(xi−1,n)

)
i = 1, . . . , 5, (5.8)

εo−
i,n ≡ ln

(
eo−

i+1,n

eo−
i,n

)
= ln

(
U(yi+1,n) − U(yi,n)

U(yi,n) − U(yi−1,n)

)
i = 1, . . . , 5, (5.9)

ε
p+
i,n ≡ ln(ep+

i,n ) = ln

(
w+ (pi )

U(x6,n) − U(x0,n)

U(xi,n) − U(x0,n)

)
i = 1, . . . , 5, (5.10)

ε
p−
i,n ≡ ln(ep−

i,n ) = ln

(
w− (qi )

U(y6,n) − U(y0,n)

U(yi,n) − U(y0,n)

)
i = 1, . . . , 5, (5.11)

εL A
n ≡ ln(ed

n · ec
n/eb

n)

= ln

((
1 − w+ ( 1

2

))
(
1 − w− ( 1

2

))
(
U (dn) − U

(
x0,n

))
(
U (bn) − U

(
x1,n

))
(
U (cn) − U

(
y1,n

))
(
U

(
y0,n

) − U
(
y1,n

))
U

(
x0,n

)

U
(
y0,n

)
)

,

(5.12)

where LA, denotes loss aversion. Under the assumptions of (5.1), (5.2), (5.3), (5.4),
(5.5), (5.6) and (5.7), the transformed error terms, collected in εn = (

ε′o+
n , ε′ p+

n , ε′o−
n ,

ε′ p−
n , εL A

n

)′ = (εo+
1,n, . . . , εo+

5,n, εo−
1,n, . . . , εo−

5,n, ε
p+
1,n , . . . , ε

p+
5,n , ε

p−
1,n , . . . , ε

p−
5,n , εL A

n )′, are
normally distributed with zero mean and covariance matrix 
. This matrix has off-
diagonal elements equal to zero, except for the outcome Eqs. 5.1 and 5.2. The first
differencing applied to these equations generates a correlation between the subsequent
error terms. For example, assuming constant error variance, the covariance matrix for
positive outcomes is a tridiagonal matrix equal to


o+ = cov
[
εo+

1,n, . . . , εo+
5,n

]
= 2σ 2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1
2 0 · · · 0

− 1
2 1

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 − 1
2

0 · · · 0 − 1
2 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (5.13)
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In this example, the correlation between each subsequent error is − 1
2 .6 In general, the

first off-diagonal elements will vary. Hence, we will assume the covariance matrices
of the outcome domains (
o+, 
o−) to be fully flexible in the empirical analysis.
Because the questions of the second part are not chained, we simply assume the
matrixes 
 p+, 
 p− to have equal (non-zero) diagonal and equal off-diagonal ele-
ments. By assuming non-zero off diagonal elements, within-subject correlation in the
answers is accounted for. The mean of the diagonal and off-diagonal elements are
given by σ̄ and ρ̄, respectively.

To estimate the model, we assume two popular parametric specifications. For utility,
we take the common power specification, with a loss aversion factor λ, as specified by
Kahneman and Tversky (1979). For the subjective weighting of cumulative probabil-
ities, we take the frequently used linear-in-log-odds specification as first employed by
Goldstein and Einhorn (1987). These parametric families have been shown to have a
good fit to experimental data (Gonzalez and Wu 1999; Abdellaoui et al. 2008).7 The
probability weighting functions of both domains are allowed to differ as is assumed
in the modern version of prospect theory. We have

U(x;α, β, λ) =
{

xα x ≥ 0
−λ(−x)β x < 0

(5.14)

w+(p; δ+, γ +) = δ+ pγ +

δ+ pγ + + (1 − p)γ
+

w−(p; δ−, γ −) = δ− pγ −

δ− pγ − + (1 − p)γ
− . (5.15)

This gives the log-likelihood function:

�(α, β, λ, δ+, γ +, δ−, γ −) =
N∑

n=1

−1

2
{ln 2π + 2 ln |
| + ε′

n
−1εn}. (5.16)

To estimate the model, we split up the likelihood and use a three-stage procedure
(limited-information maximum likelihood, LIML) to estimate utilities, and subse-
quently the probability weighting function and loss aversion. This has two advantages.
First of all, it will ensure that the estimated utility curve will not suffer from a func-
tional-form misspecification bias due to misspecification of the probability weight-
ing function. This is precisely what Wakker and Deneffe (1996) trade-off method is
designed for. Using full-information maximum likelihood would eliminate this advan-
tage by re-introducing an interaction between the estimation of probability weighting

6 To see this, consider the covariance of two subsequent errors in the gain domain: cov
[
εo+

1,n , εo+
2,n

]

= cov
[
ln eo+

1,n − ln eo+
0,n , ln eo+

2,n − ln eo+
1,n

] = cov
[
ln eo+

1,n , ln eo+
2,n

] − cov
[
ln eo+

1,n , ln eo+
1,n

] − cov
[

ln eo+
0,n ,

ln eo+
2,n

]+cov
[
ln eo+

0,n , ln eo+
1,n

] = 0−σ 2 −0+0 = −σ 2. The correlation then becomes: corr
[
εo+

1,n , εo+
2,n

] =
cov

[
εo+

1,n , εo+
2,n

]/√(
var

[
εo+

1,n

] · var
[
εo+

2,n

]) = −σ 2
/√(

2σ 2 · 2σ 2
) = − 1

2 .

7 In the context of discrete choice, Stott (2006) shows that the more parsimonious one-parameter specifi-
cations often provide a sufficient fit in terms of the Akaike information criterion.
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Table 4 Estimation strategy

1st stage (Outcomes) 2nd stage (Probabilities) 3rd stage (Loss Av.)

Gains Obtain α̂ Obtain (δ̂+, γ̂ +)
Obtain λ̂

Losses Obtain β̂ Obtain (δ̂−, γ̂ −)

cov 
o+, 
o− 
 p+, 
 p− σ L A

and utility curvature. Also, the outcome matching questions (Part I) are generally
believed to be easier to respond to and give higher quality data. Hence, we base the
estimate of utility only on the questions from the first part. In the second stage, the
probability weighting functions are estimated using the estimates of utility from the
first stage. Loss aversion is estimated in the final stage, taking the estimated utility and
probability weighting functions as given. Table 4 summarizes the estimation strategy.

By splitting up the estimation we cannot determine the correlations between the
errors of the different question modules (i.e. utilities and probabilities, gains and
losses). This is unfortunate since it would be interesting to know whether there is
unobserved heterogeneity that affects the answers in both domains in a structural way,
but it does bias the results.8 The standard errors in the second and third stages are cor-
rected for the uncertainty in the first-stage estimates by using the adjustment specified
by Murphy and Topel (1985).9

5 Results

The model as such assumes homogeneity in preferences. A certain degree of hetero-
geneity can be implemented, however, by parameterizing the preference parameters
ϕ = (α, β, λ, δ+, γ +, δ−, γ −)′ by a linear combination of regressors, i.e. ϕ = B′X.
Hence, apart from estimating the average shape of utility and probability weighting,
we can test whether there are significant differences in these preferences with respect
to variables such as age, gender, education, and income. The first row of estimates in
Table 5 gives the results of the model with only a constant, while the second gives the
model with the set of demographic variables that appear to be associated with prospect
theory’s parameters.

8 Note that for the same reason we would not be able to estimate any correlation between random coef-
ficients if they were specified. This is done in Tu (2005), who is unable to identify most correlations, but
the ones he does indicate a negative correlation in risk aversion caused by the outcome and probability
domain. However, Tu’s model is not non-parametrically identified, so it is unclear whether this correlation
is genuine or stems from non-linearity.
9 The correction specified by Murphy and Topel (1985) amounts to calculating V̂ MT

2 =V̂2 + V̂2[
Ĉ V̂1Ĉ ′ − R̂V̂1Ĉ ′ − R̂V̂1 R̂′]V̂2 where V̂1 and V̂2 are the respective first- and second-stage covariance

estimates, and Ĉ = ∑n
i=1

(
∂ ln( fi2)

∂β̂2

)(
∂ ln( fi2)

∂β̂′
1

)
and R̂ = ∑n

i=1

(
∂ ln( fi2)

∂β̂2

)(
∂ ln( fi1)

∂β̂′
1

)
.
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Table 5 Maximum likelihood estimates

Preference parameter

Gains Losses Loss. av.

α δ+ γ + β δ− γ − λ

Constant only 0.859*** 0.772*** 0.618*** 0.826*** 1.022*** 0.592*** 1.576***

(0.018) (0.051) (0.038) (0.018) (0.083) (0.061) (0.098)

Low amounts −0.071∗∗ 0.009

(0.032) (0.147)

Female −0.103* −0.074 0.251*

(0.065) (0.062) (0.157)

Age 0.003*** −0.004 −0.006 ∗ ∗∗ 0.003

(0.001) (0.004) (0.002) (0.005)

High edu. −0.318∗∗∗
(0.117)

ln(Income+1) −0.059∗
(0.044)

Constant 0.776*** 0.999*** 0.954*** 0.826*** 1.022*** 0.592*** 1.766***

(0.053) (0.195) (0.099) (0.018) (0.083) (0.061) (0.411)

σ̄ 2 0.188*** 0.267*** 0.219*** 0.302** 0.574***

ρ̄ −0.354∗∗∗ 0.133*** −0.363∗∗∗ 0.062

� −13870.9 −16080.7 −14431.0 −16896.4 −2195.1

N 814 366 690 272 438

Note: Murphy-Topel standard errors in parenthesis. Significance levels (one-sided tests) */**/***: 10/5/1%

5.1 Utility curvature

The estimated power for gains (α̂ = 0.859) and for losses (β̂ = 0.826) are displayed
in the first row of Table 5. Both parameters are significantly below one (z = 8.04,
p-value = 0.000 and z = 9.87, p-value = 0.000), and they are not significantly differ-
ent from one another (z = 1.39, p-value = 0.166). Our estimates are closer to linearity
as compared to the parametric studies of Harrison and Rutström (2009) and Donkers et
al. (2001), who found (α̂, β̂) = (.71, .72) and (.61, .61) respectively, which suggests
that their parametric specifications may be inappropriate for separating utility from
probability weighting. The estimates confirm diminishing sensitivity, both with respect
to losses and to gains (Tversky and Kahneman 1992; Abdellaoui 2000; Abdellaoui et
al. 2007b), and we cannot reject equal curvature in both domains in favor of the more
recent hypothesis of partial reflection (Wakker et al. 2007).

These results are qualitatively similar to those obtained by Booij and van de Kuilen
(2007). Their estimates, based on fitting a power function to individual level data, are
somewhat closer to linearity (α̂ = 0.94 and β̂ = 0.92 are found), but still signifi-
cantly below one, and not significantly different from each other. This suggests that
assuming homogeneity in utility curvature may lead to a small downward bias in the
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(A) (B)

Fig. 3 Estimated utility and probability weighting functions. Note: The parameters of the solid lines are
based on the averages of the estimates in Table 1. The dashed lines depict the estimated functions in this
study. The loss-aversion parameter is assumed to be equal the average estimate of λ = 2.09 form Table 1

estimate of the average,10 while also providing evidence that any potential bias in the
non-parametric analysis due to error propagation is unlikely to be of high magnitude.
If we compare the coefficients to the average estimates of the literature reported in

Table 1 ( ¯̂α = 0.69 and ¯̂
β = 0.86 respectively), we find that the estimated power

coefficient for gains is significantly higher (z = 9.61, p-value = 0.000), while that of
losses is significantly different at the 10% level only (z = 1.94, p-value = 0.053).
It should be noted that most recent estimates of utility curvature are much closer to
linearity (Abdellaoui 2000; Etchart–Vincent 2004; Abdellaoui et al. 2005; Fehr-Duda
et al. 2006; Abdellaoui et al. 2007b; Andersen et al. 2006; Abdellaoui et al. 2008)
than what is suggested by the average estimate calculated from Table 1. Hence, our
estimates fall within the range of contemporaneous estimates that find the power of
the value function to be between .8 and 1. Figure 3 plots the estimated utility function
(dashed line) and the average found in the literature (solid line). Indeed, the estimated
utility curve for losses is very close to the literature average, while that of gains is a
little more linear.

Table 5 also shows a significant treatment effect for gains. The low amounts treat-
ment for gains (Low Amounts) are associated with a power coefficient that is .071
lower than for outcomes that are scaled up by a factor 10, suggesting that utility is
more pronounced for low outcomes. This is not often found in the literature, though
Cohn et al. (1975) and Blake (1996) report similar results. The effect is driven by
the fact that, for gains, the last two mean elements of the standard sequence for low
amounts are a bit higher than those in the high-amount treatment divided by 10 (see
Table 3). It should be noted, however, that no significant difference was found in the
non-parametric estimates. Because both approaches diverge, we will not draw strong
conclusions with respect to this result.

10 Effectively the non-parametric estimates of Booij and van de Kuilen (2007) allow for full heterogeneity
in preferences, while the pooled estimation conducted in this article, does not. It is a priori not evident which
method of analysis would yield the highest estimates, but it is clear that, because the model is non-linear,
taking the average of estimates will yield a different result from that obtained by estimating the average
directly.
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5.2 Loss aversion

Table 5 shows that we find a loss-aversion coefficient of λ̂ = 1.58, which is lower
than the parametric estimate of λ̂ = 2.25 obtained by Tversky and Kahneman (1992),
and the non-parametric estimate of λ̂ = 2.54 that was found by Abdellaoui et al.
(2007b), based on Köbberling and Wakker’s (2005) definition (they find values below
2 for the other, global, definitions). Also, the obtained loss aversion parameter is lower
than the average (non-parametric) estimate of λ̂ = 1.87 obtained by Booij and van de
Kuilen (2007), where estimation is conducted at the individual level. A similar effect is
reported by Abdellaoui et al. (2008, p. 259) who find a pooled estimate of loss aversion
that is lower than the average of the individual estimates. The obtained loss aversion
is significantly larger than one (z = 5.88, p-value = 0.000), and it is consistent with
the recent estimates of Schmidt and Traub (2002); Gächter et al. (2007); Harrison and
Rutström (2009) and Abdellaoui et al. (2008, pooled estimate) who find values of 1.43,
1.63, 1.38, and 1.60, respectively. These and our results provide evidence that people
weight a particular loss less than twice as heavy as a commensurable gain when mak-
ing decisions. This is an interesting finding because Tversky and Kahneman (1992)
original estimate of 2.25 seems to serve as the focal point estimate of loss aversion for
many researchers, while many recent estimates find values below two.

Some studies have reported a decrease in the degree of loss aversion with the size
of outcomes (Bleichrodt and Pinto 2002 (health); Abdellaoui et al. 2007b). Our point
estimate of .004 for the Low Amount treatment (Table 5) does not provide additional
support for this result.

5.3 Probability weighting

For both domains we estimated the elevation parameter δ and the curvature param-
eter γ of the GE-87 probability weighting function specified in (5.15).11 The esti-
mated elevation parameters point at pessimism with respect to gambling in both
domains. For gains, we find δ̂+ = 0.772, which is significantly lower than 1 (z = 4.46,
p-value = 0.000). This implies that a probability of a half is weighted by ŵ+(1/2) =
0.436, which points to sizeable underweighting. This is close to Tversky and Kahne-
man (1992) original estimate of ŵ+(1/2) = 0.421, and it is not significantly different
from the average estimated in the literature (z = .23, p-value = 0.818). For losses, the
point estimate is δ̂− = 1.022 which is higher than one, also suggesting pessimism
in the loss domain (ŵ−(1/2) = 0.505 > .5), but we cannot reject the hypothesis
that δ = 1 (z = 0.27, p-value = 0.787). The elevation of the weighting function for
losses is significantly higher than that of gains (z = 4.54, p-value = 0.000) as was also
found by Abdellaoui (2000); Abdellaoui et al. (2005), and Fehr-Duda et al. (2006),
and we cannot reject the hypothesis that the elevation parameter is different from the

literature average (Table 1) of ¯̂
δ− = 1.09 (z = .81, p-value = 0.418). Contrary to

11 We find nearly identical results using the Prelec-2 specification (parameter values (δ̂+, γ̂ +) =
(1.052, 0.618) and (δ̂−, γ̂ −) = (0.870, 0.653)). Hence, none of the conclusions drawn in this article
change, if we use this specification in stead of GE-87.
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Etchart–Vincent (2004), who find more elevation for losses with higher stakes, we did
not find any effect of the magnitude of the stakes on the degree of pessimism of the
respondents.

The shape of the probability weighting function is primarily determined by γ ,
with γ < 1 generating an inverse-S shape, and γ > 1 a convex shape. Most studies
that report a parametric estimate of the GE-87 weighting function find evidence of
an inverse-S shaped weighting function but, as mentioned in the introduction, some
studies have found a convex-shaped weighting function. Interestingly, the point esti-
mates for the degree of curvature in both domains are very similar, γ̂ + = 0.618
and γ̂ − = 0.592, and we cannot reject the hypothesis that both are equal (z = .12,
p-value = 0.907). Linearity, which requires γ = 1, is clearly rejected in favor of
the hypotheses that both parameters are below one (z = 10.02, p-value = 0.000 and
z = 6.65, p-value = 0.000), which means that we have found significant evidence for
an inversely S-shaped weighting function in both domains. The degree of curvature we
find is slightly higher than the average estimate in the literature. For gains the estimate
is about .07 lower than the literature average ( ¯̂γ + = 0.69), which is significant at the
10% level (z = 1.90, p-value = 0.058). The estimate for losses is about .13 lower than
the literature average ( ¯̂γ − = 0.72), which is significant at the 5% level (z = 2.09,
p-value = 0.037). These results are illustrated graphically by the plot in Fig. 3, where
the estimated weighting functions are slightly more pronounced than the literature
averages for probabilities near 0 and 1, while they are hardly distinguishable from the
literature averages for intermediate probabilities.

5.4 Demographics

The dataset also contains background characteristics of the respondents such as their
age, gender, education, and income. Table 5 gives the results of including regressors
into the model, where most of the insignificant variables have been removed. The sig-
nificance levels are reported for one-sided tests. Most of the variation in the behavioral
parameters appears idiosyncratic, in particular for the domain of losses, where we do
not find a significant effect for any variables. In the gain domain, we find a mild asso-
ciations of age (+0.003) with utility curvature, and a substantial gender effect on the
elevation (−0.103) of the probability weighting function. This last result is interesting
because traditionally gender differences in risk-taking behavior have been ascribed to
differences in utility curvature (e.g. Barsky et al. 1997). The analysis of Booij and van
de Kuilen (2007) already showed that loss aversion may explain much of the gender
differences in risk attitudes, which is also found here (+0.251) and in other studies
(e.g. Schmidt and Traub 2002). The current analysis further refines this by showing
that part of this effect is also caused by differences in probability weighting. This is
consistent with a recent study of Fehr-Duda et al. (2006), who report a significant gen-
der difference in the elevation parameter of the GE-87 probability weighting function
for gains but not for losses. These authors also find curvature to differ between the
sexes, which we do not.

Older people seem to value money more linearly, with a 50-year age difference
being associated with a power that is .15 higher. This effect works to reduce risk
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aversion, but it is countered by more non-linear weighting of probabilities (−.30)

that, in general, work to increase risk aversion. The total effect of these estimates
depends on the prospects under study. For prospects that entail a small probability of
a large gain, one may find risk aversion to decrease with age, while in those that do
not, increasing risk aversion is more likely, which is what is usually found (Pålsson
1996; Donkers and van Soest 1999; Halek and Eisenhauer 2001; Hartog et al. 2002).

Education, defined as having a higher vocational or academic education, does not
affect utility curvature, nor is it associated with a more linear weighting of probabili-
ties. This latter effect is surprising if we view expected utility as the rational model of
choice under risk. From that perspective, one may expect higher educated individuals
to weight probabilities more linearly, which is not what we find. Education is associ-
ated with a lower degree of loss aversion (−.318), which suggest that the reduction
in risk aversion with years of schooling that is often observed (Donkers et al. 2001;
Hartog et al. 2002; Dohmen et al. 2006) stems mainly from lower sensitivity to losses
(e.g. Gächter et al. 2007).

Finally, the included (log) income variable showed a mild negative association with
loss aversion, which is consistent with Gächter et al. (2007). Hence, we conjecture
that mainly the loss aversion component of risk attitudes is driving the decrease in
(absolute) risk aversion with income that is often found (Donkers et al. 2001; Hartog
et al. 2002).

5.5 Stochastics

Table 3 shows considerable variability in the answers to the questions, which is picked
up by the estimated error variances. The estimated variance–correlation matrices for
the outcome equations are given in Table 6, where the diagonal elements correspond
to the estimated variances, and the off-diagonal elements correspond to the estimated
correlations between the error terms. The average variance σ̄ 2 is 0.188 for gains and
0.219 for losses. This means that the probability that the subsequent utility difference
is twice as high (low) as the previous one is about 5% (5%). This may seem not
very much, but it implies that in a standard sequence of six elements, there is about
a 40% probability that there will be two subsequent utility increments that differ by
a factor two. Although part of this variability is driven by between subjects heteroge-
neity, this result suggests that the assumption of a standard sequence without error is
questionable.

Both estimated matrices have a tridiagonal structure, with the one off-diagonal cor-
relation coefficients on average being equal to ρ̄ ≈ −0.35 and the other correlations
equal to zero. The negative correlations are a little weaker than the predicted correla-
tion of − 1

2 that follows under the assumption of equal variance, which means that not
all underlying variances, σi , are equal. There does not appear to be much difference
in the average variability of the answers for losses and for gains. The variance of
the probability weighting questions is a little higher, 0.267 and 0.302 for gains and
losses, respectively, which confirms that these questions are indeed more demanding
for respondents. For gains, there appears to be some positive correlation between the
individual answers (ρ̄ = 0.133), but not for losses.
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6 Summary and conclusion

This study presents the first, representative, large-scale parametric estimation of pros-
pect theory’s functionals, the utility function of money gains and losses, and the sub-
jective probability weighting functions. Contrary to previous large scale parametric
studies, the richness of the questionnaire allows for estimation of these curves without
making too restrictive parametric assumptions, while allowing for response error in
the individual answers. The results qualitatively confirm the non-parametric results of
Booij and van de Kuilen (2007) and suggest that utility is mildly concave for gains
and mildly convex for losses, implying diminishing sensitivity and suggesting that
classical utility measurements that neglect probability weighting are overly concave.

A direct comparison with the non-parametric measures suggests that assuming
homogeneity leads to a small downward bias, while providing evidence that a potential
bias in a non-parametric analysis due to error propagation is unlikely to be large. Also
our estimates are closer to linearity as compared to those of parametric studies that
impose more stringent parametric assumptions (e.g. Donkers et al. 2001; Harrison
and Rutström 2009), suggesting the utilities obtained in these studies may suffer from
a contamination bias. Further, we find evidence that probabilities are weighted non-
linearly, with an inverse-S shape, and that both functions display pessimism (low
elevation for gains, high elevation for losses). Hence, these results externally validate
probability weighting that was found in a laboratory context (Wu and Gonzalez 1996;
Abdellaoui 2000). The obtained degree of loss aversion, as operationalized by Tversky
and Kahneman (1992), is 1.6. This is somewhat lower than their estimate of 2.25, but
consistent with contemporaneous evidence (Schmidt and Traub 2002; Gächter et al.
2007; Abdellaoui et al. 2008). Furthermore, we found that neither the degree of utility
curvature, nor the degree of loss aversion, is altered by scaling up monetary outcomes.
The same holds for the probability weighting functions, which do not appear to be
affected by the magnitude of the stakes, contrary to what Etchart–Vincent (2004) finds
for the loss domain.

By including background characteristics, our estimation procedure gives more
background as to what causes risk aversion differences between groups in the popula-
tion. This analysis suggests that the common finding that women are more risk averse
than males (Byrnes and Miller 1999) stems from differences in probability weighting
and loss aversion, and not from differences in utility curvature. Also, the reduction of
risk aversion that is associated with a higher level of education (Donkers et al. 2001;
Dohmen et al. 2006) does not derive from utility curvature but from differences in
loss aversion. The robustness of these results should be confirmed by further research,
but they are indicative of the different channels through which risk-taking behavior is
associated with background variables.

Two disadvantages of the study are the lack of real incentives and the use of match-
ing tasks instead of choice tasks. Hypothetical tasks have been found in some settings
to prime more erratic, and sometimes different, behavior than similar tasks involving
real stakes (Camerer and Hogarth 1999; Holt and Laury 2002). Moreover, matching
tasks have been found to increase the number of inconsistent answers, suggesting
that these tasks are more cognitively demanding (Luce 2000; Hertwig and Ortmann
2001). This is confirmed by our data, where for gains 37% of all individuals gave
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one or more inconsistent answer. These individuals were excluded from the analysis,
leading to sample selection. To correct for this, the analyses were conducted by using
the inverse of the probability of appearing in the sample as weight. Given that our
results blend in well with the results from laboratory experiments, providing evidence
for diminishing sensitivity both with respect to outcomes and probabilities and also
producing plausible relationships with demographic variables, we are confident that
the obtained measures give a good representation of the average curvature of prospect
theory’s functionals.

Acknowledgements We thank Peter P. Wakker, Gregory Jolivet, and Sebastien Roux for their respec-
tive helpful comments and suggestions, and CentERdata, in particular Vera Toepoel, for programming the
experiment and providing the data.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

7 Appendix

7.1 Sample selection probit-equation

Table 7 Sample selection equations

Variable Frac. Outcomes Probabilities Loss aversion

Gains Losses Gains Losses

Low amounts treatment 50% 0.144** 0.101* 0.0123 −0.092 0.088

(0.058) (0.059) (0.18) (1.23) (0.065)

Female 46% −0.052 −0.079 −0.188∗∗ −0.219∗∗ −0.116∗
(0.060) (0.061) (2.65) (2.82) (0.067)

Lower secondary education 26% 0.127 0.029 −0.264 −0.370∗ 0.218

(0.142) (0.143) (1.53) (1.99) (0.177)

Higher secondary education 14% 0.335** 0.148 0.169 0.106 0.507***

(0.151) (0.152) (0.96) (0.56) (0.182)

Intermediate voc. training 19% 0.046 −0.148 −0.127 −0.291 0.147

(0.146) (0.148) (0.73) (1.55) (0.180)

Higher vocational training 25% 0.258* 0.039 0.205 0.0662 0.394**

(0.143) (0.144) (1.23) (0.37) (0.175)

Academic education 11% 0.488*** 0.305* 0.568** 0.447* 0.681***

(0.158) (0.158) (3.16) (2.36) (0.187)

Age 35−44 18% −0.157∗ −0.202∗∗ −0.0621 0.0567 −0.284∗∗∗
(0.092) (0.093) (0.61) (0.53) (0.099)

Age 45−54 22% −0.234∗∗∗ −0.281∗∗∗ −0.258∗ −0.195 −0.325∗∗∗
(0.088) (0.089) (2.56) (1.79) (0.095)

Age 55−64 18% −0.313∗∗∗ −0.340∗∗∗ −0.273∗ −0.418∗∗∗ −0.524∗∗∗
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Table 7 continued

Variable Frac. Outcomes Probabilities Loss aversion

Gains Losses Gains Losses

(0.094) (0.096) (2.52) (3.36) (0.106)

Age 65+ 19% −0.462∗∗∗ −0.428∗∗∗ −0.638∗∗∗ −0.592∗∗∗ −0.632∗∗∗
(0.095) (0.096) (5.44) (4.63) (0.108)

e 1.150 ≤ Inc. <e 1.800 25% 0.196* 0.269** 0.298 0.480* 0.319**

(0.118) (0.122) (1.94) (2.52) (0.146)

e 1.800 ≤ Inc.<e 2.600 31% 0.200* 0.253** 0.325* 0.509** 0.381***

(0.115) (0.119) (2.16) (2.71) (0.143)

Income ≥e 2.600 35% 0.344*** 0.411*** 0.418** 0.699*** 0.526***

(0.115) (0.119) (2.80) (3.79) (0.142)

Catholic 30% 0.014 0.008 0.0128 0.000 −0.007

(0.068) (0.069) (0.16) (0.01) (0.077)

Protestant 20% 0.160** 0.126 0.136 0.083 0.215**

(0.077) (0.078) (1.52) (0.85) (0.084)

Constant −0.503∗∗∗ −0.510∗∗∗ −1.024∗∗∗ −1.280∗∗∗ −1.199∗∗∗
(0.176) (0.179) (4.75) (5.21) (0.217)

N 1935 1935 1935 1935 1935

Notes: Standard errors allow for clustering within households. */**/***: significant at the 10/5/1% level

7.2 Experimental instructions

[Instructions are translated from Dutch]
Welcome at this experiment on individual decision making. The experiment is about

your risk attitude. Some people like to take risks while other people like to avoid risks.
The goal of this experiment is to gain additional insight into the risk attitude of people
living in the Netherlands. This is very important for both scientists and policymakers.
If we get a better understanding of how people react to situations involving risk, pol-
icy can be adjusted to take this into account (for example, with information provision
on insurance and pensions, and advice for saving and investment decisions). Your
cooperation at this experiment is thus very important and is highly appreciated.

The questions that will be posed to you during this experiment will not be easy.
We therefore ask you to read the following explanation attentively. In this experiment,
there are no right or wrong answers. It is exclusively about your own preferences. In
those we are interested.

Probabilities (expressed in percentages) play an important role in this experiment.
Probabilities indicate the likelihood of certain events. For example, you probably have
once heard Erwin Krol say that the probability that it will rain tomorrow is equal to 20
percent (20%). He then means, that rain will fall on 20 out of 100 similar days. During
this experiment, probabilities will be illustrated using a wheel, as depicted below.

Suppose that the wheel depicted in the picture above is a wheel
consisting of 100 equal parts. Possibly, you have seen such a wheel before in
television shows such as The Wheel of Fortune. Now imagine that 25 out of 100
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parts of the wheel are orange and that 75 out of 100 parts are blue. The probability that
the black indicator on the top of the wheel points at an orange part after spinning the
wheel is equal to 25% in that case. Similarly, the probability that the black indicator
points at a blue part after spinning the wheel is equal to 75%, because 75 out of 100
parts of the wheel are blue. The size of the area of a color on the wheel thus determines
the probability that the black indicator will end on a part with that color.

Besides probabilities, lotteries play an important role in this experiment. Perhaps
you have participated in a lottery such as the National Postal Code Lottery yourself
before. In this experiment, lotteries yield monetary prizes with certain probabilities,
similar to the National Postal Code Lottery. The prizes of the lotteries in this exper-
iment can also be negative, however. If a lottery yields a negative prize, you should
imagine yourself that you will have to pay the about amount of money. In the following
explanation we will call a negative prize a loss and a positive prize a profit. During
this experiment, lotteries will be presented like the example presented below:

In this case, the lottery yields a profit of 1000 Euro with probability 50%. However,
with probability 50%, this lottery yields a loss of 200 Euro. You should imagine that
if you participated in this lottery, you would get 1000 Euro with probability 50%, and
with probability 50% you would have to pay 200 Euro.

During this experiment you will see two lotteries, named Lottery L (Left) and Lot-
tery R (right), on the top of each page. Between these lotteries, you will see a wheel
that serves as an aid to illustrate the probabilities used. You will see an example of the
layout of the screen on the next page.
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In this example, Lottery R yields a profit of 500 Euro with probability 50%, and
with a probability 50%, it yields a loss of 200 Euro. You should imagine that, if we
would spin the wheel once and the black indicator would point at the orange part of the
wheel, then Lottery R would yield a profit of 500 Euro. However, if the black marker
would point at the blue part of the wheel, the Lottery R would yield a loss of 200 Euro.

Similarly, Lottery L yields a loss of 300 Euro with a probability 50%. However, as
you can see, the upper prize of Lottery L is missing. During this experiment, we will
repeatedly ask you for the upper prize of Lottery L (in Euro) that makes Lottery L and
Lottery R equally good or bad for you. Thus, we will ask you for the upper prize of
Lottery L for which you value both lotteries equally.

You could imagine that most people prefer Lottery L if the upper prize of Lottery
L is very high, say 3000 Euro. However, if this prize is not so high, say 500 Euro, then
most people would prefer Lottery R. Somewhere between these two prizes there is a
“turnover point” for which you value both lotteries equally. For high prizes, you will
prefer Lottery L and for low prizes you will prefer Lottery R. The turnover point is
different for everybody and is determined by your own feeling. To help you a little bit
in the choice process, we will report the range of prizes in which the answer of most
people lies approximately at each question.

How this works precisely will become clear in the practice question that will start
if you click on the CONTINUE button below. If something it not clear to you, you can
read the explanation of this experiment again by pressing the BACK button below.

[Practice question]
The practice question is now over. The questions you will encounter during this

experiment are very familiar to the practice question. If you click on the BEGIN but-
ton below, the experiment will start. If you want to go through the explanation of this
experiment again, click on the EXPLANATION button. Good luck.

The first part of this experiment has now finished. In the second part of this exper-
iment, each question will again be presented on a separate page, with two lotteries
Lottery L (Left) and Lottery R (Right) presented at the top. In between the two lotter-
ies, you will again be presented with a wheel to illustrate the probabilities. In this part
of the experiment, however, Lottery L will always yield a fixed amount with certainty.
Below the illustrated lotteries, there will again be text explaining the question. The
next screen will show you an example of a question that you could get in the second
part of this experiment.

As you can see, in this example Lottery L always yields 500 Euros. Lottery R on the
other hand, gives with probability 25% a profit of 1000 Euro, and with a probability of
75% a loss of 300 Euro. You should again imagine that, if we were to turn the wheel
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and the black pointer would be in the orange area, Lottery R would yield 1000 Euros.
In case the black pointer would be in the blue area, Lottery R would yield a loss of
300 Euros.

In the previous example you may have preferred Lottery L to Lottery R or the other
way around. In the second part of this experiment, however, the probabilities of the
prizes in lottery L will be missing, such as in the example given above.

In the second part of this experiment, we will ask you in each question to state
the value of the missing probability (in whole percentages, from 0% to 100%) for the
upper prize of Lottery R that would make you value both equally.

Imagine that the probability of the upper prize of lottery R is equal to 100%. This
would give the lotteries presented above. Lottery L will thus always give a profit of
500 Euro, while Lottery R will always give a 1000 Euros. Given that Lottery L will
always yield less than Lottery R, most people will prefer Lottery R to Lottery R.

Imagine now, however, that the probability of the upper prize of lottery R is equal
to 0%. This would give the lotteries presented above. Lottery L will thus always give
a profit of 500 Euro, while Lottery R will always give a loss of 300 Euros. Given that
Lottery L will always yield more that Lottery R, most people will now prefer Lottery
L to Lottery R.
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Hence, there is a value of the missing probability somewhere between 0% and
100% for which you would value both lotteries equally. In the questions that follow
we will ask you for which value of the missing probability you value Lottery L and
Lottery R equally. This missing probability can be different for everybody and is your
own preference. How this works precisely will become clear in the practice question
that will start if you click on the CONTINUE button below. If something it not clear
to you, you can read the explanation of this experiment again by pressing the BACK
button below.

[Practice question]
The practice question is now over. The questions you will encounter during this

experiment are very familiar to the practice question. If you click on the BEGIN but-
ton below, the experiment will start. If you want to go through the explanation of the
second part of this experiment again, click on the EXPLANATION button. Good luck.
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