
A Parametric Error Analysis of Goldschmidt’s Division Algorithm
- EXTENDED ABSTRACT -

Guy Even
Dept. of Electrical Engineering Systems

Tel-Aviv University
Tel-Aviv 69978, Israel

guy@eng.tau.ac.il

Peter-Michael Seidel
Computer Science & Engineering Dept.

Southern Methodist University
Dallas, TX, 75275

seidel@engr.smu.edu

Warren E. Ferguson
warren e ferguson@hotmail.com

Abstract

Back in the 60’s Goldschmidt presented a variation of
Newton-Raphson iterations for division that is well suited
for pipelining. The problem in using Goldschmidt’s division
algorithm is to present an error analysis that enables one to
save hardware by using just the right amount of precision
for intermediate calculations while still providing correct
rounding. Previous implementations relied on combining
formal proof methods (that span thousands of lines) with
millions of test vectors. These techniques yield correct de-
signs but the analysis is hard to follow and is not quite tight.

We present a simple parametric error analysis of Gold-
schmidt’s division algorithm. This analysis sheds more light
on the effect of the different parameters on the error. In ad-
dition, we derive closed error formulae that allow to deter-
mine optimal parameter choices in four practical settings.

We apply our analysis to show that a few bits of precision
can be saved in the floating-point division (FP-DIV) micro-
architecture of the AMD-K7TM microprocessor. These re-
ductions in precision apply to the initial approximation and
to the lengths of the multiplicands in the multiplier. When
translated to cost, the reductions reflect a savings of

����� ���

in the overall cost of the FP-DIV micro-architecture.

1. Introduction and Summary

Asymptotically optimal division algorithms are based on
multiplicative division methods [13, 17, 21]. Current com-
mercial processor designs employ a parallel multiplier for
performing division and square-root operations for floating-
point [1, 4, 12, 15]. The parallel multiplier is used for
additional operations, such as: multiplication and fused

multiply-add. Since meeting the precision requirements of
division operations requires more precision than other oper-
ations, the dimensions of the parallel multiplier are often de-
termined by precision requirements of division operations.
It follows that tighter analysis of the required multiplier di-
mensions for division operations can lead to improvements
in cost, delay, and even power consumption.

The main two methods used for multiplicative division
are a variation of Newton’s method [7, 8] and a method in-
troduced by Goldschmidt [9] that is based on an approxi-
mation of a series expansion. Division based on Newton’s
method has a quadratic convergence rate (i.e., the number of
accurate bits doubles in each iteration) and is self-correcting
(i.e., inaccuracies of intermediate computations do not ac-
cumulate). A rigorous error analysis of Newton’s method
appears in [3, 10, 14] and for various exceptional cases
in [4]. The analysis in [3, 10] considers the smallest pre-
cision required per iteration. Our error analysis follows this
spirit by defining separate error parameters for every inter-
mediate computation. In addition, the analysis in [3, 10]
relies on directed roundings, a method that we use as well.

Each iteration of Newton’s method involves two depen-
dent multiplications; namely, the product of the first multi-
plication is one of the operands of the second multiplication.
The implication of having to compute two dependent mul-
tiplications per iteration is that these multiplications cannot
be parallelized or pipelined.

Goldschmidt’s division algorithm also requires two mul-
tiplications per iteration and the convergence rate is the
same as for Newton’s method. However, the most im-
portant feature of Goldschmidt’s algorithm is that the two
multiplications per iteration are independent and can be
pipelined or computed in parallel. On the other hand, Gold-
schmidt’s algorithm is not self-correcting; namely, inaccu-
racies of intermediate computations accumulate and cause

the computed result to drift away from the accurate quo-
tient. Goldschmidt’s division algorithm was used in the
IBM System/360 model 91 [2] and even more recently in
the IBM S/390 [19] and in the AMD-K7TM microproces-
sor [15]. However, lack of a general and simple error analy-
sis of Goldschmidt’s division algorithm has averted most
designers from considering implementing Goldschmidt’s
algorithm. Thus most implementations of multiplicative di-
vision methods have been based on Newton’s method in
spite of the longer latency due to dependent multiplications
in each iteration [4, 12] (see also [22] for more references).

Goldschmidt’s method is not self-correcting as explained
in [11] (there is a wrong comment on this in [23]). This
makes it particularly important and difficult to keep track
of accumulated and propagated error terms during interme-
diate computations. We were not able to locate a general
analysis of error bounds of Goldschmidt’s algorithm in the
literature. Goldschmidt’s error analysis in [9] is with re-
spect to a design that uses a serial radix- � Booth multiplier
with

� �
-bits. Goldschmidt’s design computes the quotient

of two binary numbers in the range � ������� ��� , and his analy-
sis shows that the absolute error is in the range �
	 ����
�� ���

.
Krishnamurthy [11] analyzes the error only for the case
that only one multiplicand is allowed to be imprecise in
intermediate computations (the second multiplicand must
be precise); such an analysis is only useful for determining
lower bounds for delay. Recent implementations of Gold-
schmidt’s division algorithm still rely on an error analysis
that over-estimates the accumulated error [15]. Such over-
estimates lead to correct designs but waste hardware and
cause unnecessary delay (since the multiplier and the initial
lookup table are too large). These over-estimations were
based on informal arguments that were confirmed by a me-
chanically verified proof that spans over

��� �
definitions and� � � �

lemmas [18].

Agarwal et al. [1] presented a multiplicative division
algorithm that is based on an approximate series expan-
sion. This algorithm was implemented in IBM’s Power3TM.
Their algorithm provides no advantages over Goldschmidt’s
algorithm. In double precision, their algorithm requires �
multiplications and the longest chain of dependent multi-
plications consists of � multiplications.

We present a version of Goldschmidt’s division algo-
rithm that uses directed roundings. We develop a simple
general parametric analysis of tight error bounds for our
version of Goldschmidt’s division algorithm. Our analysis
is parametric in the sense that it allows arbitrary one-sided
errors in each intermediate computation and it allows an ar-
bitrary number of iterations. In addition, we suggest four
practical simplified settings in which errors in intermediate
computations are not arbitrary. For each of these four set-
tings, we present a closed error formula. The advantage of
closed formulae is in simplifying the task of finding opti-

mal parameter combinations in implementations of Gold-
schmidt’s division method for a given target precision.

We demonstrate the advantages of our error analysis
by showing how it could lead to savings in cost and de-
lay. For this purpose we consider Oberman’s [15] floating-
point micro-architecture used in the AMD-K7TM design.
We present a micro-architecture that implements our ver-
sion of Goldschmidt’s algorithm and follows the micro-
architecture described in [15]. The modules building our
micro-architecture were made as similar as possible to the
modules in [15]. This was done so that the issue of the pre-
cisions of the lookup table and multiplier could be isolated
from other issues. Based on our analysis, we use a smaller
multiplier (� ��� ��� bits compared to � ��� � � in [15]) and
we allow a slightly larger initial error (

��������� � �
compared

to
�!������� "#�

in [15]). Based on the cost models of Paul &
Seidel [16] and Mueller & Paul [14], we estimate that our
parameter choices for multiplier widths and initial approx-
imation accuracy reduce the cost of the micro-architecture
by

����� ���
compared to the parameter choices in [15].

The paper is organized as follows. In Section 2 we
present Newton’s method for division and then proceed by
presenting Goldschmidt’s algorithm as a variation of New-
ton’s method. In Section 3, a version of Goldschmidt’s al-
gorithm with imprecise intermediate computations is pre-
sented as well as an error analysis. In Section 4 we develop
closed form error bounds for Goldschmidt’s method with
respect to specific settings. In Section 5 we present an alter-
native micro-architecture to [15] and compare costs. Due to
space limitations, all proofs are omitted and can be found in
the full version [6].

2. Goldschmidt’s division algorithm

In this section we present Newton’s method for comput-
ing the reciprocal of a given number. We then continue
by describing a version of Goldschmidt’s division algo-
rithm [9] that uses precise intermediate computations. We
show how Goldschmidt’s algorithm is derived from New-
ton’s method. The error analysis of Newton’s method is
used to analyze the errors in Goldschmidt’s algorithm.

2.1. Newton’s method.

Newton’s method can be applied to compute the recipro-
cal of a given number. To compute the reciprocal of $&% �

,
apply Newton’s method to the function ')(+* �-, $.	 ��� * .
Note that: (a) the root of ')(+* � is

��� $, which is the recip-
rocal we want to compute, and (b) the function ')(+* � has a
derivative '0/1(1* �2, * �43 in the interval (�5� 67�

. In particular,
the derivative '4/8(+* � is positive.

Newton iterations are defined by the following recur-
rence: Let *:9 denote an initial estimate *;9=<, �

and define

*���� � by

*���� � , *��0	 ')(1*�� �
' / (1* � �

, * � 	 $ 	 ����
* �;3�, * ��� (� 	 $ � * � � �

(1)

Consider the relative error term 	 � defined by

	 �

, �� 	 *����, � 	 $ � *�� �

It follows that

	 �
� � , � 	 $ � * ��� �, � 	 $ � * ��� (� 	 $ � * � �, (� 	 $ � * � � 3, 	 3� �
(2)

Equation 2 has three implications:

1. Convergence of *�� to
��� $ at a quadratic rate is guaran-

teed provided that the initial relative error is less than�
. Equivalently, convergence holds if * 9�� (�:� 3� �

.

2. For ��� �
, the relative error 	�� is non-negative, hence,

*���� ��� $. This property is referred to as one-sided
convergence.

3. If $ � � � �#� � , then also the absolute error decreases at
a quadratic rate. Hence, the number of “accurate” bits
doubles every iteration, and the number of iterations
required to obtain � bits of accuracy is logarithmic in � .

The disadvantage of Newton’s iterations, with respect to
a pipelined multiplier, is that each iteration consists of

�
dependent multiplications: ��� , $ � *�� and ��� , *�� � (� 	
��� � . Namely, the product ��� cannot be computed before the
product ��� is computed.

2.2. Goldschmidt’s Algorithm

In this section we describe how Goldschmidt’s algorithm
can be derived from Newton’s method. Here, our goal is to
compute the quotient � � $. Goldschmidt’s algorithm uses
three values ��� �! � and "�� defined as follows:

�#�

, � � *��

 �

, $ � * �

"��

, � 	 � �

Algorithm 1 Goldschmidt-Divide ($� � $ �
- Goldschmidt’s

iterative algorithm for computing � � $
Require: % 	 9&%(' �

.
1: Initialize: � ����) � ,

 ����) $, " ���*) � �,+.-� .
2: for � , �

to / do
3: �#�) ��� ��� � "�� �0� .
4:

 �) � ��� � "�� ��� .
5: "��) � 	 � .
6: end for
7: Return (0� � �

Consider Newton’s iteration: * ��� � , * ��� (� 	7$ � * � � .
We may rewrite an iteration by

* ��� � , * ��� " � �
which when multiplied by � and $, respectively, becomes

� ��� � , � ��� " � ��1#2	�34� � $
 ��� � ,5 � � "�� �61�2	,3 � �

Since *�� converges to
��� $, it follows that ��� converges to

� � $ and
 � converges to

�
.

Note that: (a) ��� �7 � , � � $, for every � ; (b) ��� con-
verges to � � $ at the same rate that *�� converges to

��� $;
and (c) Let � � $ % �

. Since the relative error 	�� in New-
ton’s iterations is non-negative, for �8� �

, it follows that
�#���9� � $,

 ��� �
and "��:� �

for �;� �
.

As in Newton’s iterations, the algorithm converges if
% 	 9<%(' �

and the relative error decreases quadratically. One
could use a fixed initial approximation of the quotient. Usu-
ally a more accurate initial approximation of

��� $ is com-
puted by a lookup table or even a more elaborate functional
unit (c.f. [5, 20]).

Algorithm 1 lists Goldschmidt’s division algorithm.
Given � and $ the algorithm computes the quotient � � $.
The listing uses the same notation used above, and iterates
/ times.

Observe that the two multiplications that take place in
every iteration (in Lines 3-4) are independent, and there-
fore, Goldschmidt’s division algorithm is more amenable to
pipelined implementations. The initial approximation is as-
sumed to depend on the value of $. Note that / iterations of
either Newton’s method or Goldschmidt’s algorithm require� /�= �

multiplications. These
� /�= �

multiplication must
be linearly ordered in Newton’s method implying a critical
path of

� /�= �
dependent multiplications. In Goldschmidt’s

algorithm the two multiplications that take place in every
iterations are independent, hence the critical path consists
only of />= �

multiplications.
An error analysis of Goldschmidt’s algorithm with pre-

cise arithmetic is based on the following claim.

Claim 1 The following equalities hold for �;� �
:

 � , � 	 	 3 �9
"�� , � = 	 3 �9

The key difficulty in analyzing the error in imprecise imple-
mentations of Goldschmidt’s algorithm is due to the viola-
tion of the invariant ��� �� � , � � $. Consider the equality

� � , � � $ � 9�� " 9*� " � � � � � � " � ���
, � � $ � (� 	 	 9 � � �

� �0�
���09 (� = 	 3 �9 � �

Imprecise
 9 � " 9 � � � �0� " � �0� accumulate to an imprecise

approximation of � � $.

3. Imprecise Intermediate Computations

This section contains the core contribution of our paper.
We present a version of Goldschmidt’s algorithm with im-
precise intermediate computations. In this algorithm the in-
variant ��� �7 � , � � $ of Goldschmidt’s algorithm with
precise arithmetic does not hold anymore. We then develop
a simple parametric analysis for error bounds in this algo-
rithm. The error analysis is based on relative errors of in-
termediate computations. The setting is quite general and
allows for different relative errors for each computation.

We define the relative error as follows.

Definition 1 The relative error of * with respect to � is de-
fined by �

���
�

.

Note that one usually uses the negative definition (i.e., (+* 	
� �#� �). We prefer this definition since is helps clarify the
direction of the directed roundings that we use.

The analysis begins by using the exact values of all the
relative errors. The values of the relative errors depend on
the actual values of the inputs and on the hardware used for
the intermediate computations. However, one can usually
easily derive upper bounds on the absolute errors of each in-
termediate computation. E.g., such bounds on the absolute
errors are simply derived from the precision of the multipli-
ers. Our analysis continues by translating the upper bounds
on the absolute errors to upper bounds on the relative errors.
Hence we are able to analyze the accuracy of an implemen-
tation of the proposed algorithm based on upper bounds on
the absolute errors.

An interesting feature of our analysis is that directed
roundings are used for all intermediate calculations. Sur-
prisingly, directed roundings play a crucial role in this anal-
ysis and enable a simpler and tighter error analysis than
round-to-nearest rounding (c.f. [15]).

3.1. Goldschmidt’s division algorithm using ap-
proximate arithmetic

A listing of Goldschmidt’s division algorithm using ap-
proximate arithmetic appears in Algorithm 2. The values
corresponding to ��� , � , and "�� using the imprecise com-
putations are denoted by � /� , /� and " /� , respectively.

Algorithm 2 Goldschmidt-Approx-Divide ($� � $ �
- Gold-

schmidt’s division algorithm using approximate arithmetic

1: Initialize: � /���) � ,
 / ���) $, " /���) � �,+.-� .

2: for � , �
to / do

3: � /�) (� 	���� � � �=/� ��� � " /� ��� .
4:

 /�) (� =
	&� � � /� �0� � " /� �0� .
5: " /�) (� 	 '�� � � (� 	 /� � .
6: end for
7: Return (0� /� �

Directed roundings are used for all intermediate calcula-
tions. For example, �=/� is obtained by rounding down the
product �=/� �0� � " /� �0� . We denote by � � the relative error
of �=/� with respect to � /� ��� � " /� �0� . Since � /� �0� � " /� �0� is
rounded down, we assume that � � � �

. Similarly, rounding
down is used for computing " /� (with the relative error ' �)
and rounding up is used for computing

 /� (with the relative
error 	&�).

The initial approximation of the reciprocal
��� $ is de-

noted by " /�0� . The relative error of " /��� with respect to��� $ is denoted by 	�9 . We do not make any assumption
about the sign of 	�9 .
Our error analysis is based on the following assumptions:

1. The operands are in the range � � $ � � ��� ��� .
2. All the relative errors incurred by directed rounding

are at most
��� � . This assumption is easily met by mul-

tipliers with more than � bits of precision.

3. We require that % 	 9 %�= � 	 9 ��� = ' 9 ' �����
. Again, this

assumption is easily met if the multiplications and the
initial reciprocal approximation are precise enough.

4. The initial approximation " /��� of
��� $ is in the range

� ������� ��� . This assumption is easily met if lookup tables
are used.

Definition 2 The relative error of �=/� with respect to � � $ is

� (0� /� �
, � � $ 	 �=/�
� � $

�

3.2. A simplifying assumption: strict directed
roundings

The following assumption about directed rounding used
in Algorithm 2 helps simplify the analysis.

Definition 3 (Strict Directed (SD) rounding) Rounding
down is strict if * � �

implies that � � 	 (1* � � �
. Similarly,

rounding up is strict if * � �
implies that � � 	;(+* � � �

.

Observe that, in general, rounding down means that� � 	;(+* � � * , for all * . Often the absolute error intro-
duced by rounding is bounded by � % �

, namely * 	� ��� � 	;(+* � � * . Strict rounding down requires that if
* � �

, then � � 	 (1* � � �
no matter how close * is to

�
. In

non-redundant binary representation strict rounding is eas-
ily implemented as follows. Strict rounding down can be
implemented by truncating. Strict rounding up can be ob-
tained by (i) an increment by a unit in each position below
the rounding position and (ii) truncation of the bit string in
positions less significant than the rounding position.

Assumption 2 (SD rounding) All directed roundings used
in Algorithm 2 are strict.

3.3. Parametric Error Analysis

Lemma 3 bounds the ranges of �=/� and " /� in Algorithm 2
under Assumption 2. This lemma is an extension of the
properties

 �:� �
and "��:� �

(for �;� �
) of Algorithm 1.

Goldschmidt already pointed out that since ":� tends to
�

from above, one could save hardware since the binary repre-
sentation of "�� begins with the string

� � � � � � � �
. An analo-

gous remark holds for
 � . However, Lemma 3 refers to the

inaccurate intermediate results (i.e.,
 /� and " /�) rather than

the precise intermediate results (i.e.,
 � and " �). Parts 2-3

of lemma 3 show that the same hardware reduction strategy
applies to Algorithm 2, even though intermediate calcula-
tions are imprecise.

Definition 4 Define
� � , for � � �

, as follows:

� ��� , � % 	 9 % = � 	 9 ��� for � , �� 3� �0� =7'�� �0� otherwise.

Lemma 3 (ranges of
 /� and " /�)

The following bounds hold:

1.
 /9 � � � 	 � 9 � � = � 9 ��� (�������#������� .

2.
 /� � � � 	 � � � � � , for every � � �

.

3. " /� � � � � � = � � � , for every �;� �
.

4.
 /� � /��� � , for every � � �

.

The following claim summarizes the relative error of
Goldschmidt’s division algorithm using approximate arith-
metic.

Theorem 4 For every � % �
, the relative error � ($� /� ��,	�
 � �
����	�
 � satisfies ����� � ($� /� � ������= � � , where ��� is de-

fined by � �
, � 	 (� 	 � � � ��� � �0�� �09 � ������ ��� � � � �

For � , �
it can be verified that % � (0�=/9 � %<���:9 = � 9 .

A somewhat looser (yet easier to evaluate) bound on the
relative error follows from

��� � � �� �09 � � =�� � �0�� �09 	 � � (3)

3.4. Deriving bounds on relative errors from abso-
lute errors

In this subsection we obtain bounds on the relative errors
� ($� /� � from the absolute errors of the intermediate compu-
tations. The reason for doing so is that in an implemen-
tation one is able to easily bound the absolute errors of
intermediate computations; these follow directly from the
precision of the operation, the rounding used (e.g., floor or
ceiling), and the representation of the results (binary, carry-
save, etc.).

Consider the computation of � /� . The relative error in-
troduced by this computation is � � , and �=/� equals (� 	 � � � �
� /� �0� � " /� ��� . An accurate computation would produce the
product � /� ��� � " /� ��� . Hence, the absolute error is � � � � /� ��� � " /� ��� .
Definition 5 The absolute errors of intermediate computa-
tions are defined as follows:

��	 �
� �
, ��� � � /� �0� � " /� �0�
	&	!��� �
, 	&� � /� �0� � " /� �0�
',	 �
� �
, '�� � (� 	 /� � �

In an implementation, the exact absolute errors are un-
known. Instead, we use upper bounds on the absolute er-
rors. We denote these upper bounds as follows: ���	!��� � �
��	 �
� � , �	 	 �
� � � 	 	 ����� and �',	 �
� � � ',	!��� � .

The following claim shows how one can derive upper
bounds on the relative errors from upper bounds on the ab-
solute errors.

Claim 5 (from absolute to relative errors) If � � $ � � � �#��� ,
then for � � �

the relative errors are bounded by:

� � ��� � � ���	 �
� � � (� 	���� �0� 	 � � �0� �
� � 	 � � �	 	 �
� � � (� 	 � � �0� �
� � ' � � �',	!��� �

A careful reader might be concerned by the fact that
� � �0�

and � � �0� appear in the above bounds on the relative errors
� � and 	 � . When analyzing the errors, one computes upper
bounds for all relative errors from the first iteration to the
last. These bounds are used to compute upper bounds on� � �0� and � � �0� , which in turn are used to bound � � and 	 � .
In the full version [6] bounds are given for the relative errors
in the first and second iteration.

4. Closed Form Error Bounds in Specific Set-
tings

In this section we describe specific settings of the rela-
tive errors that enable us to derive closed form error bounds.
The advantage of having closed form error bounds is that
such bounds simplify the task of minimizing an objective
function (modeling cost or delay) subject to the required
precision. Closed form error bounds also enable one to eas-
ily evaluate the effect of design choices (e.g., initial error,
precision of intermediate computations, and number of iter-
ations) on the final error. We have derived closed form error
bounds in four specific settings. We are describing Setting I
and Setting IV in the following. Settings II (� � � 	 � ���� and
' � � � 3� is exponential in 	 /) and Setting III (� � � 	 � ���� and
' � � � 3� is constant) are presented in the full version [6].

4.1. Setting I: � � � 	&�:���� and '7� , �
.

Setting I deals with the situation that all the relative er-
rors ��� � 	&� are bounded by the same value �� . In addition
it is assumed in this setting that '7� , �

, for every � . The
justification for Setting I is that if all internal operands are
represented by binary strings of equal length, then it is pos-
sible to bound all the relative errors ��� � 	&� by the same value.
The relative errors '7� can be assumed to be

�
, if the compu-

tations " /� , (� 	 /� � are precise.
Using Theorem 4 and Eq. 3, the relative approximation

error � (0� /� � , 	�
 � �
����	�
 � in Setting I can be bounded by:

� � � (0� /� ��, � � $ 	 � /�
� � $ � (� � = ��� ���= (!% 	 9&%6=

�
� �� � 3 � �

4.2. Setting IV: � � � 	&�:���� and '���� �' for every � .

In setting IV the assumptions are: (i) ��� � 	&� ���� , for
every � , and (ii) '7��� �' � ��� � , for every � . Hence,

� ���� 3� �0� = �' for all � � �
.

The following claim bounds the error term
� � corre-

sponding to the / th iteration of Algorithm 2.

Claim 6 Let � , (� =
�
�' � . For every /�% �

the following
holds:� � � �'�=��
	���
 � 3������
� 3 � � 3��9 � ($� 3��8� 3 � � 3������9 = �' � 3 ��� �' 3�� �
Note that a slightly looser bound that does not involve a max
function can be written as:� � � �' = � 3������ �43 � ��3��9 = � �' �
 3 �

Based on Theorem 4 and Equation 3 the error bound in
setting IV satisfies:
� (0� /� � ' (� />= ��� � �� = �'

=��
	���
 � 3������ � 3 � ��3��9 � ($� 3��8� 3 � ��3������9 = �' � 3 ��� �' 3 � �

One can easily see that, due to the first term, there is a
threshold above which increasing the number of iterations
(while maintaining all other parameters fixed) increases the
bound on the relative error. Moreover, the contribution of
the error term �' to � ($� /� � does not increase with the num-
ber of iterations / (as opposed to �� � . This implies that in a
cost effective choice one would use �' %��� .

5. Application: An Alternative FP-DIV Micro-
architecture for AMD-K7TM

In this section we propose an alternative FP-DIV micro-
architecture for the AMD-K7 microprocessor [15]. This al-
ternative micro-architecture is a design that implements Al-
gorithm 2. Our micro-architecture uses design choices that
are similar to those of [15] to facilitate isolating the effect
of precisions on cost. Our error analysis allows us to accu-
rately determine the required multiplier precision and thus
both save cost and reduce delay.

Overview micro-architecture. The FP-DIV micro-
architecture of the AMD-K7 microprocessor is described
in [15]. The micro-architecture is based on Goldschmidt’s
algorithm. We briefly outline this micro-architecture:
(i) Round-to-nearest rounding is done in intermediate com-
putations (as opposed to directed rounding suggested in
Algorithm 2). (ii) The design contains a single � � � � � -bits
multiplier. This means that the absolute errors ���	 ��� � and�	&	!��� � are identical during all the iterations (i.e., since
round-to-nearest is used, ���	!��� � , �	 	 �
� � , � �;"#
 �

. How-
ever, our alternative micro-architecture may use smaller
multipliers (even multipliers in which the multiplicands
do not have equal lengths) provided that the error analysis
proves that the final result is accurate enough. (iii) In-
termediate results are compressed and represented using
non-redundant binary representation. This means that As-
sumption 2 on strict directed rounding is easy to implement
in our alternative micro-architecture. (Recall that directed
rounding is used in Algorithm 2.) (iv) The computation
of " /� is done using one’s complement computation. This
means that the absolute error �',	 �
� � is identical during
all the iterations, and that the error analysis of Setting
IV is applicable for our alternative architecture. (v) Final
rounding of the quotient is done by back multiplication.
Our alternative micro-architecture uses the same final
rounding simply by meeting the same error bounds needed
in the final rounding of [15].

Required final precisions. The micro-architecture
in [15] supports multiple precisions: single precision
(� � � � � in one iteration, double precision (���5� � ��� in two
iterations, an extended precision (� � � � ��� and an internal
extended precision (� � � � � � in three iterations. Final round-
ing is based on back-multiplication: namely, comparing

� /� � $ with � . In general, correct IEEE rounding based
on back-multiplication requires that � (0�=/� � ' ������� � ��� ,
where � denotes the precision. (The description of the
required precision for correct rounding in [15] is somewhat
confusing since it is stated in terms of a two sided absolute
error. For example, the absolute error in the

� � -bit precision
is bounded by

���4" 9 .)
To summarize, the upper bounds on the relative errors

are as follows: (i) for single precision: � (0� /� � ' �!�43��
, (ii)

for double precision: � ($�=/3 � ' �!�;���
, (iii) for extended dou-

ble precision: � (0� /� � ' ���;
#�
, and (iv) for the

� � -bit preci-
sion: � (0� /� � ' ���;
	�

.
Note that the bound for the

� � -bit precision is weaker
than the bound for the

� � -bit precision. The bound for sin-
gle precision is easily satisfied by the parameter choices
needed to satisfy the

���
-bit precision. Hence we focus be-

low on two iterations for double precision and on three iter-
ations for the

� � -bit precision.

From relative errors to multiplier dimensions. In the
full version [6], we analyze the lengths of the multiplicands
in Algorithm 2. We obtain the following results. The length
of the first multiplicand (used for �=/� and

 /�) should be
slightly larger than
���
 3 (��� �� � = �

. The length of the second
multiplicand should be greater than or equal to ����� 3 (��� �' � =� =�
���
 3 (��� (� 	 � 9 � � .
Optimizing the error parameters. In the full version [6],
we present a search for combinations of relative errors that
minimize the sizes of the multiplier and lookup table. We
used a cost function that is based on the cost model of Paul
& Seidel [16] for Booth Radix-8 multipliers and the cost
model of Paul & Mueller [14] for lookup tables, adders,
etc. (Formulas for hardware costs appear in the full ver-
sion [6].) The optimal parameter combination for dou-
ble precision is 	�
���
 3 (�' ��, � � � � � , 	�
���
 3 (�� � , � � � ��� ,
and 	�
���
 3 (0	 9 � , � ��� � �

. For the
� � -bit internal preci-

sion we found the following combination: 	�9 , �!������� � �
,

	�
���
 3 �� , � � � ��� , and 	�
���
 3 �' , � � � � . We conclude that
multiplier dimensions � � � ��� combined with a relative error
bound 	 9 � �!������� � �

are a feasible choice of error parame-
ters. These parameters lead to a savings in cost of

� ��� ���

compared to the micro-architecture described in [15].

References

[1] R. Agarwal, F. Gustavson, and M. Schmookler. Series
approximation methods for divide and square root in the
power3 processor. In Proceedings of the 14th IEEE Sym-
posium on Computer Arithmetic, pages 116–123, 1999.

[2] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M.
Powers. The IBM 360/370 model 91: floating-point execu-
tion unit. IBM J. of Research and Development, Jan. 1967.

[3] P. Beame, S. Cook, and H. Hoover. Log depth circuits for
division and related problems. SIAM Journal on Computing,
15:994–1003, 1986.

[4] M. A. Cornea-Hasegan, R. A. Golliver, and P. Mark-
stein. Correctness proofs outline for Newton-Raphson based
floating-point divide and square root algorithms. In Pro-
ceedings of the 14th IEEE Symposium on Computer Arith-
metic, pages 96–105, 1999.

[5] D. DasSarma and D. W. Matula. Faithful bipartite ROM re-
ciprocal tables. In Proc. 12th IEEE Symposium on Computer
Arithmetic, pages 17–28, 1995.

[6] G. Even, P.-M. Seidel, and W. E. Ferguson. A parametric
error analysis of Goldschmidt’s division algorithm. full ver-
sion, submitted for Journal publication, available at request,
2003.

[7] D. Ferrari. A division method using a parallel multiplier.
IEEE Trans. on Computers, EC-16:224–226, Apr. 1967.

[8] M. J. Flynn. On division by functional iteration. IEEE
Transactions on Computers, C-19(8):702–706, Aug. 1970.

[9] R. Goldschmidt. Applications of division by convergence.
Master’s thesis, MIT, June 1964.

[10] D. Knuth. The Art of Computer Programming, volume 2.
Addison-Wesley, 3nd edition, 1998.

[11] E. V. Krishnamurthy. On optimal iterative schemes for
high-speed division. IEEE Transactions on Computers, C-
19(3):227–231, Mar. 1970.

[12] P. Markstein. IA-64 and Elementary Functions : Speed and
Precision. Hewlett-Packard Books. Prentice Hall, 2000.

[13] K. Mehlhorn and F. Preparata. Area-time optimal divi-
sion for ������� �"!�#%$'&)(�*,+.- (. Information and Computation,
72(3):270–282, 1987.

[14] S. M. Mueller and W. J. Paul. Computer Architecture. Com-
plexity and Correctness. Springer, 2000.

[15] S. F. Oberman. Floating-point division and square root algo-
rithms and implementation in the AMD-K7 microprocessor.
In Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, pages 106–115, 1999.

[16] W. Paul and P.-M. Seidel. To Booth or Not to Booth? IN-
TEGRATION, the VLSI Journal, 33:1–36, Jan. 2003.

[17] J. Reif and S. Tate. Optimal size integer division circuits.
SIAM Journal on Computing, 19(5):912–924, Oct. 1990.

[18] D. Russinoff. A mechanically checked proof of IEEE com-
pliance of a register-transfer-level specification of the amd-
K7 floating-point multiplication, division, and square root
instructions. LMS Journal of Computation and Mathemat-
ics, 1:148–200, December 1998.

[19] E. Schwarz, L. Sigal, and T. McPherson. CMOS floating
point unit for the S/390 parallel enterpise server G4. IBM J.
of Research and Development, 41(4/5):475–488, 1997.

[20] P.-M. Seidel. On the Design of IEEE Compliant Floating-
Point Units and their Quantitative Analysis. PhD thesis,
University of Saarland, Computer Science Department, Ger-
many, 1999.

[21] N. Shankar and V. Ramachandran. Efficient parallel circuits
and algorithms for division. Information Processing Letters,
29(6):307–313, 1988.

[22] P. Soderquist and M. Leeser. Area and performance trade-
offs in floating-point divide and square-root implementa-
tions. ACM Computing Surveys, 28(3):518–564, 1996.

[23] O. Spaniol. Computer Arithmetic - Logic and Design. Wiley,
1981.

