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The psychometric and classification literatures have illustrated the fact that a wide class of 
discrete or network models (e.g., hierarchical or ultrametric trees) for the analysis of ordinal 
proximity data are plagued by potential degenerate solutions if estimated using traditional 
nonmetric procedures (i.e., procedures which optimize a STRESS-based criteria of fit and 
whose solutions are invariant under a monotone transformation of the input data). This paper 
proposes a new parametric, maximum likelihood based procedure for estimating ultrametric 
trees for the analysis of conditional rank order proximity data. We present the technical aspects 
of the model and the estimation algorithm. Some preliminary Monte Carlo results are discussed. 
A consumer psychology application is provided examining the similarity of fifteen types of 
snack/breakfast items. Finally, some directions for future research are provided. 
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I. Introduction 

An ultrametric or hierarchical tree is a rooted tree in which a nonnegative weight 
is assigned to each node such that (a) the terminal nodes have zero weight, (b) the root 

has the largest weight, and (c) the weights assigned to the nodes on the path from any 

terminal node to the root constitute a strictly increasing sequence (De Soete, 1984). The 

ultrametric tree distance between two nodes i and j ,  denoted as dij ,  is defined in such 

discrete representations as the maximum of the weights associated with the nodes on 

the path connecting nodes i and j .  Such ultrametric trees have been quite useful for 
representing the discrete structure in proximity data since a hierarchical clustering is 

defined on the object set. Let A_A_ = ((~ij)) be a square symmetric matrix containing the 
pairwise, nonnegative, observed dissimilarities between M objects; then an ultrametric 

tree H is a representation of_A. whenever its terminal nodes correspond in a one-to-one 
fashion with the M objectffT, and whenever for each (i, j )  pair of objects, dij ,  the 
ultrametric distance between the two nodes corresponding to objects i and j ,  approx- 

imately equals ~ij" If dij = 8ij for all (i, j ) ,  then H constitutes an exact ultrametric tree 

representation of A (De Soete, 1984). Hartigan (1967), Jardine, Jardine, and Sibson 

(1967), and Johnson (1967) have all independently demonstrated that a necessary and 
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sufficient condition for the existence of an exact ultrametric tree representation is the 

ultrametric inequality, where if A_,__satisfies: 

~ij <~ max (~ik, ~jk) (1) 

for all i, j ,  and k triples, then an exact ultrametric tree representation can be uniquely 
constructed. 

However, empirical metric proximity data rarely satisfy this strong property, and 
a wide variety of estimation heuristics have therefore been developed. Traditional 
hierarchical clustering methods employing various types of agglomerate or divisive 
rules (see Hartigan, 1975, for a review) such as single-linkage, complete-linkage, aver- 
age-linkage, centroid-linkage, or median-linkage, are available in most statistical soft- 

ware packages. Unfortunately, different hierarchical clustering procedures applied to 
the same set of proximity data typically lead to different tree structures, as has been 

well documented in the classification literature (Dubes & Jain, 1979). Furthermore, 
there is rarely any a priori theory or guidelines as to which particular hierarchical 

clustering procedure to use for a specific social science research problem. In addition, 
with the exception of Ward's (1963) method, few of the commonly available hierarchi- 

cal clustering procedures optimize any clear objective function (e.g., a least-squares fit 
to the A_), and so the properties of the resulting ultrametric trees derived are unknown. 

For these reasons, a number of psychometricians have proposed new approaches for 

estimating a best fitting ultrametric tree representation for a given set of proximity data. 
For example, such an ultrametric tree representation can be constructed by minimizing 

the least-squares loss function: 

Z = ~ (~ij - diy) 2. (2) 
i<j 

Hartigan (1967) proposed a combinatorial optimization procedure in attempting to min- 
imize Z in (2) by performing a number of local operations on the tree. Chandon, 
Lemaire, and Pouget (1980) developed a branch and bound estimation procedure that 
globally minimizes (2) in finding the best ultrametric tree. Note that both the Hartigan 
and Chandon, Lemaire, and Pouget procedures can only be applied to relatively small 
data sets (M -< I0 or so) given the heavy numerical computation burden implicit in 

these combinatorial optimization approaches. Carroll and Pruzansky (1975, 1980) pro- 
posed a mathematical programming approach to estimating least-squares ultrametric 

trees from A__ employing a penalty function approach to gradually enforce the "strong" 
ultrametric-qnequality constraints. This methodology models the discrete, constrained 

tree estimation problem by a sequence of continuous gradient-based unconstrained 
optimization iterates. De Soete (1984) later modified this penalty function approach by 
using a computationally more efficient penalty function, adopting an exact sequential 

unconstrained minimization framework, and applying a numerically more stable non- 
linear minimization method for solving the unconstrained subproblem. DeSarbo, De 
Soete, Carroll, and Ramaswamy (1988) present an ultrametric tree estimation proce- 
dure for paired comparisons data in a stochastic model framework. DeSarbo, Manrai, 
and Burke (1990) discuss an extension to accomodate asymmetric proximity data (see 
also DeSoete et al., 1984a, 1984b). Barth61emy and Gu6nocke (1991) review these and 
other more recent approaches for estimating ultrametric trees from metric proximity 

data; see also DeSarbo, Manrai, & Manrai. 
While there seemingly exists a plethora of ultrametric tree estimation procedures 

for the analysis of metric proximity data, or proximities created from the preprocessing 
of two-way dominance data, no known nonmetric procedure exists for ultrametric tree 
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Carroll's (1989) Degenerate Ultrametric Tree Illustration. 
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estimation from ordinal proximity data. Indeed, De Soete (1983a) was among the first 
to demonstrate that neither the quantitative (i.e., the magnitudes of the distances) nor 

the qualitative (i.e., the topological structure) properties of such tree representations 

(he examined additive trees--a more general case of ultrametric trees) are invariant 

under monotonic transformations of the data, and concluded that "it does not make 

very much sense to devise nonmetric algorithms for constructing additive-tree repre- 
sentations" (p. 476). Carroll (1989) demonstrated that a wide class of tree structure 

models for proximity data (both ultrametric and additive trees) are subject to intrinsic 

theoretical degenerate solutions if fit by standard nonmetric techniques whose solutions 

are invariant under a monotone transformation of the data, and which optimize a 
STRESS or STRESS-like criterion of fit. Assuming that the smallest dissimilarity is 

unique or untied, Carroll illustrated the degenerate solution derived by connecting the 

closest pair as terminal nodes in the ultrametric tree to a single internal node (A), which 

in turn attaches to a second higher internal node (B), to which all other terminal nodes 
are connected. Figure 1, taken from Carroll, illustrates the degenerate ultrametric tree 

that theoretically plagues fully nonmetric fitting procedures such that a (weak, but 

non-constant) monotone function of the data will agree precisely with the distances of 

the ultrametric tree. Winsberg and Carroll (1989) extend this argument to fully non- 

metric procedures for fitting the INDSCAL (Carroll & Chang, 1970) multidimensional 
scaling model, and employ monotone splines as a way of avoiding potential degenerate 
solutions. 

This paper proposes a parametric approach to estimating ultrametric tree struc- 
tures from conditional rank order data that avoids the invariance and degeneracy prob- 
lems associated with fully nonmetric procedures mentioned above. The next section 

describes the procedure by which the underlying model parameters--the tree configu- 
ration ((dij)) and an associated scale parameter--are jointly estimated. Section 3 de- 
scribes a small Monte Carlo study of the estimation procedure, the results of which 
show that the technique is able to accurately reconstruct tree configurations for mod- 
erate sized datasets. Section 4 describes the application of this procedure to conditional 
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rank order data collected on various breakfast/snack foods by Green and Rao (1972). It 

is shown that the method provides an accurate graphical summary of the structure in 

these data. Finally, section 5 offers some suggestions for future research extensions, 

including the incorporation of covariates and a latent class estimation framework. 

2. Methodology 

Multidimensional scaling (MDS) and nonspatial methods (e.g., ultrametric trees) 

are data analytic tools for graphically representing individuals' underlying perceptions 

of the relations among the stimuli within a proximity data set. Since the underlying 

perceptual structure in many domains is typically complex and multidimensional, one 

cannot expect experimental subjects to be able to describe the structure directly; 

rather, the structure must be inferred from responses to simpler queries. In the method 

of conditional rank orders, one of M stimuli is designated as a pivot stimulus and the 

subject is asked to select the most similar stimulus to this pivot from the M - 1 

remaining stimuli. After this stimulus is selected or eliminated, the subject then selects 

the one of the remaining M - 2 stimuli which is most similar to the pivot stimulus. This 

process is continued until, in a complete conditional rank order, all M - 1 stimuli are 

rank ordered relative to this pivot. The pivot rotates to the next of the M stimuli and this 

task continues. In a complete rank order, all M stimuli will be used as a pivot. In 

incomplete conditional rank order data, one may decide to use only G -< M stimuli as 

pivots and/or order the first T -< M - I closest stimuli. This format for data collection 

is referred to in Katahira (1990) as "pivot ordering". Dissimilarity data arising from 

conditional rank order tasks have been traditionally analyzed by MDS procedures such 

as those developed by Torgerson (1952), Shepard (1962), Kruskal (1964), Guttman 

(1968), Roskam (1970), Young (1974), etcetera. More recently, Takane and Carroll 
(1981) and Katahira have proposed parametric approaches to the nonmetric multidi- 

mensional scaling of such conditional rank orders. In these approaches, the nonmetric 

data are considered as incomplete data conveying only ordinal information about the 

distances. An unobserved metric process rendering complete information about dis- 

tances is assumed to underlie the nonmetric data generation process. A likelihood 

function is specified for the observed nonmetric data which are related to the MDS 

distances based on some parametric assumptions about the underlying metric process 

(Takane & Carroll, 1981). 
We extend a similar framework to ultrametric tree estimation. Suppose C subjects 

are presented with G pivot stimuli, and for each pivot stimulus, the subjects are asked 

to choose, in order, the T closest stimuli to the pivot, out of a possible set of M stimuli, 

where T < M. The pivot stimuli are chosen from among the total set of M stimuli. The 

object of multidimensional scaling procedures is to uncover, based on these responses, 

the set of true distances dij between stimuli i and j ,  j = 1, • • • , M and i < j .  In 

Katahira (1990), and Takane and Carroll (198I), the true distances between stimuli, dij, 
are estimated, subject to the restriction that the distances form a Euclidean metric over 

a low dimensional space. In this paper, rather than force the distances to be Euclidean 

distances, we choose a different restriction--namely that the tree distances satisfy the 

ultrametric inequality: 

d U <- max {dik, djk} for all distinct i, j ,  k triples. (3) 

A set of distances satisfying (3) uniquely determines a hierarchical tree representation. 

The ultrametric condition is not necessarily less restrictive than the Euclidean condi- 

tion (see, e.g., Holman, 1972); however, in many applications, the discrete type of 
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representation proves to give a better fit to such data and offers a simpler interpretation 

than do competing spatial (Euclidean) models. 

2.1. The Model 

As in Takane and Carroll (1981) and Katahira (1990), we assume an additive model. 

That is, our assumption regarding conditional rank ordered responses is that stimulus 

j will be judged by a subject closer to pivot i than is stimulus k if 60 < 6ik, where 66 
is a latent distance related to the true distance dij by: 

6ij = qb(dij) + /3 - l e i j ,  (4) 

where ck(dij) is a known monotone increasing function of dij, eij is a deviate from the 
extreme value distribution: 

f ( e )  ~ exp (e - e~), (5) 

and/3 is a scale parameter reflective of the amount of "noise"  in the dataset. The 

parameters to be estimated for an ultrametric tree model are the tree distances D = 

((dij)) and the scale parameter/3. As in Katahira (1990), we use a maximum likelihood 
estimation algorithm for estimating the tree distances and the scale parameter/3. 

2.2. The Likelihood Function 

The stochastic modeling of rank ordered data has been discussed in Chapman and 
Staelin (1982), Keener and Waldman (1985), Hausman and Ruud (1987), and Fligner 

and Verducci (1988, 1993), where a variety of probabilistic models have been pre- 

sented. To derive the likelihood function for conditional rank order data, it is helpful to 

first consider the case of simple rank order data. Suppose the following order relation- 
ship among quantities 6 i is observed: 

61 "~ 62  "~ " " " < •n .  (6) 

Further suppose that the 6 i are related to unknown parameters d i according to the 

conditional probability densities f(6ildi),  with 6 i and 6j independent given d i and dj. 
Then, the likelihood of observing the order relationship in (6), in terms of the unknown 

parameters di, is given by: 

L(d l ,  . . .  , dn) = Prob (6t < a2 < ' "  " <  6 n l d l ,  . . .  , dn) (7) 

= f~ Y'(61 . . . .  ,6nldl,  . . . ,  dn) d61 "'" dan 
1 <~22 <" " " < 6 n  

(8) 

= fa f(ajld~) .. .f(anld.) d6, . . .  dan. 
1<82<' • "<~n 

(9) 

Equation (9) follows from the independence of the 6i's. 
Kalbfleisch and Prentice (1973) showed that ff the conditional densities f (  61d ) have 

the so-called "proportional hazards" property: 

f(ald) 
h ( a l d )  = ho(6) exp (~(d)) (10) 

1 -F(a ld)  
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for some baseline hazard function h0(8) and some function ~(d), then the marginal 

likelihood in (9) is given by: 

exp (~(dl ) )  

n 

e x p  (~(di))  
i=1 

exp (~(dz)) exp (~(d, , - i ))  

n n 

exp (~)(di)) ~ exp (~(d;)) 
i=2 i=n-1 

(11) 

One special case in which the proportional hazards assumption holds is when ~i 

and d i a r e  related by the additive model: 

~i = q~(di) +/3-1Ei ,  (12) 

where e i has the extreme value distribution (5) and/3 is a constant scale factor. In this 

case, the conditional hazard rate is: 

h(Sld) =/3 exp (/3(8 - ~b(d))) (I3) 

= ho(8) exp (~(d)),  (14) 

with: 

h0(8) =/3 exp (/3~) (15) 

~(d) = -/3th(d). (16) 

Several other models, including exponential and Weibull models, can also be shown to 

have proportional hazards (see, e.g., Lawless, 1982). Cox (1972) and Peto (1972) offer 

modifications of likelihood function (11) in the event that there are ties in the rank data. 
For conditional rank order data, with C subjects ranking the T closest stimuli to G 

pivot stimuli, and the dij's related to the ~ij's by equation (4), the probability of 

observing a given set of rank orderings R would be: 

c 6 r exp(-/3~b(dgtcg,)) 

P(RID__, /3)= I~ l~ I~ ~, exp (-/3~b(dok))'  (17) 
c=l g=l t=l  

kEKcg, 

where Icg t is the stimulus judged by subject c as the t-th closest stimulus to pivot 
stimulus y, and Kcg t is the set of stimuli judged by subject c to be farther than stimulus 
leg t from pivot stimulus y. Equation (17) is just a generalization of (11) to the case of 

conditional rank order data with multiple subjects. From equation (17), the log likeli- 

hood for D, given the observed rank order data R, is: 

~(D_, / 3 ) = l o g  P(RID___ , /3)= E E E -/3~(d91,.~,) 
c=l g=l t~l 

The fact that the marginal likelihood function in (11) can be derived from much weaker 
assumptions than the additive model with extreme value errors suggests that the max- 
imum likelihood estimation algorithm to be described may be fairly robust with respect 

to model misspecification. 
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To fit an ultrametric tree model to the observed rank orders R, the dij's are chosen 
to maximize the log likelihood in (19), subject to the restrictions given in (3). The choice 

of an appropriate function ~b(, ) is discussed in Katahira (1990). The form of th(" ) 

determines the extent of error variance relative to the magnitude of a true dissimilarity 

dij. A logarithmic form implies that the relative error increases with the dissimilarity, 
an assumption which Ramsay (1977, 1982) supports. Further support for specifying 

th(d) = log d is provided by Abe (1993), who argues that the logarithm is the only 

function that leaves the configuration scale invariant; that is, only when ~b(d) = log d 

is the probability in (18) invariant with respect to the choice of the scale of the data. The 

function q~ cannot be estimated from the data, as for example with splines, as there is 

an essential unidentifiability if the dij's are also unknown, which is the case in this 

context. This is because qS(-) and the dij appear in the likelihood function (19) only 

through the terms ~b(du). Therefore, given some estimates (b(.) and ((au)) of ~b(. ) and 

((dij)), the alternative estimates $*( .  ) and ((a'j)), with ~*(d) = ~b(s- r(d)) and a*j = 
s(aij), will have an exactly equal likelihood, for any monotone function s(- ). What is 

more, if the ((dij)) satisfy the ultrametric inequality (3), then so will the ((aij)). There- 
fore, throughout this paper, we make the assumption that ~b(d) = log (d). Given this 

assumption, the log likelihood takes the form: 

8 )  = l o g  P(RIO__, /3) = - / 3  l o g  a.Jc.  ' - l o g  a . 

c = l  g ~ l  t = l  k ut 

(19) 

While in the foregoing it has been assumed that the parameter/3 is common to all 

respondents, Ramsay (1982) stresses the importance of considering differences in re- 

sponse variability across subjects. With our method, it is possible to consider the case 

in which each respondent c, 1 -< c - C, has a unique scale parameter/3 c. It is also 
possible to a priori group the respondents according to some discrete covariate (e.g., 

gender) and assign a common scale parameter to each designated member within the 
same group. 

2.3. The Estimation Algorithm 

The unknown parameters of the model are the ((dij))'s and/3; to estimate these 

parameters, we employ a maximum likelihood procedure. However, there are a number 

of constraints that must be enforced by the optimization method. Since the ((dij))'s are 
distances, they are constrained to be positive. Also, the scale of the ((dij))'s must be 
fixed for reasons of identifiability; this can be achieved by constraining the sum of the 
((dij))'s to equal 1: 

dij = 1. (20) 
i#j 

Finally the ((dij))'s must obey the ultrametric inequality given in (3). 

The scale parameter/3 must also be constrained. As a scale parameter, it naturally 
must be positive. On the other hand, given "error-less" data in which there are no 

inconsistencies in rankings, the maximum likelihood estimate of/3 is +o% a situation 
which leads to computational difficulties during numerical maximization. Thus, in prac- 
tice,/3 must be constrained to be less than some large but finite constant, say B0. 

The bound constraints on/3 and on the dij, and the identifying constraint (20) are 
all linear constraints. Only the ultrametric inequality constraint is nonlinear. We choose 
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to handle the nonlinear constraint via an iterative penalty function approach (e.g., 

Ryan, 1974). Define the penalty function: 

I 
c ~ ( ~  = ~ ~ (dik - djk) 2, (21) 

(i ,j ,k)El') 

where: 

= {(i, j ,  k)ldij <- rain (dik,  djk) and d i k ¢ d j k } .  (22) 

f~ is the set of triples (i, j ,  k) which violate the ultrametric inequality, and a(D__) 

penalizes a tentative estimate of  D D_ for violation of the inequality. The maximum like- 

lihood ultrametric tree is then found by the following sequence: 

1. Choose initial estimates for D and /3. The initial estimates for D.D_ will almost 
always be infeasible. Cho"ose an initial value for a penalty parameter A; say, 

A = I .  
2. Solve the linearly constrained nonlinear optimization problem: 

max Y(D, /3) - Aa(D__), (23) 

__o,t~ 

subject to 

0-</3-<B0 
(24) 

O < - d q , j =  2, . . .  , M and i < j  (25) 

dij = I, (26) 
i~j 

via sequential quadratic programming (see Appendix). 
3. If ultrametric constraint (3) is satisfied to within some specified tolerance, then 

quit. Else, let A -~- 10A, and go back to Step 2. 

The solution to the problem in Step 2 converges to the appropriate constrained opti- 

mum of the log-likelihood ~£(D, /3) as the penalty parameter A tends toward infinity. 

That is, in the limit, the solution obtained will be the best fitting tree, subject to the 

ultrametric inequality constraints (3). Fiacco and McCormick (1%8) describe the con- 

vergence properties of this approach to optimization subject to nonlinear constraints. 

For the initial estimates of the d 6, j > i, we take the ranks of the distances given 
i as the pivot stimulus, averaged over all subjects; the ((di j))  are then scaled to satisfy 

Zi<j  dij = 1. Because log-likelihood surfaces such as the one defined by (19) are 

typically multimodal, it is helpful to perform multiple analyses using random starts, to 

avoid being trapped in local optima. The user can also generate reasonable starting 
values for D using, say, existing hierarchical clustering methods on the averaged ranks. 

2.4. Computing Derivatives 

The derivatives of the log-likelihood function (19) can be computed using the 

following procedure: 
• Set all O~[Odij = O, i, j = I . . . . .  M and i < j .  

• F o r c  = I t o C  

For 9 = 1 to G 
For t = 1 to T 
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-k Let: 

"k For k ~ Kcg t , let: 

o~  o~  /3 
= 

Odal,~, Odah~, dax¢~, 

o:e /3d;/-' 

Od~t Odgk "~ d~k~ 
k'EKcg, 

The derivatives of the penalty function are given by: 

(27) 

(28) 

~Ot 
= ~, (dik-djk)-  ~ (dik--dik), (29) 

Odik j~Ua j~Va 

where Uik is the set of stimuli defined by: 

Uik = {j:d U < djk < dik, i#j, i#k, j#k}, (30) 

and Vik is the set of stimuli defined by: 

Vik = {j:dij < dik < djk, i#j, i#k, j#k}. (31) 

If the dij's satisfy the ultrametric inequality, then the sets Uik and Vik will be empty for 
all i and k. 

The derivative of the log likelihood with respect to/3 is given by: 

O~ c a z [ 
0/3 X X X -log dg, c,, 

c=l 9=1 t=l  

kEKcgt --~-- t/-~k~--k~rcg,(Iog dat) da-k ~ ].. 
(32) 

If one is modeling a separate scale parameter/3c for each subject, then the appropriate 
log likelihood derivative is: 

E - (log dak)dgk ~c] 

0 ~ _ ~  ~ _logdat,g,_kerc~, 
g=l  t=l  

kEK~g, J 

(33) 

3. Simulation Analysis 

A small-scale Monte-Carlo simulation was performed to assess the effectiveness of 
the estimation technique in recovering the true underlying ultrametric distance matrix. 
The maximum likelihood method described in this paper (ML) was compared to a 
least-squares (LS) procedure as in (De Soete, 1984) in which the distance matrix ((dij)) 
was chosen to minimize the criterion: 

(dij - w i j )  2, (34) 
i<j 

where W = ((wij)) is a matrix formed by averaging the ranks of the distances over all 
subj6-6ts; that is, wij is the average, over all subjects, of the rank of the distance from 
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Table  1 

Levels of Factors for Monte Carlo Experiment 

Factor: Levels: 

C (# of Subjects) 6, 12 

M (# of Stimuli) 8, 12 

a (Error Standard Dev.) 1.0, 1.5 

D (Tree Topology) S=Symmetric, A=Asymmetric 

T (Depth of Ranking) Full, Partial 

j to i, given i as the pivot stimulus. This least-squares procedure is designed for metric 

distance data ((wij)), whereas the conditional rank order data is in fact only ordinal 

data; the least-squares procedure is therefore expected to perform worse than our 

maximum likelihood procedure proposed in section 2, when applied to such ordinal 

data. 
The synthetic conditional rank order data was simulated by generating latent dis- 

tances ~ij from the model: 

8ij = log dij + fl - l e i j ,  i ,  j = 1 . . . . .  M, (35) 

with eij being random deviates from the extreme value distribution (5), and then rank- 

ing the T closest 8ij's for each given pivot stimulus. This procedure was performed for 

each of C different hypothetical subjects. A factorial experimental design was em- 

ployed with the following variables treated as independent factors: number of subjects, 
number of stimuli, error standard deviation, tree topology, and depth of ranking (partial 

or complete). A partial ranking is one in which the depth T is less than M - 1 ; for such 

simulations we used T = M/2. In the case of partial rank data, the ranks for all stimuli 

that were not listed among the T closest stimuli to the pivot stimulus were set to T + 

1, for the purposes of computing the average rank matrix IV used in the least-squares 
procedure, and of  determining an initial estimate for the maximum likelihood proce- 

dure. Table 1 provides the different experimental levels for the factors. Note that the 

standard deviation tr of the random errors/3 -1 e U is determined by the rule cr = ¢r//Y~ 

(e.g., Katahira, 1990). 
The experimental design used in this study allows us to examine the effect of the 

size of the dataset, the nature of the true ultrametric tree, and the amount of  noise in 

the dataset on the estimation accuracy for the two estimation algorithms. The true dij's 
in (35) used to generate the data obeyed the ultrametric inequality. The true ultrametric 

tree for the case of 8 stimuli and symmetric topology is given in Figure 2, and the tree 

with asymmetric topology is shown in Figure 3. Ten simulation replications were per- 
formed for each of the 25 experimental combinations of factors, producing a total of 320 

trials. 
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FIGURE 2. 
True Ultrametric Tree Used for Simulation, Symmetric Topology. 
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FIGURE 3 .  

True Ultrametric Tree Used for Simulation, Asymmetric Topology. 
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3.1. Measures of Performance 

Two dependent measures of overall algorithm performance were used in this 

Monte Carlo analysis: a rank correlation measure, and a metric correlation measure. 

The rank correlation measure used in Katahira (1990) was computed as: 

( e i j  - -  eu) 2 
1 - 6 •.. ~ - ~  --- i ) '  (36) 

l,J 

where Oij is the rank of the estimated distance a/j, and eij is the rank of the true 

distance dij. Because there are necessarily many ties in an ultrametric distance matrix, 

this measure seems to be inappropriate for this study. Therefore, Kendall's rank cor- 

relation measure r was used (Lehmann, 1975). This measure, which is bounded be- 

tween -1  and 1, quantifies the extent to which the ordering of the dij's agrees with the 

ordering of the aij 's. The metric measure of estimation accuracy used was the usual 

Pearson correlation p between the dq's and the a,-j's. The computational burden for the 

two estimation procedures, least-squares and maximum likelihood, was measured in 

terms of CPU minutes. The simulation was performed on a computer with a 486/33MHz 

Intel processor, running under the MS-DOS operating system. 

3.2. Simulation Results 

Table 2 presents a summary table of the comparative results (means and standard 

deviations) of the proposed maximum likelihood procedure versus a least-squares 

methodology. As shown, our proposed ultrametric tree estimation procedure domi- 

nates the least-squares approach across all factor combinations in terms of the two 

correlation measures of recovery. 
Overall, the maximum likelihood estimation procedure was successful in recover- 

ing the true tree configuration; the average of Pearson's p across all the simulation 

replications using the maximum likelihood method was .906 (SD = .13), while the 

average using the least-squares approach was .818 (SD = . 176). The average of Ken- 

dall's ~" using the maximum likelihood method was .907 (SD = . 127), while the average 

using the least-squares method was .803 (SD = .  162). The performance of the maximum 

likelihood and the least-squares procedures with respect to both the r and p measures 

was compared using paired-t tests and sign tests applied to the 320 simulation replica- 

tions. The values of p for the maximum likelihood procedure were significantly higher 

than those for the least-squares procedure (p < .01, t test, p < .01, sign test), as was 

the case for the rank correlation z (p < .01, t test, p < .01, sign test). The improve- 

ment is most marked in those sets of trials for which the depth of ranking T is less than 

M - 1 ; that is, for those trials using only a partial order. For example, for the trials with 

C = 12, M = 12, T = 6,/3 = 1.5, symmetric topology (D = S), the average pfor  the 

maximum likelihood method was .97 (SD = .02), while that for the least-squares 

method was .82 (SD = .09). The ability to efficiently analyze partial order data, a form 

of data that may be particularly convenient to collect, appears to be a major advantage 

of the maximum likelihood procedure. 
The least-squares approach is uniformly more computationally efficient than the 

proposed maximum likelihood approach. Yet, for moderately sized data sets, the max- 

imum likelihood estimator seems to be reasonably efficient in terms of computational 

resources; for example, for the 10 trials performed with 6 subjects, 8 stimuli, full order, 

o- = I, and symmetric true tree topology, the average CPU time required was .49 

minutes. The average time increases to 7.94 minutes for the trials with equal parame- 
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T a b l e  2 

Results of Monte Carlo Exper iment .  

Ou tpu t  measures (p, T, and CPU minutes) are displayed as 

Means (Standard Deviations).  

C M T ~ 

6 8 7 1.00 S 

6 8 4 1,0o S 

6 8 7 1,50 S 

6 8 4 1.50 S 

12 8 7 1.00 $ 

12 8 4 1 .oo S 

8 7" 1.50 S 

8 4 1.50 $ 

12 i i  1.00 I S 
J 

12 6 1.00 S 

12 11 1,50 S 

12 6 1 ,50  S 

12 11 1.00 S 

12 6 1,00 S 

12 II 1.50 S 

12 I 12 6 1.50 S 

6 I 8 7 1.00 A 

6 8 ¢- 1.00 A 

6 8 7 1.50 A 

6 8 4 1.50 A 

12 8 7 1.00 A 

12 8 4 1.00 A 

12 8 7 1.50 A 

12 8 4 1.50 k 

6 12 11 1.00 A 

6 12 6 1.00 A 

6 12 11 1.50 A 

6 12 6 1.50 A 

12 12 11 1.00 A 

12 12 6 1.00 A 

12 12 11 1.50 A 

12 12 8 1.50 A 

p(MLE) 
o.,t~,,,(o.loi" 
o.91(o.14) 

0 . 7 9 , ( 0 . 2 9 )  

o.83(O.lS) 

o.97(o.o9,! ........ 

1.oo,,,(O.Ol) 

i .oo (o ,o l )  

o,76(o.43) 

o.98(O.Ol) 
o.gs(o.or) 

o.97(o,o2) 
o.98(o.o8) 

o.~8(o.91! ........ 

o.98(O.Ol) 

o.~7(o.o3) 
o.9r(o,o~) 

p (LS) ~ (MLE) ~- (L$) C P U  (MLE) C P U  (LS) 

0.84(0.25) 

o.88(o.18) 

o.56(o.40) 

o.o2(o.21) 

0.99(0,02) 

o.92(o,18) 
o.82(o:18) 
o.78(o.17) 
o.91(O.lO) 

o.84(o.12) 

o.98(o.o~) 

o.74(o.19) 

o.94(o.oo) 

o .91 (? .n )  

o.93(o. io)  

o.82(o.o9) 

o.91(o.oo) o.87(o.o5) 

o,93(o.o7) 0.84(0.05) 

o,88(o,o8) o.84(O.lO) 

o.62(o.11) ?.72(o.28) 
o,91(o,o6) 
0.90(0.00) 
0.90(0,00) 

o.82(o,1~,,) . . . . . . .  

o,89(o.oL) ...... 
0.90(0.04) 

o,84(o.o7,,! ....... 

o.8~(o,os) 

0.92(0.02) 
0.8'9(0.03) 

o85(o.o7!  ....... 

o,84(o.11) 

0.93(0.04) 
o.86(o.oo) 

o.89(O.lO) 

o.75(o.15) 

0.80(0.00) 

0.74(0.07) 
o,7~(o.n) 

0.72(0.06) 

o.86(o.o8) 

o,~8(o.o7) 

o.r4(0.17) 
o.89(o.n) 

0.96(0.05 

0.90 ( 0.11 

0.69(0.35 

0 . 7 9 ( 0 . 1 3  

0.96(0.07 

0 . 9 7 ( 0 . 0 5  

0.96(0.05 

0.76(0.39 

0.97(0.03 

0.95(0.04 

0 , 9 6 ( 0 , 0 5  

o.94(o.o4 

0 . 9 8 ( 0 . 0 9  

0 . 9 7 ( 0 . 0 2  

0.97(0.03 

o.49(o.11) 
0.42(0.07) 
o.48(o.98) 
o.4o(o.o7) 

0.56(0.08) 

0.5o(o.04) 

o.50(o.o8) 

o.49(o.o8) 

7.41(1,~7) 
9.87(1.24) 

8.73(1.24) 

7.67(1,16) 

o.o6(o,oi)  ) 0.82(0.23) 

) 0.85(0.15) 

) 0.56(0.98) 

) 0.62(0.25) 

) 0.96(0.02) 

) 0.90(0.13) 

) o.82(o.18) 

) o.81(o.15) 

) 0.93(0.07) 

) 0,88(0.06) 

) o.91(o.o6) 

) o.77(o.14) 

) 0.94(0.07) 

) 0.90(0.06) 
) 0.92(0.07) 

) o.88(o.o7) 

) o.o4(o.o4) 

) 0.78(0.05) 

) 0.82(0.08) 

) o.71(o.15) 

) 0.89(0.02) 

) 0.80(0.04) 

) 0.89(0.05) 

) o,69(oJ8)  

) 0.82(0.08) 

) 0.70(0.06) 
) 0.74(0.11) 

) 0.89(0.o8) 

) 0.83(0.07) 

) 0.73(0.08) 

) o.73(o.13) 

) o.87(o.o0) 

o.oo(o.ol )  

0.07(0.02) 

o,o7(o.o2) 

o.os(o.o l )  

0.04(0.02) 

o.o5(o.ol) 

o.o5(o.ol)  

1,o3(o.48) 

0.98(0.43) 

o,92(o,41) 

0.89(0.27) 

r.04(1.86) 0.80(0.44) 
7.24(1.58) 0.80(0.21) 
8.82(1.o7) 0.87(0.27) 

0:gs(o.os 0.86(1.81) 0.75(0.1¢) 

o,89(o.o6 o.4o(o.os) o.o8(o.ol) 

o,91(o.o6 o.42(o.os) o.oo(o.oi) 

0.90(0.08 0.45(0,06) 0.06(0.01) 

o.82(o.12 0.42(0.08) 0.07(0.02) 

o.58(O.lO) 

0.47(0.08) 
0.53(0.09) 
o.so(o.oz) 
8.98(1.54) 
8.15(o.89) 

8.82(0.88) 
8.55(1.87) 
8.29(1.94) 
7 .35 (0 .63 )  

7.97(1.88) 

[,,,o,94(0.03 
0.92(0.03 

0.93(0.04 

0.88(0.07 

o.91 ( 0.02 
0 . 9 0 ( 0 . 0 4  

o.89(o.o5 
0.89(0.04 

o .92 (O.Ol  

0 . 9 1 ( 0 . 0 3  

0.87(0.05 

0.87(0.09 7.27(1.29) 

o.o5(o.ol)  

o.o8(o.ol) 
o.o7(o.ol) 
o.os(o.ol) 
0 . 8 9 ( 0 . 3 0 )  

1.o4(o.31) 

1.o9(o.31) 

0.88(0.30) 

o.81(0.23) 
o.88(o.17) 
o.89(o.21) 
o.7r(o.23) 

ters,  but with 12 subjects and 12 stimuli. As expected,  the execut ion  t ime appears  to be 

determined principally by the number  of  stimuli. 

Our tentat ive conclusion f rom this Monte Carlo study is that  the new max imum 

likelihood method has promise  in accurately identifying ultrametric tree structures f rom 

conditional rank order  data, and that the method may  offer superior  per formance  to 

methods  which ignore the nonmetr ic  aspect  of  such data, However ,  it should be noted 

that the benefit is at the expense  of  increased computat ional  burden.  Clearly,  further  

testing is necessary.  

4. Data  Ana lys i s - -Green  and Rao ' s  Snack Data  

The proposed  max imum likelihood estimation technique of  section 2 was applied to 

the conditional rank order  similarity data of various snack or breakfas t  foods reported 

in Green and Rao (1972), In this dataset ,  42 individuals (21 MBA students and their 
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Table 3 

Stimuli in Green and Rao's Snack Food D~taset 

E n g l i s h  Muff in  w i t h  M a r g a r i n e  E M M  

H a r d  Rol l  w i t h  B u t t e r  H R B  

T o a s t  w i t h  M a r g a r i n e  T M n  

T o a s t  w i t h  B u t t e r  B T  

B l u e b e r r y  Muf f in  w i t h  M a r g a r i n e  B M M  

C o r n  Muf f in  w i t h  B u t t e r  C M B  

T o a s t e d  P o p u p  T P  

T o a s t  w i t h  B u t t e r  a n d  Je l ly  B T J  

T o a s t  w i t h  M a r m a l a d e  T M d  

C i n n a m o n  T o a s t  C T  

C i n n a m o n  B u n  C B  

Coffee Cake  C C  

D a n i s h  P a s t r y  D P  

Je l ly  D o n u t  J D  

G l a z e d  D o n u t  G D  

wives) provided complete conditional rank order similarity responses for the 15 stimuli; 
the stimuli are listed in Table 3. 

Green and Rao (1972) analyze the raw ordinal data by first preprocessing them with 
the TRICON procedure (Coombs, 1964), in order to convert the 42 sets of rank order 
responses into a single symmetric 15 x 15 matrix of "dissimilarities". This dissimilarity 
matrix was then subjected to various metric and non-metric scaling procedures, includ- 
ing TORSCA (Young & Torgerson, 1967), and Kruskal monotone scaling (Kruskal, 
1964). The dissimilarity data, as well as the estimated 2-dimensional Euclidean distance 
matrices, were further analyzed by the hierarchical clustering technique of Johnson 
(1967). The results from the various scaling procedures were all deemed to be "quite 
similar". The tentative interpretations offered for the two dimensions in the scaling 
model were that the one dimension represented "sweetness" or "caloric content", 
while the other dimension represented a "toast/nontoast" dimension. When the dis- 
tance matrix estimated by TORSCA was subjected to Johnson's cluster analysis pro- 
cedure, the two principle clusters that emerged, as seen in Figure 4, were the sweeter 
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Axi s  2 

61 
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B T  
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FIGURE 4. 
Clustering in Two-Space Configuration from TORSCA 8 Analysis of Snack Data (Green and Rao, 1972). 

items such as coffee cake, danish pastry, glazed donut, jelly donut, cinnamon bun, 

cinnamon toast, toast pop-up, toast with marmalade, and buttered toast with jelly, vs. 

the less sweet items including blueberry muffin with margarine, corn muffin with butter, 

english muffin with margarine, buttered hard roll, toast and margarine, and buttered 

toast. 

Green and Rao (1972) note that there are possible shortcomings with their analysis. 

In particular, the TRICON conversion of the 42 conditional rank order (ordinal) data 

sets into a distance data matrix which is then treated as metric data may be question- 

able. Also, there is no weighting of subjects in this preprocessing, nor is there account- 

ing for possible individual differences. Here, we reanalyze this data using the maximum 

likelihood procedure described in section 2. This procedure is especially designed to 

treat conditional rank order data, so there is no need for any problematic preprocessing. 

In addition, individual level scale parameters can be estimated to accommodate heter- 

ogeneity among the subjects. 

The ultrametric trees were estimated using the proposed procedure under two 

different assumptions: 

HI :  /3 is constant across subjects (Scale Homogeneity) 

H2:/3 is different for each subject (Scale Heterogeneity). 

The ultrametric trees estimated under H 1 and H 2 are given in Figures 5 and 6; the 

topologies are nearly identical. Here too, we see evidence of the distinction of the sweet 

foods from the less sweet foods, plus some additional subtleties. For the sweet break- 
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fast foods, the one item that is always toasted, TP, is distinct from the other sweet 

foods. For the less sweet foods, the muffins, toasts, and hard roll seem to be separated, 

suggesting a "consistency" subclassification category. Finally, the estimated ultramet- 

ric tree depicts the hard roll and butter (HRB) as a very distinct stimulus, an aspect not 

recovered in any of the Green and Rao (I972) MDS or clustering solutions. To under- 

stand why HRB is estimated as a distinct stimulus, a display of the raw data was sought 

which might suggest the uniqueness of this particular breakfast food. Table 4 presents 

a matrix, the (j, k)-th element of which is the number of subjects out of 42 who chose 

element k (column food) as the most  distant from elementj (row food). In this table, the 

buttered hard roll (HRB) indeed appears to be quite distinct in that it is so commonly 

deemed to be the farthest stimulus from the other stimuli. While the HRB column might 

seem to suggest that some of the toast stimuli are not too distant from the buttered hard 

roll, comparison of the HRB column with the corresponding toast columns shows that 

there are considerable differences. For example, 21 of the subjects deemed buttered 

hard roll to be the farthest stimulus from danish pastry (DP), while only 3 deemed 

buttered toast (BT) to be the farthest from danish pastry. Thus, if the stimuli are truly 

perceived according to an ultrametric topology, the data suggest that the buttered hard 

roll must be positioned as separate from the toasts. 

The log likelihood for model H1 (scale homogeneity) was -14695, and that for H2 

(scale heterogeneity) was - 14454; the increase of 241 is associated with 41 extra de- 

grees of freedom. The estimates of/3 ranged from .0949 to 7.08. The usual assumptions 

for justifying likelihood ratio tests (LRT) and information criteria are not met, as the 

parameter space is bounded, with the MLE occurring on a boundary of the parameter 

space. However, using these techniques as rough heuristics for aiding model choice, we 

find support for the hypothesis of scale heterogeneity (H 2). In the case of the LRT, the 

apparent evidence in favor of heterogeneity can be seen to be significant at p < .005. 
The AIC measure of model goodness-of-fit (-2Log-likelihood + 2p, where p is the 

number of free parameters) is difficult to calculate, since the number of  free parameters 

in a distance matrix constrained to satisfy the ultrametric inequality is not clear. How- 

ever, whatever this number is, it is clear that the AIC for model H2 must be lower than 

that for H1 • Let Pd be the number of free parameters associated with the distance 

matrix. Then the AIC for H 1 is - 2 ( -  14695) + 2(pd  + I) = 29392 + 2p d. The AIC 

for H 2 is - 2 ( -  14454) + 2(Pd + 42) = 28992 + 2pd. Thus, the AIC measure also 
supports the hypothesis of scale heterogeneity. Given the tendency for AIC to favor 

overparameterized models (Bozdogan, 1987), we also computed the Schwartz (1978) 

Bayesian Information Criterion (BIC = - 2  log L + pal(log F)) and the Consistent AIC 

measure (CAIC = - 2  log L + Pd(lOg F + 1)), where F is the number of independent 

data observations (here, C M ( M  - 2)). We see that BIC(H1) = 29400 + 9.01Pd and 

BIC(H 2) = 29286 + 9.0 lPd, supporting scale heterogeneity; CAIC(H1) = 29401 + 

10.01Pd and CAIC(H 2) = 29328 + 10.01p d, also supporting scale heterogeneity. 

A relatively high/3 coefficient for a subject might be caused by at least two possible 

factors: (a) the subject's latent tree configuration may be different from the tree con- 

figuration common to the other members of the group, or (b) the subject may have a 

large amount of internal inconsistency in his or her rankings. To assess the cause of 

scale heterogeneity, we formed measures of agreement with the tree, and measures of 

internal consistency, for each of the 42 subjects. As a measure of agreement with the 

common tree ((dij)),  we used the quantity: 

G T 

Tc = ~ ~_~ ~{ t '  E Kca, : dflc~ , >dg, ,  }. 
g = t  t = l  

(37) 
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FIGURE 5. 

Ul t rametr ic  Tree for Snack Data, Est imated Under  H I : Scale Homogenei ty .  

That is, Yc is the number of instances in which subject c 's  rankings of distances 
between stimuli disagree with the rankings of the elements of the distance matrix 
((do)). As a measure of internal consistency for subject c we used a count of intran- 
sitivities: 

Oc = #{J, k, l:((d(k~) > d(kj)), (d)~) > d)f)), and (d~f) > d:~:)))}, (38) 
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FIGURE 6. 
Ultrametric Tree for Snack Data, Estimated Under H 2 : Scale Heterogeneity. 

where di(f ) is the implied distance from pivot stimulus i to stimulus j ,  based on the 
responses of subject c. Note that the actual distances di~ c) are not revealed, but their 

relative orders are, allowing for the calculation of @c. The observed correlation be- 

tween the individual tic coefficients and the individual Yc coefficients was .39. The 

correlation between the/3 c coefficients and the internal consistency coefficients @c was 
.45. The correlation between the @c and the Yc was .37. In a multiple regression, using 
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Table  4 

Number of Subjects Choosing Column Stimulus as the Farthest Stimulus from the 

Row Stimulus 

, 3 ' I 5 I I ' I 8 1 9 1 , o  1 . 1 , = 1 1 3 1 . 1  ,5 I 
I Ti> I B ' r  . . . . . .  I i ~ u  I ~i:> I CT I e M M  I It~.B I "rM<l I e T J  I T M .  I c B  I m> I QD I c o  I c u b  I 1 

1 T P  0 3 "2 3 0 1 18 1 0 4 I 2 0 2 5 

2 B T  5 0 i 10 0 1 3 0 I 1 2 9 2 4 3 

3 E M M  8 0 0 11 1 0 3 0 1 0 4 8 2 4 0 

4 J D  4 5 4 0 0 0 18 1 0 t 1 1 0 1 3 

5 C T  3 1 3 5 0 0 14 0 1 6 i,, 0 2 1 2 4 

6 B M M  8 0 0 5 1 0 12 1 0 5 3 3 1 3 0 

7 H R B  8 2 0 17 1 1 0 0 0 1 1 9 1 1 0 

8 T M d  5 2 0 4 i 0 13 0 0 3 2 2 2 4 4 

9 B T J  6 2 0 4 1 0 14 0 0 1 3 3 3 4 1 

10 T M n  9 0 0 9 0 1 6 1 0 0 3 6 2 4 1 

11 CB 5 1 2 0 1 0 17 1 1 7 0 1 0 3 3 

12 DP 4 3 3 0 I 0 21 0 1 6 I 0 0 0 2 

13 G D  6 3 0 0 1 0 21 0 0 6 1 0 0 0 4 

14 CO 3 5 1 1 1 0 20 0 1 9 1 0 0 0 0 

15 C M B  6 2 1 6 1 0 8 0 3 3 3 4 2 3 0 

I I ,<v,. I~ : '  L~:i 1 ,.~ I~ . ,  Io . ,  I o.~ 1,~.~ I o., I o.%[. ,., 1~.~ I , . ,  I ,.~ I ~-, I 

the 42 estimated/~c's as the dependent measures and the respective 3'o's and ¢c 's  as 

the independent measures, the relationship between the scale parameter tic and the 
internal consistency measure ~c was seen to be significantly positive (p < .02), while 

the partial association of ~c with the measure Ye was less significant (p > .09). These 
results suggest that the observed heterogeneity in the estimated fl's for this dataset may 
be caused by individual differences in internal consistency. 

As mentioned, one of the advantages of the proposed MLE based procedure is that 
ultrametric trees can be estimated with partial rank orders (i.e., with data of less than 

full depth). Maximum likelihood ultrametric trees were obtained by using partial order 

datasets, with depths of 4, 8, and 12. These partial datasets, then, consisted of the 4, 8, 

or 12 closest stimuli to a given pivot stimulus, for all subjects. Each one of the 15 stimuli 

was used as a pivot stimulus. The maximum likelihood ultrametric tree obtained using 
depth 4 is given in Figure 7. This tree appears to divide the stimuli into two main 
classes: "less sweet foods" (buttered corn muffin, blueberry muffin, english muffin with 

margarine, buttered hard roll, toast with margarine, buttered toast, toast with marma- 

lade, and toast with butter and jelly), and "sweet  foods" (toasted pop-up, cinnamon 
toast, jelly donut, glazed donut, cinnamon bun, danish pastry, and coffee cake). Here, 

cinnamon toast is portrayed in a different cluster compared to Figures 5 and 6. In 
addition, Figure 7 does not portray the HRB distinction. Thus, the partial order ultra- 

metric tree does differ from the complete order tree in some respects. However,  the 

ultrametric tree obtained from the partial order data does capture much of the essence 
of the complete order ultrametric tree, with just a fraction of the required data. Figures 

8 and 9 display the ultrametric trees estimated using data depths of 8 and 12 respec- 
tively. These ultrametric trees have fairly similar structures to that in Figure 5; again, 

they do not portray the buttered hard roll as a separate cluster, and some interchanges 
are made with the less sweet foods. 

An ultrametric tree was also fit to the dataset using a least-squares algorithm 
applied to the ranks averaged over all subjects. The resulting ultrametric tree is shown 
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FIGURE 7. 
Uitrametric Tree for Snack Data, Estimated Under HI with Depth 4 Data. 

in Figure 10. Here,  we see a number of  anomalies. One, the buttered toast and jel ly 

(BTJ) is portrayed as a distinct stimulus, but not the hard roll and butter  (HRB). Yet,  

as shown in Table 4, there is no evidence to support this, as BTJ is one of  the stimuli 

selected least frequently as "mos t  dist inct".  Two,  both cinnamon toast (CT) and but- 

tered toast and jelly (BTJ) are classified with the sweeter  breakfast/snack foods,  and 

distinct from the other toasts. Finally, the muffins are separated. Thus, there seems to 
be little intuitive support  for this solution. 
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FIGURE 8. 
Ultrametric Tree for Snack Data, Estimated Under H~ with Depth 8 Data. 

To statistically compare the least-squares ultrametric tree with that in Figure 5, the 

log likelihood was computed with the distance matrix ((dij)) fixed at the least-squares 

solution, and/3 chosen to maximize the log-likelihood conditional on this fixed distance 
matrix. The log likelihood value was -15141; the data thus offers strong evidence for 

the ultrametric tree in Figure 5 over the least-squares tree, assuming the correctness of 

model (17). On the other hand, the sum-of-squares criterion for this least-squares tree 
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FIGURE 9. 
Ultrametric Tree for Snack Data, Estimated Under H l with Depth 12 Data. 

was 0.06, as opposed to 0.17 for the maximum likelihood tree. Each procedure, then, 

optimizes a different criterion and performs best with respect to its own maximand/ 

minimand. However, the least-squares criterion makes little theoretical sense when 

dealing with ordinal scaled data. In addition, averaging ranks is not theoretically correct 

for such scale assumptions. 
Finally, a two-dimensional Euclidean model was fit to the snack data using the 
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FIGURE 10. 
Ultrametric Tree for Snack Data, Estimated by Least-Squares on Proximity Ranks. 

nonmetric ALSCAL algorithm for row-conditional data (Young, 1987). This procedure 
jointly estimates a distance matrix D and a monotone transformation m(A_) of the 
observed dissimilarities A__ by minimizing the stress measure: 

/JI m(A_.) _- D?ll 2) '/2 
stress = \ iim(a_)ll 2 . (39) 
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FiGuRE 11. 
Estimated ALSCAL Euclidean Configuration for Snack Data. 

In the present context of conditional rank order data, the dissimilarities are just the 

ranks of the distances for each given subject and each given pivot stimulus. The term 

"row-conditional" refers to the fact that the ranks of distances are relative only to other 

values in the same row (same subject and same pivot stimulus), and not to values in 

other rows. The resulting two-dimensional configuration is given in Figure 11. Here, the 

vertical axis can be roughly interpreted as a sweetness dimension, while the horizontal 

dimension seems to represent a toast/non-toast dimension, quite similar to the MDS 
solutions reported in Green and Rao (1972). The discrete nature of the underlying 

representation is seen by the clumping of the stimuli in the space, suggesting that a tree 

or network may be a more suitable model for depicting the structure in the data. 

The result obtained in these analyses, in which different scaling approaches lead to 

considerably different interpretations of a dataset, demonstrates the usefulness of hav- 

ing multiple models and estimation algorithms available for multivariate data analysis. 

Of course, it also alerts us to be concerned with the assumptions underlying a given 

model, and of the need to consider multiple alternatives when graphically representing 

proximity data. 

5. Extensions 

Section 2. I described a model in which each individual's responses were deter- 

mined by some common scale parameter/3; the simple extension to individual specific 

scale parameters was also introduced. A middle ground between these two models is a 

latent class model, in which there are some small number, S, of different/3's, S -< C, 

and each individual's response is determined by one of the/3k, k = 1, . . . ,  S. The 
likelihood in this case would simply be a finite mixture of likelihoods of the form (17). 



MARTIN R. YOUNG AND WAYNE S. DESARBO 71 

Alternatively, one could consider a latent class model in which the different classes 

have different tree topologies as well as different scale parameters. 
Another possible extension is the inclusion of covariates in the model. For exam- 

ple, it will often be the case that the level of interest in the stimuli, or the degree of 

experience with the stimuli, may affect the precision of the responses. The levels of 

interest and experience in turn may be measured by certain covariates. Determining the 

effects of covariates may be of interest in its own fight; incorporating covariates may 

also be useful in providing more accurate fits of the true tree-configuration D via a 

relative down-weighting of inaccurate responses. Covariates could be include-d, for 

example, by modelling the scale parameter as/3 c = exp (0' X_c), where x c is the vector 
of covariates of respondent c, and _0 is a vector of parameters to be estimated. Alter- 

natively, it is possible to imagine a response function in which the scale parameter 

depends not only on the respondent, but also on the particular stimuli being compared. 

Ramsay (1982) offers the model: 

[~ ijc = ~c '0  2ij, (40) 

with 

a/2 + aJ2, ~ a/2 : 1, (41) 2 

~iJ= 2 
i 

where [3ij c in (40) refers to the error magnitude associated with respondent c 's  evalu- 
ation of the distance between stimuli i andj .  The parameter a i in this model quantifies 

the inaccuracy associated with judging distances relative to stimulus i. This generali- 

zation could be fairly easily incorporated into the current procedure; all that would be 
required would be modifications to the routine evaluating the likelihood function and its 
gradient. 

Finally, this tree estimation procedure can be easily extended to other tree topoi- 

ogies, such as additive trees (Carroll, 1976) or extended trees (Corter & Tversky, 1986). 
In addition, multiple trees and hybrid models involving combinations of trees and 

continuous Euclidean MDS spaces are also possible extensions that can be included in 
this stochastic framework. 

APPENDIX: Sequential Quadratic Programming 

Sequential quadratic programming (SQP) is a numerical technique for optimizing a 
smooth nonlinear function subject to linear constraints (Fletcher, 1987). The method is 

similar to the Newton or quasi-Newton optimization methods, in that both Newton 

methods and SQP methods make use of repeated quadratic approximations to the 

objective function. In the case of Newton's method, an objective function f(x_) is 
approximated by the Taylor series expansion: 

1 
f(x_.) ~ Q(x; x0) = f(x0) + y(x0) '(x - x0) + ~ (x - x0)'H(x0)(x_ - x0), (A1) 

where x0 is some initial estimate of the optimum, #_(x0) denotes the gradient of function 

f(x_) evaluated at x = x_0, and H(x0) denotes the Hessian off(x_) evaluated at x = x0. 
The quadratic funciion Q(x; x0) can be optimized analytically; this implies-ff new 
estimate for the optimal x, namely: 

~1 = ~o - / - / - I (~o)g(~o) .  (A2) 
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The function f(x_) is then expanded about x l ,  and the process is repeated; the general 

form of the Newton recursion is: 

x. + 1 = x.  - H-l(xn)g(xn).  (A3) 

The process is known to converge quadratically to the optimum for suitably continuous 
f(x_) (Fletcher, 1987, p. 46). In quasi-Newton schemes, the exact inverse of the Hessian 

H -1 (x_) is not used, but rather some computationally convenient approximation is 

employed; the so-called BFGS (Broyden, Fletcher, Goldfarb, and Shanno) scheme is 
one popular quasi-Newton method (Fletcher, 1987). 

In sequential quadratic programming, a similar process of iterative approximation 
to the objective function is employed. Consider the linearly constrained nonlinear 

program: 

max f(x_) (A4) 

subject to: 

A I X  = C 1 (A5) 

A2x_ -< c2, (A6) 

where (A5) and (A6) represent equality and inequality constraints, respectively. An 

SQP procedure solves this problem by iteratively approximatingf(x_) by a second order 

Taylor series expansion: 

1 
f(x_) ~ Q(x; x . )  = f(x_.) + g(x . ) ' (x  - x_.) + ~ (x - x . ) ' / - / (x . ) (x - x . ) ,  (A7) 

where x n is the estimate of the optimal x at the nth iteration of the procedure, and then 

solving the problem: 

subject to: 

max Q(x_; x . )  (A8) 

A 1 x = c 1 (A9) 

A_.2x_ -< c_2. (A10) 

Problem (A8-A10) is a quadratic program--an optimization problem with quadratic 
objective function and linear constraints--and efficient methods exist for the solution of 
such problems; Fletcher (1987) describes a number of algorithms. The solution to 
problem (A8) is then treated as the new estimate of the optimum, xn+l, and a new 
approximation Q(x_; Xn+ 1) to the objective function is found; this process proceeds 

until convergence. 
Our implementation of the maximum likelihood estimation procedure makes use of 

the FSQP sequential quadratic programming routine of Zhou and Tits (1993), which is 
based on Panier and Tits (1993). This SQP routine uses BFGS quasi-Newton approx- 
imations of the Hessian as the basis for the quadratic approximation of the objective 
function. The quadratic programming routine used to maximize the quadratic approx- 
imants is described in Schittkowski (1986), which is based on Powell (1983). 
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