
A Parametric-Space-Based
Scan-Line Algorithm for
Rendering Bicubic Surfaces

X. Pueyo and P. Brunet

Universitat Politecnica de Catalunya

In recent years hidden-surface-removal algorithms
have been proposed to render curved surfaces, especially
bicubic (or bipolynomial) patches. Most of these
algorithms use the scan-line principle to determine the
scene visibility. Lane, Carpenter, Whitted, and Blinn'
proposed three different methods. The first algorithm is
a subdivision method that stops when a desired degree
of surface flatness is achieved. Then subpatches are

approximated by polygons processed by a polygon-
oriented algorithm. Whitted's method computes the
exact intersection ofsome curves in the patch with every

scan plane and approximates the patch's intersection
with the plane by a polygonal line defined by these
points. The exact intersection curves are the cubics
defining the boundaries of the patch, isoparametric
curves in the patch, and cubic approximations of the sil-
houettes. Finally, Blinn proposes a method that is essen-
tially a z-buffer algorithm in which numerical problems
are simplified using the intersection of the scan planes
with the boundaries and the silhouettes of the patch.
Lane and Carpenter2 later improved and generalized

their algorithm, and Schweitzer and Cobb3 proposed an

algorithm similar to Whitted's method that offered
higher quality silhouettes.
Some methods compute curved-surface visibility in

parametric space. These algorithms use different tech-
niques employed in polygon-oriented methods.
Strasser4 and Forest5 use a z-buffer algorithm;
Griffiths'5'7 and Ohno's8 algorithms are based on depth
comparison between points of a grid defined in the patch
and some subpatches; Hornung et al.9 simply compute
the boundaries of constant visibility areas in the patch.

Griffiths'° has proposed a scan-line algorithm that
does some work in the parametric plane. This algorithm
obtains an approximation of the patch silhouettes in the
parametric space. Griffiths' method approximates the
intersection of the scan plane and the patch with chains
of straight segments instead of considering the segments
separately, as other algorithms do. In this way his method
speeds up the visibility calculation considerably.
We will present a new scan-line algorithm for curved

surfaces that does most of the computations in the para-
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Figure 1. Possible types ofcurves in a band defined by two scan planes.

metric space and computes the intersection of the sur-
faces with only a restricted set of scan planes. Then we
will analyze the errors produced by the proposed algo-
rithm. Finally, we present the performance characteris-
tics of this method.

The algorithm
The work in the parametric plane is performed to a

specified precision m used to define an mxm grid in the
patch. For every point of this grid, we compute the exact
values of y (vertical coordinate) and the z component of
the normal. Other values of y and the z component ofthe
normal are obtained by linear interpolation along para-
metric grid lines.

Before we start the scan process, every patch is decom-
posed in regions of constant normal sign, that is, with-
out interior silhouettes. During the computation ofthese
regions we find the singular points. These are local and
global minima and maxima with respect to the y coor-
dinate, and the vertices of the regions. These will be used
in the scan process.
One ofthe main goals ofthe new method is to compute

the intersection ofthe surfaces with only a restricted sub-
set of scan planes (exact intersection planes) and to obtain
the intersection with other planes by interpolation
between pairs of consecutive exact intersection planes.
This interpolation will be correct if there are no qualita-
tive changes of the scene between the two consecutive
exact intersection planes. This happens when

1. The number of segments (portion of intersection
connecting two consecutive edges of the region) of
a region is constant for all horizontal planes in the
band defined by the exact intersection planes.

2. The number of active regions (regions intersected by
the current scan plane) is constant in the band.

3. Pairs of points to be interpolated of the exact inter-
section planes are connected by curves of continu-
ous slope.

We now present the different cases of qualitative scene
change. The scan planes containing these changes will
be called singular planes. Let's take an arbitrary band of
scan planes and a point in the highest plane. A curve
(patch boundary or silhouette) leaving this point may or
may not arrive at the lowest scan plane. If it does arrive,
three different cases may be found:

1. The curve has a continuous slope and has neither
minima nor maxima in the band (Figure 1, a).

2. The curve's slope is continuous and has a minimum
and a maximum in the band (Figure 1, b). The num-
ber of segments changes in the planes containing the
minimum and maximum.

3. The curve's slope is not continuous (Figure 1, c); it
contains a vertex.

If the curve does not arrive at the lowest plane in the
band, it contains a minimum or a vertex (Figure 1, d), and
the number of segments changes.
Now let's take a point in the lowest scan plane of the

band. A curve leaving this point and arriving at the
highest plane is of type a, b, or c of Figure 1. If the curve
does not reach the highest plane, it contains a maximum
or a vertex (Figure 1, e), and the number of segments
changes.
So singular planes are those containing a minimum,

a maximum, or a vertex. A set of consecutive planes with
no qualitative changes ofthe scene is known as an admis-
sible band. A working band will be an admissible band
with a maximum of n scan planes, where n is a new
parameter given by the user. For a given exact intersec-
tion plane we have two bands. One is defined by the exact
intersection plane and the nth scan plane after it. The
other is defined by the exact intersection plane and the
next plane containing a singular point. The narrower of
these bands is taken as the working band.
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Patch decomposition
To decompose the surface patches in regions where

the sign of the z component of the normal is constant,
we need to compute the silhouettes. These are obtained
in a manner similar to that of Griffiths7 and Ohno.Y In
this step we use the array of values of the z component
of the normal to detect and compute silhouette points
along the grid lines. If a grid point is different in sign
from one of its neighbors, the grid segment joining them
contains a silhouette point that is computed by linear
interpolation along the grid segment. In grid cells the sil-
houette is approximated linearly, and two different cases
may occur:

1. The cell contour contains two silhouette points.
The straight segment joining them approximates
the silhouette (Figure 2a).

2. The cell contour contains four silhouette points.
The silhouette is approximated by two segments
corresponding to one of the cases in Figure 2b-
depending on the sign of the z component of the
normal in the center of the cell.

The silhouette segments are finally connected to define
the silhouettes of the patch. This method is often used
in contouring applications.'1

Let's suppose that silhouettes are connected to the
patch boundaries. The patch decomposition is obtained
by following its boundary and placing the grid points in
a list representing the region's boundary. When a sil-
houette endpoint is found, the points defining this sil-
houette are added to the list. The patch boundary is then
followed again from the other endpoint of the silhouette
until the starting point of the region's boundary is found
(see Figure 3).
During generation of the patch's regions, the singular

points are computed and placed in lists of singular
points belonging to the same scan plane. These lists are
sorted in scan direction to quickly update at every scan
plane the list of intersected regions. In addition, the set
of lists is used to choose exact intersection planes.
Figure 4 shows example results of the different steps

in generating the regions.

Scan process
In this section we essentially present the method used

by the proposed algorithm to compute the intersection
of the patch's regions and scan planes.

Region-exact intersection planes intersection
The intersection of a region and an exact intersection

plane consists of two steps:

1. Intersection of the exact intersection plane with the
boundary curves of the region.

+ a + - +

a - + b

Figure 2. Generation ofsilhouette segments in a grid
cell.

Figure 3. Regions generation process.

2. Segments calculation: connection of the points
obtained in step 1 defining the complete inter-
section.

Boundary intersections

The intersection of a region and an exact intersection
plane is used to obtain the intersection of the region and
the intermediate planes of the preceding and the follow-
ing bands. Sometimes these intersections are qualita-
tively different for these two contiguous bands. In such
cases, the exact intersection plane intersection must be
different from one band to the other. This intersection
is first computed to treat the preceding band, and at this
time the exact intersection plane is considered as the cur-

rent scan plane. When a new exact intersection plane is
taken, its predecessor is modified to treat the following
band. The way to compute the region's boundary inter-
sections depends on the type ofthe singular points in the
plane.
The presence of a global maximum in the current scan

plane is not taken into account, because it has no

influence in the preceding band. If the plane contains a

global minimum, the intersection is this point.
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a

b

Figure 5. Finding the intersection ofan exact intersec-
tion plane and the region's boundary.

c

Figure 4. Decomposition process and singular points;
(a) silhouettes, (b) regions, (c) singular points.

Next we present the way to compute the current scan-
plane intersection in the other cases. The region's bound-
aries are followed, in the scan direction, starting from the
intersection points of the preceding exact intersection
plane, until boundary points with the same y coordinate
as the current scan plane are found. In fact, this is done
in the parametric plane along the list of points defining
the region's boundaries. Figure 5 shows the four differ-
ent cases. When we find a point in this list with a smaller
y coordinate than the current plane ordinate, the inter-
section point is computed by linear interpolation
between that point and its precedent. If the intersection
is a local minimum or the lowest end oftwo edges of the
region, it is not necessary to follow the boundaries from
the preceding exact intersection plane.

20

Figure 6. Local minimum cases.

If the preceding exact intersection plane contains a
global minimum, the region disappears. If the plane has
no singular points, no modification is needed. When the
preceding exact intersection plane contains a local mini-
mum, the number of segments of the region decreases.
Two different cases might occur, as shown in Figure 6.
In Figure 6a the two segments in plane p have a common
endpoint. The new intersection will be defined by the
two other endpoints. In Figure 6b, we simply remove the
zero segment.
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The presence of a local maximum in the preceding
exact intersection plane has the opposite effect of a local
minimum. In Figure 7a, the new intersection will be rep-

resented by two segments whose endpoints are the local
maximum, and one of the endpoints of the segment
defining the intersection before modification. In Figure
7b, a new null-size segment appears. If the preceding
exact intersection plane contains a global maximum, the
effect is similar to that in the second case of a local
maximum.
In most cases, a preceding exact intersection plane

with a vertex needs no modification. If the vertex is the
lowest endpoint of two edges of the region, it has the
same effect as a local minimum. If the vertex is the
highest endpoint of two edges, it has the same effect as
a local maximum. Table 1 summarizes the effects of
different types of singular points in the current and
preceding exact intersection planes.

Segments calculation

We have studied"2 two different ways of approximat-
ing the segments defined by the intersections of regions'
boundaries with an exact intersection plane. One possi-
bility is to approximate, in the parametric plane, a seg-

ment by a cubic curve. In this case we compute two
points with the same y coordinate as the exact intersec-
tion plane ordinate, each one belonging to the same grid
cell as one of the segment endpoints. These two new

points, together with the segment ends, define the cubic
approximation. Our study and implementations have
shown that this approach is worse than approximating
the segment by a polygonal line. Next we look at the sec-

ond method.
The generation of the polygonal line takes place in the

parametric plane by using the mxm grid defined on it.
Starting from one of the intersection points ofthe exact
intersection plane and the region's boundaries, we find
a new point with the same y coordinate along the edges
6f the grid cell containing the starting point. These two
points define the first straight segment of the polygonal

line. The new point belongs to two cells: One is the same
cell containing the starting point; the other is unex-

plored. We iterate the previous process in the new cells
until we find the cell containing the other endpoint of
the segment. By so doing, we generate the polygonal line
that approximates the segment (Figure 8). Finally, we
compute the (x, z) coordinates and the intensity of the
polygonal line's vertices. These values are interpolated
linearly in the scan plane.
Region-intermediate plane intersection
The intersection between a region and an intermedi-

ate scan plane is obtained by linear interpolation
between the intersections of the region and two consecu-

tive exact intersection planes. If the number of vertices
in the polygonal lines of these exact intersection planes
is the same, we need only interpolate pairs of vertices
taken in the x direction to obtain the vertices ofthe polyg-
onal line in the intermediate plane. Ifthe number of ver-

Figure 7. Local maximum cases.
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Figure 8. Generation ofa polygonal line that approx-
imates a segment.

Figure 9. Silhouette points computation by linear
interpolation between grid points.

tices in the polygonal lines is different, we add points
before the interpolation. This is a typical problem in the
reconstruction of objects modeled by a set of parallel
sections.13"14

Visibility computation
To compute the visibility, we use the scan-line z-buffer

technique applied to every straight segment in the polyg-
onal line. Other known methods could be used, taking
the polygonal lines as elements of depth comparison.
This is possible because there are no silhouette points
in the polygonal lines.

o go Ao

Figure 10. Changing variables and origin in Figure 9.

Error analysis
We now present a study ofthe errors introduced in the

different steps of the proposed algorithm. In the first
step, where arrays of the y coordinate and the z compo-

nent of the normal are computed, no error is produced.

Silhouette computation error

As we have already seen, we start the silhouette com-
putation by obtaining silhouette points on the grid lines.
These points are computed by linear interpolation
between two neighbor grid points like 1 and 2 in Figure
9. If the curvature variation of the z component of the
normal is not significant in the considered interval, we
introduce the change of variable

X = ( u - u ) / (u2 - Ul

to obtain'2 for the isoparametric curve v=v0 the
expression

nzt ( x ) =

X . f + X . ( 1 - X ) . C

where f is the slope of the linear approximation

nzl ( X ) and C =

1

( U2 - Ul )2
2

(1)

D2 nzt ( n )

In this equation (see Figure 10) the difference between
the curve (nzt) and nzl depends on the curve's second
derivative, as expected.

Let A and A'be the values ofthe parameter obtained for
values of nzE[nzl, nz2] (Figure 10) using the linear
approximation and the real curve respectively. We
find'2 that

IEEE Computer Graphics & Applications

rn

I

~I I 1
", 1 I I

3 .n

a 2 __

Vo

22

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on June 10,2010 at 11:23:18 UTC from IEEE Xplore.  Restrictions apply. 



a= A- -

X . ( 1 - X)

w + 1 - 2 . X
where co= f/C, and

0 . 25
isi < (3)

w -1

if c > 1. From this expression we conclude that E can be
made as small as desired by increasing sufficiently the
value of co. So for a given slope f the error bound is
smaller for smaller values of C when f* 0.
Given that

C = 1 ( U2 - U1 2 1D2 nzt ( Tj )

for any value of D2 nzt (rYi), we can decrease the value of
u2- u1 and C by increasing m. So, if fo0, it is always
possible to find an m value that guarantees an error
smaller than any prespecified value. Iff=0, we introduce
a qualitative error that disappears by changing m.
Equation 3 shows that the error is bound if we can

bound D2 nzt (u). This is possible because we can find12
an expression of the type

D2 nzt C u, v ) u'uu u u2U 1] -

U

T
B .N .BT

5 Z 5
IV'5v½4312v' 1J T

where B5 is the Bezier array of fifth order. Then, D2 nzt
(u, v) will be in the convex hull defined by the NZ com-
ponents. So the maximum value of NZ will be a bound
of D2 nzt (u, v). In the same way we can bound D2 nzt
(u, v).
We conclude from this analysis that the error intro-

duced in the silhouette points computation decreases
whenm rises and that we can easily find a bound for this
error.

Region boundary-exact intersection plane
intersection error
The error introduced in this step is similar to the one

analyzed in the previous section. The only difference is
the way to obtain an expression similar to Equation 4 for
D2y(u, v).
We conclude from our analysis"2 that this is no harder

than obtaining the corresponding equation for D2 nzt
(u, v). The error produced in this step decreases12 when
m rises.

Segments computation error
Segments on the exact intersection planes are approx-

imated by a straight line in every crossed grid cell. The
vertices of this polygonal line are obtained along the grid
lines in the same way as the intersections between exact
intersection planes and region boundaries, and the error

of this operation is therefore of the same kind. The error
produced by the linear interpolation in the grid cells is,
again, of the same type as the previously studied errors.
Therefore, it decreases when m rises.
Segments on the intermediate planes are computed by

linear interpolation between exact intersection planes,
and the error in this step is once again similar to the
previously studied errors. Therefore, it depends on the
surface curvature. Now the error decreases with n, the
number of intermediate planes between two consecutive
exact intersection planes.

Performance and comparisons
To study the performance of the proposed algorithm

implementation, we used the surfaces in Figure 11,
where the different types of singular points are present.
We have also studied the behavior of the new method
when the curvature of the scan-plane elements changes.
These changes are obtained by altering the surface orien-
tation.
To quantify the error of the implementation, we com-

pute the exact depth value for 25 points on the surface
and their approximate value as obtained by using the
proposed algorithm. We define the global error as the
average of the square error at each point.

Performance
Tables 2a and 2b show the error values obtained for the

surfaces in Figure 11 for different values of the
parameters m and n. From these tables we can conclude
the following:

1. The influence ofparameter n in the global error is
small.

2. The influence of parameter m is remarkable. As
expected, the error decreases when the value ofm
grows.

To analyze the influence of the curvature in the error,
we rotated the surface in Figure ila with increments of
0.2 radiants. The following errors were obtained for three
consecutive positions: 1.3x10 -5, 2.5 x 10 -5, and
3.7x10-5.
Figure 12 shows two images obtained with the pro-

posed algorithm.

Comparisons
Next we compare the proposed method with Whitted's

algorithm. This method has been chosen as an element
of comparison because it is the most efficient of the
"4pure" scan-line algorithms,12 that is, algorithms that
compute the intersection between the scene and the scan
planes.

The algorithms' complexity
From the cost evaluation of both algorithms, we note

the following:
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Table 2. Error values of the proposed algorithm for surfaces in Figure 11 and different values of
the parametersm and n .

3 5 10 20

4 0.00048 0.00049 0.00052 0.0007

8 0.0002 0.0002 0.0002 0.0004

12 0.000013 |0.000015 0.000025 0.000035

mXn 3 5 1 0 20

4 0.00014 0.00014 0.00014 0.00015

8 0.00003 0.00003 0.00003 0.00006

12 0.000002 0.000002 0.000003 0.000004

a b

1. The silhouettes computation is more complex in
Whitted's algorithm.

2. The patch subdivision is 0(2div) in Whitted's algo-
a rithm and 0(m2) in the proposed method, where div

is the subdivision level. So the new algorithm is more
expensive in this step.

3. The computation of a scan plane is 0(2div + nbsil) in
Whitted's algorithm, where nbsil is the number of
silhouettes in the patch, and O(m + m.nbsil) for an

b exact intersection plane in the proposed method.
The terms 2djv and m are the most important in

Figure 11. Test surfaces. each expression, and they are equivalent. To obtain
a similar error, we usually need a bigger value form
than for 2div, and the coefficient ofm is greater than
the coefficient of 2d v. So the computation cost of an
exact intersection plane in the proposed algorithm
is greater than the computation cost of a scan plane
in Whitted's method.

4. The computation cost of an intermediate plane in
the proposed algorithm is remarkably lower than the
cost of computing a scan plane in Whitted's
algorithm.

5. Finally, the visibility computation may be consid-
ered of the same order in both algorithms.

The cost of the subdivision is less than that of the scan
process. This is proved by our implementations ofWhit-
ted's algorithm and the proposed algorithm, where in
both cases the scan process is eight times more expen-
sive than subdivision. In the proposed algorithm, most
of the scan planes are intermediate planes; therefore, the
global cost of the scan process will be less in the pro-
posed method, for most cases. This qualitative remark,
plus the fact that the scan process is more important than
subdivision, leads us to think that the new algorithm is
less expensive than Whitted's. This is verified by the
results presented in the next section.
Implementation results

igure 12. Images obtained with the proposed For the surface in Figure lia and div (subdivision level)
.lgorithm. equals 1, 2, and 3, the global error is 9.6x10 -4, 4.3x10-4,
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and 1.4 x0-4, respectively. Comparing these results
with the values in Table 2a, we verify that the error for
div = 1 is greater than every table component. For div = 2
the error is slightly smaller than the values of the table
form =4 and 3 c n c 10, but is greater than the values cor-

responding to m2: 8. Finally, for div=3 the error is
smaller than the values obtained formc 8, but is remark-
ably greater than the errors for m = 12.
Table 3 presents the error and the parameter values for

execution of both algorithms with the same cost. From
these results we can conclude that the proposed algo-
rithm is more accurate for the same cost.
The proposed algorithm approximates the scan-plane

intersections with more straight segments than Whit-
ted's algorithm, and thus the error is more uniform. This
is verified by our implementations. This feature is impor-
tant because the presence of an unexpected error in one
pixel can spoil the image.

Conclusions
The proposed scan-line algorithm for parametrically

defined surfaces computes the exact intersection of the
surface with only a restricted subset of scan planes. The
scan-plane elements are approximated by a polygonal
line. We are currently studying the possibility of improv-
ing the new algorithm by approximating these elements
with curved segments. The accuracy of the proposed
algorithm may be improved by obtaining the intermedi-
ate planes elements through interpolation in the para-

metric space, but this modification increases the
algorithm's cost. We will also determine the relationship
between such an improvement in accuracy and the cost
increment.

Essentially, the cost of the proposed algorithm
depends on the width of the working bands (parameter
n). Its error depends primarily on the accuracy of the
parametric grid (parameter m).
For the same cost, the proposed method is more

accurate than Whitted's algorithm, and the error is more
uniform.
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Table 3. Performance comparison between the method presented
and Whitted's algorithm.

P A R A M E T E R SE R R 0 R

CPU NEW SUB-
TIME WHITTED ALGORITHM DIVISION m In

LEVEL

11 s 9.6x10-4 3.5x10-5 1 12 20

18 s 4.3x10-4 1.3x105 2 12 3

25
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