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I. INTRODUCTION 

The output signal of a radiometer can be expressed in terms 

of the distribution of incident spectral radiance, the instrument 

parameters and relative geometry between the source of the radiation 

and the instrument. The general formulation of this relation is 

commonly referred to as measurement equation 1 [:I . The application 

of this measurement equation to the solution of practical measurement 

problems usually requires some simplifications to obtain a tractable 

computational model of the measurement process. The primary objectives 

of this study are: (1) to derive (simplified) formulations of the 

measurement equation suitable for evaluating effects of the spatial 

(or angular) response of narrow field-of-view (NFOV) scanning radio- 

meters; and (2) to evaluate effects of the measurement process that 

are inherent in the reconstruction of a continuous radiance field 

from discrete radiometric measurements. 

In particular, it is shown that appropriate approximations 

to the measurement equation lead to a convolution integral of the 

spatial distribution of the spectral radiance and of the radiometer 

response, and that the accuracy of continuous reconstructions of 

radiance fields from discrete radiometric measurements is subject 

to degradation due to blurring and aliasing. It is proved (in the 

Appendix) that the aliasing errors that are generated if spatial 

details have been undersampled, can be treated as statistically 



independent noise if the radiance field is a (real) Gaussian process. 

Degradations due to aliasing and blurring are evaluated for a random 

radiance field with a Wiener spectrum that is representative of a 

wide range of scenes, and for spatial responses that are typical 

of televisions and radiometers. In addition, this study also 

evaluates the information capacity representative of these spatial 

responses. 

This study is part of an undertaking to develop comprehensive 

analytical and computational measurement models for the Earth 

Radiation Budget Experiment (ERBE). The results obtained in this 

study have been used in the ERBE NFOV design and performance trade- 

off studies. 

The measurement of the Earth's radiation balance to refine 

previous estimates has attracted continuing attention over the 

last two decades. These efforts, which included experiments on 

Explorer VII and the Nimbus satellites, have led to the Earth 

Radiation Budget Experiment sponsored by the National Aeronautics 

and Space Administration (NASA). The ERBE instruments include 

wide and medium field-of-view (WF'OV and MFOV) radiometers, as well 

as narrow field-of-view (NFOV) scanners. While the wide field-of- 

view instruments are useful in obtaining global averages, the 

narrow field-of-view instrument provides local measurements of 

radiation, which are useful in the accurate determination of spatial 

(zonal and regional) variations of the radiant exitance at the top 

of the atmosphere, and can be used in the estimation of the directional 

2 



models of the radiance field. To be useful, an accuracy of 1% for 

the global mean albedo and radiant exitance G and G resp.), and 
e' 

an accuracy of +lO W/m2 for zonal and regional variations in the 

short wave (reflected) and long wave (emitted) radiant exitance 

are generally required for climate monitoring, with more stringent 

accuracies required for climate theory applications. Thus, it is 

necessary to determine the accuracy of the measurements and investigate 

the trade-offs involved between the design parameters and the errors 

introduced in the measurements of the radiant exitance at the top 

of the atmosphere. 

This work considers the analysis of aliasing error and blurring 

(or the loss of spatial resolution) introduced into a reconstruction 

of the radiant exitance when the NFOV scanner output is undersampled. 

Through mathematical modeling and quantitative analysis, it describes 

the trade-offs between design parameters such as the sampling 

interval, detector aperture shape, continuous-scan versus step-scan, 

etc., and the amount of aliasing error and blurring introduced into 

a reconstruction of the radiant exitance from the sampled digital 

radiometer output. The effects of smoothing the estimates, and of 

varying levels of high spatial frequency content in the radiant 

exitance at the top of the atmosphere are also considered. To 

obtain results useful in a more general context, when possible, 

normalized parameters were used. The degradation of image quality 

obtained with line-scan devices such as optical-mechanical scanners 

and television cameras has received considerable attention 2 - Cl 



Cl 10 . In these investigations, the emphasis has been placed mainly 

on the detection, recognition and reproduction of specific detail 

and objects. The work presented here considers a detailed para- 

metric study of the expected magnitude of aliasing errors contained 

in the reconstruction of random radiance fluctuations typical of 

natural scenes, which has been considered only in illustrative 

examples [7], bl] in the literature. 

The block diagram in Fig. 2 shows the main components of the 

NFOV scanner considered. The radiant exitance M(x,y) at the top 

of the atmosphere passes through a lens and heats the detector, 

thus altering its temperature. The change in the temperature is 

sensed and converted to an electrical signal which is amplified 

and passed through an electrical filter to reduce the noise due 

to thedetector andaliasing error, before being sampled, digitized 

and transmitted to earth by telemetry. The sampled signal is then 

reconstructed to obtain a continuous signal. In most cases, due 

to limitations in the telemetry transmission rate and the frequency 

content of the signals, the reconstructed signal differs from the 

original one; this is referred to as insufficient sampling. The 

error in the reconstructed signal is called aliasing noise or 

error. In general, the smaller the sampling interval, the less 

the aliasing error introduced. However, as can be seen from the 

results (see section III) the choice of design parameters such as 

the shape of the detector field of view, the electrical filter, 

the use of a stepping or a continuous scan system, etc., is of 

4 



considerable importance in reducing the aliasing error. 

In section II, the relative geometry of the orbit, the top 

of the atmosphere and scanning pattern (see Fig. 1) are used to 

show that the output of the detector can be modeled or approximated 

by passing the radiant exitance through a space-invariant system. 

Section IIA describes analytical models of the aliasing error and 

its dependence on the system parameters. Section IIB considers 

the information density transmitted through the system as a design 

criterion. Section III describes the results of the parametric 

study to show the trade-offs involved quantitatively. 



II. NFOV SCANNER MODEL DEVELOPMENT 

Consider a satellite on a circular orbit about the earth, with 

radius r + h, where r is the radius of the sphere representing the 

top of the atmosphere, and h is the altitude of the satellite from 

the top of the atmosphere, as shown in Fig. 1. The subsatellite 

points of the orbit form a great circle on the top of the atmo- 

sphere. Considering this circle as the equator, a coordinate 

system with components of longitude ($) and colatitude (0) can be 

defined, to represent the points at the top of the atmosphere. 

Thus, the equator and constant colatitude curves represent the 

along-track direction, while the constant longitude curves re- 

present the scan direction. 

Suppose that, at time t, the subsatellite point has longitude 

@l, 
and 

and the 

output, 

that the scan point (the intersection of the optical axis 

top of the atmosphere) has colatitude 01, then the detector 

m(el, Q 
1 

>, due to radiation from the top of the atmosphere 

l--l 
can be modeled as (e.g.,. see LlJ, Chapter 9) 

m(el, $1 = A 11, {a LA@, 4, 0', +')SA(x, +> ""' 'OS' dXdA' (1) 

*1 P2 

where A is the area of the detector, L 
x 

(6, @, 0', @') is the 

spectral radiance at the top of the atmosphere at the point (6, 0) 

in the direction (e', $'), S,(X, $) is the sensor response for 

radiation arriving from the direction (x, $) of wavelength X, p is 

6 



the distance between the point (0, @) and the detector, and Ai is 

the "footprint" at the top of the atmosphere for the scan point 

(e,, 9,). This is based on assumptions that the instrument is 

operating in a stable and linear region of its operating range, 

that the effects of radiation arriving from other sources have 

been accounted for by ground and in-flight calibration procedures, 

that the sensor time constants are small compared to variations in 

the spectral radiance, and that the linear dimensions of the detec- 

tor surface are much smaller than the distance p. 

For a narrow field of view sensor, Eq. 1 can be approximated by 

a convolution as will be shown in the following; this allows the use 

of Fourier theory in the analysis of the measurement process of the 

NFOV scanner. The scan point with longitude $,, colatitude el, and 

radius r can be represented by a three component vector, z 2, in 

the rectangular coordinate system shown in Fig. 1, as 

z2 = r 

sine 
1 cos$ 

I I 

sin8 
1 

sin@ 
1 - 

case 
1 

The position of the detector, say z ,can be expressed as 
1 

z1 = (r + h) 

cos$ 

[ 

sin@ 
1 

0 

(2) 

(3) 

Now let z be a point in the footprint Ai about the scan point 



(el, $1); let (el - ~1, G1 - B) be the colatitude and longitude of 

z, so that 

z=r 

sin(81 - a> cos(91 - 6) 

since1 - a> sin(@, - 13) 

cos (e 
1 - a> I . 

For a narrow field of view instrument, the footprint consists of 

a small area about the scan point, so that the values of cx and B 

are small. Thus, using small angle approximations, 

z"r 

i 1- sin6 a c0.5el)(cos~1 + B sinal) 

(sine 
1 

- a cos6l)(sin@l - B COS$~) 
1 

. 

c0.5el + ~1 sine1 
J 

Neglecting the second order terms in (5), 

Z”Z 
2 -( 

r-a ue + rB sin6 
1 u$), (6) 

ue = 

case 1 case 1 1 sir@ cos$ 1 1 

sin9 
1 - 1 , 

% = 

- sin@ 
1 

s 1 cos@l . 

0 

It should be noted that ue and u 
G 

are orthogonal unit vectors which 

lie in the plane tangent at the scan point, z2. Thus, from (6) it 

is seen that the points in A' 1 lie (approximately) on the tangent 

plane. To illustrate the approach, consider a circular field of 

(4) 

(5) 

(7) 

view of d radians, then 

8 



A1 
1 = {(el-a, ~,+)Io 5 x 5 61 = Ice,-a, @,+)I0 I sinx L sin&) (8) 

For a given scan point, the angle x is a function of cx and B; 

thus, the constraint on x in (8) imposes a constraint on cx and B, 

which defines the footprint Ai more explicitly. To determine the 

latter constraint, first note that x is the angle subtended by the 

optical axis and the line connecting the detector to an arbitrary 

point in the footprint; i.e., x is the angle between the vectors 

z2 - z1 
and z - z 

1' 
Hence, 

sin)!= 
II (z2-zl> x (z-z,) 11 

II z2-z1 It II 
z-z 

III 
, 

where I/ 11 d enotes Euclidian vector norm, and x denotes the vector 

product (cross product). Noting that 

z-z = 
1 

(z-z ) 
2 

+ (z 2-z1) , (z2-zl> x (z,-z,) = 0 

(9) can be express ed as 

. 1 

slnX= p p2 

where 

Il(z,-z,) x (z-z,) 11 , 

P = II z-1 II , P2 = llzpl II * 

Using the definition of the vector product, 

[ 1 
% 

sinx P; II z-z2 If- I (z2-zl)T(z-z2) I 2 

where the superscript "T" denotes the transpose. From (6), we 

(10) 

(11) 

(12) 

(13) 

9 



obtain 

II =-3 11 = r2 /Iclue + B sine1 u4 [I2 

=r 2 (a2 + B2 sin261). 

Manipulating (2) and (3), 

p; = llz2-zl II 2 = r2 + (r+h)2 - Zr(r+h) sinel. 

By direct computation, it can be found that 

(z2-zljTUG = 0 

(z2-z1JTue = - (r+h) cosel 

(z~-z,)~(z-z~) = -r(z2-z1)T(a ue + B sine 
1 u$) 

= - rcx(z2-zl)Tue = r(r+h)o case 
1' 

Substituting (15) and (20) into (13), and collecting terms, 

s=n x = p P2 [ 
(pz-(r+h)2 cos2el) a2 + pz sin2el B2 1 

% 

r 

s 
r = 

P P2 
(r-(r+h) sinBl)2 cx2 + pz sin281 B2 1 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

where (16) has been used to obtain (22). A further simplification 

can be obtained by noting that the angle, 8' 1' 
subtended by zl-z2 

and the normal to the tangent plane at (81, @l), satisfies 

10 



cos (3; = 
z; (zl-z2> 

II 3 II II y-3 II 

= 2 ((r+h) sin 81 

1 T. =- 
r o2 

(z 2 y-r21 

- r). 

(23) 

(24) 

Substituting (24) into (22), and simplifying 

2 2 
cos 8’ ~1 

1 
+ sin2e1 f32 

I 

% 
. (25) 

Since the footprint, A', 
1 

corresponds to a small area about 

the scan point, or alternately since ~1 and B are small for points 

in A' 
1' 

the distance p can be approximated by ~2. Thus, the foot- 

print can be described by 

2 

((e,-a, $,-f3)lC0S2f3i ci2 + sin281 B2 < $ S2) (26) 

Thus, for a narrow circular field of view, the footprint 

corresponds to a nearly elliptical surface on top of the atmosphere. 

At nadir, the footprint becomes circular as a limiting case, since 

81 = n/2 and 0; = 0. 

It is sometimes more convenient to use distance related 

variables than latitude and longitude. Thus, consider the following 

change of variables 

x = r$, y = rB, x'= rB, y'= r-o. (27) 

In terms of these variables, (1) can be rewritten as 

11 



m(xl,yl) = A /,,:a Lh(x. Y, of, @')SA(X9 J/l 
case’ cosx 

dAdA'. (28) 

A1 P2 

Now let 

x = x 
1 

- x’, y = y 
1 

- y’; 

Then dA' is given by 

dA' = r2 sine de d$ = sine dx'dy'. 

Define the indicator function of Ai as 

1, sin2el x' 
2 

+ c0s2Bi y’ 
2 

2 d2 I P2 

Il(X’ ,Y’> = 

0, otherwise 

(29) 

(30) 

(31) 

Substituting (29), (30) and (31) into (28), 

m(xl,yl) = A LZ l; J-" I+x1-x', Yy-Y’, 81, v)[s,(x,$)1,(x' ,Y'> cos x 
0 1 

cOse 1 sine 

P2 

dX dx' dy' (32) 

Over the footprint Ai, 

sine = sin(el-cl) = sine 
1 

COSC~ - case 
1 

since = sine 
1' 

81 = e;, 4’ = 4+ P = P2. 

With these approximations, 

mhl,yl) = 
A cos8i sine1 

2 
Y~-Y’, 81, 4’) 

P2 

C Sh(x,$)Il(x',y') cosx dXdx'dy' 1 

(33) 

(34) 

(35) 

12 



To obtain (35) as a convolution, it is necessary to separate 

the wavelength, A, from the other variables. Thus, we assume that 

the spectral radiance at the top of the atmosphere admits a spectral- 

directional model of the form 

up, Y, 81, $‘I = $- M(x,Y) R&e’, $‘I, 

where M(x,y) is the radiant exitance at the point (x,y) at the 

top of the atmosphere. It may be noted that the desired form 

(convolution) can be obtained with models somewhat more generalized 

than the one shown in (36); however, these generalizations will 

not be pursued here. We further assume that the spectral and 

angular characteristics of the sensor are independent of each other; 

i.e., 

S-JX,$> = sx S(X,dJ>. 

Rearranging (25) in terms of x', y' 

x(x', y')=sin-l 1 kin28 ‘2 

o2 lx 
+ cos2ei y' 

Similarly, it can be shown that the angle 'JJ is also a function of 

X’ and y'. Substituting the expressions for x and $, we define 

(36) 

(37) 

(38) 

S1(x', Y’> = S(x(x',y'), $(x',y'>> 11(x'&) cosx(x',y'). (39) 

Substituting (36), (37) and (39) into (35), 

i3 



m(xl ,y,>= 

A cosei sine1 

2 
P2 

/" 1" Jm$ M(xl-x',yl-y')RX(ei,'$i)SX -m -co 0 

sp YY ') dXdx'dy' (40) 

m(xl,yl) = K1 Lz r," M(xl-x', yl-y')~~(x',y')dx'dy' (41) 

Kl = 
A cos8i sine1 o. 

nP; 
{ SA Rh(Bi,@i)dh. (42) 

Thus, it is seen that m(xl,yl) can be obtained (approximately) 

by a convolution as shown in (41). However, Kl and sl still depend 

on the scan point (xl,yl). Thus, consider a "patch" about the 

point (xo,yo) such that for any scan point (xl,yl) on the patch 

sine 
1 

N sine o, ei E e;, 4; E $6, P2 N PO 

Then, for any point (xl,yl) on the patch 

K. = 
A co&;) sirBO co 

TP2 
; SA R-&e&$;' dX, 

0 

m(x l,yl>=Ko i: iz -Nxl-x’, yy’) ~o(x’,y’)dx’dy’ 

Thus, (45) is the desired form for the measurements, showing that 

a narrow field-of-view scanner can be interpreted as a linear, 

spatially invariant system where So(x',y') is the point spread 

function of the system. It is of interest to note that the point 

spread function is composed of two parts. The effect of the field 

of view is incorporated by I 
0 

(x',y') which vanishes except for 

(43) 

(44) 

(45) 

14 



points within the field of view. It should be noted that the effect 

of the partially obstructed field of view can be included by appro- 

priate choice of 1(,(x', y'). The angular characteristics of the 

detector are incorporated by the product S(x, $) cosx. Ideally, 

S(x,$) would be constant, at least over the field of view; and, for 

a narrow field-of-view sensor, cosx N 1. Thus, for an ideal 

sensor, the point spread function would be consant for points 

within the field of view and zero for other points. 

It should be noted that, in terms of the coordinates x', y', 

the point spread function so(x',y') varies according to the patch 

considered. For the circular field of view considered, it can be 

seen from (31) that the footprint will be circular at nadir, but 

will become elliptical at other points, depending on the colatitude 

of the patch considered. Furthermore, note that the conditions 

required for a patch (Eq. (43)) are independent of the longitude 

$0, 
or equivalently x0, but depend on the colatitude Oo. Thus, a 

patch could be defined as.an annular surface between two equal 

latitude curves. 

A further point of interest is the time dependence of the 

radiant exitance, say M (x, y, t), 
0 

at the top of the atmosphere. 

Suppose that at time t, the scan point is given by (x(t), y(t)), 

and define 

M(x(t), y(t)) 4 Mo(x(t), Y(t), t). (46) 

If the change in the radiant exitance during the time required for 

the satellite to move a distance corresponding to its field of 

15 



view is negligible, then (45) remains unchanged when M is defined 

by (46). 

m(xl(t), yl(t)) = K. l: Lz M(xl(t)-x' yl(t)-y') so(x"Y') dx'dy'. (47) 

Thus, the convolution remains unchanged, and the time dependence 

of the signal m can now be seen explicitlyin(47). 

A. Aliasing Error Model 

The block diagram in Fig. 2 shows the main components of the 

ERBE NFOV scanner which is then followed by a reconstruction of the 

sampled signal. Thus, the radiant exitance M(x,y) at the top of the 

atmosphere passes through a lens and heats the detector, thus 

altering its temperature. The change in the temperature is sensed 

and converted to an electrical signal which is amplified and 

passed through an electrical filter to reduce the noise due to the 

detector and aliasing error, before being sampled, digitized and 

transmitted to earth by telemetry. The sampled signal is then 

reconstructed to obtain a continuous signal. In most cases, due 

to limitations in the telemetry transmission rate and the frequency 

content of the signals, the reconstructed signal differs from the 

original one; this is referred to as insufficient sampling. The 

error in the reconstructed signal is called aliasing noise or 

16 



error. In general, the smaller the sampling interval, the less the 

aliasing error introduced. However, as can be seen from the results 

(see section III) the choice of design parameters such as the shape 

of the detector field of view, the electrical filter, the use of a 

stepping or a continuous scan system, etc., is of considerable 

importance in reducing the aliasing error. Furthermore, the re- 

duction in aliasing error obtained as the sampling interval is 

reduced is not uniform; so that in some instances a small reduction 

in the sampling interval can reduce the aliasing error noticeably 

more at some points than at others. Thus, in order to make the 

trade-off between design considerations (cost, complexity, etc.) 

and aliasing error, it is necessary to make a parametric quantitative 

study of the relationships between the various parameters involved. 

It has been shown (Eq. (45)) that the effect of the detector 

can be expressed by a linear space-invariant system, so that the 

output can be described as a convolution of the input with the 

point spread function of the system. To establish the notation 

which will be used, let g(x,y) be an integrable function; then 

its Fourier transform ~(v,w) is given by 

^g(V,W) = .fI i: g(x,y) e-i2’(vx+wy) dxdy. 

g(x,y> = lf LI g(V,w) ei2’r(vdwy) dvdw. 

(48) 

(49) 

In these expressions, g(x,y) can also be interpreted as a second 

17 



order stationary (i.e., homogeneous andisotropic) random process; 

for a more detailed treatment of these.definitions, see Appendix A. 

It is well-known that the Fourier transform is linear and that the 

transform of a convolution is the product of the transforms of the 

convolution components [12], [13]. ,Thus, the transform of the 

detector output given by (45) is given by 

iii(V,W) = ii(v,w> ?,(V,W), 

where 8(V,W) is the transform of the radiant exitance at the top of 

atmosphere and ? 
d 

(V,U) the transform of the point spread function 

-rd(x,y) defined as 

r,(x,y) = K. so(x,Y); 

(50) 

(51) 

we will refer to ? 
d 

(V,W) as the frequency response of the detector. 

The effect of the lens has been neglected in (50), as the diffraction- 

limited spatial frequency response of the lens does not usually 

affect the frequency response of relatively low-resolution radiometers. 

Simulations, including the lens frequency response, during the early 

stages of this study, also led to the above conclusion. Thus, the 

effects of the lens will be neglected in the following. 

In a step-scan system, the output of the detector is effectively 

sampled by the stepping process; i.e., if the scan points are 

(xj,yk), then the output of the radiometer at these points is 

m(xj ,y,). Thus, after a period is allowed for transient effects to 

die out, the detector output can be sampled, digitized and transmitted 

to ground. 

18 



When a continuous scan system is used, the detector output is 

amplified, then passed through a low-pass electrical filter before 

it is sampled. The low-pass filter serves two purposes: to reduce 

the amount of noise, and to lower the high frequency content of the 

signal before it is sampled, thus reducing aliasing error. Hence, 

a continuous-scan system provides a method of reducing both noise 

and aliasing error which is not available in step-scan systems. 

The amplifier gain will be assumed to be unity, for simplicity. 

Now, if the scanning speed is much faster than the along-track 

speed, then the time rate of change of the detector output follows 

the variations along the scan direction. In fact, let h,(t') be 

the impulse response of the low-pass filter; then the output of the 

filter can be expressed as 

s(x(t>, y(t)> = iz h,(t') m(x(t-t'), y(t-t')> dt' 

E LI h,(t'> m(x(t>, y(t-t')) dt' 

= iz h,(t'> m(x(t), yt-jrt'> dt' 

= LE -r,(y’> m(x(t>, y(t)-y’) dy’ 

where jr is the scanning speed, and 

(52) 

(53) 

(54) 

(55) 

y(t) = yt , y' = ?t', 

Te(y'> = h,(y'/$)/$ 

(56) 

(57) 
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Thus, the effect of the electrical filter can be approximated by a 

convolution in the scan direction. Taking the Fourier transform 

of s(x,y), we obtain 

&,w) = .;,(v,w) T,(w) ci(v,w) = T(v,-w) i&u), (58) 

where G(V,W) is the combined frequency response or MTF of the radio- 

meter till the filter output. Note that the effect of the lens 

results in the MTF 

?(.v,w) = ?pJ,w) ?,(v,w> ~,(W (59) 

The output of the filter is then sampled uniformly in time, 

corresponding to sampling intervals X and Y along the x and y 

directions, respectively. This results in samples of the form 

s cxj d-k) ; we denote the sampled signal by s(x,y; X,Y>. The Fourier 

transform of the sampled signal is then given by 

h 
s(v,w; X,Y) =f: 2 (v- $, u-g j=-co k=-m 

=,g ,z ;(v - $, w - ;) qv - 4, w - $). 

If the Wiener spectrum (or power spectral density) of the radiant 

exitance is denoted by sM(V,U), then the Wiener spectra Gs(V,u) and 

$,(v,w; X,Y) of s(x,y) and s(x,y; X,Y), resp., are given by 

tip,& 

(60) 

(61) 

(62) 

(63) 
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= ~,(v,w> + $,(v,w; X,Y>. (64) 

It is seen that the spectra of the sampled signal and the 

continuous signal differ by the aliasing error spectrum 

Under sufficient sampling conditions, the aliasing term 

and it is possible to reconstruct the continuous signal 

;,(v,w; X,Y>. 

samples with no error. When insufficient sampling occurs, this 

term is non-zero, and any reconstruction contains errors [14], [la]. 

Consider the reconstruction 

r(x,y) =z 2 s(xj,yk) sinp sinq 
j=-m kc-03 

(65) 

which corresponds to the reconstruction filter with frequency 

response 

1 
TR(V,w> = ncxv, Yw) = 

I 

, /XVI < &lYwl < % 

0 , otherwise 

From the sampling Theorem [lg], it followsthat 

(66) 

i&w) = ?R(V,W) i&J, 0; X,Y) 

= T,(v,w> z&J ,w> + TR(V ,w> qv ,w; X,Y> 

= ~p,w> + G,(v,w; X,Y>. 

Taking the inverse Fourier transform of (69) 

(67) 

(68) 

(69) 

r(x,y> = rs(x,y> + ra(x,y>. (70) 

vanishes, 

from its 
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It i.s seen that the reconstruction contains a part that is due 

directly to the signal, and a part that is not desired, called the 

aliasing error. In fact, it can be shown that if M(x,y) is a (real) 

gaussian process, then the signal and aliasing parts of the recon- 

struction are statistically independent and stationary processes 

(see Appendix A, Th. 3). Thus, the aliasing error term can be 

treated as additive noise. 

If the useful frequency band of the signal before sampling 

s(x,y) is considered to be B = {(v,w>l IXvl < %, \YW/ < %I, then, 

with q,(v,o) given by (66), rs(v,w) is precisely the useful part of 

the signal. Now, since rs(x,y) and ra(x,y) are stationary processes, 

their variances do not change with the position (x,y>. 

= 11/2x Jll2Y A 
-1/*x -1/*p @$V@) dvdw 

a* a = E(rz(x,y)) = [I iz I;,(v,w)l* $,(v,w; X,Y> dvdw 

= 11/2x /1/2Y A 
-1/2x -1/2y $$V,W; X,Y) dvdw 

where E denotes the statistical expectation operator. Due to the 

independence of the components of r(x,y>, 

o* 
r 

= E(r*(x,y)) = cJE + of 

Now, note that the effect of the detector is one of averaging 

or low-pass filtering (e.g., see (28), (45)). Although this is 
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necessary to preserve a practical signal-to-noise ratio, it 

produces some loss in resolution, or blurring. Similarly, the 

electrical filter which reduces the amount of additive aliasing 

noise also produces some blurring due to its averaging effect. 

Thus, there is a trade-off between blurring and additive noise 

(aliasing, detector and electronic). The selection of design 

parameters must, therefore, be made so that both the loss of 

resolution as well as the additive errors (accuracy) remain within 

acceptable limits. 

To find a quantitative means for judging the amount of blurring, 

note that, in the frequency domain, the loss of resolution occurs 

when the higher frequency content of the signal is attenuated, which 

in turn reduces aliasing error. 

2 
oM = E(M*(x,y)) = /" J-" 8 (v,w> dvdw, -co -co M 

cr* 
S 

= E(rzCx,y)) = i: iz ITR( v,w)hv,w) I2 $,(v,w) dvdw. 

Thus, ot is the variance that remains in the signal part of the 

reconstruction, whereas CT i is the variance of the original signal. 

Hence, the ratio os/oM provides anindication of the amount of 

variance still remaining in rs(x,y). When the total frequency 

response ?R(v,w)?(v,w) is real, monotonically non-increasing, and 

no greater than unity in absolute value, this ratio provides a use- 

ful measure of blurring. A more general measure of blurring can be 

obtained as follows. Define blurring as the difference between the 

(76) 

(77) 
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original signal and the portion of the reconstruction due to the 

original signal, i.e., 

b(x,y) = rs(x,y> - M(x,Y) (78) 

Then, 

b^(v,w) = (~,~v,w) &v,w) - 1) hu-4 (79) 

2 
Ub = E(b*(x,y)) = /" J" &(v,o) b,w> - l/* 5,(&w) dvdw -cm --co (80) 

Note that, as defined in (78), blurring is the component that would 

still remain when the signal is sufficiently sampled, and no 

aliasing noise is present. 

i?(v,w) = ci(v,w) + (T,(v,w) T(v,w) -1) B(v,w)+;,(v,w; X,Y) (81) 

r(x,y) = M(x,y) + b(x,y) + ra(x,y) (82) 

The ratio ob//aM provides a measure of the blurring, as a per- 

centage of the signal variance. The extent of aliasing error in 

the reconstruction can be compared by the ratio oa/oM. Finally, a 

quantity of significance is the signal-to-noise ratio osloa of the 

signal variance to aliasing noise. 

It is important to note that both blurring and aliasing errors 

in the reconstruction depend on the particular method of recons- 

truction used, i.e., on the choice of ?,(v,w) as can be seen from 

(73), (77) and (80). Thus, the particular method of reconstruction 
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can increase or reduce the errors involved, and should be selected 

with appropriate care to its effects on blurring and aliasing as 

well as other sources of error such as detector and electronic noise, 

uncertainty in knowledge of the sensor response parameters (the 

angular characteristics S(X,$), the directional model RX(6', $') 

involved in Td(v,w). No attempt was made, in this study, to 

optimize the reconstruction method. The choice of the frequency 

response in (66) was made as it tends to neither reduce nor increase 

these errors, thus providing an indication of the extent of these 

errors in the sampled signal. However, to see the effect of 

further smoothing of the signal, the following reconstruction 

filters were also considered 

TRN(v,w) = T[(Nyv, Nyw) = 
1, [WV\ < %, INV'I < % 

0, otherwise 
(83) 

The corresponding reconstruction rN(x,y) is given by 

r,(x,y) = (84) 

where y is the effective diameter of the footprint. The variances 

of the smoothed reconstruction, rN(x,y), of the aliasing error in 

the smoothed reconstruction, and of the signal part of the smoothed 

reconstruction can be obtained in a similar way as for the unsmoothed 

case. Using (71), (73) and (75) we obtain 
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a* sN=E(riN(x,y)) = /1/2Ny i1’2Ny 3 (v,W) dwdw -1/2Ny -1/2Ny s 

a* aN=E(riN(x.y)) = 1”2Ny /1/2Ny 3 (v,w; x,Y) dvdw 
-1j2Ny -1/2Ny s 

(T* rN=E(ri(X,y)) = dN +??zN. 

Three types of detector frequency responses were considered. 

These correspond to apertures of Gaussian, circular and diamond 

shapes. The patch considered was assumed to be at nadir, and the 

angular characteristics of the detector were assumed to be uniform 

over the IFOV. 

S(x,qJ> = 1 , cosx = 1. 

Thus, the point spread function of the detector was assumed to be 

unity within the footprint, and zero outside the footprint, except 

for the Gaussian case. In order to compare, the results from 

different types of detectors, the point spread functions were 

normalized as to satisfy 

LI l; -rd(x,y) dxdy = ; Y 
2 

for each case considered, where y is the diameter of the footprint 

for the circular aperture at nadir. 

Y2 = h* g* 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

where 6 is the IFOV, in radians. The spatial frequency responses 
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are given below. 

a) Gaussian: 

q,(V,w) = e 
-Tr*a*(v*+w*) 

, a = y/2 (91) 

b) Circular: 

T,(v,w) = 
J1 (*Tap) 

Trap ’ a = y/2, P2 = w* + w* (92) 

c) Diamond: 

?,(v,w) = sinc(av+bw) sinc(av-bw), a=y,b=+. (93) 

Perspective plots of these frequency responses are shown in Fig. 3. 

The electrical filter frequency response was selected as 

l- 
T,(w) = (94) 

0 , otherwise 

Although this is not the frequency response of a causal electrical 

filter, it is representative of the magnitude characteristics of 

realizable filters. However, the phase characteristics that would 

introduce further blurring are not represented appropriately by 

this model. More realistic filters which operate in real time were 

modeled and coded in a simulation as rational transfer functions 

up to eight order, so that the capability of simulating the effects 

of these filters was developed. 

Finally, the radiant exitance at the top of the atmosphere was 

modeled as a random process (or field) which is homogeneous and 
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isotropic, i.e., wide-sense stationary. Since the particular 

values of the radiant exitance at the top of the atmosphere are 

not known a priori, and it is desirable to design the radiometer 

for a large class of possible signals, it is usual and pratical 

to model the radiant exitance as a random process. We will con- 

sider M(x,y) to represent the fluctuation of the radiant exitance 

about its mean value, say M, as the effect of a mean value G is 

to introduce a mean value in the output signal of the radiometer, 

as can be seen by 

Lz LI (M(x',y') + M) T(X-x', y-y') dx'dy' 

= Lz l: M(x',y') T(X-x',y-y') dx'dy' + z/I ,r(x',y')dx'dy'(95) 

= .s(x,y> +-c (96) 

S = ii ij ~(x',y') dx'dy' (97) 

Since the effect of an average value can thus be taken into account, 

we assume that 

E(M(x,y)) = 0 (98) 

Q,(x,Y> = E(M(xO+x,~O+y~ M(xO,yO))= 0; e 
-r/u, 

b 
r = (x*+y*)'. 

(99) 

(100) 

The Wiener spectrum corresponding to the covariance function, 

$,(X,Y), is given by 
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*7T 2 2 

6M(v,w) = 
v r oM 

+ 4?T* p2(w2+w2> 3'2 
r 1 

The Wiener spectrum in (101) can be obtained by assuming that 

M(x,y) is a random set of two-dimensional pulses whose width obeys 

a Poisson probability law with a mean width n,, and whose magnitude 

obeys a Gaussian probability law with zero mean and variance (5 
2 
M 

[15] , [16], [173 - This interpretation provides a physical signifi- 

cance to the parameter 1-1 . 
r 

It is important to note that by varying 

'r' 
it is possible to distribute the frequency content of the signal 

with ease. As pr decreases, the spectrum becomes flatter, favoring 

the higher end of the spectrum. When oi is kept constant, the 

variance of the signal remains unchanged, so that meaningful com- 

parisons can be made. Finally, note that for the Lambertian case, 

L+, y, 8’, @‘> = $ M(x, Y) RX 9 

so that the analysis for the radiance would be essentially the 

same if the subscript M is replaced by L; i.e., oMbyUL , s,(V,w> 

by ~,b,w), etc. 

B. Information Density 

In situations where information in the input signal (e.g., 
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the radiant exitance at the top of the atmosphere) is transmitted 

through a system (the radiometer) resulting in an output signal 

(the sampled digital radiometer output), a criterion of interest 

is the density of the information transmitted. This criterion, 

which was introduced by Shannon [ls] f or communication systems, 

was investigated for image quality considerations by Fellgett and 

Linfoot (I191 and for aliasing effects by Huck and Park [ZO]. 

Since transmitting a signal which is known a priori does not 

increase our knowledge, the mathematical concept of information 

is based on the amount of uncertainty reduced by the transmission 

of a signal. The entropy [18] of a signal is a measure of the 

uncertainty of receiving it. For a band-limited, second order 

stationary, Gaussian random process, g(x,y), with Wiener spectrum 

tJg(w), the entropy can be shown to be [18, pp. 91 -951, [20], 

v /2 wo/2 
H(g) = + Lvo,* 

0 
i, 

0 
,* log2M $,(v,w)) dvdw, 

where the spectrum $,(v,w) is limited to the band 

c (v,w>l Iv1 < vo/2, IWI < wo/21. 

In the previous section, it was shown that the reconstruction 

r(x,y) can be written as the sum of a signal part, rs(x,y), and an 

aliasing error part, ra(x,y) (see (70)). The effects of detector 

and electronic noise as well as quantization error effects were 

neglected. Now, suppose that the detector and electronic noise 

from the amplifier and electrical filter, referenced to the input 

(103) 
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of the filter, are modeled by Gaussian noise. Let n(x,y) be the 

noise added to the detector output when the scan point is (x,y). 

Thus, the input to the electronics can now be expressed by m(x,y)+n(x,y). 

To simplify the formulation, we shall assume that the noise, n(x,y), is 

white when y is kept constant and x is allowed to vary. When the 

temporal power spectral density function of the noise is relatively 

flat, or alternately, when the temporal correlation function of the 

noise decays rapidly (i.e., if the correlation function is almost zero 

in a fraction of the time required for one scan), then the assumption 

is realistic. Since two scan points (xl,y) and (x,,y) will correspond 

to times t 
1 

and t 
2' 

respectively, separated by an interval, t2 - tl, 

which, on average, equals the time required for one scan, n(x 
1 

,y) and 

n(x *,Y) will be almost uncorrelated; hence, in the x direction the noise 

will appear to be white. Thus, let 

E(n(x+x’,y+y’) n(x,r)) = G&J’) 6(x’> (104) 

The Wiener spectrum of the noise will then be dependent on one variable, 

as it is constant in V. 

G,( v,w> = Qw). (105) 

As shown in the previous section (see (52) - (58)), the effect of 

the electrical filter is to process the noise only in the w-axis. 

Adding the effects of sampling, A/D conversion and the reconstruction 

filter, the reconstructed signal can be expressed by 
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r(x,y) = rs(x,y) + ra(x,y) + rn(x,y) + r,(x,y>, (106) 

where rn(x,y) and rq(x,y) are the parts of the reconstructed signal 

due to noise and quantization (A/D conversion) errors, respectively. 

The spectrum of the noise term can be found to be 

co 

;,(v,w) = 
cl 

Deb+ 2~n~w-;, = Qw), Ix++, IYwl<+ (107) 
n k-m n 

If the A/D conversion consists of rounding to the nearest allowable 

level, and E. is the maximum error that can occur (except for overflow), 

then the quantization error can be modelled by 

6 (V,w> = E;/3. 
% 

(108) 

If the digital words consist of TJ bits plus a sign bit, the 

number of allowable levels, K, is 

Finally, if the signal is expected to have a dynamic range of [-M, M], 

, E. = M/K. (109) 

In the Appendix, it is shown that for a second order stationary 

real Gaussian random process, the aliasing error and signal processes 

are second order stationary and statistically independent. We further 

assume that both the quantization error and noise terms are Gaussian 

and statistically independent from the radiant exitance signal. The 
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Wiener spectrum of the reconstructed signal r(x,y) in (106), is then 

given by 

J,(W = QJ,w) + 6,hJ) + Qw~ + ~,(v,w). (110) 
S a n 4 

For the channel described by (106), where rs(x,y) is the input 

signal and r(x,y> is the output, due to the statistical independence 

of the additive terms, it can be shown that [17, p. 99]the information 

density is given by 

hi = H(r) 
- H(ra + rn + rq). 

Using (103), and manipulating 

hi = -$ 

1 
2x 

51 
2x 

1 
2y 

-/l 
log* 1+ 

2y [ 

G, (v,w) 
~a(v,w;x,Y)+~r(w)+M2K-2/3 I 

dvdw 

n 

$pw> = I?(v,w)12 @,(v,w>, 

;,(v,w;x,Y) = 

j=-m kc-a, 

(111) 

(112) 

(113) 

(114) 

(j ,k)f(O,O) 

Note that when the cut-off frequency of the low-pass electrical 

filter is chosen so as to attenuate the frequency content outside the 

Nyquist band significantly, the aliased portion of the noise becomes 

small relative to the portion of noise within the passband; i.e., 
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00 

ci 
Te(W 

k-m 

k#O 

$,(v,w) = l;,(w) I' (p. (116) 
n 

Thus, the information density transmitted through the system can be 

computed using (112) - (116). To see the effect of specific parameters 

more explicitly, consider the following normalizations: 

(117) 

;(v,w) = KT ;‘(v,w), G,(w) = Ke $W), (118) 

where the prime " ' 11 denotes a normalized quantity, KT is the total 

"d-c" gain of the radiometer system, Ke the d-c gain of the electronics, 

2 

"M 
and o 

2 

n 
the variances of the input signal and the noise, respectively. 

Substituting these expressions into (112), 

11 
h 2y 

i =QE 2 -1 -/1 1-2 1+ 

- 

[ I dvdw 

2x 2Y $p,w;x,Y)+ 

(119) 

The expression in (119) shows the dependence of the information 

density on various system parameters explicitly. For example, if the 

total system gain, K=, is increased by increasing the electronic 

amplification Ke(i.e., KT/Ke remains unchanged), the information density 

would remain unchanged, assuming that the dynamic range of the signal 

34 



increases proportionately. On the other hand, if K= is increased by 

increasing the gain of the detector or the lens configuration, the 

effect of the noise would be reduced, while the aliasing error term 

would remain unchanged, assuming o To see this more 
n 

remains unchanged. 

clearly, let o s,n be the signal to noise ratio of the input signal 

(radiant exitance) to the noise (detector plus electrical) both referenced 

at the output of the detector; then 

K- 
u 

s/n 
=+/CL 

e M n 
(120) 

On the other hand, the standard deviation of the signal at the 

input of the A/D converter is 

,/m = uM KT, if 02,~ >> 1. (121) 

Since the dynamic range of this signal would be directly proportional 

to its standard deviation, let 

M = c oM K= (122) 

Substituting (120) and (122) into (119), 

1 1 -- 

h = 1 
i 2 -1 j*x -1 j*y log2 -- 

2x 2Y 

IQ’ (v,w> I2 qp,w) 

1 
dvdw (123) 

Q(v,w;x,Y)+ (5 Kc-* 

It is seen that the combined effects of the gains and oM, oncan be 

combined into the parameter o 
s/n 

; I.e., the signal to noise ratio 

referenced at the detector output. The effects of shaping the transfer 
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functions ?'(v,w> and ?e(W>areless explicit and have been investigated 

in the previous section for aliasing and blurring. The effect of the 

sampling intervals is shown in Figure 10. 
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III. RESULTS 

The models described in section II were used to make a para- 

metric study of the effects of various design parameters such as 

aperture shape, continuous versus step scan, sampling interval, 

etc., on aliasing error. A computer program which computes the 

variance of the signal and aliasing error, and signal-to-noise 

ratio was developed. The program generates the Wiener spectrum 

of the optical signal, the frequency response of the lens, the 

frequency response of the selected detector aperture shape, and 

the transfer function of the electrical filter. Then, using these 

functions, the Wiener spectra of the continuous and sampled radio- 

meter output are computed. The spectrum of the sampled signal was 

generated by including the effects of the eight sidebands closest 

to the fundamental band at the origin, as these have the largest 

effect on the spectrum, while further sidebands have negligible 

effect within the reconstruction band {(v,w)[ IXVl < 4, 1~~1 < %I. 

In all the runs made the sampling intervals in the along-track and 

scan directions, x and y respectively, were chosen to be equal; 

i.e.,X = Y. 

To obtain results which are useful in a more general context, 

the independent variables x and y were normalized by the diameter, 

y, of the effective circular footprint. Thus, the values X/y=Y/y=l 

correspond to the contiguous sampling case for a circular IFOV, 
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irrespective of the particular value of y. Similarly, the average 

pulse width of the signal is also normalized, so that the normalized 

parameter ur/y represents the average number of zero-crossings 

occurring within the footprint. To make the results applicable to 

different levels of signal power, the variances of the signal and 

aliasing error were computed as ratios of the variance of the in- 

coming radiant exitance. As the system is linear, any particular 

signal level can be readily obtained from the ratios. The integrals 

required to compute the variances of the signal and aliasing error 

(e.g., (73, (74)) were evaluated using simple numerical integration 

techniques. 

Figure 6 shows the normalized variances of the signal and 

aliasing error components of the reconstruction given in (65) and 

(70) and the signal-to-noise ratio as a function of the normalized 

sampling interval X/y, various Wiener spectra as input radiant 

exitance; the spectra are parametrized by in-,/y. The three cases 

shown correspond to the Gaussian aperture with step-scan, the 

circular aperture with step-scan, and the diamond aperture with 

continuous scan. 

Figure 7 shows the normalized variance of the aliasing error 

in the smoothed reconstruction given in (84) and the signal-to- 

noise ratio as a function of the normalized sampling interval for 

varying amount of smoothing indexed by N. 

Figure 8 shows the aliasing error variance and the signal-to- 

noise ratio for the smoothed reconstruction when continuous scan, 
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hence electrical filtering, is used. To see the effect of continuous 

versus step-scan to aliasing error, compare with Figure 7. 

Figure 9 shows the normalized variances of the signal and 

aliasing error parts of the smoothed reconstructions, and the 

signal-to-noise ratio as a function of the frequency content of 

the input radiant exitance indexed by n,/y. It is seen that while 

smoothing reduces aliasing error, it also increases blurring as 

measured by os/ol,. 

Figure 10 shows the information density transmitted through 

the radiometer for the unsmoothed reconstruction as a function of 

the normalized sampling interval. Plots for a radiant exitance 

Wiener spectrum corresponding to white noise with unit power, as 

well as various levels of coloring are given. Note that the white 

noise spectrum has infinite variance, so that the results are not 

readily comparable. 
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IV. CONCLUSIONS 

1. The numerical results substantiate the observation by 

Mertz and Grey [2] and Schade [3] that all reasonable spot 

intensity profiles and photosensor aperture shapes of equivalent 

size result in about equal blurring, but that some profiles and 

shapes tend to suppress aliasing better than others. The Gaussian 

spot intensity profile of television cameras is appreciably 

superior to the circular photosensor aperture commonly used in 

optical-mechanical scanners. However, aliasing with optical- 

mechanical scanners can be effectively suppressed by careful 

photosensor aperture and electronic filter response shaping. 

2. Aliasing errors can be the most significant source of 

degradation in contiguous reconstructions of a discrete signal. 

Consider, for example, a discrete signal from an optical-mechanical 

scanner with a circular photosensor aperture and contiguous coverage 

(i.e., X/Y = Y/Y = 1)) and a random radiance fluctuation with a 

mean spatial detail equal to the sampling interval (i.e., n,/y' = 1). 

The resulting rms signal-to-noise ratio os/oa is then only 5, 

whereas imaging systems and radiometers are commonly designed to 

provide signal-to-noise ratios of two to three orders of magnitude 

in typical applications. 

3. Aliasing errors tend to decrease rapidly with decreasing 

sampling intervals. Improvements of one or two orders of magnitude, 
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depending on the spot intensity profile or aperture shape, can be 

attained by decreasing the sampling intervals X/y = Y/y from 1 to 

0.7. Still further decreases in sampling intervals continue to 

provide rapid improvements for the Gaussian profile, but relatively 

gradual/improvements for the circular and diamond apertures. This 

difference in performance between the Gaussian profile and the two 

apertures is directly attributable to their frequency response 

characteristics: the frequency response of the Gaussian profile 

decreases monotonically with frequency, whereas the frequency 

response of the two apertures exhibit sidelobes. The reason for 

the improved performance of the diamond over the circular aperture 

is that the sidelobes of the diamond aperture are suppressed along 

the two sampling directions (i.e., by its shape along the W- 

direction and by an electronic filter along the V- direction). 

4. The improvements that can be attained in suppressing 

aliasing by photosensor aperture shaping and decreasing the sampling 

interval tend to be independent of the statistical properties of 

the radiance fluctuation. 

5. Spatially smoothed reconstructions reduce aliasing error 

at the cost of increased blurring. But there is a net loss in 

signal-to-noise ratio (i.e., a/;3 a z qa,>, and hence loss of 

information about spatial detail. This suggests that the pass- 

band of the reconstruction filter should generally be equal to 

the sampling passband. Narrower reconstruction filters (i.e., 
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smoothed reconstructions) should be used only if spatial detail 

is of secondary importance to the accurate estimation of absolute 

radiance magnitudes of coarse detail (as it is commonly in the 

reconstruction of radiometric measurements). 
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APPENDIX A 

SAMPLING OF SECOND ORDER STATIONARY RANDOM PROCESSES 

Consider a second order random process {x(t), - 03 < t < -1, 

defined on a fixed probability space (Q, A, P). Let 

E(x(t)) = 0 (1) 

E(x(t)x*(t')) = R$t,t').l (2) 

Suppose that the random process is sampled at intervals T, 

to obtain the sequence (x(kT), - 03 < k < ~1. Whatever the physical 

nature of the sampled process (whether a sequence of numbers stored 

in a computer, the output of a sample-hold device, etc.), it con- 

tains information about the continuous process x(t). In many 

practicalapplications, it is desirable to obtain a continuous 

random process, x,(t), from the samples of another random process, 

x(t), such that xr(t) , resembles x(t) is some fashion; e. g., 

Elx(t) - xr(t, 1 2 is small or minimum. Such a process, xr(t), will 

be called a reconstruction of x(t). In the following, we shall 

assume that the random processes considered have zero mean with- 

out loss of generality, as the mean (if finite) can be subtracted. 

Def. 1 -- 

A random process is said to be second order stationary (or 

wide sense stationary) if it is of second order and its covariance 

1 
* denotes the complex conjugate. 
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depends only on the difference of its arguments, i. e., 

E(x(t+-r)x*(t)) = R&T), t, 'C&R. 2 

Second order stationary processes have harmonic (or spectral) 

decompositions as stated in the following theorem (for a proof see 

Lo&e 21 , pp. 474 - 483). [I 

Theorem 1 

A second order random process x(t) with t&R has a harmonic 

orthogonal decomposition 

x(t) = LI eiwtdX(U) 

where {X(W), wc:R} is a process with orthogonal increments such 

that whenever w I w 
12 

E]X(u2) - X("i' I2 = F(02) - Fhl), 

and F(U) is of bounded variation if, and only if, 

x(t) is second order stationary and continuous in quadratic mean 

(q.m.) at one point. Then, 

1.i.m. 1 T 
-r-+03 E i, x(t>e -iwtdt = X(wi-) - X(w-) 

-iwt -i(Mh)t 
dt = ii(wth) - ii(w), 

ii(w) = 3 
1 
X(ti> + X(w-> 1 - 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

2 
R denotes the real numbers 
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The theorem remains valid if the argument t is restricted to the 

integers, the continuity of x(t) is deleted, and the integrals in 

(6), (7), are replaced by appropriate sums. 

The stochastic integrals above should be interpreted as 

Riemann-Stieltjes integrals in q.m. (see Lo&e 21 , p. 472), and 
Cl 

1.i.m. denotes the limit in quadratic mean. 

For a second order stationary process, x(t), continuous in 

q-m., we shall call any process X(w) satisfying (4) an Integrated 

Fourier Transform (IFT) of x(t). A non-decreasing function F(w) 

satisfying (5) will be called an Integrated Power Spectrum (IPS) 

of x(t). If F(w) is absolutely continuous, then the derivative 

dF 
S(w) = -&W) 

is called the Power Spectral Density (PSD) of the process x(t). 
3 

As in the case of deterministic signals, the concepts of power 

spectra (or harmonic decompositions) and Fourier transforms play 

an important role in the analysis of random processes. 

Def. 2 

(9) 

Let (x(t), tER} be a second order random process, and 

tt k, k = . . ., -1, 0, 1, . . .} an increasing sequence of sampling 

3 
More generalized definitions applicable to non-stationary process 

are possible and will be studied later. 
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points. Then {xr(t), tER} is a real (complex) linear reconstruction 

of x(t) if there are real (complex) functions uk(t) such that 

xr(t)= 1.i.m. n -t co $nx(tk)qt) A k~mx(tk)\(t), tE:R. (10) 

In particular, if tk = kT, the linear reconstruction 

xsW = k~mX(kT) sinc(k - $)~i, tE:R 

will be called the Shannon reconstruction of x(t) if the limit in 

(11) exists. 

Note that, for the Shannon reconstruction, 

u.Jtj) = 6kj = 0” $ ; ; , 
/ , 

Xs(tk> = x(tk), tk = kT. 

Condition (12), which implies (13), is clearly a desirable one 

when trying to reduce the difference between x(t) and the recon- 

struction. 

Def. 3 

Let {x(t), tER) be second order stationary and continuous in 

q.m., with IFT X(w). Then the kth sideband of the process for a 

uniform sampling interval T is 

X&a)= x(w+kwo) - X(kwo), w. = 27~/T, k = 0, +l, . . . 

The k 
th 

sideband signal of the process is 

wo/2 - 
x(t) = iw ,2 elWt dXk(o), tER, k = 0, 21, . * . . 

0 

(11) 

(12) 

(13) 

(14) 

(15) 
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Lemma1 

Let ix(t), tER} be second order stationary and continuous in 

q.m. Then the sideband signals (xk(t), tER) are uncorrelated, 

second order stationary processes; the sidebands 

qpJ-0, o -w /2 5 w < w /2) are processes with orthogonal increments 
0 

such that 

E([Xk(W2) - \@J~)-J[X~(.'JJ~) - Xj'w3'I *) = op k # j 

whenever -wo/2 I w 1' W2' W3' w4, < wo/2; and 

E(IXk(02) - xk(wl> I21 = Fk(W2) - Fk(Wl), wl I w2 

Fk(w) = F(w + kwo). 

Proof: 

First note that (17) follows from (14) and (5); since, whenever 

w1 L w2 

E(lr((W2) - X&y) 12) = E(/X(w2+kwO) - X(wl+kwo)/2) 

= FCw2+kwo) - F(wl+kwo). 

(16) 

(17) 

(18) 

(19) 

(20) 

Now, let w~E[-wo/2, wo/2), i = 1, 2, 3, 4; then 

E([X(w2+kwo) - X(~)l+kwoI][X(w4+jwo) - X(w,+jw,)]*) = 0, k # j (21) 

since X(W) has orthogonal increments (Th. 1) and the intervals 

[min(wl,w2)+kwo, max(q,w2)+kwo) and [min(w3,w4)+jwo, max(w,,w,)+jo,) 

are disjoint if k + j. Substituting (14) into (21), (16) follows. 
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To show that the sidebands have orthogonal increments, suppose 

-wo/2 I w 1 IW 2 I w3 I w4 < Wo/2; then 

E([X.,$w2) -xk(wl>] [ xk(w4> -X,$w,>] *)=E([X(w2+kwgbX wl+kwo)] 

[Uw4+kwo)-Ww3+kwo)1*)=o (22) 

Thus, the assertions about the sidebands have been proved. To see 

that the sideband signals are stationary, it suffices to note that 

wJ2 . wo/2 

Rk(t,t')=E(rc(t>~(t'))=E(/W.,2 elWt dXk(w) -/w ,2 eSiWt' d<(W)) (23) 
0 0 

dFk(w). (24) 

Thus, the covariance Rk(t,t') depends only on the difference of the 

arguments, i.e., t-t'. 

E( 1 Xk(t) 1 2)=&,,o,2 
0 

dFk(w)=Fk.wo/2)-Fk(-.wo/2) < ==, tER. 

Hence, x&t) is second order stationary. 

Now let k # j and t, t' ER, 

wo/2 . 
E(xk(t) x$t')) = E(i, ,2 erwt dXk(w) 

0 

= 0 

(25) 

wo/2 

-Iw,/2 e 
-iW't' dX;(ti')) (26) 

(27) 

where (27) follows from (16) and the definition of the integral. 

Hence, the sideband signals are uncorrelated, and the lemma is 

proved. 
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Def. 4 

Let {x(t), tER} be second order stationary and continuous in 

q.m. with IFT X(W). Then the k 
th 

two-sided sideband is 

x(w) = x&w) + X-$a>, k = 0, +l, *2, . . . . 

The kth two-sided sideband signal is 

s(t) = x&t) + x-&t), k = 0, +l, +2, - l . . 

(28) 

(29) 

Lemma 2 

Let {x(t), tER) be second order stationary and continuous in 

q.m. with IFT X(W). If a < b and the complex function, f, is 

continuous on [a, b], then 

Lb f(w)dX(w)=Lb f(W)d?(W)+f(b)[X(b)-g(b)]-f(a)[X(a)-?(a)] (30) 

where ?(w) is defined by (8). 

Proof: 

Since g(W) coincides with X(W) when wis a continuity point 

(in q.m.), the second order process 

ii(w) = X(W) - ii(w) 

vanishes except for a countable number of discontinuity points. 

Hence, k(W) is zero on a set C dense in [a, b). Now choose a 

sequence of finite partitions, P n, of [a, b), whose points lie in 

C with the possible exception of a and b. Since C is dense, the 

(31) 
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sequence can be chosen so that the norm of the partitions converges 

monotonically to zero. Then, 

$ fp(ti)d?(w)=F(wnn)%(b)-f(tiln)z(a), 
n 

where w 
In 

is in the first subinterval of Pn and w 
nn 

is in the last, 

and fp(w) is the restriction of the continuous and bounded function 
n 

f(.w) to P 
n‘ 

Since Win -f a, Wnn + b and f is continuous, 

Jab f(w)dk(w)=f(b-)X(b)-f(a+)?(a). 

(32) 

(33) 

Hence, the integral on the LHS of (33) exists; since Lb f(W.)dX(W) 

exists, (see Losve 21 , p. [ 1 473), then so does Lb f(w)d^X(w); and 

the assertion is proved. 

In particular, note that if X(W) is continuous in q.m. at a and 

b, then the last two terms in (30) vanish and the two integrals are 

equal b, e]. It is also interesting to note that for a continuous 

integrand, if w is an interior point of discontinuity, then the 

integral depends on the jump X(w-l->-X(w-), but does not depend on 

X(W), as evidenced by the preceding lemma. 

Lemma 3 

Let Ix(t), t&R} be second order stationary and continuous in 

q.m. with IFT X(W). Then, the second order process x(W), defined by 

(34) 
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has orthogonal increments; furthermore, 

,x(t) = c e 
. 
iWtd?i(-w), t&R 

Proof: 

Consider four points on the real line such that 

-co < w 
1 

<w zw <w <a* 
2 3 4 

It is necessary to show that 

First let ~3 1 0, then 

~(w~)-~(w~>=X(W~-)-X(O~-)= 1.i.m. X(w4-h)-X(w3-h) 
h+O 

Now, if w 2 2 0, then 

lim E([X(w4-h)-X(w3-h)][X(02-h)-X(wl*h)]k) = 0, 
h+0 

ifw <O,then 
2 

lim E([X(wq-h)-X(q-h)][X(y+h)-X(ol+h)]*) = 0, 
hC0 

Hence, (36) holds when w3 > 0. Finally, if w3 < 0, 

lim E([X(wqfh)-X(w3+h)][X(w2+h)-X(wl+h)]*) = 0. 
h+O 

Hence, x(w) has orthogonal increments. 

To show (35), recall that F(w) is of bounded variation; hence, 

the following limits exist. 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

1.i.m. X(&w) = X(2-), (41) 
U-t~ 
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0 5 EIX(w)-X(W)]* = F(-w)-F(W) -+ 0 (42) 

0 I EIX(-a)-X(-W)!* = F(-wt)-F(-u) + 0 (43) 

So that x(+a> can be defined as 

X(+-a) = 1.i.m. Tl(+W) = X(+a). (44) 
w-too 

Since X(0) and x(U) differ only on the countable set of discontinuity 

points, using Lemma 2, 

b iwt 
-fb eiwtdy(w)=A 

. 
e 

a 
dX(w)-e'bt?(b)+eiatk(a), (45) 

ito-4 = xp>-T$q. (46) 

From (42), (43) we see that 

1.i.m. e ibtg(b)-eiatz(a) = 0 
a + --Co 

b-ta 

(47) 

Thus, applying the limit as a -f -00 and b + m to (45), (35) follows. 

It is important to note that s(w) has orthogonal increments if, 

and only if, X(w) is continuous in q.m. on the real line, as can be 

seen by 

~~[iic0,,-iic~,~1[icy,-i;cy,l”,= I 
0 9 w*<w3 

$[F(u3+)-F(U3-)J9 w*=w3 
(48) 

whenever w 
1 

< w 2 5 u3 -c u4- Thus, ii(.w) cannot be used in place of 
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x(w), although it has symmetry about its discontinuity points. 

Lemma 4 

Let (x(t), t&R} be a real, second order stationary process, 

continuous in q.m.. Let x(w) be given by (34). Then, 

[ X(w, > -X(w,) 1 * = x(-w,>-x(-w,) , w1 , w2 # 0 
-* 
x (w)+X(w) = 2, w# 0 

where 2 is a real random variable. Furthermore, W is a continuity 

point if, and only if --W is a continuity point. 

Proof: 

Using (7), we have 

iW t iw t 

x(w,)-X(w,) *=l.i.m. 1 JT x(t) e 1 
1 2 

-e 
T -f co 2Tr --r -it 

dt 

iW t 
2 

iw t 
1 

=l.i.m. --& f x(t) e -e 
T + 03 2Tr -T it 

dt 

=i(-q,-iic-w,, , wl, W2ZR. 

Since X(W) and G(W) are identical except on a countable set 

of discontinuity points, (49) holds except on the discontinuities. 

As x(w) is continuous from the left for w 1 0, and from the right 

for w< 0, (49) holds by applying the appropriate limits. Rearran- 

(49) 

(50) 

(51) 

(52) 

(53) 

ging (491, 
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Tpjw,) +x(-w,)=Y*(y) +X(-.W,)=Z, “1, W2 # 0 

so that Z does not depend on the value w. To see that Z must be 

real, it suffices to set w 
1 

=, -W 
2 

z = F(wJ +x(-w,)=!i*(w,) +X(w,, = z*. 
L 

Now let ti2 = w + h , Y 
= w; then 

EjX(w+h)-y(w) 

Hence, as h + 0 (wt 

X(w) is continuous 

2=Ej%o-h)-%.012, w # 0, m+h#O. 

h#O), either both limits converge to zero and 

in q.m. at W and -W, or (exclusive) X(W) is 

(54) 

(55) 

(56) 

not continuous at either point. Thus, the assertion is proved. 

Theorem 2 

Let {x(t), t&R) be a real, Gaussian, second order stationary 

random process, continuous in q.m.. Then the two-sided sideband 

signals {xJt)+x-k(t), tE:R), k = 0, 1, 2, . . ., are statistically 

independent, second order stationary, real Gaussian random processes, 

where 

wo/2 . 
x(t) = Lh, ,2 elotd?k(QJ), k= 0, fl, . . ., a0 > 0, 

0 
(57) 

q(w) = x(Wkwo)-!?( k Uo) w&po/2, wg/2). (58) 

The two-sided sidebands {yk(~>+?-k("), UE[-U~/~, Wo/2)), k=O, 1, . . ., 

are statistically independent, Gaussian random processes with 

orthogonal increments. 
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Proof: 

From Lemma 1, recall that the sideband signals are uncorrelated 

and second order stationary. Thus, 

q%(t) +X-k(t)] [Xj(t') +x-j(t')]*)=[~(t-t'~rc_k(t-t')16k_jy k9.j=oy1pa*"' 

(59) 

So that the two-sided sideband signals are also uncorrelated and 

second order stationary. Hence, to obtain independence, it suffices 

to show that the processes are strongly Gaussian. First note that 

x(w) and, hence, -k-(w), xk(t) are Gaussian; e.g. see Logve, pp. 485-486. 

xp) = 

= 

2:: eiwtdXk(w) 1 *= L:iz eeiwtd<(W) 
0 0 

- wg/2 

I w,/2e 
-iwtdF-k(d) 

wo/2 . 
= Lu ,2 elwtd?Bk(u) = xDk(t) , 

0 

(60) 

(61) 

where we have used Lemma 4, and the continuity of e 
iWt . To see this 

in more detail, consider the partition -W /2 = 
0 

w < w < . . . < w 
12 n+l 

= oo/2. 

The Riemann-Stieltjes sums are 

)I (64) 

(65) 
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where {W., j = 1, 2, . . ., n+l) is the partition 
J 

-Wo/2 = w 
1 

=-U 
n+l 

<G 
2 

=-w < ... <Et 
n n+l 

= -w = wo/2 

-1 1 
* = 

j 
-wn+l- 

j 
9 j = 1, 2, . . ., n. 

. As the norm of the partition approaches zero, the sums on the LHS 

of (62) approach qt), while (65) approaches x-,(t). Thus, 

x&t> + XwkW is real, hence strongly Gaussian, and independence 

follows. 

From Lemma 1, recall that the sidebands are uncorrelated and 

have orthogonal increments, hence the sum of any two and, in 

particular, the two-sided sidebands have orthogonal increments. 

Now, let 

Y,(w) = loo> + si_kw>, wo/2 _< w < wo/2. 

Then, 

Y;(w) = X(w) + F,cw) = -“-k-w) - xk’“) = --YkG w> 

E(Yk(W)Yj(W')) = -E(Yk(W) Yy(-,W')) = 0, k # j (70) 

(66) 

(67) 

(68) 

(69) 

Thus, the two-sided sidebands {Yk(W), WE WO/2))are 

strongly Gaussian and uncorrelated; it follows that they are inde- 

pendent, and the proof is complete. 

It is of interest to note that {X(W), W&R) does not have 

independent increments except for the trivial case where it is constant 

except for a possible jump at W=O, which corresponds to x(t) having 

sample functions which are constant. This can be seen from 
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EC ) = F(w2)-F(y), 

whenever 0 5 w < w 
1 2' 

The following lemma will be needed for 

Theorem 3. 

Lemma 5 

Let {X,<W), a S w < b) n = 1, 2, . . . be processes with 

jointly orthogonal increments such that 

EIXn(m2) - Xn(wl) I2 = Pn(m2) - Pn(wl), w1 I a2 

X(w) = 1.i.m. 
n+m 

Let f be a bounded 

below exist, then 

Xn<w) , a5wl.b 

complex function on [a, b]. If the integrals 

Lb f(w) dX(w) = 1.i.m. Lb f(w) dXn(w), 
njco 

and (X(w), a I w I b} has orthogonal increments. 

Proof: 

Let AiXn = xn(wi) - X,'w;) , i = 1, 2. 

Then, whenever ai < w1 2 O$ < 9, 

E(A2X AIX*) = lim E(A2Xn 
n- 

AIX;:) = 0. 

Hence, X(w) has orthogonal increments. Since X,(w), X&w) have 

jointly orthogonal increments, i.e., 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 
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E(A2Xm A,X;) = 0, 

it follows that 

(77) 

E(A,X A,Xt) = z E (A2Xm AIX;) = 0. 

Thus, by direct computation, it can be seen that the process 

g,(w) = X(w) - X,(w) q.ms 0, a 5 w 5 b, 

also has orthogonal increments. Now, 

EILb f(w) dX(w) - $ f(w) dX,(w) I2 = EjLb f(w) d?,(w) 1 
2 

= ib/f(w)12 dij,(w) 

5 Lb M2 dF,(W) = M2[f$b) -Gia)] + 0, 

where M is an upper bound on f, and 

F&W2 > - “,(w,, = EIXn(W2) -ii, 12, w1 s w2 

Hence, (74) follows. 

Theorem 3 

Let Ix(t), t&R) be second order stationary and continuous in 

q.m. Then, 

xp = 1.i.m. 5 x&t) = x0(t) + x,(t),. tER, 
m,n- k=-m 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 
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X,(W) = 1.l.m. m ;- k~mqw = x0(w) 
4O wO 

, 
+ xaw , --j- _< w < 2, 

wo/2 
x,(t) = lw j2 e 

iut 

0 
dXrW, t&R, 

(85) 

(86) 

wo/2 . 

E(x,(t) x$t')) = SW ,2 elW(t-t')dFr(U). 
0 

w3> 

x0(t) (x0(W)) and x,(t) (X,(W)> are uncorrelated. Furthermore, if 

x(t) is real and Gaussian, then x,(t) and x,(t) are statistically 

independent, real, Gaussian processes; ko(w) and X$U) are statistically 

independent, Gaussian processes. The processes xa(t) (X,(D)) will 

be called the aliasing error signal (aliasing error IFT). 

Proof: 

To show the convergence in (84), recall that (Lemma 1), the 

sideband signals are uncorrelated. Using (25), we obtain 

k=-m 
Xk”> I2 = 

n 
wO wO = 2 + kwo -2+k-w 0 > 

(89) 

= (2 + nwo) - jf- 2 - mu,) _< F(oo) - F(-co) < T/90> 

which is sufficient for the desired convergence (e.g.,Lo&e pl], p. 456). 

Similarly, for WE[-Wo/2, Wo/2), 
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El 2 %k(~)12 = El 2 %tikwo) - 
k=-m k=-m 

%kwg) I2 (91) 

= f: EIX(w+kwg) - x&w,) I* 
k=-m 

n 

(92) 

= Cl F(w+kwg) - F(kwo)I (93) 
k=-m 

_ 2 $$ + kwo)- j(- 2 +kwg)( i+) - i+').(%) < 

k=-m 

Thus, the limit in (85) exists, and X1-<") is defined. 

ElX$w2) - Xr(“$ I2 = El 2 q@,> - qy> I2 (95) 
k-co 

= c k-m 
3w2+kwo) - F(wl+kwo) 

results in (87), where Lemma 1 has been used. Now, to show (86), 

let 

k=-n 

n 

xm(t> = c x&t) qz .xp. 
k=-n 

n 

XrnW = 
wo/2 . 

kzmn -/w,'2 c lWtdq(w) 
wo/2 . 

e 
= & ,2 elwtdXrn(u). 

0 

(96) 

(97) 

(98) 

(99) 

(100) 

Using (16) in Lemma 1, note that 
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E (A2Xrn Alx;m) = ECkcn A2q 5 A x") j=-ml j (101) 

(102) 

= E(A2yk Al<) = 0, (103) 
k=-p 

whenever the increments A iXk (defined by 75) correspond to disjoint 

intervals, and p = min(n, m). Hence the processes, X,dW), have 

jointly orthogonal increments, and Lemma 5 applies. Taking the 

limit as n + C=J of both sides of (100) results in (86). By Lemma 5, 

{x,(w), - s I w O; < -} has orthogonal increments; thus, 

E(x$t) x"$t'>) = EC (104) 

wo/2 
= 

-/wo/2 
.iw(t-t') 

dF$d . (105) 

If x(t) is real and Gaussian, to show the desired properties 

it suffices to note that x0(t), xa(t), To(U) and X,(W) can all be 

expressed in terms of the appropriate two-sided processes and apply 

Theorem 2. 

x0(t) = % x,(t) +xeOw , 
1 1 X0(w) = % rr,<w) +“-o’“’ * 1 1 

X&t> =kg [j&t, +Xekh)] 9 x$) =k~~[~~w)+xk(w)] * 

(106) 

(107) 

Since x0(t) (To(w)) and xa(t) (X$w)) are Bore1 functions of inde- 

pendent processes, they are themselves independent, and the proof is 
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complete. 

Corollary 1 

Let {x(t), t&R) be second order stationary and continuous in 

q.m. If the IPS F(w) is absolutely continuous on R, with PSD s(w), 

then the PSD of the process x,(t), say sr(ti), is given by 

S$u’ = 2 sQ+kwo) , 
k=-co 

-wo/2 I w <wo/2, 

Proof: 

From (87) we have 

F,c w2 > - FrCwl> = lim n-tco k?&-y %w+kwo) dw 
=- 

= lim / 
n* 

w: [k~W-+kwoJ] da 

Since F(w) is non-decreasing, the PSD s(W) _> 0, W&R. Hence, the 

integrand in (110) is non-decreasing as n + ~0. By the Monotone 

Convergence Theorem, 

(108) 

(109) 

(110) 

(111) 

so that F1,'") is absolutely continuous and its derivative is given 

by (108). 
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Figure 2 Block Diagram of NFOV Scanner 
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