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Abstract 

Displacements and strains in the presence of a crack in welded steels have been studied 

using digital image correlation (DIC) under zero load and selected loading conditions. A 

parametric study has been carried out to assess the effects of some of the key parameters, 

including subset size, step size and the size of the measurement window, on the 

measurement uncertainties for systematic and random errors. The assessments were 

carried out a region around the crack tip, where high strain gradients and inhomogeneous 

deformation present significant challenges for DIC measurements. 
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1. Introduction 

Digital image correlation (DIC) is a non-contact surface measurement method that acquires 

images of an object, un-deformed and deformed, stores the images in digital form and 

performs image analyses to extract full-field information on surface deformation of the object. 

One of the most commonly used approaches of DIC utilises random patterns and compares 

sub-regions throughout the image to obtain a full-field of measurements.[1] The basic 

principles of DIC were developed in the 1980’s [2,3]. Later algorithms for more robust and 

faster convergence were proposed [4,5], which enabled this technique to be used for a range 

of applications, including displacement and strain measurements for fracture or crack growth 

analysis [6]. DIC was also utilised for the determination of stress intensity factors [7,8], for 

fatigue crack growth analysis [9–11] and more recently carried out in situ [12–14], which allows 

tracking of instantaneous near-tip deformation during crack propagation under cyclic loading. 

A variety of errors may arise during the processes of image acquisition and correlation 

analysis, and they need to be carefully assessed before the DIC method can be used with 

confidence for in situ data capture and analysis. This is particularly important in cases where 

the measured strains are sensitive to local events or where large gradients prevail, such as 
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areas in the vicinity of a crack tip. A number of parameters may contribute to the 

measurement uncertainty. For example, it is known that the accuracy and precision of DIC 

measurements are significantly influenced by the characteristics of the speckle patterns or 

the material surface texture under study [15–24]. Furthermore, systematic errors associated 

with hardware such as setup and optics [19,25–27], software such as correlation algorithms [15,28] 

and related sub-pixel registration algorithms together with subset shape functions [28–34] are 

also known to significantly affect the measurement quality. 

The subset size, a key parameter for image correlation, has been found to be critical for the 

measurement accuracy [6,35,36]. Much work has been focused on the selection of an 

“optimum” subset size, either based on displacement analysis [15,17,21,22,37], on strain analysis 

[16] or both [18]. The influence of the step size was discussed in [16] and its effects on the 

measurements investigated in [37,38], whilst the impact of the applied strain level was studied 

in [15,37,39]. The measurement window (MW), a user-defined area on a displacement/strain 

map, is usually utilised to obtain average displacements or strains for the region of interest. 

In this study, however, the effect of the size of the MW on the errors was examined by 

analysing the data within a MW. The standard deviations for random errors and average 

systematic errors were obtained from all the data points inside a MW. The impacts of subset 

size, step size and the size of MW on measurement uncertainties have not yet been studied 

in cases of cracked specimens under load. 

Most of the previous work on error assessments was carried out by examining computer-

generated or artificially manipulated speckle patterns. In physical experiments, painted 

speckles are sized around 5-10 µm [40], and are considered suitable for a resolution of about 

10 µm/pixel [41,42], though resolutions of 2.5 to 0.7 µm/pixel have been achieved recently [12–

14]. In order to achieve a resolution of around 0.5 µm/pixel, which is close to the optical 

microscopy resolution limit of circa 0.2 µm [43], methods such as exposing material surface 

texture by etching have been considered. Etching has been used for steel [44], copper [45] and 

at micro-scale under SEM [46], where sufficient contrast may be achieved from fine-grained 

microstructures or materials with sub-grain features, such as in martensite or bainite. 

The aim of this work is to provide a systematic study of the influence of subset size, step 

size and the size of MW on the DIC measurement errors of displacements and strains under 

load in cracked samples. We aim to establish a baseline error band to give confidence to 

subsequent fatigue crack growth analyses. Specifically, in situ measurements of 

displacements and strains in the vicinity of a fatigue crack were carried out on pre-cracked 

specimens of welded dissimilar steels under selected loads, and the effects of the selected 
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parameters on the measured random and systematic errors in displacements and strains 

were assessed. 

2. Materials and Methods 

The material is a welded 30Cr2Ni4MoV power plant rotor steel, which was previously 

examined for its microstructure and mechanical properties [47]. The error analysis was 

performed on three compact tension (CT) specimens designated for a study of fatigue crack 

growth at a later stage. Fig. 1 shows a typical pre-cracked CT specimen with base metal 

(BM), weld metal (WM) and heat-affected zone (HAZ) indicated. The HAZ consists of 

martensites and bainites, with sizes of grains post welding varying between 7 to 32 µm and 

some larger grains up to 50 µm close to the welding line due to more intense heat exposure. 

The weld metal is mainly composed of bainites and δ-ferrites, with an average packet size of 

100 µm. A summary of the microstructural characteristics, chemical composition and 

mechanical properties of BM, HAZ and WM is presented in Table 1. 

All specimens were first polished with 0.5 µm silica, then the surface in an area 

approximately 10 mm by 10 mm around the crack tip was etched with a 3% nitric acid-

ethanol solution for about 30 seconds. This procedure revealed surface microstructural 

features (Fig. 3a) with an average feature size of about 5 µm. 

2.1. Displacement and strain determination 

The software DaVis (version 8.4, LaVision GmbH, Göttingen, Germany) was used in the 

image correlation procedure for the error analysis. A zero-normalised sum of squared 

differences algorithm [48] with Lucas Kanade approach [49,50] and a sixth order spline 

interpolation scheme for sub-pixel accuracy were employed to obtain the displacement 

vector fields. An explicit quantitative measure of correlation quality in terms of a correlation 

coefficient is not provided by the algorithm, although poor correlations are indicated.  Based 

on the displacement fields, strain maps (εxx, εyy, εxy) were generated. The strain component 

for a given data point at position x,y is calculated using the neighbouring displacement data 

points at positions x-1, x+1 and y-1, y+1, without filtering. A first order shape function was 

used for all image correlations. 

2.2. Experimental setup 

The error analyses were carried out under three selected loading conditions equivalent to 

stress intensity factors (SIF) of 0, 20, 30 MPa√m using an Instron servo-hydraulic testing 

machine. A LaVision DIC system was used for image acquisition, including a 12-bit CCD 

camera mounted on an optical microscope with a Schneider Kreuznach 50 mm lens and an 

extension tube of 100 mm [14] (Fig. 2). The lighting setup and the aperture position were 
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critical for imaging the etched surface, since the surface reflection of the metal is less bright 

and shows less contrast than e.g. a speckle pattern on painted white background. Two LED 

flash lights were utilised for this purpose to obtain good quality images. All images were 

taken with 2456 x 2058 pixels on a field of view of 1330 x 1120 µm2, resulting in a spatial 

resolution of 0.54 µm/pixel. 

Six images of each specimen were taken under zero load using identical imaging 

parameters. Image correlation was performed on each with the first image used as the 

reference image, within a correlation region of interest (ROI) of approximately 1300 x 1100 

µm2 (2410 x 2040 pixels2). Similarly, five images were acquired per specimen while applying 

constant loads corresponding to SIF of 20 MPa√m and 30 MPa√m to open the crack. These 

images were compensated for rigid body motion and correlated with a zero-load reference 

image, resulting in a smaller ROI of around 1250 x 900 µm2 (2320 x 1670 pixels2). 

Five displacement and strain maps were generated per specimen, and three specimens 

were measured in total, thus fifteen images (n = 15) were examined for each of the selected 

parameters. Only y-components (perpendicular to the crack plane) in the measured 

displacements and strains are presented in the error analysis. 

The effects of the selected parameters on both random errors (noise) and systematic errors 

(bias) were assessed. For the evaluation of subset size and step size, the data points inside 

a measurement window (MW) of 1390 x 1000 pixels2 (750 x 540 µm2) surrounding the crack 

tip were analysed for each displacement and strain map. Subsequently, the effects of the 

MW on the measurement uncertainties were also studied by analysing the data from 

selected sizes of MW centred on the crack tip, with the subset and step sizes fixed. 

The sources of errors include systematic and random types. Systematic errors may be 

introduced by mismatched shape functions; while random errors are essentially noise [18,30]. 

For each parameter, the random errors were investigated first, using the standard deviations 

(SD) of the displacement and strain data points inside the given MW. Since the actual 

deformation is not known in our experiments, the systematic displacement errors were 

assessed based on an approximation procedure proposed by Xu et al. [37]. For the y 

component: 

𝑆!
!""#$%

(𝑥, 𝑦) =
! !!!

!
∆𝑣(𝑥, 𝑦)          (Eq. 1) 

Where Δv is the second order displacement gradient in y direction, Δ is the Laplace operator 

and M = (subset size – 1) / 2. An estimate for Δv may be obtained by comparing two 

displacement maps generated using a pair of subset sizes: 
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Where M1 and M2 are the pair of subsets chosen for the comparison. 

The convergence and the effectiveness of the estimates from Eq. 2 were examined using a 

synthetic dataset (DIC challenge sample 14L5 [51]).  For a suitable choice of a subset pair for 

the 2nd order gradient estimation, the known 2nd order displacement gradients Δv were 

compared with the estimated gradients, obtained by Eq. 2, using selected subset size 

combinations. The “best fit” was achieved using a subset pair of M1=75 pixels and M2=35 

pixels (Fig. 4a), although slightly higher relative errors occurred in areas of low gradients. 

The resulting gradients were consequently used for the bias error approximation Sv (Eq. 1) 

on sample 14L5[51], which was then compared with the actual bias error. The actual bias 

error was obtained from the difference between the known displacements and those 

calculated by DIC using the selected subset sizes (M=35,49,75 pixels). A favourable 

comparison is obtained between the actual (solid) and estimated (dashed) bias errors, as 

shown in Fig. 4b, with a difference no more than 20% mostly, with occasional exceptions in 

areas of low deformation.  Note that the choice of the subset pair (M1=75 pixels and M2=35 

pixels) may be specific to the artificial data tested, whilst the characteristics of a “real” 

deformation field may well be different hence the present results should not be generalised. 

A virtual strain gauge (VSG) study [52] was performed to assess the systematic strain errors. 

This method places a VSG close to the crack tip and assesses the spatial resolution of the 

measurements and the level of noise (SD) towards an “optimum” solution. The parameter 

sets that offer a good “convergence” with low SDs are recommended for use. In this work, 

several positions ahead and behind the crack tip were evaluated for a suitable position of the 

placement of VSG, and the strongest signals were found to be at the crack tip, where the 

VSG was consequently placed. The strains were calculated using a strain calculation 

window, SW [52], which contains an array of 3 x 3 immediately adjacent neighbouring points.  

The normal strains were evaluated using combinations of six selected subset sizes (23, 35, 

43, 49, 61, 75 pixels) and five selected step sizes (4, 6, 9, 12, 19 pixels). The subset and 

step sizes which produce the most converged results were subsequently identified.   

 

3. Results 

3.1. The effects of subset size 

The standard deviations (SDs) of displacement and strain in y-direction under zero load are 

shown in Fig. 5 as a function of subset size, which was varied in five steps (23×23, 35×35, 

49×49, 75×75, 147×147 pixels2), whilst the step size was fixed to 6 pixels. The random 
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errors, also referred to as noise floor, in both displacement and strain decreased drastically 

with the increase of subset size and appear to stabilise when the subset size is 50×50 

pixels2 or above. 

Further studies were carried out under loads, at stress intensity factors (SIF) of 20 and 30 

MPa√m. Random and systematic errors were estimated similarly to those determined at zero 

load. 

Fig. 6 shows some of the full-field distributions of random and systematic displacement 

errors in the ROI for the loaded case K = 20 MPa√m, for three selected subset sizes and a 

step size of 6 pixels. The levels of the errors are shown in the scaling bars below, assuming 

that a SD of less than 0.5 pixel indicates sufficient matching. For random errors (left column), 

a large number of erroneous regions is present for the smallest subset of 23x23 pixels2 (Fig. 

6a) due to poor correlation; whilst the errors decrease in number and intensity with the 

increase in subset size (Fig. 6b, c), with the lowest level of errors found in the largest subset. 

By contrast, for systematic errors (right column), the smallest subset (23x23 pixels2, Fig. 6d) 

seems to return the lowest level of errors compared with the medium-sized subset (49x49 

pixels2, Fig. 6e) and largest subset (75x75 pixels2, Fig. 6f). The crack is clearly identifiable by 

enhanced errors in all, but particularly in the middle and large subset cases; whilst errors 

induced by noise are found in low deformation areas (Fig. 6f). 

The quantitative results are presented in Fig. 7. For the random errors, the measured 

standard deviation of the displacement seems to be insensitive to the subset size but 

sensitive to the load level (Fig. 7a); whilst the noise in the measured strain seems to 

decrease with the increase of subset size (Fig. 7b), stabilising at a subset size of about 

50×50 pixels2.  On the other hand, the displacement bias (Fig. 7c) increases for both loaded 

cases, most significantly at large subset sizes. At zero load, a low level of systematic errors 

was found, estimated from Eq. 1 and Eq. 2, using the experimental data. This is possibly due 

to noise induced by test rig vibration as no bias was found using synthetic data. 

3.2. The effects of step size 

Selected step sizes (2, 4, 6, 9, 12, 19 pixels) were examined to assess their effects on the 

measurement uncertainties with a fixed subset size (49x49 pixels2). Fig. 8 shows the effects 

of step size on random (a, b) and systematic (c) displacement errors. The number of data 

points is also indicated as well as the step size. 

For random errors, whilst the SDs in the measured displacements seem to be generally 

unaffected by the step size (Fig. 8a), a small step size or more data points appear to 

increase the SD in the measured strains, particularly under loads (Fig. 8b). The systematic 
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displacement error also shows a trend of decrease with the increase of step size or lower 

number of data points (Fig. 8c). 

3.3. Systematic strain errors 

Using a VSG, the strains at the points along the line perpendicular to the global crack plane 

and centred at the crack tip (Fig. 9a) were analysed. The standard deviations of the normal 

strains along the line were calculated under zero load to determine the base-line first, 

followed by the strain values obtained under loads for the selected parameter sets (Fig. 9b, 

c). The results from all combinations of subset size and step size are presented, with four 

most promising data sets highlighted (details given in Table 2). 

3.4. The effects of the size of the measurement window 

The influences of the size of the measurement window (MW) on the measurement 

uncertainties are shown in Fig. 10, as a function of the size of MW (selected as 12x12, 

18x18, 36x36, 60x60, 93x93, 130x130, 186x186 pixels2) as well as the number of data 

points inside the MW. The subset size was kept constant at 49x49 pixels2 and the step size 

at 6 pixels. Each measurement window was centred around the crack tip. The random errors 

in both displacement and strain seem to increase with the increase of the size of MW (or the 

number of data points) and load level, similar to the random errors in the measured strains 

with respect to step size (Fig. 8b). 

The systematic displacement errors (Fig. 10c) appear to decrease with the increase of the 

size of measurement window (or data points), and the trend seems to be more pronounced 

at higher load (K=30 MPa√m). 

4. Discussion 

A systematic study of DIC measurement uncertainties in cracked specimens of metals has 

been carried out with and without loads, for the purpose of near-tip strain mapping of fatigue 

cracks. The effects of some of the key DIC parameters on the measurement errors have 

been examined. Specifically, the influence of subset size, step size and size of the 

measurement window have been examined. There are complex sources of errors behind 

and ahead of the crack tip, as low-quality correlation due to the discontinuity between the 

crack flanks leads to a high level of noise and deformation gradients, hence locally high 

random errors at small subsets; whilst large and complex deformations introduce high bias 

at large subsets. 

Subset size 
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Random strain errors are reduced with the increase of subset size, due to higher confidence 

gained in image correlation where a greater number of features are available in larger subset 

sizes [15–17,30], leading to a decrease in the standard deviations. The trends under zero load 

shown in Fig. 5 are consistent with the published work [16,17], although most of the previous 

experiments were conducted ex situ with very fine, artificial speckle patterns generated by 

algorithms. In this study, physical features were used in physical experiments, where the 

noise level was found to stabilise when the subset size is 50x50 pixels2 or above, a value 

used in a previous study of full-field near-tip strain mapping [14]. Under loads, large 

deformations and large gradients as well as discontinuities due to the crack opening present 

major challenges to image correlation. As shown in Fig. 7b, increasing load led to 

significantly increased SDs, although the trend in strain random errors under loads is similar 

to that under zero load, i.e. higher SDs for smaller subset sizes.  For random displacement 

errors, the effects of the subset size are completely overshadowed by the influence of the 

load level (Fig. 7a).  The systematic displacement errors were estimated using Eq. 1 and Eq. 

2, which are subject to the sizes of the chosen pair of subsets in Eq. 2, which may affect the 

estimated results (Fig. 4). 

Random error distributions of displacement may be appreciated in full-field SD images 

obtained under load (K=20 MPa√m) presented in Fig. 6a-c. At a small subset of 23×23 

pixels2 (Fig. 6a), high levels of errors (above 0.5 pixels) are distributed widely as small 

subsets do not contain sufficient information for matching low-contrast areas or 

discontinuities. On the other hand, at a larger subset size (147×147 pixels2, Fig 6c), the 

errors appear to be reduced and are confined to the cracked area. In the latter case the 

deformation is averaged over a large area with an overlap of 96% (step size 6 pixels), thus 

essentially similar information is used to calculate the neighbouring vectors [38].  In Fig 7, the 

random SD in the measured displacements increases almost linearly with load from around 

4 pixels for K=20 MPa√m to 6 pixels for K=30 MPa√m. Similarly, the strain errors are 2.5% 

for K=20 MPa√m and 3.8% for K=30 MPa√m at a subset size of 49×49 pixels2. 

There seems to be no effect of the load level on the systematic displacement errors (Fig. 

7c), as the displacement errors increase with the subset size for both load cases. The full-

field results for systematic errors at K=20 MPa√m (Fig. 6d-f) show the impact of subset size 

clearly. Significantly higher and widely spread errors were found in large subsets (>50×50 

pixels2; Fig 6f). This is probably due to the large complex deformation and high gradients 

around the crack discontinuity, leading to undermatched subset shape functions [15,28,30,37]. 

Slightly higher bias errors may be obtained in low deformation areas from the estimation 

method, although this has negligible impact on the assessment of deformation in the vicinity 

of a crack, which is always high. 
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The ratio between the average feature size (about 10 pixels) and the recommended subset 

size is about 0.2 in this study. This compares favourably with estimated ratios of 0.1 to 0.3 

reported in the literature [15–18]. It seems that a subset size about 5 times of the 

speckle/feature size would suffice in DIC measurements. It has to be remarked that the 

speckle size is only one of many parameters used to characterise speckle patterns. Other 

parameters such as morphology [22], intensity gradients [17] and entropies [18,20] might be 

subjects of further studies. Overall, considering both random and systematic errors, a 

compromise may be found at a subset size about 50×50 pixels2, which is approximately five 

times the surface feature size. 

Step size 

Although the effect of step size on the random displacement errors seems very small (Fig. 

8a), a decrease in step size (or increase in the number of data points) increases the strain 

SD under load (Fig. 8b). This is possibly due to the enhanced overlapping at small steps 

when more data points are available, also increased spatial resolution where variation in the 

resulting maps becomes more evident. At large step sizes, fewer data points are available 

and spatial resolution decreases, the resulting less complex displacement field might be 

described with reduced bias (Fig. 8c). 

Despite the increased errors, smaller step sizes do provide much higher spatial resolution. A 

ratio of step size over subset size of around 1/4 (12 pixels for a 49-pixel subset) is usually 

recommended, which appears to provide reasonably low bias for the cases considered here. 

Systematic strain errors 

The virtual strain gauge approach appears to be appropriate in producing satisfactory 

estimates for the impact of selected parameters on the strain measurement bias, the latter 

could not otherwise be assessed by applying the method of Xu et al. [37] to the experimental 

data.  Smaller subsets (23 or 35 pixels2) give rise to large variations; whilst larger subsets 

(61 or 75 pixels2) tend to underestimate the strain by 50% or more. An “optimum” was found 

to be between subsets 43x43 and 49x49 pixels2, which is consistent with our assessments 

of random and systematic errors (Fig.6; Fig. 7). The best choice for the step size seems to 

be in the range of 9 to 12 pixels, which approximately corresponds to one quarter of the 

subset size. 

Measurement window 

The random errors in both displacement and strain increase with the size of MW (or the 

number of data points). Low levels of SD are obtained at with small MWs due to less 

variation when fewer data points are considered in a small MW. A large MW may contain a 
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mixture of high deformation regions near the crack and low deformation in the surrounding 

areas, hence a high SD; whilst a small MW may contain only a high or low deformation 

region, hence less spread of data and a low SD. 

Contrary to the above trend, the systematic displacement errors decrease significantly with 

the increase of the size of MW where more data points are available (Fig. 10c). Only high 

gradients may occur in small MWs with few data points located near the crack tip, which are 

difficult to match using a low order subset shape function hence higher bias is measured; 

whereas a large MW may contain a mixture of low and high gradients, and the average 

estimated error may appear to be lower. The fidelity of the measurements is also a key issue 

in the choice of MW.  A compromise should be sought between achieving a desirable spatial 

resolution and an acceptable level of measurement errors. 

The influence of material variation on the measurement uncertainties appears to be small.  

Although some of the images were captured on the specimen surface with the heat affected 

base metal on the top half and the weld metal on the bottom half, the measured errors do 

not appear to be related to local material characteristics or microstructure details such as 

grain size. 

Limitations 

We have considered a case with a crack introduced in the centre of the ROI. The influence 

of crack opening in the loaded cases, as a discontinuity, on the image correlation and error 

assessment should be taken into account in the interpretation of the results. In applications, 

the crack flank areas should be masked to improve the correlation quality and the fidelity of 

the measurements. Our results provide a worst-case scenario where the discontinuity was 

included in the assessments, hence caution should be exercised when reading the results. 

The estimation of the systematic errors was based on analytical solutions [37] that depend on 

displacement gradients, which can change with the size of the subset pair used for their 

estimations. Also, the VSG approach for the strain bias assessment utilises only a one-

dimensional “virtual gauge” in a 2D strain field, hence its limitation should be taken into 

account. The study is further limited in that it was carried out using a commercial software 

(LaVision DaVis 8.4) which does not provide an explicit measure of correlation quality. 

Nevertheless, we hope the results are useful in shedding some light on the DIC 

measurement uncertainties of cracked bodies under load for further applications of DIC in 

engineering structures and components. 
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Conclusions 

An error assessment of displacement and strain obtained by in situ digital image correlation 

experiments has been carried out. The effects of selected key parameters, including subset 

size, step size and the size of the measurement window, on the standard deviations and 

systematic errors of displacement and strain have been examined with and without the load 

in cracked dissimilar metals. An “optimal” subset size was found to be about 5 times the 

speckle/feature size as a result of the trade-off between systematic and random errors. A 

step size of ¼ of the subset size or smaller is recommended. Small measurement windows 

tend to produce results with low noise, although they are perhaps more biased and location-

dependent under load. Under the selected experimental conditions examined, random errors 

appear to be predominant. 
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C Cr Ni Mo V Mn Si Cu σYS σUTS E Grain	  size

Alloy wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.% MPa MPa GPa μm

BM,	  HAZ ≤	  0.35 1.5-‐2.0 3.25-‐3.75 0.25-‐0.6 0.07-‐0.15 0.2-‐0.4 ≤	  0.1 ≤	  0.15 814.3 910.6 217.7 7	  -‐	  32

WM 0.19 0.75 2.35 0.71 1.54 0.42 772.4 833.9 210.4 100  

 

Table 1. A summary of chemical composition, mechanical properties and microstructural 

characteristics of the constituents in the welded specimen. 

 

 

 

 

 

Table 2. Selected results of the virtual strain gauge (VSG) study under stress intensity factors of 20 

and 30 MPa√m, with four most promising parameter sets included. 
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Fig. 1. A schematic of a welded CT specimen used for the DIC analysis, showing base metal (BM), 
weld metal (WM) and heat affected zone (HAZ) near the weld line. The field of view (FOV=2456 x 

2058 pixels
2
 / 1330 x 1120 µm

2
) is also indicated. 

 

 

 

 

 

 

 

Fig. 2. The experimental setup for in situ DIC imaging of a CT specimen on an Instron servo-hydraulic 

testing rig. 
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Fig. 3. a) Micrograph of an etched specimen surface in the area of interest near the crack tip with a 
typical subset illustrated. The spatial resolution achieved using the information of the surface texture 
is 0.54 µm/pixel. b) The displacement field superimposed on a micrograph with a sketch of two sizes 

of measurement windows (MW) positioned around the crack tip. 
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Fig. 4. a) A comparison of the known second order displacement gradient Δv (black line, data from 
DIC challenge sample 14L5 

[51]
) with the estimated gradient (red line, from Eq 2, using subset sizes 35 

and 75 pixels); b) A comparison of the actual displacement bias (solid lines, the difference between 
the known displacements in sample 14L5

[51] 
and the DIC generated displacements from the same 

sample) with the approximated errors (dashed lines, from Eq 1) for selected subset sizes of 35, 49, 75 

pixels.   
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Fig. 5. The standard deviation (SD) of (a) displacement and (b) strain in y-direction at zero load (noise 
floor) as a function of subset size. The errors are reduced significantly when the subset size is above 
50 pixels. RMSE is identical to SD, and is omitted here for conciseness.  The step size is taken as 6 

pixels. 
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Random        Systematic 

  

  

  

  

  

Fig. 6. The full-field results of displacement errors of the area correlated (1250 x 900 µm
2 

or 2320 x 
1670 pixels

2
) under K = 20 MPa√m: Random errors (left column) and systematic errors (right column) 

for the selected subset sizes. 
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Fig. 7. The effects of the subset size on the random errors of (a) displacement and (b) strain in y-
direction for the three load cases (n=15). (c) The effects of the subset size on the estimated 
systematic displacement errors in y-direction for the loaded cases (n=15). The step size is taken as 6 
pixels. 
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Fig. 8. The effects of step size on the random errors of (a) displacement and (b) strain in y-direction; 
(c) the effects of step size on the estimated systematic displacement errors in y-direction; presented 
as function of the step size and the number of data points in the measurement window. The subset 

size is fixed at 49×49 pixels
2
. 
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Fig. 9. (a) An illustration of a Virtual Strain Gauge (VSG) placed along a line (94 µm) perpendicular to 
the crack plane centred at the crack tip. The normal strains obtained under a stress intensity factor of 
(b) 20 MPa√m and (c) 30 MPa√m are presented.  Light-weighted lines show the results from all 
combinations of subset sizes (23, 35, 43, 49, 61, 75 pixels) and step sizes (4, 6, 9, 12, 19 pixels), with 
the most promising four sets (subset size-step size = 35-12; 43-9; 43-12 and 49-9) highlighted.  The 

“best” parameter set seems to be 43-12, shown as a solid line. The details are given in Table 2. 
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Fig. 10. The effects of the size of measurement window (MW) on the random errors of (a) 
displacement and (b) strain in y-direction; (c) the effects of the size of MW on the estimated 

systematic displacement errors in y-direction. A constant subset size of 49 ×49 pixels
2
 and a step size 

of 6 pixels are used. 
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