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ABSTRACT

An extension of a deep water hybrid parametric wave model has been
developed for arbitrary water depths. The windsea is described by the
JONSWAP parameter set and by a directional parameter representing the
mean direction of the windsea spectrum. This mean direction has been
re-derived based on more general energy flux arguments. The windsea
spectrum in finite depth is assumed to have a similarity shape which is
related to the deep water energy spectrum by multiplying with a depth
dependent transformation factor. This factor affects the spectral
shape of the hi gh-frequency part which is proportional to f-5 in deep
water and to f- in shallow water. The directional dependence of the
spectrum is assumed to be cos 2 (6-60), centered around the mean wave
direction. The windsea model explicitly accounts for finite depth
effects such as refraction, shoaling and dissipation by bottom
friction.

Based on an energy flux transport equation, the full set of prognostic
parameters is derived including finite depth effects. The equations of
the prognostic variables are solved on a finite difference grid by
means of the Lax-Wendroff method. Swell is treated in a decoupled
spectral fashion. For simplicity all swell characteristics are
considered straight and effects of refraction are disregarded.
However, shoaling and dissipation of energy by bottom friction are
included.

The model has been applied to a deep water and finite depth case
study. The deep water hindcast was performed for an extratropical
cyclone in the Gulf of Alaska. Predicted significant wave heights and
zero-crossing wave periods are compared with measurements from six
stations in the Gulf of Alaska. The finite depth wave conditions are
hindcasted for a complex frontal system off the North Carolina coast
during ARSLOE. Predicted spectral wave parameters such as significant
wave height, spectral peak frequency and mean wave direction are
compared with observations from several different measurement
techniques. From the same data set, observed wave spectra are compared
with hindcasted model spectra. A discussion of the results for both
applications is presented.

Thesis Supervisor: Ole Secher Madsen

Title: Professor of Civil Engineering
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CHAPTER 1

INTRODUCT I ON

Ein grosser Vorsatz scheint im Anfang toll. An ambitious plan at first seems mad.

(Wagner)

-- FAUST II. Laboratorium
Johann Wolfgang von Goethe

The design and operation of most marine related activities in

coastal and offshore areas require an adequate assessment of the

ambient and extreme wave conditions. Sufficient information on wave

statistics is only available at a few locations around the world (Gulf

of Mexico, North Sea). To provide adequate information of the wave

climate, a numerical wave prediction model can be employed to hindcast

and forecast ocean surface waves from known meteorological data.

Design criteria for offshore engineering projects are based on the

most extreme wave conditions to be expected during the structure's

lifetime. A key ingredient for developing such design criteria is a

knowledge of severe wave conditions. The extreme data required as

input to design considerations should be determined from a data base

which is a representative sample of wave conditions in the area of

interest. To establish an adequate data base, there are several

possibilities to accomplish this task. One way would be the

avall-ability of measurements of sufficient size and duration. Such

records rarely exist and to undertake such a data gathering program is

often economically infeasible. Sometimes a limited set of observations

may exist in the vicinity of the area of interest, but in subsequent

deliberations on design criteria for offshore structures, this set may

not suffice to extrapolate to the design life of the structure.

Typically, a record of ten years is required to extrapolate reliable
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estimates of extreme conditions for return periods of 25 years. Extrap-

olation to return periods larger than those could seriously jeopardize

not only the structure's economic feasibility, but also reduce the

safety level of offshore operations. The primary unknown factor in a

limited data base of field measurements is the relative severity of the

worst storm. It is difficult to decide for a small sample if the worst

storm is a 100-year storm or only a 50-year storm. Such a decision has

a strong bearing on the derivation of design criteria. Therefore, the

only feasible method, either to generate a data base or to supplement

existing wave statistics is by means of hindcasting analyses using a

numerical wave model. A data base can be compiled from hindcasts of

the wave climatology for historical storm events in all areas of

interest. In addition, these model predictions can be compared to

existing data to verify their accuracy and if necessary the model can

be calibrated to ensure reliable answers. Presently, the application

of numerical wave models to known meteorological data seems to be the

most promising source of information for the estimation of extreme wave

conditions in either deep or shallow water.

Knowledge of ambient wave conditions are of importance for the

general operation of offshore facilities, and in planning strategies

concerning the clean-up of oil spills or rescue operations. The

ongoing efforts to develop a reliable wave prediction method or to

improve existing ones is still a much sought after goal. Many

applications of numerical wave predictions can be put to practical use

in ship routing, marine-related offshore operations, the coupling with

storm surge (wave set-up) and sediment transport models (erosion and

deposition).

-2-



In the past, these wind wave models have been primarily developed

and/or applied to deep water conditions. Therefore, it was not

uncommon to use deep water models to predict wave conditions in

situations where the deep water assumption was violated. Clearly, a

wind wave model should include finite depths effects, if applied to

forecast wave conditions on the continental shelf and in coastal seas.

In addition to the well-known effects of refraction and shoaling, a

finite depth wave model should also account for the interaction between

the near-bottom wave motion and the bottom sediments. This mechanism

is responsible for the generation of bottom bedforms (ripples) and/or

significant transport of bottom sediments (erosion and deposition),

which in turn influences the resistance experienced by the waves

(bottom friction) and results in a considerable loss of wave energy.

The incorporation of the bottom friction effect in a wave model may

yield considerably smaller wave heights, which by itself translates

into reduced cost for offshore structures. Of all wave motions present

in the ocean, surface gravity waves possess considerable amounts of

energy and have the most potential for adverse impacts on most marine

activity.

Most modern wind wave models are based on the energy transport

equation which describes the evolution of the wave spectrum in space

and time due to various physical processes which generate or dissipate

energy. In Chapter 2 a historical review of wave prediction methods is

presented, with particular emphasis on the theoretical concepts and

underlying physics included in standard discrete spectral models and

parametric models for deep water. A brief discussion of first

generation shallow water models is also given.

-3-



Chapter 3 describes in detail the theoretical background needed to

develop a hybrid parametric wave model for arbitrary water depths.

Specifically, the derivation of the finite depth JONSWAP spectrum is

discussed and various spectral parameters relating wave properties to

the energy spectrum are also defined. The major portion of this

chapter is devoted for a rigorous derivation of the energy transport

equation and possible analytical solutions. In this context, the

individual sections deal with the source functions such as wind input,

nonlinear wave-wave interactions, wave breaking and bottom friction.

The last sections of this chapter develops the concept of a mean wave

direction based on energy flux arguments.

The arbitrary depth parametric wave model is described in Chapter

4. Based on an energy flux transport equation, the derivation of an

equivalent set of prognostic parametric equations is outlined. The

transformation functionals are constructed in the following section so

that the JONSWAP parameters are recovered again. The propagation

coefficients reflecting a depth dependent group velocity are calculated

and Appendices A and B present some detailed example computations. The

directional relaxation parameter is formulated using an energy flux

concept and compared with an analogously derived parameter but instead

using wave momentum. The parametric source functions are determined

which in addition includes the effect of bottom friction and

refraction. The final section gives a general outline of the transfer

criteria between the windsea and swell domains.

Two test cases to verify the model's applicability are presented

in Chapter 5. The first case describes a model application to an

extratropical storm event in the Gulf of Alaska. The objective of this
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test was to demonstrate the model's performance in situations of

rapidly turning winds and in windsea-swell transition regions. The

second case deals with the model's application to finite depth

conditions. At the same time, the fact that wave directional data was

available for the ARSLOE storm provided an additional test of the.

model's sensitivity to a 180* shift in the winds resulting from a

frontal passage of the North Carolina coast.

The numerical wind wave model described here is an extension of a

previous deep water hybrid parametric model to account for finite

depths effects such as bottom friction, refraction and shoaling. At

the same time, the model spectrum includes a depth dependent

transformation factor which retains a f-5 spectral shape in deep

water and reduces to a f-3 dependence in shat low water. Furthermore,

the concept of directional relaxation of the windsea spectrum is

re-derived using more general energy flux arguments instead of wave

momentum.
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CHAPTER 2

HISTORICAL REVIEW OF WAVE PREDICTION METHODS

Verzeiht! es Ist ein gross Ergetzen, Excuse me! but It is a great delight
Sich in den Geist der Zeiten zu versetzen. To enter in the spirit of the ages and

Zu schaues, wie vor uns sin weiser To see how once a sage before us
Mann gedacht und wi. wir's dann Thought and then how we have brought
zuletzt so herrlich weit gebracht. Things on at last to such a splendid height

(Wagner)

-- FAUST 1. Nacht
Johann Wolfgang von Goethe

Scientists and engineers have spent more than 100 years to explain

the generation processes of surface gravity waves. In this context,

even today Ursell's (1956) opening statement seems still appropriate:

"Wind blowing over a water surface generates waves in the water by

physical processes which cannot be regarded known." This is not to say

that no progress has been made. On the contrary, extensive advances

have been achieved both in a theoretical and experimental sense, but

these efforts often come to a temporary stop, until newly developed

methodologies and techniques open up the next door. At the same time

it should be understood that wind-driven gravity waves are not the only

wave motion occurring on the ocean surfaces. Various other types of

wave motion are present either at the sea surface or within the ocean

itself. In this study we restrict our attention to surface gravity

waves generated by the wind. On a schematic energy spectrum of oceanic

variability, surface waves occupy a broad range of periods (1-30

seconds) and wavelengths (10 cm - 1 km) and make a large contribution

to the oceanic energy spectrum.

Since our interest is primarily concerned with the mechanism by

which the wind generates waves, it is obvious to investigate this

phenomenon first. The earliest theories applied to wave generation

-6-



were introduced by Helmholtz (1888) and Kelvin (1871), who both studied

the effect of oscillations set up at the interface of two media (air

and water) with different densities and flowing with different

velocities relative to each other. The Kelvin-Helmholtz mechanism

predicts a minimum wind speed 6.5 m/s for which waves grow, but ocean

waves are observed to be initiated at much lower wind speeds. For this

reason and others (Miles, 1959), this mechanism is believed not to be

too effective in generating waves for those wind speeds and wave

lengths typically observed at sea. An extensive discussion of these

theories can be found in Lamb (1932).

The next important step forward was made by Jeffreys (1924, 1925)

who re-examined the problem and suggested the "sheltering hypothesis"

to be responsible for wave growth. He introduced the reasonable

concept that when a turbulent wind blows over a hydrodynamically rough

sea (pre-existence of ripples), flow separation occurs on the downwind

side of the wave crests with presumed re-attachment somewhere on the

upwind slope of the next wave crest. The resulting pressure field is

asymmetrically distributed over the wave profile. The pressure

component in phase with the wave slope does work on the wave and

results in a positive energy transfer from the air flow to the waves,

as long as the wave moves slower than the wind. If the imparted energy

is greater than the dissipation by viscosity, the waves will arow

according to

aE 1 2 2

- Pa s c(U - c) (ka)

where s is less than unity and commonly referred to as a "shelterina
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coefficient". Some weak points of this theory may be pointed out. For

one, Jeffreys neglects transfers from tangential stresses. The

coefficient s depends on (Umin)3 and a correct choice of Umin was

critical in calculating s, as remarked by Dobson (1969). Choosing

Umin = 1-1 m/s and considering a balance between the energy gained

from the wind and that lost by viscous effects, a value of s

approximately equal to 0.27 is calculated. However, Jeffreys' theory

quickly lost support, when measurements of wind passing over solid wavy

surfaces gave values of s which were smaller by an order of magnitude.

From this it was concluded that Jeffreys' mechanism was ineffective

in accounting for the observed wave growth.

Other theories were developed by Eckart (1953), Lock (1954) and

Wuest (1949), which still. could not satisfactorily explain observed

wave growth or were either too idealized or too complicated to be

realistically used. Ursell's (1956) review provided the catalyst for a

major progress in wind-wave research. Independently Phillips (1957)

and Miles (1957) proposed two new, complementary theories. Philips'

theory was an improvement over Eckart's model, whereby waves are

generated on initialfy quiet water by normal pressure fluctuations

after the onset of a turbulent wind. Miles' theory advanced the notion

of an instability mechanism causing wave growth by improving the

earlier shear flow models of Kelvin, Helmholtz, Wuest and Lock. The

underlying physics of these two mechanisms are discussed in some detail

in Section 3.3.1.

An appropriate utilization of these theoretical efforts explaining

wind-generated surface waves is obviously seen in wave prediction. The

earliest form of a wave forecasting model was developed by Sverdrup and
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Munk (1947). Based on simple principles and some sparse observational

evidence, these authors proposed a reasonable model which was capable

of describing the behavior of a wave on the ocean surface in terms of

its total energy content, phase speed and propagation velocity of

energy. From this they were able to construct several simple

parameters involving the wind speed, fetch, duration, wave height and

period. Transforming these relationships into a set of nomographs, the

prediction of wave heights was readily obtained, once the proper

parameters were derived from synoptic weather maps. This approach is

known as "the significant wave concept" and with the later improvements

by Bretschneider (1952) is synonymous with the acronym "SMB method".

It is clear that the SMB method is parametric and there is no

connection with the physics of air-sea interactions.

With the introduction of the wave spectrum concept by Pierson,

Neumann and James (1955) and Dabyshire (1952), the forecasting methods

at last had a variable that could adequately describe the highly

irregular appearance of waves at the sea surface. The PNJ method did

not bring about the desired success in forecasting. This lack of

success in both methods is mainly attributed to their largely

subjective nature in making practical predictions. At the same time,

one must understand that these methods tried to solve extremely complex

problems with rather simple manual procedures. Today, the problem is

still awaiting a satisfactory solution, although considerable progress

has been made in closing this gap.

Evidence for this fact has been given by the recent results of the

SWAMP (Sea Wave Modeling Project, 1982) study. The main purpose of

this study was to test and to elicit our understanding of the physics
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governing the generation of surface gravity waves from a wave modeling

aspect. Specifically, this modeling exercise was designed to clarify

the general physical concept of surface waves, how it is represented

numerically, and the quantitative prediction of the evolution of a

two-dimensional wave spectrum in space and time for a given wind

field. In order to reveal the inherent differences between the models,

a series of hypothetical, idealized wind fields were defined in such a

way as to uncover each model's response to asymmetrical boundary

conditions, sudden changes in wind directions, discontinuous spatial

wind distributions, etc. A final test was to investigate the models'

response to wind fields typically found in intense hurricanes,

for the cases of a stationary and a moving storm. The principal

conclusion of this intercomparison study was that the models, in all

test cases, produced results which not only significantly differed from

model to model, but also often behaved quite to the contrary of what

was expected. In other words, forecasting results are still strongly

dependent on the specific wave model used, aside from the

meteorological uncertainties.

In the next sections we will present a brief look at some types of

wave models of the past and present. We will also mention briefly

specific applications and model validity as well as highlight distinct

features. For additional information on the subject of wind wave

research, the reader should see Kinsman (1965) or Barnett and Kenyon

(1975) who presented an excellent account of the state-of-the-art on

this subject. Similarly, Phillips (1977) and LeBlond and Mysak (1978)

can be consulted for a wide range of wave theories and their relations

to various physical processes and types of motions. General
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hydrodynamic principles and fundamental properties of waves are

excellently described in Lighthill (1978), and Mei (1983). Finally,

for more practical advice the reader may consider the "Handbook on Wave

Analysis and Forecasting" by the WMO (1976).
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2.1 Deep Water Discrete Spectral Models

The general framework of spectral models is the energy balance or

transport equation which.governs the evolution of the surface wave

field in space and time. In deep water, this equation can be written

as

3E
- + c * V E = S S. + S + S (2.1.1)
Bt -g - in nI ds(21)

where E(f,6; x, t) is the two-dimensional wave spectrum which is a

function of frequency f and propagation direction 0, as well as the

space-time coordinates x, t; cg = cg(f,6) is the group velocity,

and the net source function S is represented as the sum of three

processes: Sin, the energy input by the wind; SnI, the nonlinear

energy transfer by resonant wave-wave interactions; Sds, the

dissipation of energy by wave breaking, for example. Refraction

effects resulting from the interaction with slowly varying currents are

generally considered to be small and are neglected. This equation was

independently proposed by Gelci et al. (1956) and Hasselmann (1960).

Once a mathematical representation of S is specified, a solution to

(2.1.1) can be obtained by numerical integration. Differences among

models are mainly associated with the chosen form of the source

function S, and the specific numerical technique to perform the

integration of (2.1.1).

Nowadays spectral wave models are divided into two classes:

decoupled and coupled spectral models. In the decoupled models, each
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spectral component is assumed to grow, decay and propagate independent-

ly of the other modes. A new generation of discrete spectral models

are called "coupled" spectral model, because they take advantage of the

efficiency in the parametric approch for the high-frequency part of the

spectrum. The basic discrete spectral representation is still retained

for the entire energy spectrum (wind sea and swell). These wave model

are now capable of including the resonant interactions of different

wave modes, which cannot be done in ray-decoupled models.

The first wave forecasting model, based on the transport equation

(2.1.1) was introduced by Gelci et al. (1957). Although the model

included the simulation of growth and decay, these source terms were

entirely derived from empiricism. The theoretical formulation of the

three source functions, as utilized today, got their start with the

fundamental works of Phillips (1957) and Miles (1957). The introduc-

tion of a universal equilibrium range concept for the spectrum by

Phillips (1958) and the breakthrough in analyzing the nonlinear

transfer due to resonant wave-wave interactions by Hasselmann (1960,

1962, 1963a,b), set the stage for the development of wave models

thereafter.

The first generation of physical spectral wave models were mainly

based on decoupled wave dynamics (Pierson et al. 1966; Inoue, 1967;

Barnett, 1968; Ewing, 1971; Isozaki and Uji, 1973; Cardone et al.

1976). In these models wave growth is simulated by a linear source

function Sin which comprises a linear and exponential growth term

S. = A + B. E (2.1.2)
in
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Here, the A term represents Phillips' resonantly interacting turbulent

pressure components and the B term corresponds to the growth function

of Miles' instability (linear feedback) mechanism. Typically, the

two-dimensional spectrum is characterized by discrete frequency-

direction wave packets. Each energy packet, for a specific (f,e), will

separately grow to its limiting saturation level. To ensure an

asymptotic approach to the universal equilibrium level, the dissipation

function Sds plays the role of a delimiter preventing the spectrum

from exceeding this level. Since it is believed that the saturation

level is controlled by wave breaking, Sds is often presented as a

wave breaking mechanism. Advection is handled on characteristic

coordinates which means each energy packet is propagated at its

appropriate group velocity along its own ray path. Generally, the

nonlinear transfer SnI has been omitted, since its inclusion poses

new numerical problems which are associated with ray coupling. The

Barnett and Ewing models, however, included simple parameterizations of

SnI, but the overall impact on the evolution of the spectrum was

minor.

In the following paragraphs we will briefly describe some of the

ray-decoupled models. Specifically, we address the choice of the

source function S, the numerical integration method and the scope of

applications.

The Pierson-Tick-Baer Model:

Commonly known as the PTB model and the parent of most discrete

spectral models. Pierson et al. (1966) developed this model for global

operational forecasting on a hexagonal grid system resulting from a
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global gnomonic projection. The propagation is treated in a combined

manner, using first-order upstream differencing and a discontinuous

"jump" technique. The spectrum is resolved into 13 frequency and 24

direction bands. Wave components travel I ing against the wind are

explicitly attenuated at a rate proportional to [f-E(f)14 . The

growth-dissipation algorithm is based on a direction independent

parameterization of the Phillips-Miles terms with an

asymptotic limit specified by the PM spectrum. The right-hand side of

(2.1.1) is given by

S = S. + S = A(U ) + B(f,U ) E(f) - D(f,U ) (2.1.3)in ds 0 0 0

where A(U ) = 1.4 x 10-8 U 3 (2.1.4)
0 0

B(f,U ) = 6.27(U /c )2 exp[-0.017(U /c ) 4f (2.1.5)
o o g o g

* *
D(f,U0) = (A - A ) + (B - B )E (2.1.6)

in which

A = All - (E 2 13/2

B = B[1 - (- 27

andE =.001 2  -4- f -4
and E EPM(f) = 0.0081 g (2f) f exp -0.74 (L) 1 (2.1.7)

0

is the fully developed PM spectrum, with fo = g/2frUo, and Uo

corresponds to the wind speed at 19.5 m and the group velocity cg =

g/4wf. Thus, for an initial spectrum Eo(f), the energy of this

component at some time later, E(f,t), is analytically calculated by

integrating (2.1.3), i.e.,
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A explB(t + t ) - 11

E(f,t) = A 0.52.1.8)
B{ 1 + 1= exp(B(t + t)- 1) i1

where to is an equivalent duration for the initial spectrum EO(f)

at the new wind speed and is given by:

B E Af
t E 2 

All - ( 0) 11/2

The PTB approach calculates the energy wave growth for all discrete

directions e at fixed frequency f. The final directional spectrum is

determined by directionally spreading according to

EPM (f' O) = E PM(f,U ) (ef,U ) (2.1.9)

with an empirically specified angular distribution

1 1 if 4
(,f,U) = -{1 + + .82 exp(- 1(-*~~- 7-(-~..) )1I cos2e

+ .32 exp(j (-) ) cos 4 (2.1.10)
0

where e is the angle between the wind vector and the direction of the

wave component. A modified version of the original PTB model has been

implemented at the U.S. Navy Fleet Numerical Weather Central and is

sti I I in use to provide routine operational wave forecasts for the

oceans in the Northern Hemisphere (Lazanoff and Stevenson, 1975).

The Inoue Model:

The Inoue (1967) model essentially has the same features as the

PTB model. There are some refinements over the PTB model, primarily in
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the specification of the terms A and B. In addition, the two-dimen-

sional form of this model treats the directional aspect somewhat

different than in the PTB approach. A model description and hindcast

results can be found in Bunting (1970).

The Barnett Model:

Barnett (1968) probably presented the first model to contain

delineations of all three processes in the source function. The major

advancement was ascribed in the incorporation of a parameterized

nonlinear transfer term-Snl. Based on Hasselmann's (1963b) early

computations of nonlinear transfer rates for a fully developed Neumann

spectrum, Barnett derived reasonably simple parameterizations of SnI

(see Section 3.3.2). Incorporation of these simple algebraic

expressions did not decrease the relative computational efficiency of

the model. Now, the model could no longer be solved on a ray-decoupled

system, but this proved not to be too critical, so long as the

nonlinear transfer was not the dominating term in S. Later tests

showed that the nonlinear growth amplification turned up around the

same region of the spectrum (at the peak) as the input from the wind.

Qualitatively this implied that the overall effect of the nonlinear

transfer in this form was relatively unimportant. Obviously, a

numerical solution of (2.1.1) by ray methods was no longer feasible,

since different wave modes are now coupled through a nonlinear

mechanism. Numerical integration of the transport equation is carried

out on a two parallel (30*; 60*) Lambert conformal projected grid

system using a fourth-order Runge-Kutta technique. The linear growth

term due to Phillips' resonance theory is related to the three-
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dimensional spectrum of random atmospheric pressure fluctuations

P(k,w), as shown by Hasselmann (1960)

A = (2n) k3 3 P(k,w) (2.1.11)

p g
Pw

where w = 2n f, k is the wave number and pw is the density of water.

From measurements of Priestley (1965) and Snyder and Cox (1966) the

pressure spectrum is suitably described by

P(k,w) =(W) V1  V2  (2.1.12)
2 2~ -- 2 2 2 -

Ir V + (kcosO - W/U) V2 + k sin;

where W(w) is the pressure power spectrum, given by

*(w) = 1.23 w-2 P (Us) (2.1.13)

with 0o representing a turbulent scaling coefficient which depends on

the wind speed U and the atmospheric stability s and is taken as

*o - U6 . vi and v2 are empirical functions determined by

Priestly (1965) as

1.28 0.95
V= 0.33(oj) ; v2 = 0.52(wj) (2.1.14)

and e specifies the angle between the wind and wave directions. The

exponential growth term was slightly modified by Barnett to be

consistent with field data of Snyder and Cox (1966) and Barnett and

Wilkerson (1967). He takes

p U cos;
B = 5 -f[ 0 - 0.901 (2.1.15)

Pw C
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U cose
for c > 0.90, otherwise B = 0.

Wave growth is limited by the saturated value of each component in

accordance with Phillips' (1958) "equilibrium range" hypothesis. The

dissipation term is essentially a representation of the wave breaking

process and is accounted for by multiplying the input term Sin by the

quantity (1-r), where

1
r = 0.8 expl- I (E - E)/E) (2.1.16)2 a

and the saturation spectrum E. is specified as

2
E (f,) = 9 f-5 Q() (2.1.17)

(2r )

- 8 4 -
with an angular spreading factor set as Q(;) = cos 0. The non-

linear transfer term Snl are taken in the form as defined in (3.3.14

- 3.3.18). Barnett discretizes the wave spectrum into 18 frequency and

12 direction bands. The model has been successfully applied in

predictions of two-dimensional wind-wave spectra in the North Atlantic

Ocean.

The Ewing Model:

This model (Ewing, 1971) is without distinction very similar to

Barnett's model. The differences principally reside with the detailed

specification of the individual terms making up the source function S.

Again, Ewing represents all three wave processes and we briefly aive an

outline as to their differences below.

The nonlinear transfer is approximated in terms of a Fourier-

Chebyshev series for a family of spectra for which Hasselmann's (1963b)
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integrals were calculated. These parameterizations are given in

equations 3.3.19 - 3.3.21 (see section 3.3.2). The linear growth term

is identical to the expression in (2.1.11), except the turbulent

scaling factor is taken *0 - U4 . Unlike Barnett's B term, Ewing

proposes another empirical fit to the same data set which is continuous

for the range (U/c) of interest, i.e.,

-4 U - 4
B = 7 x 10 f (- cos ) (2.1.18)

c

The damping term is a simulated wave breaking process where Ewing sets

F2
r = ( ) (2.1.19)

and the equilibrium range spectrum E. is given by the limiting form

of the PM spectrum, i.e.

8.1 X 10 -3 P2f5
E (f,e) = f G(8) for < I1T (2.1.20)

(2Tr)4

4 40
and the angular spreading factor is taken as Q( ) - cos (1).2

Ewing considers the directional spectrum as the composition of 8

frequency and 12 direction components. The grid points are defined on

a conical projection and the energy balance equation (2.1.1) is

numerically integrated by means of an explicit fourth-order difference

scheme for the homogeneous equation. The nonhomogeneous equation is

solved by first calculating the homogeneous part of (2.1.1) over the

entire grid and then computing the induced change in energy which

results from integration of S over the previous time step holding the

wind field parameters constant. Model applications were mainly carried

out for the North Atlantic ocean.
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The Isozaki-Uji Model:

An improved version of the original PTB model, Isozaki and Uji

(1973) attempted to remedy some of the numerical problems associated

with unrealistic concentrations of energy. Since the tendency of waves

is to disperse, they resorted to a more complex variation of the "jump"

technique which now could effectively simulate lateral spreading and

longitudinal dispersion of energy. Additional refinements of this

model by Uji (1975) included an attenuation mechanism for spectral

components that propagate against local ly generated windseas. The

model was tested by hindcasting wave conditions in typhoon wind fields.

The Cardone Model:

Also known as ODGP (Ocean Data Gathering Program) model, it

belongs to the family of PTB models, but with considerable advances in

treating wave growth and decay. Cardone et al. (1976) developed

this discrete spectral model specifically for forecasting wave spectra

under extreme wind conditions such as in hurricanes. The model was

calibrated to resolve adequately differences such as the response of

the directional wave spectrum to erapidly turning winds (directional

relaxation); the effect in representing the high-frequency equilibrium

range with a f-4 or a f-5 dependence; the transition from a windsea

to a fully developed sea; the proper choice of velocity in the growth

terms (friction velocity u, versus 10 m or 20 m winds, Ua). The

ODGP model's specific task was to predict maximum storm generated sea

states in selected areas as for example, the Gulf of Mexico. These

models are rarely applicable to wind fields and physical geometries

other than those they are tuned for. Many of the features found in the
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PTB model have been improved and some of the salient differences are

given below.

The principal difference arises in allowing each spectral

component (f,O) to grow independently, as opposed to the integrated PTB

approach. Energy is redistributed over direction after all components

travelling within ± 90* of the local wind have undergone growth.

According to Cardone et al. (1981) this produces an effect which is

believed to be similar to the capability of nonlinear wave-wave

interactions to redistribute energy directionally in a turning wind

field. The linear growth term has been changed to reduce the growth

tendency of low frequency wave modes for large wind speeds. Based on

Stacy's (1974) study, the limiting saturation range is modified to

reflect a wind dependent form with (-4) frequency power law. The model

has been successfully applied to extensive hurricane and tropical storm

events in the Gulf of Mexico and along the east coast of the U.S.

(Reece and Cardone, 1982). Several other versions of the ODGP model

have since been developed with specific attention to the physical and

meteorological parameters of the area of interest.

Spectral wave models, representative of the coupled class, are

described in the recent wave modeling intercomparison study SWAMP

(1982). The major distinctive feature in coupled models is the

parametric treatment of the high-frequency tail of the spectrum.

Although discrete spectral models are conceptually much simpler, the

major drawback lies in the computational economics. The construction

of the two-dimensional spectrum typically requires the solution of

several hundred frequency-direction bins. Even with current computer

speeds this is still a formidable task, especially if real-time
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forecasts are needed. This fact may explain to some extent the slow

drift of discrete spectral models to look more like parametric models.
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2.2 Deep Water Parametric Models

2.2.1 Diagnostic Parametric Models

The inception of practical wave forecasting can be traced to the

days of WWIlI, when the need for wave conditions arose in connection

with the planning and preparation of amphibious operations on distant

shorelines. Prior to this time, most knowledge regarding waves was

entirely empirical and often inconsistent. Based on the hydrodynamic

principles governing surface waves, Sverdrup and Munk (1947) introduced

the conceptual wave parameters: significant wave height, Hs, and

significant wave period, Ts. Although "significant waves" do not

conform to the laws of classical wave theory, the idea was vital for

the development of their forecasting theory, because only the

significant waves are empirically known. These two parameters formed

the basis for the Sverdrup and Munk (S-M) method. From theoretical

considerations and empirical evidence, Sverdrup and Munk (1947) derived

relationships relating these two wave parameters to three important

variables: the wind speed at the sea surface; the fetch, indicating the

distance over which the wind blows; and the duration, a measure of how

long the wind has blown. A series of nomographs were established for

various relationships among nondimensional variables involving these

wind and wave parameters. Application of the S-M method is carried out

to a reasonable degree of accuracy if adequate and consecutive surface

weather maps are available. A forecast of sea and swell at a specific

location is obtained by determining the appropriate values of surface
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wind speed, fetch and duration and upon entering the graphs with their

dimensionless combinations, the significant wave height, Hs, and

significant wave period, Ts, are read off. Additional simple

theories were developed to forecast graphically the propagation and

decay of swell waves. A detailed derivation of the fundamentals for

the S-M method can be found either in the authors original work or in

Kinsman (1965).

The simplicity and cheap economics of the significant wave method

explains its quick success as a widely applied technique to predict

waves. Bretschneider (1952, 1958) made several improvements and

corrections of the original S-M method. Further efforts to extend the

range of application to more complex situations was undertaken by

Wilson (1955), who incorporated the effect of time and spatially

varying wind fields. For the preparation of objective wave forecasts,

the SMB method has been programmed to be solved on dicital computers

(Hubert, 1964; Pore and Richardson, 1969). Until recently, the

offshore oil and technology industries have based most of their

engineering designs on wave parameters predicted from modified

significant wave methods during extreme wind conditions as those

occurring in hurricane systems (Patterson, 1972; Bea, 1974; Ward et

al., 1977). Even today, the significant wave method still enjoys a

wide user audience, primarily in the field of engineering. This is

largely due to its simplicity and speed of application in obtaining

significant wave estimates which agree reasonably well with

observations. But there are numerous relationships from which to

choose and each claims an improvement over previously determined

relationships. All these empirical formulae are derived from a
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best-fit to the general relation involving the dimensionless

wave height, H, and dimensionless wave period, T; and the dimensionless

fetch:

- gH m(2.
H = gH - a1 tanh (b ) (221)

U

T = - = a2 tanh (b2n (2.2.2)

where al, a2, bi, b2 are empirically determined constants; m,n

are exponents; and F = gx/U 2 is the dimensionless fetch. Below we

just present a few of the better known empirical formulae.

Wilson (1955):

0 0 .0 5) -1
H = 0.26 tanh (0.01 F ) for F > 10- (2.2.3)

T = 1.4 2fr tanh (0.0436 F .33)

It is not clear from the author's original work if U = U10 , but H =

Hs and T = Ts.

Bretschneider (1973):

H = 0.283 tanh (0.0125 FO.42) (2.2.4)

T = 1.2 - 2ff tanh (0.077 F.25

These expressions are probably the most widely used, since they are

identical to those given in the Shore Protection Manual (CERC, 1975).

Here H = Hs and T = Ts.

Ou and Tang (1974):

- -0.4
H = 0.184 tanh (0.02 F ) (2.2.5)

-00.32
T = 0.971 - 2nr tanh (0.0406 F )
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Their original work specifies the constants multiplying F by a factor

10 too large which appears to be a misprint.

Although contemporary versions of the significant wave method are

still applied to solve today's offshore engineering design problems

(Bretschneider and Tamaye, 1976; Earle, 1978), its decline is

inevitable. There are several inherent problems associated with the

significant wave method. First, the wave predictions are only

diagnostic, because time does not appear explicitly in any of its

formulations. This means that the wave field is only a function of the

local wind vector at a certain fetch. Second, the increasing need for

adequate and detailed descriptions of the ocean surface (wave spectra,

wave direction) as required by cost-competitive offshore structural

designs, cannot be provided by the significant wave method. Third, as

remarked by Kinsman (1965), the underlying physical principles are just

inadequate to describe the complexity of ocean surface waves and as a

result of this, the significant wave method fundamentally lacks the

framework which is suitable for progress and self-improvement.

2.2.2 Prognostic Parametric Windsea Models

The fundamental justification for a parametric representation of

the windsea resides in the conclusions of the JONSWAP experiment. If

one accepts the fact that the evolution of a wind-driven wave field is

dominated by the nonlinear energy transfer, then there appears to be

little reason to describe the spectrum and the source terms in any

greater detail than the nonlinear transfer itself. A rigorous

numerical calculation of the nonlinear transfer is computationally
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still infeasible in the context of a modern wave prediction model. Not

only the need to parameterize. the nonlinear transfer predicated the

parametric wave model, but also the shape stabilizing feature of these

wave-wave interactions which ultimately leads to a quasi-equilibrium

form. In accordance with this reasoning, Hasselmann et al. (1976)

proposed that the growth of the windsea spectrum can adequately be

described by a limited set of coupled transport equations for a small

number of spectral parameters. The formulation of the parametric model

is delineated by transforming the whole energy transport equation

inclusive source functions into a set of prognostic equations in the

parameters of the self-similar spectral form. The general procedure is

shown for all JONSWAP parameters in Hasselmann et al. (1973). For a

prescribed directional distribution and spectral shape, Hasselmann et

al. (1976) argues that two parameters suffice to define the energy

level and the frequency scale of the one-dimensional energy spectrum.

The derived parametric transport equations for the parameter pair

v = fmU/g and a are:

1 (3- + Pv 1) +DP N a V + 1(U + U (2.2.6)3T v P FN t a an U 3

1 (3a + 3a 1 av 7/3  2  0.2 3U
a 3T + Paa 71 av V an I - N a V + -U (2.2.7)

where

[ vv Pva = ;. 007 N= 0.54, N = 5, I = 5.1 x 10-3

L av Paa 0.2 0.47 v a

and 3/3T s (U/g)3/3t, 3/3n = (U/g) m-V, with Vm paral lel to the

wind direction, JVMJ = qg/(4wrfm), q = 0.85. The nondimensional

gradient, 3/3n, corresponds to the rate of advection of wave properties
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with the group velocity Vm, where Vm is determined from waves

around the spectral peak. The factor q arises from averaging over the

directional distribution of the spectrum. The angular spreading

function was taken as a frequency independent cosine-square law.

Special analytical solutions can be obtained for (2.2.6) and

(2.2.7) for simply prescribed wind fields depending on fetch or

duration according to the power laws

U = U 0 (gx/U 2)m (2.2.8)

U = U0 (gt/U0) n (2.2.9)

with Uo = constant and m,n are exponents. The complete solution of

equations (2.2.6) and (2.2.7) requires numerical integration by finite

difference techniques. The windsea spectrum is easily recovered from v

and a together with the mean JONSWAP values for the remaining

parameters y, aa, ab (cf. section 3.1.1). A further simplification

is suggested by Hasselmann et al. (1976) by assuming a quasi-

equilibrium relation between a and v, which results in only one

prognostic equation in v.

If the quasi-equilibrium concept of the one and two parameter

model applies, then it seems that this model approach should be

sufficient to predict the sea state. According to Hasselmann (1978)

the validity of the parametric windsea approach should generally hold

for large-scale wind regions and for typical synoptic depressions such

as mid-lattitude cyclonic disturbances. For small-scale wind systems,

e.g., hurricanes, or nearly fully-developed seas the quasi-equilibrium
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concept breaks down and thus one must resort to a multi-parameter

model.

A similar wave prediction model was proposed by Toba (1978) who

considered a single-parameter growth equation for the windsea based on

similarity principles of growing wind waves. Toba (1978) chooses the

single parameter E, the wave energy per unit area, to characterize the

sea state, which in turn is related to the significant wave height by

E = Hs2/16. His parametric model is formulated as

E 2/3 E* 1 3  2/3 A (1 -(2.1/32.10)
Et + a a *

in which E, = g2 E/u* , x = gx/u 2, t* = gt/u*, where x is the

fetch, t is time and u* is the friction velocity. The error

function erf is defined by

2 * 2
erf(x) - J exp(-2 )dE (2.2.11)

VT o

and the dimensionless empirical constants have the following values:

A = 2.4 x 10-4, a = 0.74, and b = 0.12.

The odd two-thirds exponent in his model equation (2.2.10) can be

deduced from the conspicuous similarity relation between nondimensional

wave height and nondimensional period for significant waves.

H* = BT*3/2  (2.2.12)

where H* = gH/u* 2 , T* = gT/u* and for significant

waves B = 0.062 is a nondimensional constant. Equation (2.2.10) then
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states that the growth of nondimensional energy of a windsea can be

regarded as a simple stochastic process in which the single parameter

representing it, approaches its final value independent of its past

history, but dependent on its present state, as long as the wind

continues to blow. This method has been applied and tested for cases

of different time and space scales (Kawai et al., 1979).

Generally, higher order corrections can be systematically

incorporated in such models by introducing additional spectral

parameters. Obviously, in the limit of a large number of parameters,

the same degree of detail as in traditional discrete spectral models is

ultimately recovered. Nevertheless, most parametric windsea models

typically contain only few parameters ranging from one to normally

six. The philosophy of a parametric windsea description is simply to

reduce the large number of wave groups of different frequencies and

directions found in standard discrete spectral models. However, there

are shortcomings with the parametric approach for wave prediction. It

is clear that the parametric concept of the wave field is not

appropriate to describe spectral modes in the swell domain, because the

nonlinear coupling among swell components or swell and windsea

components is very weak. Thus, sea states dominated by a swell field

or sea states engaged in exchanging energy between the swell and

windsea domains cannot be simulated by a parametric windsea model. For

such cases, a hybrid model is required, which combines the parametric

windsea model and a ray-decoupled discrete swell model. This type of

model is discussed next. Other situations also exist where simple one

parameter models are expected to fail. In such models, the assumption

is made that the nonlinear interactions always act fast enough to turn
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the wave field into the direction of the local wind, which is valid as

long as the changes associated with the wind field occur on space-time

scales much smaller than those of the nonlinear interactions. This is

clearly violated for rapidly varying wind fields as in fronts and

hurricanes. However, this limitation can be removed by including a

directional relaxation parameter governing the rate at which the wave

field is turned into the direction of the wind.

Another parametric windsea model worthy of mention, because it is

unique regarding its simplicity as well as its specific purpose of

usage. On the basis of the parameterization technique outlined in

Hasselmann et al. (1976), Ross (1976) developed a simple parametric

wave model specifically for estimating the wave field in hurricanes.

From a regression analysis involving the JONSWAP variables, v, a, y and

e, Ross determined their dependence on the dimensionless radial fetch

R = gr/U 2 , where r is the radial distance to the eye of the

hurricane. The data sets of hurricanes Ava, Camille and Eloise

produced the fol lowing power laws:

v = 0.97 R-0.21

a = 0.034 R (2.2.13)

y = 4.7 R-0.13

e= 2.25 x 10-5 R0.45

where v = fmU/g and e = g2E/U4 with i the total energy.

An opportunity to test the model presented itself during

hurricanes Belle, 1976 in the Atlantic and Anita, 1977 in the Gulf of

Mexico. When compared with buoy observations the model was found to
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give quite accurate specifications of the deep water wave field in

tropical cyclones. Furthermore, Ross and Cardone (1978) systematically

elucidated the differences in the results obtained from the simple

parametric model and the complete discrete spectral model of Cardone et

al. (1976). In general, it was concluded that Ross' model for

predicting extreme wave states is warranted when no detailed

information on the directional characteristics of the wave spectrum is

required.

2.2.3 Hybrid Models

Parametric windsea models as outlined in the previous section are

only appropriate for a growing windsea. During the stages of active

growth, the nonlinear wave-wave interactions are the dominant processes

controlling the evolution of the spectral shape. As the spectrum

approaches that of a fully developed sea, the nonlinear transfer

becomes weak and the advective terms prevail in the energy balance.

Swell can be regarded as the dynamical complement to a developing

windsea, since, according to linear wave theory, all wave components

are decoupled and are primarily controlled by advection with some

possible weak damping. The propagation of discrete swell packets is

best represented by the method of characteristics where each swell

component is tracked independently along ray paths with its associated

group velocity.

To predict both sea states, parametric windsea models are

therefore combined with a discrete spectral swell model into a hybrid

model. As a result of the NORSWAM (North Sea Wave Model) study, two
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hybrid parametric wave models were developed in collaborating efforts

by GUnther et al. (1978) and Weare and Worthington (1978). Both models

include dynamical exchange criteria that controls the energy tansfer

from to windsea to swell and back. Transition from one wave regime to

another is simply treated as an instantaneous energy exchange between

the windsea and swell domains. The resulting loss or gain of energy is

instantaneously redistributed in the modified windsea spectrum. Either

energy interchange between the two wave regimes conserves total

energy. The swell model is based on a technique first introduced by

Barnett et al. (1969). The NORSWAM model has been extensively applied

to hindcast long-term wave-height statistics in the northern North Sea

(Ewing et al., 1979). The HYPA (Hybrid-Parametric-) model has been

systematically tested in many situations of different scales involving

the geometry of the prediction area and spatially and temporally

varying wind fields (GUnther et al, 1978; Gunther and Rosenthal,

1979). A practical application of HYPA model is reported in Richter et

al. (1982) where hindcasted wave conditions were used to reconstruct

the sea states during the ship disasters involving the German container

ship "MUnchen" north of the Azores and the trtgic event of the 1979

Fastnet Race. From this analysis it was concluded that the "MUnchen"

must have encountered maximum significant wave heights of 11 m, with

peak periods of 14.3 seconds which correspond to a wave length of

320 m. These values are in close agreement with wave heights reported

by ships in the same area. An earlier version of the HYPA model has

been also applied to an extratropical storm in the Gulf of Alaska

(Graber, 1979). The overall agreement of hindcast wave heights with

buoy measurements were quite good.
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A significant shortcoming of earlier HYPA versions was its

limitations in directional resolution, because by assumption the waves

were tied to the local wind direction with a fixed angular distribu-

tion. Thus wave directions could only be treated implicitly, since the

response time of the spectral shape parameters was on scales too slow

when compared to those of the directional waves. The introduction of a

directional parameter 60 by GUnther et al. (1981) eliminated this

restriction. Inclusion of a prognostic equation for this parameter

improved the HYPA model's ability to transfer continuously portions of

windsea energy to swell. Usually, for turning winds, the energy for

windsea components traveling at large angles to the new wind direction

is radiated into swell. The Toba model only allows a loss of energy to

swell, when the wind direction changes more than 30* within a time

step. This restriction results in a considerably reduced trasfer of

windsea energy to swell for turning winds.

Additional descriptions of other hybrid models can be found in the

SWAMP (1982) study. Results from idealized test situations are

intercompared with other hybrid and spectral wave models. From the

above description of hybrid parametric models it should be recognized

that in modeling swell by a discrete spectral approach, these

parametric models tend to look more like a coupled discrete spectral

model.
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2.3 Finite Depth Wave Models

When waves propagate into regions, where they feel the presence of

the bottom topography, additional effects on the energy balance must be

considered due to wave-bottom interactions. The fundamental equation

governing the evolution of the wave field in shallow water is

E + V E + k E = S (2.3.1)
at -x - -

in which S represents the net contribution of energy gained or lost by

atmoshperic wind input, nonlinear wave-wave interactions, dissipation

due to wave breaking and bottom friction. In addition to bottom

friction, other dissipation mechanisms such as percolation, soft bottom

motions and bottom scattering could be important. However, these

processes seem to be primarily site specific and often of local

importance, whereas bottom friction is generally the dominant damping

mechanism for waves propagating in coastal waters. Bottom friction and

sediment transport are intimately related to each other, which means to

specify either, knowledge of the other is required. The third term on

the left-hand side of (2.3.1) describes the effect of refraction and

shoaling on the wave spectrum. Local bottom inhomogeneities such as

shoals or canyons are generally not resolved on the scales used by

standard wave prediction models. The validity of physical wave models

is also limited to not too shallow water, in particular the nearshore

zone, where the involved processes are highly nonlinear.

-36-



However, early versions of shallow water wave models based on the

energy transport equation have been successfully applied to numerous

cases where water depths are shallow enough such that deep water

approximations are clearly violated. The extension of a standard

discrete spectral model is conceptually easy, because the major

modification comes about in the use of curved rather than straight ray

characteristics. The first applications of a modified deep water model

was the Barnett model for hindcasting wave conditions in the South

China Sea (Barnett et al., 1969). The wave climate in the North Sea,

where depths are less than 30 m especially in the southern part, can

not realistically be predicted by deep water forecasting methods.

Golding (1978) convincingly demonstrated the sensitivity of the wave

field to the presence or absence of bottom topography in the North

Sea. In his model the effect of bottom friction was not yet included,

thus leading to excessively high wave predictions.

Coastal erosion and sedimentation is a critical problem to the

coastline around Venice in the Adriatic Sea and is directly related to

the prevailing wave conditions in this area. For a number of selected

points in the northern Adriatic Sea, Cavaleri and Malanotte-Rizzoli

(1978) hindcasted wave spectra by employing a reverse ray projection

technique as proposed by Collins (1972). A similar effort has been

reported by Forristall et al. (1978) where a modified PTB model was

used to hindcast directional wave spectra generated by a tropical storm

in the Gulf of Mexico.

All these models belong to the ray-decoupled class, which means

that generally the influence of nonlinear interactions is not

incorporated. Herterich and Hasselmann (1980) have shown that resonant
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nonlinear wave-wave interactions are greatly amplified in finite

depth. Inclusion of this mechanism is only viable in a coupled model

as those described in SWAMP (1982). The description of a coupled

hybrid parametric wave model for waters of arbitrary depth is described

in the following sections.
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CHAPTER 3

THEORETICAL BACKGROUND

Grau. mein teurer Freund. ist aile Theorie Gray, my dear friend. is every theory,
Und grUn des Lebens goldner Baum. And green the golden tree of life.

(Mephistopheles)

-- FAUST I. Studierzimmer
Johann Wofgang von Goethe

Waves appearing on the ocean surface can be described in many

different ways. If one is interested in the large-scale features of

oceanic waves, as they are generated and propagated over vast ocean

surfaces, it usually suffices to consider only their principal

characteristics. These vary slowly enough in space and time so that

even at large distances away from their generation region they still

can be detected. However, on a scale associated with local wind-

generated waves, a more detailed description of the wave field is

desirable. On these small scales, the main wave characteristics can be

regarded constant, but the sea surface configuration is highly

irregular both in a spatial and temporal sense. The forces and

mechanisms responsible for the generation and evolution of waves

include the turbulent wind and the interaction of the waves themselves,

which are by far too complicated to be accounted for in detail. This

implies that an exact prediction of the sea surface is virtually

impossible. Early theories have relied on the superposition of many

individual waves, but a typical ocean wave record hardly resembles the

shape of a single sinusoidal wave.

In order to overcome this apparent disorder an integral

representation of the sea surface can be used. This representation
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would provide a more prolific approach for a general description of the

ocean wave field. The fundamental part of such a formalism is to join

theory and observations by means of a variable, which is capable of

representing many aspects of the wave field and also can be determined

directly from measurements. This variable is known as the wave energy

spectrum and denotes the energy contents of the waves, as a function of

frequency, wave number and direction. In particular, the wave number

and frequency spectra reflect the spatial and temporal dependencies of

the wave field.

Since the spectral description of events or a process is well-

known in the theory of probability, many of its assumptions and method-

ologies find analogous counterparts in the statistical description of

wave fields. Using standard spectral analysis techniques, various

types of energy spectra can be constructed from observed wave records.

The two most common forms are the two- and one-dimensional energy

spectrum. In the past and the present, the most important and most

utilized spectrum is the frequency wave spectrum. Extensive studies of

this spectrum have been conducted under many diverse conditions,

ranging from controlled laboratory experiments to the complex nature of

hurricanes. These experiments were primarily carried out in deep

water. However, recently some field experiments specifically dealt

with measuring wave spectra in finite water depths, where the influence

of the sea bottom on the surface wave field can 'no longer be

neglected. Similarly, few studies are available describing the

directional aspect of the waves. Possible reasons for the lack of

directional data are the need for sophisticated measuring devices and



the fact that engineers and scientists only recently began to request

more directional wave information for design purposes.

In this chapter, we are primarily concerned with the mathematical

description of the wave energy spectrum, both in deep and shallow

water, and how it evolves in space and time due to physical processes.
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3.1 The Spectral Description Of A Windsea

The waves found on the ocean surface are almost always random in

appearance due to the irregular variation of the surface, itself, in

both space and time. An adequate representation of this motion is

usually accomplished by means of a statistical description of

observable and/or measurable quantities. The one most commonly used in

the description of ocean waves is the surface elevation n(x,t) as a

function of the location x and time t. If we assume that a wave record

n(x,t) is the realization of some stochastic process, then it follows

that the covariance of the surface elevation is given by

C(r,Tr) = n(x,t) n(x+r, t+T) (3.1.1)

where the overbar denotes averaging with respect to space and time, r

is a displacement vector and T is a time lag. However, the study of

ocean waves is more conveniently performed in terms of the spectrum,

which is defined as the Fourier transform of the covariance function

(k, = (2ir) 3 fff C(rt)e dr d-r . (3.1.2)

Here * is the three-dimensional variance density spectrum, k is the

wave number vector and w is the radian frequency.

From thisgeneril ~description, we can look at some specific cases,

which are more practical but also more restrictive in the information

they provide. For a homogeneous wave field, which is invariant by

adding a constant, horizontal space-vector, the instantaneous wave
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number variance spectrum of the free surface elevation is

-2 -ik-r
F(k) = (2m) ff n(x,T ) nf(x+r,r) e -- dr . (3.1.3)

Similarly, for a stationary wave field, which is invariant to the

addition of a time constant, the frequency variance spectrum at a fixed

point is

E(w) = (2) f n(x,t) n(x,t+r) e dT . (3.1.4)

The total variance or energy of the waves is equal to the

following integral expressions,

= ff F(k) dk = f E(w) d . (3.1.5)
-- 0

Strictly speaking, the variance is related to energy by the factor

[pg1, where p is the density of water and a is the acceleration of

gravity. Since for oceanographical conditions this term pg is

constant, it has become common practice to drop it and simply refer to

(3.1.3) - (3.1.5) as energy quantities.

If, in addition, we assume that n(x,t) can be regarded in a linear

approximation as a Gaussian random process (Hasselmann, 1967), then the

wave field is completely specified, in a statistical sense, by the

spectrum F(k).

Now, let a turbulent wind commence to blow over an initially

tranquil ocean surface. Small wavelets appear and continue to grow if
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the mean speed and direction of the wind is maintained for a

period of time. If the wind action continues for a sufficiently long

time and large fetch, the waves grow until they are saturated with

energy. At this time, according to Phillips (1958, 1977), the waves

become local ly unstable and break to dissipate the excess energy. In

the deep ocean, this physical limit is reached when the local downward

acceleration of the fluid particles near the wave crest is equal to or

exceeds the gravitational acceleration, g. Phillips further

hypothesizes that there exists an "equilibrium range" in the spectrum

of wind-generated waves which is entirely determined by the physical

parameters governing the continuity of the wave surface. If true, the

physical quantities to be considered are the densities, pa and pw,

of air and water, respectively; the surface tension and viscosity of

water, aw and vw; the gravitational acceleration, g; the friction

velocity, u*; the surface roughness length, zo, and the wave

number, k, or the frequency, w. If one were to limit the analysis to

wave numbers and frequencies well below those of capillary waves, such

that

Pwg 1/2 4pW93

k << [ = k W < « = W (3.1.6)
a wu a wuw w

then the effect of surface tension can be ignored. Similarly, the

influence of viscosity, as related to wave damping (Lamb, 1932, §348,

§349), can also be omitted for the present condition. Furthermore, as

long as we are not concerned with quantities containing the dimensions

of mass, then Pa and pw could only appear as the ratio Pa/Pw-

Under oceanographic conditions with an air-water interface, this ratio
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is virtually a constant and therefore, need not to be taken into

consideration. The roughness length parameter, zo, shows some

evidence that it depends on the friction velocity, u*, as suggested

by Ellison (1956). An up-to-date review of the relation between the

friction velocity and the roughness length is given in Garratt (1977).

If this is true, then Phillips concludes that the equilibrium range

properties of the wave field are accurately characterized by the

parameters u* and g, together with k or w, provided the later satisfy

the conditions (3.1.6).

From the functional form of the surface displacement spectrum, we

conclude that the wave number spectrum (3.1.3) has dimension 1_4 1 and

the frequency spectrum (3.1.4) has dimensions IL2TI. Applying

dimensional analysis arguments, Phillips obtained the following

expressions;

-4 ku,
F(k) = k (( --- ) for (k << k << ku) (3.1.7)

and

E(w) = g 2 o 5 2 WU* for (w << << W ) (3.1.8)

where El and E2 are two undetermined functions of the dimensionless

wave number and frequency, respectively, and 6 is the direction of the

wave number vector k. The limits kZ and wt represent the smallest

wave number and frequency of the wave field below which nonlinear

effects become important even for waves of relatively small height.

From (3.1.7) it follows that the moduli wave number spectrum,

describing the energy distribution over k regardless of the direction

of propagation, is designated by the integral
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2
7T -3 ku* Ir

F(k) = f F(k)kd6 = k (,-3 ) f (e)de (3.1.9)

where n (0) is an angular spreading factor and satisf ies the

normalization condition

f Q(O) de = 1 (3.1.10)

If the surface drift is of no importance to the breaking process, i.e.

breaking of essentially irrotational waves, Wu (1975) found from

surface drift measurements that wu*/g << 2 must be strongly

satisfied. This implies that the spectrum is given by the breaking

process under the influence of gravity only. Then (3.1.8) and (3.1.9)

can be simplified

E(w) = ag 2 for (w < w < -) (3.1.11)

F(k) = sk-3 for (k << k << 22) (3.1.12)2. 2

where a and a are two non-dimensional constants, which must be

determined from measurements. From the asymptotic behavior of (3.1.11)

and (3.1.12), and making use of the dispersion relation w2 = gk; it

turns out that the following relation holds

a=2s . (3.1.13)

Measurements of ocean waves basically confirm the -5 power law

(Figure 3.1) of the high-frequency portion of the spectrum in deep
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water. However, the observed values of the equilibrium range constant

a (also known as Phillips' constant) exhibit some scatter in the range

(0.65 - 1.6) x 10-2. A summary of a values as determined from

various data sets can be found in Kahma (1981) and Graber (1979).

Longuet-Higgins (1969) calculated a semi-theoretical estimate of

Phillips' constant for a spectrum of the form (3.1.11) and obtained a

value of 1.35 x 10-2.

In recent years much attention has been focused on Phillips' -5

power law. Kitaigorodskii (1962) first suggested that certain

high-frequency ranges are best fit to a -4 slope. A possible source

of the discrepancy in the saturation range slope could be attributed to

Doppler-shifted frequencies in the presence of currents. Kahma (1981)

has shown that the Doppler shift could only account for a relatively

small correction to the power law in the equilibrium range. Forristall

(1981) analyzed hurricane data which supported both the hypothesis of

an inverse fifth power law at higher frequencies, as well as an inverse

fourth power law with a dependence on the friction velocity for lower

frequencies of the saturation range. In a similar analysis of wave

spectra during hurricane Camille, Stacy (1974) also found a departure

from the classical f-5 relation.

Theoretical support came from Kitaigorodskii (1983), who

demonstrated that an exact analog of Kolmogoroff's spectrum for weakly

nonlinear ocean waves yields a spectral form proportional to w-4 in

the equilibrium range. His arguments are primarily based on a

generalization of the wave-breaking limited equilibrium range concept,

whereby the shorter waves in this range may not grow due to the direct

energy transfer from the wind, but rather due to energy fluxes from the
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lower wave numbers. From this Kitaigorodskii con jectured that the

equilibrium range of wind-generated waves really has two asymptotic

regions: Kolmogoroff's and Phillips' type. The former type of

equilibrium corresponds to a wind-dependent saturation which has the

frequency spectral form

E K(W) = a gUW 4  (3.1.14)

where Ua is the mean wind speed at a reference height and au

represents a non-dimensional constant analogous to Phillips' constant.

The theoretically determined value of au = 4.4 x 10-3 is almost

equal to the observed value au = 4.5 x 10-3 reported by Kahma

(1981) and the calculated average au = 4.5 x 10-3 reported by

Forristall (1981). Donelan et al. (1982) proposed an asymptotic form

for wind-generated high-frequency spectra:

2 -4 -1 (3.1.15)
Eo)= ag& * m(..5

where the dimensionless coefficient am varies implicitly as a

function of dimensionless fetch and wm corresponds to the frequency

of the peak. The empirical formula for am as suggested by Donelan et

al. (1982) is approximately

UUa 1/2
am = 0.006 (71/2 (3.1.16)

m

where cm = g/wm corresponds to the linear deep water phase velocity

of the spectral peak. Upon equating (3.1.14) and (3.1.15), it follows

that
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= 6 x 10-3 a -1/2 (3.1 .17)

For a range of Ua/cm - 1 - 5, an average value of au m 4.3 x

10-3 can be calculated.

Although recent field observations of the saturation range in

ocean wave spectra point towards a negative fourth power law with a

linear dependence on wind speed, Kitaigorodskii (1983) concludes that a

relatively rapid transition from the Kolmogoroff to the Phillips

equilibrium takes place, as can be interpreted from experimental data,

but additional investigation is needed to make an accurate quantitative

description. However, an asymptotic spectral form of this type may

have some consequential impact on wave prediction models and deserves

further attention.

Since the frequency spectrum can be related to the wave number

spectrum, the question arises, why not measure F(k) instead? To date

very few data sets exist. This is partially due to the complicated

methodology required to obtain measurements. The wave number spectrum

is best suited for remote sensing techniques such as airborne laser

(Schule, et al., 1971), radar altimeter (Barnett and Wilkerson, 1967)

and synthetic aperture radar (SAR). An example of a wave number

spectrum is shown in Figure 3.2. The equilibrium constant for this

data set was estimated at 4.2 x 10-3, which approximately confirms

the relation given in (3.1.13). However, since there is little

information about the directional distribution 2(a) of the wave field,

it can be shown that for the case of unidirectional waves [i.e., Q() c

6(0)], S = B where B is the actual -saturation constant. For a
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uniformly distributed wave field [i.e., S() = constant for -fr/2 < e <

w/2 and zero outside this rangel, then I = 1/2 B, while if n(e) =

cos 2e, then a = 3/4 B.

Kitaigorodskii (1962) applied the similarity theory of atmospheric

turbulence to the problem of wind-generated wave motion. In addition

to the external parameters considered by Phillips' dimensional

analysis, Kitaigorodskii also investigated the dependence of the wave

spectrum on the fetch and duration of the wind action. Shortly after

the wind begins to blow, the sea is partitioned into two regions. In'

the leeward region, the wave field is independent of time and depends

only on the distance (fetch) to the shore. The waves in this region

are steady and referred to as fetch-limited. In the upwind region with

essentially unlimited fetch, the wave motion is transient or

duration-limited. Waves in this domain are called unsteady. A

steady-state wave motion is established at the boundary between the two

domains. Ultimately, when the wind has blown over a sufficiently long

fetch and after a sufficiently long duration, the waves cease to grow.

This limiting form is designated as a fully developed sea, whose

average properties are only a function of wind speed. Although this

seems to be the simplest kind of waves in the ocean, it is difficult to

observe. Under these assumptions, Kitaigorodskii proposed that

E(w) = S(w,u ,q,x) (3.1.18)

where x is the fetchLTLe singIe parameter x is val id as long as the

waves are fetch-limited and the boundary conditions and wind field are

stationary and homogeneous along the direction perpendicular to x.
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Then, from the similarity theory, the following expression may be

obtained

E(W) = g 2w S( uw (3.1.19)

where S1 is a universal non-dimensional function of two parameters,

the dimensionless frequency w and the dimensionless fetch x. From

(3.1.19), one can conclude that the dimensionless frequencies w,

corresponding to specific points of E(w), depend only on x. In

particular, when E(w) has a maximum at some frequency omax, then,

w u
max * 2( ) (3.1.20)

U*

Similarly, other non-dimensional parameters involving the significant

wave height Hs and the significant'wave period Ts defined as

mo/mi (cf. 3.1.69), can be expressed as a function of dimensionless

fetch:

TI H g9 S _ ( - - 1
s 2 3(q) 3.1.21)

- T q
Ts 4( ) (3.1.22)
S * 4(U*

In the limit, where the fetch dependence vanishes, for a fully

developed wave field, it follows from (3.1.19) - (3.1.22) that

2w-5  ( *
EWo g w S J )(3.1.23)
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max C (3.1.24)
g 1

- H g
Hs 2 (3.1.25)

s *2 2

~Tsg
Ts = C (3.1.26)
s u*

where C1, C2 and C3 are constants.

Pierson and Moskowitz (1964) applied Kitaigorodskii's similarity

theory to data of fully developed wind seas. Based on a best fit to

the observed spectral data the following form of the spectrum was

suggested

2 -5 -A /W )
E(w) = ag w e (3.1.27)

The exponential term in (3.1.27) acts as a high-pass filter on the

asymptotic high-frequency form and wo = g/U19.5, where U19 .5 is

the wind speed at an anemometer height of 19.5 m, A = 0.74 and a =

0.0081. Using the Pierson-Moskowitz spectrum (hereafter called PM

spectrum) to determine the constants C1, C2 and C3 , one finds (in

metric units)

W = 8 - U_1  (3.1.28)
max

PM2
H = 0.025 U2  (3.1.29)

s

T PM = 0.57 U (3.1.30)
s

where the wind speed at 10 m is substituted from the relation U10 =

0.93-U 19 .5 (Pierson, 1964, 1977).
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An alternative approach to the saturation range in the frequency

spectrum was presented by Thornton (1977), who rederived Phillips'

results from the kinematics of the wave motion. Thornton argues that

wave breaking occurs as a result of kinematic instability, when fluid

particles near the free surface attain speeds greater than the wave

speed c. Hence, the relevant parameter at breaking should be the wave

speed rather than the acceleration of gravity, as original ly proposed

by Phillips. Melville (personal communication) supports this

hypothesis based on experimental evidence found in breaking waves.

Thus, dimensional reasoning yields

E(w) = 2 W-3 (3.1.31)

The wave speed can be found from linear wave theory to a first

approximation,

c = 9 tanh kh (3.1.32)k

where k is the wave number and h is the water depth. The deep water

limit

2 2
c = = g (3.1.33)

which reproduces Phillips' result when substituted into (3.1.31),

E(w) = ag 5 (3.1.34)

According to Thornton, this is so because the dispersion relation and

hence, the wave speed, is derived from the dynamic free surface
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boundary condition.

Whether (3.1.11) and (3.1.12) only hold for deep water waves

(kh >> 1) or whether they can also be applied to the equilibrium range

for a gravity wave spectrum in waters of finite depth, (i.e., for

arbitrary values of kh) can not be conclusively drawn from Phillips'

(1958) original derivation of these equations. Of greater significance

is the fact as pointed out by Phillips (1958) that if a function has

discontinuities in its first derivatives, then its Fourier transform

has an asymptotic k-2 shape. Since the wave spectrum is essentially

given by the average square of the Fourier transform, this implies that

spatial equilibrium spectra must be proportional to k-4 for large k.

From this, one can reason that the equilibrium shapes of wave number

spectra of ocean waves at large k will be identical for both deep and

shallow seas. On the other hand, the same is not true for the

frequency spectrum E(w), since in transforming w and thus E(W) by means

of a dispersion relation, the frequency spectrum may, in addition,

depend on h.

A consistent approach on the self-similarity of depth dependent

frequency spectra was originally demonstrated by Kitaigorodskii,

Krasitskii and Zaslavskii (1975), hereafter abbreviated as KKZ.

Adopting the asymptotic shape of the wave number spectrum (3.1.12) to

be valid in any water depth, the frequency and wave number spectrum are

related as

E(w) = F(k) dk (3.1.35)

where dw/dk represents the group velocity.
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In linear theory the dispersion relation, connecting the radian

frequency w with the wave number k, is

w(k,h) = (gk tanh kh)1/ 2  (3.1.36)

where h designates the water depth.

In the absence of any mean currents, the wave field is regarded

isotropic and the group velocity can be determined from (3.1.36),

d = 1 - 2khcg = K 7W (1 +sinh 2kh (3.1.37)

Introducing the wave number spectrum (3.1.12), and the group velocity

cg in (3.1.35) yields a general expression for the frequency

spectrum, i.e.,

E(w) = ag2 -5 () (3.1.38)

where K = kh is a dimensionless wave number and *(K) is a uni versal

dimensionless function. The functional form of $(K) is readily found

to be

2
$(1c) = tanhK (3.1.39)

+ sinh 2K)

An equivalent expression of j, but in terms of dimensionless frequency

wh = w Vh/g was given by KKZ,

2

(W X -2 ()1 + 2h 2 X(wh) 1 (3.1.40)
sinh[ 2 w h X(wh)
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where X(wh) is the solution of the transcendental algebraic equation

2
X tanh (wh x) = 1

Figure 3.3 shows a

deep water

lim 4( )

IC+

plot of C(wh)- It is easily ascertained that in

I Tm 0
Wh +

(W h) = 1

and in shallow water,

2
W h
_T-1im 4(K) =

C+ 0

(kh) 2

S lim 4(wh)
Wh+0

It follows

spectrum in shal

E(w) = gh w

from (3.1.38) that the

low water leads to the

high-frequency part of the

similarity form

(3.1.44)

Using Thornton's (1977) hypothesis, we have for (3.1.32) in shallow

water

c2 = gh (3.1.45)

which yields a finite depth equilibrium shape

E(w) = aT gh w-3

in agreement with the result obtained by KKZ, except for the

equilibrium range constant aT*
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Thus comparing (3.1.44) with (3.1.46) shows that both spectral

equilibrium ranges are equivalent if aT = a/ 2 . The discrepancy of

a factor 2 results from the transformation formulae, which involve the

group velocity for one and the phase speed for the other.

However, it should be noted that (3.1.44) is only valid for waves

generated in areas where the bottom can be considered essentially

horizontal. Other wave transformation mechanisms, such as refraction,

may produce ambiguities in the deviation from the -5 power law.

KKZ examined their similarity theory on empirical data by Dreyer

(1973), which were collected in a region of shallow water where the

depth did not vary over the whole extend of wave generation. They

concluded that the transformation of the wave number spectrum into

frequency spectrum, using the transfer function D(wh), yields results

which are in agreement with observations not only in deep water

(kh >> 1) but also in shallow water (kh << 1). Estimates of the

PhiIlips constant a = 4 x 10-3 are within the variability of values

found by previous investigators.

Further evidence supporting this extension of Phillips' hypothesis

to finite depth was given by Gadzhiyev and Krasitskiy (1978), who

performed measurements in depths ranging from 40 m to 6 m to verify the

theoretical relation of D(wh). They obtained a mean value of

a = 6 x 10-3.

Data from Goda (1975) show that in shallow water some equilibrium

ranges can be approximated by a -3 slope, whereas some spectra in very

shallow water indicate slopes of less than -2. In a laboratory

experiment, Ou (1980) demonstrated that waves generated in a wind-wave

tank for finite depth conditions could satisfactorily be described by
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the asymptotic form given in (3.1.44). Frequency spectra measured in

Albermarle Sound by Knowles (1982) additionally uphold the validity of

an w-3 law for shallow seas.
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3.1.1 The JONSWAP Spectrum And Related Wave Parameters

a) DEEP WATER

During the Joint North Sea Wave Project (JONSWAP), extensive

measurements of growing sea states for deep water conditions were

obtained along a profile extending 160 km into the North Sea westward

from the island of Sylt. From the analysis of the fetch-limited wave

spectra, Hasselmann et al. (1973) suggested a parametric form of the

wave energy spectrum, which well describes the various stages of

development occuring in windsea spectra. The one-dimensional form of

the spectrum with its five free parameters for infinitely deep oceans

is

f exp{- 5 f -4 (f/fm-i)
E(f) = ag2(2 ) f- -4 + en y exp[- 2- (3.1.45)

m ~ 2a2

The JONSWAP spectrum is illustrated in Figure 3.4 from which the five

free parameters are defined as follows:

fm - the frequency at the peak of the spectrum;

a - the Phillips constant of the high-frequency tail of the

spectrum, which asymptotically approaches a f-5 power law for

large f/fm;

y - the peak enhancement factor, or the ratio of the peak

spectral energy to the maximum of the corresponding

Pierson-Moskowitz spectrum with the same values of fm and a;

aa - the left-sided bandwidth of the spectral peak, i.e.,

a = aa for f < fm;

ab - the right-sided bandwidth of the spectral peak, i.e.,

a = ab for f > fm.
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Fig. 3.4 Definition of the JONSWAP parameters.
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The contribution of the parameters to the JONSWAP spectral shape is

easily realized by representing E(f) as a product of three functions

E(f) = a - T 1 * T 2 * T13 (3.1.46)

where a = equilibrium constant,

2 2

2 1 2

3 2a2

These three functions are schematically displayed in Figure 3.5, which

give a good impression of the order of magnitude for the various

parameters. Furthermore, inspection of the JONSWAP spectrum (3.1.45)

reveals that as y + 1, the spectrum reduces to the PM spectrum for a

fully developed sea state,

E (f) =ag2 (2 )4f -5 exp-5 -4] (3.1.47)
PM 4 f m

The origirva-form of the PM spectrum allows only the fm parameter to

vary as a function of wind speed, while a is fixed at 0.0081. The peak

frequency for a fully developed sea state can be determined from

fm 0 74 1/4 g = 0.13 =. f PM (3.1.48)
27r U 19.5  U

which accounts for the adjustment of the wind speed due to the

different anemometer heights (cf. Pierson, 1977). The peak frequency

in the original PM spectrum corresponds to the frequency for which the
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deep water phase speed of the waves equals the wind speed, i.e.,

fp = g/2ir U19.5-

The JONSWAP results showed that for growing sea states, the two

scaling parameters fm and a are explicitly dependent on fetch and wind

speed. Following Kitaigorodskii's (1962) similarity hypothesis, which

states that for a uniform, stationary wind blowing perpendicular off a

straight coastline, all wave parameters when non-dimensionalized by 9

and U should only depend on the dimensionless fetch,

g 3(3.1.49)

where x is the fetch in meters. Over the non-dimensional fetch range

10-1 < < 10, the dimensionless peak frequency v and a are

satisfactorily described by the power-law expressions (Figure 3.6).

V = -fmU 3.5 -0.33 (3.1.50)
g

a = 0.076 C022 (3.1.51)

An alternative scale parameter (Figure 3.7), relating the average total

wave energy to fetch, is given in non-dimensional form

- 27
e E 1.6 x 10~ 7 (3.1.52)

U

where E = JE(f)df is the total variance of the surface displacement.

Ample evidence from field and wave tank experiments support the

validity of the scaling laws for fetch and duration limited wave

conditions (Mitsuyasu, 1968, 1969, 1973; Ross, 1978; Liu and Ross,

-66-



10 . 102 103 10' 05

Fig. 3.6 a) Peak frequency vs. fetch according to Kitaigorodskii's
scaling laws.

b) Phillips' constant vs. fetch according to
Kitaigorodskii's scaling laws.

(From Hasselmann et al. 1973).
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1980; Kahma, 1981; Rottier and Vincent, 1982).

The remaining three shape parameters y, aa and ab, however,

show no discernible trend with respect to dimensionless fetch for the

JONSWAP data (Figure 3.8). The scatter in the parameters appears to be

real and, according to Hasselmann et al. (1973), is attributed to the

statistical indeterminacy associated with spectral measurements, since

they generally characterize only the properties in proximity of the

narrow spectral peak. A mean spectral shape was derived from the

analysis of the JONSWAP spectra, which fixes these parameters at

Y = 3.3; aa = 0.07; ab = 0.09 . (3.1.53)

Comparison of the mean JONSWAP spectrum (3.1.45, 3.1.53) with

other observed fetch-limited spectra of growing windseas (Barnett and

Wilkerson, 1967; Mitsuyasu, 1968, 1969; Ross et al., 1971; Schule et

al., 1971; Ross and Cardone, 1974; Rye et al, 1974; Houmb and 0yan,

1981) was generally very good. Favorable agreement was also obtained

when fitted to duration-limited windsea spectra (DeLeonibus et al.,

1974; Mitsuyasu and Rikiishi, 1978). The JONSWAP spectral shape

was successfully fit also to wave data taken during hurricanes

(Patterson, 1974; Ross and Cardone, 1974). This is a surprising

result, since hurricanes can generate complex wave fields which are

associated with a moving, circular wind-field. A more detailed

discussion of this subject can be found in Hasselmann et al. (1976).

Some examples of spectral fits to these types of wave fields are shown

in Figure 3.9.

Since the JONSWAP shape parameters y, aa and ab are too

sensitive to small perturbations of the spectral peak, an alternative
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shape parameter, which depends on the average spectral properties, can

be directly derived from the JONSWAP spectrum. Thus, we define

-4
Efm4  -4

x = -m = (2rf ) I(z) (3.1.54)
ag

where the total variance is given by

I- = g2 -4 -4 z-5 ()dE=ag 2(2yr ) 4fm _4f z_ 5 (z)dz
0

with z = f/fm and I(z) =f z--9 (z)dz is only a function of the
0

spectral shape.

The shape parameter X is readily rewritten in terms of

dimensionless scale variables

4
X = (3.1.55)

which imply a weak fetch dependence, X - upon substitution

of their fetch relations (3.1.50) - (3.1.52). For the mean JONSWAP

spectrum, using (3.1.54) yields a value of X = 1.96 x10-4. For truly

self-similar spectra, the shape should be invariant and hence, X

remains constant. For the sake of consistency, Hasselmann et al.

(1976) slightly modified the empirical power laws (3.1.50) and (3.1.51)

to the relations

v = 2.84 (-0.3 3.1.56)

and

a = 0.0662 -0.2 (3.1.57)

which now yield a fetch-independent value of X = 1.58 x 10-4, in
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accordance with shape invariance.

Conversely, the fetch laws for v, a and e can also be expressed in

terms of duration t or in its dimensionless form T = gt/U. An

approximate relationship which transforms fetch into an equivalent

duration, can be derived in the following manner.

Consider a turbulent, uniform wind blowing sufficiently long over

a. fetch x, such that at fetches less than x the sea is steady and

fetch-limited. A small distance 6x downwind, the sea remains unsteady

until the wave energy at x had time to travel the distance 6x.

Therefore, at (x + 6x) and further downwind, the wave field is said to

be duration-limited. Then, the minimum time required for a wave group

associated with a narrow-peaked spectrum to propagate from the upwind

boundary to a fetch (x + 6x) is approximately given by

t f dx (3.1.58)

0 cg

where cg is the average group velocity and is determined from

ff cg(fe )E(f,O )dfde

cg = ffE(fe)dfdO (3.1.59)

Assuming a mean JONSWAP spectrum and a cosine-squared angular spreading

function, cg is given in deep water by

gcg = 0.767 4irfm (3.1.60)

On substituting (3.1.60) and the v-fetch law into (3.1.58) and carrying

out the integration leads to a fetch-duration relation
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= 2.5 x 10-3 10/7 (3.1.61)

Introducing (3.1.61) in the empirical fetch laws yields the following

power laws for a fetch-equivalent duration

v = 17.14 T-3/7 (3.1.62)

a = 0.22 T-2/7 (3.1.63)

e= 4 x 10 T (3.1.64)

From laboratory measurements of duration-limited wind waves Mitsuyasu

and Rikiishi (1978) empirically found formulae for peak frequency fm

and wave energy E. They are

v = 0 T-.57
= 20 Tr (3.1.65)

e = 0.9 x 10-10 1.44

where we have assumed a drag coefficient cd = 1.83 x 10-3 to relate

the friction velocity u* to the kinematic surface wind stress

T = cdU2.

Similarly, Hasselmann et al. (1976) considered analytical

solutions for their two-parameter (fm and a) wave model under idealized

conditions, when the wind direction is constant and the wind speed

depends only on some power p of either fetch or duration. When the

wind velocity remains uniform, p = 0. This indicates independence of

fetch or duration, and so the solutions reduce to

V = 16.8 T -3/7

a = 0.203 T -2/7 (3.1 .66)

F = 4.08 x 101 0 T 10/7
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In a similar approach Carter (1982) also obtained duration-dependent

formulae, which are analogous to the set in (3.1.62) - (3.1.64).

Up to now, most of the wave-related parameters have been deduced

from empirical evidence. Since the wave spectrum resembles, in

appearance, a statistical distribution of events and is treated with

methods analogous to those well-known in statistical theory, other

useful wave parameters can be derived in terms of the moments of the

"distribution". The nth order moment mn of the spectrum is denoted

by

mn f n E(f)df . (3.1.67)
0

From the above definition it immediately follows that the zeroth-order

moment, m, represents the area under the spectrum or the total

(variance) energy. Thus, the significant wave height, H1/3 , is

related to the spectrum as

H =H =4 /Vr. (3.1.68)
s 1/3 o

The corresponding significant wave period Ts is given by the ratio

m
T 0.. (3.1.69)s 

in1

However, a more useful wave period parameter is the mean zero-crossing

period Tz, since it reflects more accurately the relative

distribution of energy within the spectrum. The zero-crossing period

Tz can be calculated from
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m

Tz m 1/2. (3.1.70)(i)2

Finally, two additional parameters, which provide information of the

spectral shape, can be determined from the spectral moments. The first

gives a measure of the irregularity of the sea state and is commonly

called the spectral width parameter es. Originally introduced by

Cartwright and Longuet-Higgins (1956), it is defined by

2
m21/2

s = i - - - ) (3.1.71)
o 4

If the spectrum is narrow, es + 0. This indicates that the wave

heights approach a Rayleigh distribution and the waves can be

considered regular. In the case of a broad spectrum, es + 1 and the

statistical distribution of heights approaches a Gaussian form, or the

wave pattern can be visualized as irregular. The usefulness of this

parameter is somewhat limited, since it involves the fourth moment,

which is extremely sensitive on the choice of the high-frequency

cut-off. Since the spectral high-frequency tail is proportional to

f-5, then taking the fourth moment means that the integrated result

will depend on the natural logarithm of the high-frequency cut-off.

For measured wave records, this cut-off limit is typically set at the

Nyquist frequency fN, which is readily calculated from the inverse

of twice the sampling interval. The. data of frequencies larger than

fN will be folded into the lower range and create ambiguities in

interpreting energy located there. This phenomenon is commonly known
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as aliasing. In order to avoid aliasing, a small enough sampling

interval should be chosen,, so that no energy is likely to be found at

frequencies above f . General ly, the Nyquist frequency is selected

two to three times larger than the expected maximum frequency in a

spectral time series. However, Rye and Svee (1976) have shown that for

the PM spectrum es varies between 0.4 and 0.8 depending on the choice

of cut-off frequency. In addition, they concluded that es poorly

distinguishes between a very sharply peaked JONSWAP spectrum (y = 7)

and a PM spectrum (y 1). For computational purposes, in this study

we set the upper integration limit for m4 at zu = f/fm = 7.5.

The second parameter, also a spectral width parameter, but derived

from the joint distribution of'wave period and amplitude (Longuet-

Higgins, 1975), is given by the expression

m m
V s =- (3.1.72)

m

Similarly, vs is a measure for the concentration of wave energy

within a narrow frequency band (vs + 0) or not (vs + 1). From the

analysis by Rye and Syee (1976) and recently by Lonquet-Higgins (1983)

it appears that vs is more sensitive in differentiating between

typical windsea spectra (see Table 3.1). An additional parameter,

describing the peakedness of a wave spectrum, was suggested by Goda

(1970):

2 00 2
- f f[E(f)1 df. (3.1.73)

m 20
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It turns out, as can be seen from the integral relation above that Qp

is independent of the high-frequency cut-off.

A summary of the-above wave parameters, including typical values

for the Pierson-Moskowitz and mean JONSWAP spectrum are given in Table

3.1. Osborne (1982) has developed similar mathematical expressions for

the spectral wave parameters and made comparisons with random waves

from a Monte-Carlo-type simulation.
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Parameter Definition Pierson-Moskowitz mean JONSWAP Fetch laws Duration laws
spectrum spectrum

Peak Frequency v = 0.13 0.16 2.84 E-0.3 17.14

Phillips Constant o 0.0081 0.0097 0.0662 C-0.2 0.22 T 2 7

Peak Enhancement E(fm) 1 3.3
Factor EPM m)

2

Total Energy e = 3.64 x 10-3 2.90 x 10-3 1.6 x 10 -7 4 x 10-10 T10/7

U

Spectral Shape = CV 1.28 x 10 1.96 x 10 1.58 x 104 1.58 x 104

Significant H = 4 /m 4.0 5.4 - -
Wave Height (m) 0

m
Significant T S= -- 7.7 8.3 - -
Wave Period (sec) s 1

Zero-Crossing T= 1/2 7.1 7.8 - -
Wave Period (sec) 2

m2m 1/2
Spectral Width vs =-- 20 -1 0.425 0.390 - -
Parameter m1

2

Spectral Width e =(1- 2 1/2 0.753 0.753 - -
Parameters o 4

Peakedness Q 2.0 3.14
Parameter

Table 3.1 Summary of theoretical spectral wave parameters as a function of fetch and
duration. Examples are calculated for a mean JONSWAP and Pierson-Moskowitz
spectrum, corresponding to fm = 0.1 Hz, U = 15.7 m/s, and fPM = 0.1 Hz,
U = 12.75 m/s, respectively.
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b) FINITE DEPTH

Our present knowledge of wave spectra and the processes governing

their evolution in shallow water is far from complete. Although an

underlying basic theory exists, there are only a few measurements

available to check'the validity of the proposed theoretical

formulations in a consistent manner. The first step in this direction

has been taken by Bouws et al. (1984), who applied the similarity

principle of KKZ to three distinct experiments of shallow water

wind-wave growth: the Marine Remote Sensing Experiment in the North Sea

(MARSEN), the Atlantic Remote Sensing Land-Ocean Experiment (ARSLOE),

and wave measurements during a severe storm in the North Sea near the

Dutch lightship TEXEL.

It was concluded that KKZ's similarity scaling could be extended

to the entire spectral range. From this they proposed the self-similar

TMA (TEXEL-MARSEN-ARSLOE) spectrum or finite-depth JONSWAP spectrum,

which fairly well describes windsea spectra in deep, intermediate depth

and shallow water.

Based on KKZ's similarity hypothesis the JONSWAP spectrum (3.1.45)

can be expressed in wave number space as

F (k) = 2 k-3  (kfmh) (3.1.74)

where * is a dimensionless shape function and (a/2)k-3 represents the

Phillips-Kitaigorodskii equilibrium range scaling factor. Pierson and

Stacy (1973) suggested an analogous expression of ' for a deep water PM

spectrum, i.e.,

*PM(kkm,h==) = exp[- . (k )-2] (3.1.75)
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where km is related ,to the peak frequency fm by the linear dispersion

relation

(2n fm) = g km (3.1.76)

From (3.1.74), it appears that wave spectra irrespective of water depth

always adjust to a constant shape in wave number space. Figure 3.10

illustrates the variations of the Pierson-Moskowitz and JONSWAP

spectra in wave number space for different water depths. It should be

noted how dramatically the total energy differs as a function of water

depth.

Applying the results derived in the previous section, a depth

dependent frequency spectrum E(f,h) can be obtained by transforming the

corresponding wave number spectrum, i.e.,

E(f,h) = F(k(f,h)) 3k(fh) (3.1.77)af

Since the dimensionless shape function is not affected by the

translation to different water depths, we have

$ (k,fm,h) = F(k(f,h)) _ F(k (f,o))
*[kffh)]) 3  3 4(k yfm~o (3.1.78)

[k(f,h)]- Wk ft)]

Substituting (3.1.78) for F(k(f,h)) along with the inverse transforma-

tion of F(k(f,wo)) into (3.1.77) yields

[kf.h)]-3 ak(fh)

E(f,h) = E(foo) { } (3.1.79)

[k(f,oo)] -3 ak(f,)
af
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where E(f,o) is the one-dimensional frequency spectrum for an

infinitely deep ocean and

-3 ak(fyh)
[k'f,h)]

(wh) = { (3.1.80)

[k(f,ao)-
3 3k(f,o)

with wh = 2frf fih7g. This is an alternative derivation of the

KKZ-factor but equivalent to (3.1.40). Equation (3.1.79) then formally

states that the frequency spectrum in a sea of constant depth h is

obtained by simply multiplying the corresponding deep water frequency

spectrum with the KKZ-factor (wh)- If the concept of

quasi-equilibrium also holds for finite depth, then we can extend this

to the JONSWAP shape, so that

E(f,h,a.) = O(wh) h E(f,,,a ) (3.1.81)

where al = {fm, a, y, aa, ab}, is the JONSWAP parameter set.

Similarly, Figure 3.11 impressively displays the changes of windsea

spectra with the same JONSWAP parameters in seas of different depths.

In addition to the large variation of total energy, it is noteworthy to

point out the migration of the actual spectral peak to slightly higher

frequencies with diminishing depth. This is hardly noticeable for the

JONSWAP spectrum, but becomes more prominent for the PM spectrum, where

the frequency of maximum energy is located at approximately 1.1 fm when

h = 10 m. This frequency drifting is still small enough and of little

consequence for practical applications. Hence, no severe errors should

accrue if the peak frequency is kept constant at its deep water value.

Bouws et al. (1984) have convincingly demonstrated that the translation
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of the deep water quasi-equilibrium spectra, by multiplying with the

KKZ-factor, provide generally good fits to wind-wave spectra in

constant depth and gently sloping coastal waters.

The fitting of the JONSWAP spectral shape to measured deep water

spectra and the associated extraction of the spectral parameters can

easily be accomplished by following the described procedure of MUller

(1976). In light of the relationship given in (3.1.81) we simply

perform an inverse transformation on a depth dependent spectrum by

multiplying with 4- 1(wh) in order to obtain its associated deep

water spectrum. Now we can proceed with the successive determinations

of the five free parameters. Some examples, shown in Figure 3.12,

provide an impression of how well observed spectra fit the finite depth

JONSWAP spectral shape.

Bouws and Komen (1983) recently described a depth-limited windsea

spectrum, which was generated by a severe storm in the Southern North

Sea. From their analysis, they found that a JONSWAP shape defined by

the parameters fm = 0.086 Hz, a = 0.01, y = 2, and aa = ab= 0-08

adequately describes the storm spectrum. However, in deriving the

JONSWAP parameters, they neglected to account for the finite depth

effect induced by ((wh)- If the effect of O(wh) would have been

included in their analysis, then the value of the enhancement factor y

would change to 3.35. This implies that the reduced value of y may

reproduce the KKZ effect at least within the range of wh

corresponding to intermediate depths. This fact has already been noted

by Bouws (1980). When examining the same set of storm spectra, he

consistently determined y values less than 2. Knowles (1982)

essentially confirms these findings for his data set, where a mean y
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value of 1.5 was calculated.

Examination of empirically determined equilibrium constants

indicate only a weak or almost no dependence on fetch (Knowles, 1982,

Ou, 1980). This essentially supports the stipulation of KKZ that in

accordance with Phillips' (1958) hypothesis, the equilibrium

coefficient should be independent of fetch. The average value of a as

reported by KKZ for finite depth sea spectra was estimated at

(4±2) x 10-3. Although Knowles (1982) cites an a Value in close

agreement with the one above, it appears that there is an error of a

factor of 10-1 or more. A rough estimate of a from his Fig. 3 gives

an approximate value of - 2 x 10-2. Results from laboratory

experiments by Ou (1980) suggest equilibrium range coefficients of

- (3t1) x 10-3. A dependence on depth has been implied from the

ARSLOE results (Vincent et al., 1982), where it was found that a

increases with decreasing depth.

At this point it is anticipated that any spectral parameter in

finite depth somehow must involve, either implicitly or explicitly, the

depth itself. In the absence of mean currents, the frequency remains

unaltered when waves propagate into shallow seas. Thus, the

appropriate variable, reflecting a dependence on depth, is the wave

number. From (3.1.74), we may compute the energy in the waves. Hence,

= i F (k)dk = f k~ *(k,fm,h)dk (3.1.82)
0 0

In a first approximation the above integral renders

E= fkm -3 p(y,fm,h)dy = K k -2 (3.1.83)
2m 0 (3..83
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where K accounts for any net contribution to E due to the spectral

shape factor j. Similar to the spectral shape parameter X for the

frequency spectrum, we recognize that K essentially represents the

shape parameter for the wave number spectrum, i.e.,

- 2 2

A Ekm 2 em K (3.1.84)
a = = 2

where e is the dimensionless variance of the surface displacement

defined in (3.1.52) and

2

- km-- (3.1.85)
m g

is the dimensionless wave number, corresponding to the peak frequency

fm of the FDJ spectrum and the water depth h.

By means of the deep water dispersion relation, v in (3.1.56) can

be replaced by Km, so that

Km = 318.42 E-0.6 (3.1.86)

Then substituting the deep water relations for e, a and Km into

(3.1.83), yields

co= 0.25 a, M 2 (3.1.87)

from which one infers that A = 0.25. The general form of (3.1.87) is

precisely the relation Bouws et al. (1984) investigated by computing

the values of c, a and Km from the combined TMA data set and plotting

them in terms of e versus aKm-2 . From a regression analys is, they
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found that the data was well described by the empirical relationship

= 0.14 (C 2) 0.88 (3.1.88)
m

The validity of extending the self-similar hypothesis to spectra in

finite depth is inferred by the degree to which (3.1.88) is linear.

Their results manifest not only that windsea spectra in shoaling water

are self-similar, but also that the proper variable to describe finite

depth spectral wave parameters should be the wave number rather than

the wave frequency. From the limited number of examples (eight) given

by Bouws et al. (1984), we recalculated A using (3.1.84) and found an

average value of 0.28, which is in close agreement with the theoretical

value in (3.1.87).

It is unfortunate that previous investigators of finite depth wind

wave spectra (Knowles, 1982; Rottier and Vincent, 1982; Bouws, 1980;

Goda, 1975) have not performed a similar analysis, as shown by Bouws et

al. (1984), but rather attempted to force their empirical relationships

to resemble the previously determined deep-water relations of various

spectral wave parameters.
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3.2 The Energy Transport Equation

In the previous section we introduced the definition and

derivation of the energy density spectrum for ocean waves. For the

problem of predicting waves in an ocean of arbitrary configuration, we

need to discuss the changes of the local wave energy balance due to

dynamical processes. A general theoretical framework is needed to

describe the evolution of the spectrum in (k,x,t) space, where k is the

horizontal wave number vector (kx,ky), x is the horizontal space

vector (x,y), and t is time.

Let us suppose that at time to, the total energy density of the

waves per unit phase volume [dkodxol is given by its initial value

F(k0 ,x0 ,to). At a later time t = to + dt, the phase volume has

moved and its total energy may be altered due to the inflow and outflow

of energy. Let Q(k',x',t') represent the net rate of change of energy

per unit phase volume resulting from any sources and sinks of wave

energy. Then the energy balance may be stated in integral form

tJ
F(k,x,t) = F(k ,x ,t ) + f Q(k',x',t')dt' (3.2.1)

0

where k', x', t' vary along the path of a wave group from an initial

value ko,xO,to to the point k,x,t. Since the source function in

the integral depends on the spectrum itself, equation (3.2.1) cannot,

generally, be regarded as a solution of the energy balance, except in

certain special cases.
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In the absence of any energy sources and sinks, i.e., Q 0, we

obtain

F(k,x,t) = F(k ,x ,t ) (3.2.2)

Equation (3.2.2) states that the spectrum F is invariant along the

trajectory of a wave group, despite dispersion and the influences of

refraction. This fundamental relation was originally derived by

Longuet-Higgins (1957) by means of a geometrical-optics method. The

same result can also be obtained more directly, as was pointed out by

Dorrestein (1960), by applying Liouville's theorem.

From the integral form of the energy balance equation (3.2.1), a

more convenient differential form may be derived. Expanding F(k,x,t)

in a Taylor series yields

dk dx
F(k,x,t) = F(k + - dt, x + -dt, to + dt)

dx dk
= F(k0,x0 ,9 +--dt + =VF dt +-v F dt (3.2.3)0 , .t 0 dt-tkt+ a _

Upon substitution of (3.2.3) into (3.2.1) and approximating the

integral by T(k,x,t) dt, we obtain

DF + V F + 4F T (3.2.4)
Dt t - x - -

where

w (k,x) = (k,x) (3.2.5)
k - -.

3 (kx a (3.2.6)
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Here DF/Dt is the Lagrangian rate of change of the spectrum relative to

a wave group moving along the ray paths determined by equations (3.2.5)

and (3.2.6). Vx and Vk are the horizontal gradient vector

operators of the position vector x and the wave number vector k,

respectively. The source function T now represents the net

contribution of energy added to or subtracted from the spectrum at the

wave number k due to all interaction processes which affect the

component k. Equations (3.2.5) and (3.2.6) describe the path of motion

taken by a wave group, and are usually referred to as the wave rays,

which coincide with the wave orthogonals, if there are no currents

present. For equations (3.2.4) - (3.2.6) to be valid, it is assumed

that both the amplitude and the wave number vectors of individual

spectral components are slowly varying functions of x and t, such that

1 F < 1 << 1 . (3.2.7)

Equation (3.2.7) implies that the wave field can still be described

locally by the spectrum F(k,x,t). Furthermore, it is assumed that the

water depth h(x) is also slowly varying, i.e.,

1 3h (3.2.8)

so that the geometrical-optics approximation is val id. A more detailed

account of the exact conditions when the geometrical-optics law

applies was formulated by Keller (1958) for surface gravity waves

propagating in a fluid of arbitrary depth h(x). For nearly-plane waves

and within the geometrical-optics approximation, the non-homogeneous
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dispersion relation connecting the local radian frequency w with the

wave number k is given by

W = W(k,x) = (gk tanh kh) 112  (3.2.9)

where k = jk and h = h(x) has an arbitrary dependence on the

horizontal space coordinates. One derives this same equation in the

case of waves in uniform depth. The group velocity associated with the

wave properties at fixed x follows from differentiation of (3.2.9) with

respect to k, and is already stated in (3.2.5). From the conservation

of crests equation

3k

+ V = 0 (3.2.10)a -x

an equation for the variation of k along the ray path can be deduced by

introducing w above and writing the result in tensor notation

3k. 9w 3k. 3w
I+ = 0 . (3.2.11)

at ak . ax. ax.
J I i

Noting that k is irrotational, i.e.,

ak. ak.
(3.2.12)

ax. ax.
I J

and making use of this result, (3.2.11) can be rewritten upon reverting

to vector notation

ak
- + c - k = - (3.2.13)37- -g -x- ax
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Equation (3.2.13) states that the rate of change of k at a position

moving with the group velocity cg is caused by spatial inhomogene-

ities, or refraction. Hence, in general, when w is also a function of

x, the characteristic curves in the (x,t) plane defined by dx/dt = cq

are not straight lines. Since time does not appear explicitly in w,

the frequency w remains constant on these characteristics. This can be

shown by taking the scalar product of (3.2.10) with cg so that we get

*+ c Vw = 0 (3.2.14)
t -g -x

and also noting that cg - 3k/3t = 3w/3t. A complete and detailed

treatment of the kinematics of wave trains in a general medium may be

found in Whitham (1960), Synge (1963) and Lighthill (1965).

Formally, the energy transport equation (3.2.4) describes then the

evolution of the energy spectrum of surface gravity waves due to

horizontal advection and refraction of energy and the net transfer of

energy from the various physical processes along the path of a wave

group, as determined from the characteristic equations (3.2.5) and

(3.2.6). These equations (3.2.5) and (3.2.6) are analogous to

Hamilton's equations for a material particle moving in the x plane.

This set of equations is applicable to a plane ocean and was originally

presented by Gelci, et al. (1956) and Hasselmann (1960, 1968).

Extension of this set for wave propagation on a spherical earth was

given by Groves and Melcer (1961) and Backus (1962). Willebrand (1975)

carefully examined the approximations, which yield the more general

form of the transport equations in terms of the action density
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variable, and derived the nonlinear corrections for the left-hand side

of (3.2.4), due to the generally nonlinear source functions. However,

it was concluded that the nonlinear corrections can be omitted for deep

ocean waves, but they should be taken into account for waves in shallow

seas.

In oceans, where the water depth is large (deep water limit)

compared with all wave lengths, the frequency is independent of

position and the refraction term [k-V F1 in (3.2.4) vanishes. In

the absence of any currents, the wave rays are straight lines. The

same result occurs in waters of finite, but constant depth. In coastal

waters, where the depth is small (shallow water limit) compared with

the wave length, the waves are refracted by the presence of a spatially

varying sea bottom. Now, the wave rays are generally curved lines. If

the spectrum is stationary, hence independent of position, the

advection term [x-_F] in (3.2.4) disappears.

Although, in general, the energy transport equation and the

accompanying set of equations governing the rays are solved

numerically, an important analytical result can be derived quite

readily. Consider a narrow swell peak centered around a wave number

so that

F(k,x,t) e 0 (x,t) 6(k - k ) (3.2.15)
- 0o- - -o

where 6 is Dirac's delta. Applying equation (3.2.4) to the swell beam,

we may integrate over wave number space to obtain a propagation

equation for the total swell energy co,
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+ (c e ) = T (3.2.16)
TT_ xI gI0 0

where cg = cg(kox) and To = f Tdk. This was the equation

proposed by Sverdrup and Munk (1947) in order to forecast sea and swell

from weather data to aid in naval landing activities on foreign

beaches. Hasselmann et al. (1973) reduced (3.2.16) into an equivalent

energy flux equation and applied this form to the analysis of swell

data.

The formulation of energy transport in terms of the directional

wave number spectrum, as presented in (3.2.4), is concise and can be

solved numerically for a wide variety of applications in both shallow

and deep water. However, a more convenient approach to the wave

prediction problem is performed by employing the frequency-direction

spectrum. In practice, it is easier to collect data of the directional

frequency spectrum, which then can be compared with numerical model

solutions. Besides being interested in the wave heights, we also would

like to know the periods and directions of the waves. These two

variables (period = inverse of frequency) are already incorporated in

the two-dimensional frequency spectrum by definition and therefore,

fall out quite naturally.

Then, the energy per unit surface area contained within an

elemental area of wave number space can be related to the polar wave

number space by

F(k;x,t) dk = F(k,9 ;x,t) k dk dO (3.2.17)

where 6 = tan-1[kx/kyl is the direction of the wave number vector

k = (kx = k cosO, ky = k sinO ) and k = Iki. Now (3.2.17) is
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readily transformed into frequency-direction space by equating

elemental areas. We have

F(k,6 ;x,t) k dk dO = E( f , ;x;t) df dO (3.2.18)

from which the following relation can be deduced

F(k;x,t) = J - E(f,O; x,t) (3.2.19)

where J is the Jacobian of the transformation

- 3 (f,0 _ 9c , C = c , c -. (3.2.20)
9 (k , k ) 2rrw g -g |kx y

Substitution of (3.2.19) into (3.2.4) and after some algebra, yields a

transport equation for the frequency-direction spectrum

D a aw
-(cc E) = -(cc E) + c - V (cc E) - - V (cc E) = 2r wS . (3.2.21)

Dt g 3t g -g -x g ax -k g

The refraction term in (3.2.21) may be expressed more appropriately in

terms of a change with respect to the directon 6. Noting that the

gradient operator Vy can also be written as

= a - 6a a (3.2.22)
-k 3k 3k M

where 36/3k = [-sin6/k, cos6/ki upon making use of the fact that

k k
6 cos- ] = sin 1[] . (3.2.23)
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Furthermore, the derivative -aw/3x can be transformed into

- I k ai I (3.2.24)

3xik - 3k 3x w

where the vertical bar and subscript mean holding w or k constant.

Evaluating the scalar product in (3.2.21) and using (3.2.24), we get

S go c 9gsine ak c cose ka~ae - 2~+ g k(3.2.25)
ax 9k k ax k a

Since k is irrotational so that V x k = 0, one can show that

De . i6 sne ak cosO D k
cosO 5. + sin6 a.2-= -sk + k 3k (3.2.26)a y k ax k ay

From simple ray theory, we know that the orthogonal trajectories

of constant phase lines define the direction of wave propagation

(Huygen's principle) and along these lines a moving particle

experiences no change of phase. Let this characteristic curve be

denoted by the function s(x) (Courant and Hilbert, 1968), where s

represents the arc length along the curve. Then a particle travelling

a distance ds in the time interval dt along such a curve, moves with

the phase speed

ds
c . (3.2.27)

Consequently, the cartesian coordinates of a particular ray can be

expressed as x = x(s), y = y(s). Taking the derivative with respect to

s gives the direction cosines of the ray,

dx cose ; = sin6 (3.2.28)dcs O ds
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Total differentiation along the ray may be expressed in terms of

partial derivatives along the fixed cartesian coordinates (x,y),

d dx a dy 3
ds dsax ds 3y

Applying (3.2.29) to the direction 6 and using (3.2.28) yields

dO cose -- + sine - .

ds 3x 3y

This is readily recast to denote the spatial curvature of 6 upon

substitution from (3.2.26)

dO sine 3k + cosO 3k
ds k x k ay

Since, from the dispersion relation (3.2.9), we have

3k = L E
= x c

A, 3C
2

C

3.2.29)

3.2.30)

3.2.31)

k ac
c ax

and

ak a 3
ay ay C 2 3y

c

k ac
c 3y

we can rewrite (3.2.31) as

do 1(iO 3c - 3c
ds c 3x 3y

(3.2.32)

Therefore, making use of the above, C

en as

c
- w *30 'g-~ (sine 3C - cose 3C)
x " -3 Zc axa

3.2.25) may equivalently be

(3.2.33)
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Introducing (3.2.33) in (3.2.22) and dividing by cg, we finally have

(cc E) + cose a-(cc E) + sine --(cc E)
c at g ax g ay g

1 c ac a 2irw
+ - (s inO - - cosO -) - (cc E) - S (3.2.34)
c ax ay a0 g cg

It should be remarked that the set of parametric equations

(3.2.28) and (3.2.32) completely specify the ray paths in a non-homo-

geneous medium, as described by (3.2.9). Furthermore, (3.2.28) is

equivalent to (3.2.5), since the direction of the group velocity c(g

is identical with the direction of the phase velocity c, if no mean

currents are present. The physical significance of this fact is that

both the waves and their associated energies propagate along the same

trajectories. This is not true for the case when waves advance into

regions where the medium is moving too.

For steady state (3.2.34) simplifies

-(cc E) - S (3.2.35)
ds g c

g

whi'ch- is the equation solved by Col I ins (1972) for cases of irregular

bottom contours. When S = 0, the result of Longuet-Higgins (1957) is

easily recovered, i.e.,

cc E = constant (3.2.36)
g

An equivalent form of writing (3.2.34) is presented by Krasitskiy

(1974),

3e 3e . 3= 32 3
- + c -- - c (sine - - cosa - e T (3.2.37)
at gi ax g ax ay ae e
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where e = e(w,e,x,t) = cgE(w,B,x,t) and 2 = Xn k.

In general, the evolution of the energy spectrum in waters with

varying bottom topography can only be solved by numerical techniques,

such as integration along the ray paths or by finite difference

methods. Analytical solutions of the spectral development are

contingent on simple geometries of the sea bottom. To demonstrate

this, let us consider a narrow coastal zone, where the bottom contours

are essentially straight and parallel to the shore line. Furthermore,

suppose that either the time of the wind acting on the waves or the

fetch is short, and that energy fluxes into or out of the waves due to

air-sea and sea-bottom interactions are presumed to be small enough and

so can be neglected together with any redistribution of energy within

the spectrum due to nonlinear wave-wave interactions. Then, it is

reasonable to set S = 0 and by assuming a steady-state wave field,

(3.2.34) takes the reduced form,

a sine ac a
cose (cc E) - --- I (cc E) = 0 (3.2.38)gx c a xe g6

Furthermore, we restrict ourselves to outside the surf zone, and

neglect any effects due to reflection from the shore. Then, (3.2.38)

represents only the advection and refraction effects. A solution of

(3.2.38) can be obtained from the method of characteristics. The

resulting two equations are:

de tane dc
c -(3.2.39)dx c d

and
d
- (cc E) = 0 (3.2.40)dx g
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The last equation is familiar and yields the solution

cocgo
E(f,ex) = E 0 (f,) 0

g
(3.2.41)

where the subscript o refers to a point, say x = xo, and where the

spectrum is known. The first equation can be integrated for an

arbitrary c(x) relation and gives

Xn sine = Zn c + constant

or

sine constant
= (3.2.42)

This is the familiar statement of Snell's Law. With the above result,

we can write (3.2.41) as

cocg c
E(f,e,x) = cc E (f,sin' [-0 sine])

cc o C
g

(3.2.43)

and in partilcular, if the origin is in deep water, we obtain from

(3.2.43), (3.2.9) and (3.1.41)

2 -1 C0E(f,,x) = K (w ). E (f,sin [-- sinG I)h 0 c

2
K (wh

(3.2.44)

(3.2.45)

2
X (Wh)

1 h2 +2 
1
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Several observations can be made about (3.2.44). One feature is

that the coefficient K2 (wh) represents the combined effect of

refraction and shoaling. Figure 3.13 shows a plot of K2 (wh)- In

depths corresponding to values of wh < 1, which are typical for

coastal regions, K2 (wh) rapidly increases beyond unity. This

simply implies that the shallow water spectrum ordinates are

substantially larger than their connected deep water ones.

The second fact inferred from (3.2.44) requires that the

inequality

c sine < Ill (3.2.46)

must be satisfied. Returning to our example, we note that the phase

velocity monotonically decreases with decreasing depth. This is the

case for waves propagating towards shallow coastal areas. At fixed

frequency f and incident angle 6, c is always less than co and if

(3.2.46) is initially true, it will remain so. However for certain

combinations (f,60 ,xo), (3.2.46) can be violated. The meaning of

this is that this spectral component is not present at location x.

Hence, we put E(f,6,x) = 0 for this particular set (f,00 ,xo).

Conversely, if the waves travel towards deeper water, then the

left-hand side of the inequality (3.2.46) increases up to sineo and

the condition is always met. Depending on the incident angle, some

waves escape into deeper water, whereas others are turned back again.

The later situation is analogous to the optical phenomenon of total

internal reflection. The location where this occurs is called a

"turning point", and the wave ray becomes asymptotically tangent to the
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Fig. 3.13 The depth-dependent spectral ordinate factor K2 (Wh)-
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underlying bottom contour. The fine formed by many such points is the

envelope of all these rays and is known as a caustic. It is well known

from linear theory of monochromatic waves that in the vicinity of a

caustic the geometrical-optics approximation breaks down. The wave

heights grow without limit at a caustic. In order to overcome this

inadequacy of the ray approximation, within the caustic region, a

finite value of the wave amplitude may still be obtained by treating

the monochromatic wave field as a boundary-layer type of problem. A

theoretical development of this type for surface gravity waves was

presented by Chao (1971), and experimental confirmation for simple

bottom geometries can be found in Chao and Pierson (1972). A wide

variety of problems concerned with wave refraction, due to slowly

varying depth contours and currents, is excellently treated in Mei

(1983).

Returning to a windsea spectrum with many different f and a

values, the above suggests that each pair of (f,O) values has its own

caustic. Hence, the entire spatial region must contain numerous

caustics. But from relation (3.2.44) we know that as long as the depth

is finite, the shallow water spectral density is bounded by K2 (wh)

times the deep water spectral density. Therefore, it readily follows

that (3.2.44) never becomes singular, even at (f,B) values where

monochromatic wave theory would predict infinite heights.

One might ask, what has happened to all these anomalies associated

with caustics? If we consider, in an analytical sense, E(f,6) and

Eo(f,60) as continuous surfaces in the frequency-direction plane,

we realize that each caustic shows up as a local plateau of finite but

small area. Thus, their contributions to the integrals of E(f,e) with
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respect to f and 6 are relatively insignificant. The primary merits,

using a spectral refraction approach for wind waves, are that the

results are always bounded for coastal areas with finite depths. The

problems associated with converging or crossing wave rays [i.e.,

causticsl are simply interpreted to mean that waves with spectral

components (fl, 61) propagate along different ray paths than waves

with components (f2 , e2). Typical examples of a conventional

refraction diagram and the reverse projection technique of Dorrestein

(1960) are shown in Figure 3.14.

Karlson (1969) solved equation (3.2.34) for steady-state

conditions and no source terms by finite differences for geometries of

straight coastlines with a uniform bottom slope and for concave,

straight and convex coastlines with a curved depth profile. Abernethy

and- Gilbert (1975) applied the form of spectral transformation given by

Longuet-Higgins directly. In order to determine the wave field at some

selected point inshore, they computed for all chosen combinations (f,e)

the rays trajectories emanating out to deep water. Since refraction is

reversible (Dorrestein, 1960), this provided a method to find the

corresponding deep water direction 60. If in deep water a

directional spectrum is known along the whole offshore boundary, then

the shallow water directional spectrum can be constructed quite

easily. An excellent review on the state-of-the-art for refraction

methods of wave spectra can be found in Dingemans (1978).
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3.3 Generation And Dissipation Of Wave Energy

The growth and decay of surface waves is the result of various

physical, linear and nonlinear processes transferring energy to and

from the wave field as well as redistributing energy within the

spectrum itself. These processes are due to two distinguishable types

of interactions: external interactions, involving both the components

of the wave field and the external field, and internal or wave-wave

interactions, involving wave components only. The dominant external

interactions in the context of ocean wave models can be identified as

wave-atmosphere, wave-bottom, and wave-ocean interactions. The major

process of the wave-atmosphere interactions is the flux of energy from

the wind. Interactions between the waves and the ocean are represented

by wave-current refraction and the dissipative mechanism due to

white-capping. In finite depth water the waves are affected by

numerous wave-bottom interactions which can be of different importance

depending on the depth and seabed properties. These mechanisms include

refraction, shoaling, bottom friction, percolation, bottom scattering

and bottom motion. Wave-wave interactions are prominent processes both

in deep and shallow water. Following Hasselmann (1968) we assume that

the net source function S can be expressed by the linear superposition

of all individual source terms Si, i.e., S =Z Si. These source

terms and others are discussed in a full theoretical context by

Hasselmann (1968). However, here we will present only a summary of the

various mechanisms and describe recent theoretical and empirical

results and their possible importance for wave prediction models.
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3.3.1 Energy Flux From The Wind

Wave generation takes place in several phases. The first phase of

wave growth is due to random normal pressure fluctuations of a

turbulent wind over a calm ocean surface. This is the mechanism

considered by Phillips (1957), who found that wave growth should be

considered in two stages: the "initial" stage and the "principal"

stage, where the elapsed time is respectively much less or much greater

than the time scale associated with the development of the pressure

fluctuations. The initial stages of development are characterized by

ripples or capillary-gravity waves of wave length Lr = 1.7 cm. Two

notable features of these waves are readily observed on any water

surface. For one, the rhombic pattern they form is a consequence that

the prominent waves move in the two directions cos-'(cm/Ua),

where cm =(4g w/pw)1/4 is the minimum phase speed of the

1.7 cm waves and Ua is an average wind speed at a height, of

approximately Lr above the sea surface. Two, if the wind would

suddenly cease to blow, these ripples would die out quite rapidly,

since at this stage of growth they still are under the Influence of

capillary effects.

The greatest growth occurs in the principal stage, when the speed

of a surface pressure component is now locked to the phase velocity of

the free surface wave of the same wave number. Resonance provides

continuous growth of the waves. The resulting induced spectral growth

is constant and increases linearly with time until the wave slopes

become large enough that nonlinearities, which are ignored in the

theory, become important.
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However, Phillips' theory could not supply the necessary rate of

growth observed in wind waves. Longuet-Higgins (1961) pointed out that

pressure fluctuations were much smaller than those originally

considered by Phillips in his theoretical evaluations. Also

attenuation of waves by adverse winds could not be explained by the

resonance theory. Yet, the resonance mechanism is still significant,

since this provides an efficient way by which waves can be generated on

an initially flat ocean surface.' Wave development continues to a

level, where more effective growth processes can take over.

The second phase of wave generation is attributed to Miles (1957)

who considered an instability mechanism coupling the wave field and the

mean boundary layer flow. In a series of papers, Miles (1959a,b, 1960,

1962) developed his shear flow instability model as an improvement over

the classical Kelvin-Helmholtz models (Kelvin, 1887 and Helmholtz,

1888).

Suppose air is flowing over a wavy sea surface, which in turn

deforms the immediate streamlines of the otherwise plane, parallel air

flow above so that they take on a similar wavy image (Figure 3.15).

The induced pressure disturbance in phase with the wave slope does work

on the waves, and consequently transfers energy to the moving waves.

Although the problem statement was quite general, an analytical

solution was only feasible for an idealized situation. To proceed,

Miles needed to make the following assumptions: the air motion is

quasi-laminar, inviscid and incompressible and in the absence of any

waves, the mean wind speed had a prescribed profile as a function of

height; the turbulent fluctuations, necessary to maintain the mean

shear flow, were neglected in the coupling of wind and waves. In
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addition the water motion was also assumed to be inviscid, irrotational

and incompressible, as well as the wave slopes were supposed to be

small enough so nonlinear terms can be disregarded. Furthermore, any

drift motions in the waters induced by the wind are ignored. The

resulting energy flux to the waves from this coupled mechanism yields

an exponential growth rate for the wave spectrum.

Later observations, however, indicated that the transfer of wind

energy to waves in an open ocean exceeded the theoretical transfer of

Miles' mechanism by at least an order of magnitude. In addition, the

mathematical description of Miles' shear flow model entails too many

difficulties which prevents a clear understanding of the physics

involved as in the case of Kelvin-Helmholtz theory. Lighthill (1962)

made an important contribution by giving a physical explanation of the

shear flow model in terms of fluid concepts. However, it is possible

to improve on Miles' original theory as progress is made, not only in

terms of measuring techniques, but also in our advancement in solving

more complicated problems. West and Seshardri (1981) generalized the

Miles-Phillips process to include fluctuations of the air-sea coupling

parameter. Although their growth rates were still not sufficient to

match those observed, the increased rates were higher than the ones

predicted by Miles' model. Janssen (1982) considered a quasi-linear

approximation for wind-wave spectrum and thereby extended the validity

of Miles' calculations to permit the analysis at large time.

Nevertheless, it appears 'that both the Phillips and Miles

mechanism must play an active role in generating wind waves, but each

dominating at different times during the growth stages. While the
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resonance model of Phillips provides the initial broad energy transfer

to the waves, the shear flow model of Miles continues the influx of

energy via a linear frequency-selective feedback mechanism. Miles

(1960) took the next step by combining both mechanisms into one model.

An equivalent expression for the wave number density spectrum resulting

from this model is given by Phillips (1977) as

1TP(k,o).
F(k,t) = T [sinh(Ewt)] (3.3.1)

- 2 2 t
Pw c

where P(k,w) is the wave number-frequency spectrum of the pressure'

fluctuations, c is the phase speed of the waves at wave number k and E

is a dimensionless air-sea coupling parameter representing the

fractional increase in wave energy per radian. From the above equation

the principal results of the Miles-Phillips model can be deduced. Let

T = (Ew)-1 mark the time when a component reaches the transition

where the growth changes from a forced to an unstable mode.

Thus, it follows from (3.3.1) that when the wind duration t is

small compared with. T, the prevailing active mechanism of wave growth

is only due to the influence of the pressure fluctuations. The wave

spectrum develops linearly with time,

irP(k,w)

F(k,t) = 2 2 t for Ewt << 1 (3.3.2)

w c

As the winds prolong and t becomes large, hence Ewt surpasses beyond

unity, the induced surface stress becomes effective, creating a

feedback link. The continuous flux of energy yields a more rapid
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growth rate, which is reflected by an exponential time dependence of

the wave spectrum,

F(k,t) = e for Ewt >> 1 (3.3.3)
P w c 2 E

Figure 3.16 illustrates schematically the two growth rates for a single

wave component. Contrary to past beliefs, the linear and subsequently

exponential wave growth is not succeeded by a gradual transition to its

ultimate equilibrium level. Barnett and Sutherland (1968) found from

spectral measurements of growing waves that the Miles-Phillips region

is followed by a pronounced "overshoot" beyond its eventual equilibrium

value and then decays back (see Figure 3.16). The rapid decay

indicates that a nonlinear process might be the responsible cause for

this phenomenon. Such a process could possibly be nonlinear wave-wave

interactions, which exhibit typically a positive energy transfer to

frequencies lower than the spectral peak and a negative transfer on the

high-frequency side.

Combined, the two wave generation processes are commonly known as

the Miles-Phillips mechanism and because both the resonance and shear

flow model are linear, the total input of energy from the wind is

usual ly written as the sum of two concurrently acting processes

S. = S + S (3.3.4)in 1 2

Hasselmann (1960) has shown that S1 ts-re-atedto -a l inear growth

parameter a*
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i P(kw) ,

S =272 = a (3.3.5)
P wC

Similarly, S2 can be represented by

S = EwF(kt) = F(kt) (3.3.6)

where 8* is the exponential growth parameter, and is the subject of

numerous experiments both in the field and laboratory. Hence, the

source function of the atmospheric input is generally written as

S. = a + 6 F(k,t) (3.3.7)in

where the coefficients a* and 8* are assumed to have known

functional dependencies on the wind field.

The two pioneering field experiments, directed to investigate

Miles' theory, were carried out by Snyder and Cox (1966) and Barnett

and Wilkerson (1967). The major conclusion reached from both data sets

was that Miles' (1957) theory was consistently underpredicting the

observed wave growth by at least one order of magnitude. The initial

phase of wave growth was found to be in good agreement with

observations. Additional field measurements (Barnett and Sutherland,

1968; Schule, et al. 1971; Ross, et al., 1971; Dobson, 1971; Elliot,

1972; Snyder, 1974; Dobson and Elliot, 1978) and laboratory experiments

(Shemdin and Hsu, 1967; Bole and Hsu, 1969) could only verify in a

qualitative manner Miles' exponential growth theory. From their data,

Snyder and Cox (1966) determined an empirical form for the exponential

growth parameter
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a= c -- (k - U - w) . (3.3.8)

This functional form seemed to fit well all subsequently observed

growth rates. However, the large discrepancies in the value of c*

(0.1 - 1) a nondimensional coefficient related to the portion of

momentum flux into the waves, stimulated new discutssions. Since c*

appears to be very sensitive to the choice of drag coefficients when

calculating the momentum transfers, a possible explanation for the

large variation in c* could be measurement accuracy.

In a recent experiment by Snyder et al. (1981) careful

measurements were made to resolve this question. A generally accepted

parameterization of Miles' mechanism for use in wave prediction models,

based on the results of Snyder et al. (1981), is given by

p k - U k - U
S. = 0.2 -T-w [ - - 1] F(k) for~ ~ > 1
in p w 1

k. U
= 0 for < 1 (3.3.9)

It should be noted that this formulation is valid in any water depth,

since the growth rate parameter a depends only on the ratio U/c, where

c = w/k is the wave phase speed.

The most recent experimental investigation of fetch-limited wave

growth was performed by Kahma (1981), who derived a growth-rate

parameter B for a f-4 spectrum which is different than the empirical

relation (3.3.8). Figure 3.17 shows a comparison of dimensionless

growth parameters a from Kahma (1981), Benilov et al. (1978a,b) and

Snyder and Cox (1966) with data.

-117-



10"
-- *-- Benilov et al. (1978)

20 00 * * Snyder & Cox (1966)
Kahma (1981)

--2..... . ---.-- ' ..- -
20- -.----

10 o'- -

11-3 *ll

Kahma (1981)
4- U Snyder & Ccx (1966)

10 0 Barnett & Wilkerson (1967)
3 Incue (1967)

A Schule, Simpson & De Leonibus (1971)
A De Leonibus & Simpson (1972)

10
0 1.0 2.0 3.0

U10/c

Fig. 3.17 Dimensionless growth rate parameter vs. dimensionless wind
speed. (From Kahma, 1981).
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Although a wave component acquires most of its energy in the

second stage of development where rapid, exponential growth takes

place, the wave does not continue to grow indefinitely. Eventually a

time will be reached, where nonlinearity and other processes either

dominate or place a limit on wave development. This limiting process,

as will be discussed in a later section, is wave breaking, which is

predominantly found in the high-frequency range of the spectrum.

Another process is triggered, when the fetch or duration of the wind

gets large, so that lower frequencies are engulfed by this phase of

rapid growth. Now wave-wave interactions prevail and produce a

nonlinear energy transfer within the spectrum, whereby energy is

removed from the central region of the spectrum (around the peak) and

transported to lower and higher frequencies. This redistribution of

energies, by itself causing an exponential growth, progressively shifts

the spectral peak to lower frequencies. The wave-wave interaction

process is recognized to explain adequately some more features during

the active growth stages of wind-generated waves.
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3.3.2 Nonlinear Energy Transfer And Wave-Wave Interactions

The existence of a nonlinear mechanism during the growth stages of

surface gravity waves has been conjectured'for a long time. The

necessary theoretical development and experimental confirmation

proceeded at an incremental pace with many researchers working on this

problem. An enjoyous and readable 6ssay on the history of weak

resonant wave interactions was written by Phillips (1981), who

contributed significantly to shape a mere idea into an extensively

applied phenomenon in a variety of geophysical contexts.

For ocean surface waves, the nonlinearity is introduced by the

surface boundary conditions.. Stokes (1847) investiaations demonstrated

that individual waves may distort and appear with sharper crests and

flatter troughs due to finite amplitude limitations. This nonlinear

effect can be shown to result from a small perturbation on the linear

solution. As long as these nonlinear terms are small, the response is

only seen in the bounded second-order distortions of the wave profile.

As perturbation parameter the wave slope, U = ka, is used, which gives

a measure of the nonlinearity. Hence, the smaller the wave slope, the

progressively smaller will be the contribution of the nonlinear terms

in successive expansion approximations. In terms of Fourier components

this means that harmonics of the fundamental wave are generated and if

the spectrum is narrow-banded, secondary peaks may occur at multiples

of the fundamental mode. Tick (1959) carried out a second-order

perturbation analysis for a random gravity wave field to explain a

secondary spectral peak, which was observed during the Stereo-Wave
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Observation Project (Chase et al., 1957). Kinsman (1960) observed

these as well and made extensive comments about their origin.

In order to alter the wave height, interactions of three wave

components are necessary to produce an energy transfer. Phil lips

(1960) extended the perturbation expansion about the linear solution to

third order. At this point Phillips found that under certain resonance

conditions unsteady excitations were possible to produce a linear

growth in a third wave of the interacting triad. These interactions,

however, could not describe the energy transfer in wind-generated wave

spectra. A fourth-order analysis was necessary to examine the effect

of resonantly interacting wave components in a continuous surface

gravity wave spectrum. In a series of three papers, Hasselmann (1962,

1963a,b) derived the theoretical formulation that permitted calculation

of nonlinear energy transfer rates in a random wave field. These

weakly nonlinear wave-wave interactions could only take place when the

following resonance conditions were identically or almost satisfied,

k + k = k + k-1 -2 --3 -4
(3.3.10)

1 + 2 W 33 + 4

and W. = (gk.) 1/2
J J

The details involved in deriving an expression for the energy exchange

among ocean surface wave components are complicated and the reader is

referred to Phillips (1977) and West (1981) for a more complete

account. In summary, the transfer integral, expressing the nonlinear

interactions between the components of a gravity wave spectrum has the

form
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aF(k ) -410

at = [F1F2 W 4F3 +W 3F4  - F3F4 (W2F1 +W 1 F2

x Q 6 ( + 2 3 L4 (1 + W2 - W3 ~3 4

x dk d 2 d3 (3.3.11)

and Q = w4(3g
2D/2 1w2w3w4)

2 where D is the coupling coefficient

and Fi = F(ki) is the variance spectrum at wave number ki.

Qualitatively, the nonlinear transfer integral can be interpreted as

the interaction process of a wave number tetrad which under certain

resonance conditions transfers energy from three "active" components to

a "passive" fourth component. These resonant interactions are also

conservative, and in the case of a continuous spectrum, Hasselmann

(1963b) has shown that total energy as well as other quantities, are

conserved over the entire wave spectrum. This result is very

significant since it implies that conservative resonant interactions by

themselves can obviously not generate or dissipate wave energy. Then

what is their significance with respect to wave dynamics? The major

effect of resonant interactions is the provision of a capability to

redistribute the energy among the spectral components. Experimental

evidence was obtained from the JONSWAP experiment, where the source

functions of partially developed wave spectra displayed a typical

plus-minus signature (Figure 3.18). The same behavior was also

predicted quantitatively by the nonlinear energy flux due to

resonant wave-wave interactions (Hasselmann, 1963b). This provided

the basis for the importance of the nonlinear interactions during

the stages of active wave growth. Now this was the mechanism
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which could redistribute the influx of energy from the wind at the

central portion of the spectrum to lower and higher frequencies.

Consequently, if the initial spectrum is sharply peaked, the resonant

wave-wave interactions will work towards a reduction or broadening of

the spectral peak. At the same time, the flux of energy to the

low-frequency forward face of the spectrum causes the spectral peak to

migrate towards lower frequencies (Figure 3.19). If the energy

transfer from the wind into the waves prevails and the energy exchange

among the wave components is not fast enough, then the waves will

ultimately dissipate their excess energy by breaking. This led to the

principal conclusion of JONSWAP (Hasselmann et al. 1973) that the

spectral shape is primarily determined by the nonlinear energy-transfer

mechanism. Furthermore, the evolution of the pronounced spectral peak

could be deduced from the self-stabilizing feature of the nonlinear

wave-wave interactions.

Before the set of extensive wave growth measurements from JONSWAP

two important laboratory tests were independently conducted by

Longuet-Higgins and Smith (1966) and McGoldrick et al. (1966) to verify

experimentally that resonant wave interactions indeed exist and

transfer rates were of the order of magnitude as predicted by theory.

A severe drawback in applying Hasselmann's theory to practical

situations is that for a general wave spectrum the formally

six-dimensional integral (3.3.11) can only be evaluated numerically

(Hasselmann, 1963b; Sell and Hasselmann, 1972; Webb, 1978; Masuda,

1981). Calculations of transfer rates for representative windsea

spectra required extensive computing times of the order of minutes.

Hence, incorporating the original form of the nonlihear transfer

-124-



0.7 -

0.6- 80

52

37

20

9.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7

f (Hz)

Fig. 3.19 Evolution of wave spectra with fetch for offshore winds
during JONSWAP. Numbers refer to fetches in kilometers.
(From Hasselmann et al. 1973).

-125-

U

E

LU

0.5-

0.4

0.3

0.22

0.1

0
0



expression in a modern wave prediction model was infeasible, unless the

computation speeds could drastically be increased. In the past years

this promoted efforts towards either a parameterization of the wave

interaction process or an approximation of the transfer integral

itself. Both approaches had the ultimate goal to arrive at a suitable

expression for wave prediction models.

In the limiting case of a very narrow gravity wave spectrum,

Longuet-Higgins (1976) has shown that a simple analytical solution of

(3.3.11) is possible. Consider the interactions to be confined to the

region around the peak, such that ki = k2 w k3 = k4 m km,

where km is the wave number of the spectral peak. For this case,

we obtain for Q in (3.3.11)

Q = 4irgkm 5 
. (3.3.12)

with D = Do= -4/3(wm8 /g 4 ) (Hasselmann, 1963b). This is

identical with Longuet-Higginst result (see Phillips, 1977, eq. 4.4.4),

when performing the proper tr.ansformation from the wave action density

per unit mass defined by A(k) = gF(k)/w.

Fox (1976) adopted the tr~prsfer equation previously derived by

Longuet-Higgins (1976) along with the narrow-peak approximation and

calculated the flux of energy for the mean JONSWAP and a sharply peaked

spectrum (Figures 3.20 and 3.21). Dungey and Hui (1979) also

considered narrow-peak approximations but perturbed the coupling

coefficient to first order in spectral width. Longuet-Higgins and Fox

neglected the effect of spectral width in their analysis. In summary,

it can be argued that although these approximations duplicate many of

the qualitative features of the exact integral, for quantitative

research of windsea spectra the approximations are not adequate.
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An alternative approach is to develop accurate parameterizations

of the exact results. The first step in this direction was taken by

Barnett (1966) who proposed to represent the nonlinear interaction

mechanism as the sum of two processes. Then, the general expression of

the rate of energy transfer is closely described by

3E(f;O) r r (f,) -T (f,0)E(f,6) (3.3.13)
at

where E(f,6) is the two-dimensional wave spectrum, r(f,e) characterizes

the rate at which the "passive" component receives energy and T(f,e)

denotes the reciprocal of a decay time, or the rate of transfer from

the "active" mode. The principal features of the wave field are

characterized by the parameters energy, mean frequency and direction,

respectively:

E = ff E(f ,e )dfd6 (3.3.14)

f = L ff fE(fe)dfde (3.3.15)
0

6= LJf6E(f,e)dfde (3.3.16)
0

Using dimensional arguments and the general qualitative features of

Hasselmann's results, the subsequent functional forms of r and T were

deduced,

r(f,e) = 4.76x104 f 8 E 3(1 - 0.42p)3 exp-4(1-p) 2+O.1p 5cos 4(6-6 )

f

for p = < 2.38 and 16-6O < (3.3.17)

= 0, otherwise
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-r(f,O) = 8.1x103 f9 E2 p7 1 - 0.53p)3[1 + 16jcos(O-0j1

f
for p= < 1.89 (3.3.18)

= 0, otherwise

These parametric expressions for- the nonlinear energy transfer are

quite compatible with practical wave prediction schemes. However,

their range of application to ocean wave spectra was limited to shapes

which were not too different from a fully developed sea. Nevertheless,

comparison with partially developed spectra showed reasonably good

agreement (Barnett, 1968; Mitsuyasu, 1968; Wu et al., 1977), although

the results could be enhanced by including spectral shape factors.

In a similar effort, Ewing (1971) used parametric representations

of the wave-wave interactions which have been developed by Cartwright

(unpublished) in terms of Fourier-Chebyshev series:

8 2 312 6
r(f,o) = f, p E 0 1 a T (q) cos m(-60 ) (3.3.19)

Sn=0 m=0 mn n o

9 7 212 6
T(f,e) = f, p E 2 1 1 b T (q) cos m( -60 ) (3.3.20)

n=0 m0 mn n 

1 9
for < p <

f 1
with f = 0.816f; p = q = 1(p - 2.5); and Tn (q) is the

Chebyshev polynomial of degree n and is defined by

(x +Vx2 7)n + ( x ) n

T (x) = (3.3.21)
n ,n
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The predetermined coefficients amn and bmn are given in two

matrices. Furthermore, it is assumed

r = T = 0 for p > 1/2

and

T (q) = 1 for p > 9/2.

Based on the above, it appears that the results from this

parameterization would not be too dissimilar to the ones of Barnett.

However, (3.3.17) and (3.3.18) should be computationally more efficient

and thus are preferable in a practical wave forecasting model.

More recently, Resio (1981) proposed another parameterization of

the nonlinear wave-wave interactions, but based on Webb's (1978)

entropy concept. In this approach, the interaction process is

similarly described by two transfers; these are called "diffusive" and

"pumped". Unfortunately, Resio's derivation is rather confusing and

difficult to follow. A major drawback in his formulation is the need

to determine several constants from comparison with the complete

solution. This may not be suitable for practical calculations.

Nevertheless, Figure 3.22 displays a comparison of Resio's

parameterized nonlinear wave interactions with Barnett's model for a

PM, a mean JONSWAP and a very sharp spectrum. It is clear from Figure

3.22 that Resio's parameterization shows better agreement for the PM

spectrum over Barnett's result, but over-estimates the negative lobe of

the mean JONSWAP spectrum by at least a factor 2. Similarly, for the

sharp spectrum, both parameterization underpredict the negative value.

On the whole this is an improvement over Barnett's parametric nonlinear

transfer, but the approximated transfer rates are still not of the

-131-



005 PIERSON-
MOSKOWITZ

004-

002?

00

E,. -

a'-/

Q0 0.4 a.6
.Z

PIERSON-
1MOSKOWITZ

004-

0.03 EIo L

00 E -

IS

L0 0.4 06
N:

Barnett's Parametrization

02

2

04 ;.01

-2

MEAN JONSWAP

y. 3.3

al.-.07
(r 1 .09

E.

.... .....--

iS

0.2 04 016 as
N1

Resio's Parametrization

021

2

-. 4

0
:-01

00

MEAN JONSWAP

y'3.3
*07

.L0

00 02 .04 00 00

1 ",

02

01

24

a

0

-8

00

SHARP
PECTRUM

'7.0
.07

- -

E

S--

00 04 08
N,

0

.4

'.4
.4
C

'4'

24

0

.a

0

0

I

.4

SHARP
SPECTRUM

2 a 7.0a m.07

.12

11

E

0

00 04 08
He

Fig.3.22 Comparison of' nonlinear energy transfer parameterization for
typical windsea spectra. Top row: Barnett's
parameterization. Bottom row: Resio's parameterization.
(From Resio, 1981). .

-132-

.4

.4

I.'

'.4

C

.

6

80

40

0

.40

-80

60

40

0

-40

00



desired accuracy, especially for calculating energy fluxes in a wave

model.

Currently, the most efficient parameterization of the nonlinear

transfer for a discrete spectral model and with sufficient accuracy has

been introduced by Hasselmann and Hasselmann (1981) (hereafter

abbreviated as HH). From the evaluation of the exact integration of

the nonlinear interaction process for numerous windsea spectra,

Hasselmann and Hasselmann (1981) concluded that-all windsea spectra and

their associated nonlinear transfer rates are interrelated and can be

deduced from a reference spectrum. Defining the mean JONSWAP spectrum

as the reference spectrum, it was found that the nonlinear transfer for

a spectrum with shape parameter y * 3.3 is just distorted relative to

the one of the mean JONSWAP. This distortion can be rectified by

simply transforming the frequency axis according to:

v = N(y) - (v -v ) + v (3.3.22)

and by multiplication of a scaling factor 2, such that:

SnI (v,6) = t(y) - (v ,O) (3.3.23)

where v* = f*/fm* and v = f/fm are the normalized frequencies of

the reference JONSWAP and windsea spectrum (y * 3.3), respectively, but

with the same a value. The zero-transfer point vo of the

one-dimensional transfer defines the transition from the positive low

frequency lobe to the negative high-frequency lobe, and is generally a

function of y. For the mean JONSWAP spectrum, this null point is

located at v 0 * = 1.0092. Snl(v,Q) and Snl*(v*,e) refer to
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the nonlinear transfer of the windsea and reference spectrum,

respectively. It should be noted that in the two-dimensional case they

have the same angular arguments, while the frequency arguments diverge,

as is easily seen from (3.3.23). The transformation coefficients I,

and vo are all dependent on the peak enhancement factor y and are

listed in Table 3.2.

This simple parameterization reflects quite accurately the

influence of the spectral shape on the nonlinear transfer. Inspection

of Table 3.2 shows that as y + 1, i.e., a fully developed sea, the

nonlinear transfer shifts towards higher frequencies [increasing vol,

the distribution becomes broader [decreasing 'Y] and the interactions

get weaker [decreasing E1. For comparisons of the transformed transfer

rates with the exact one-dimensional nonlinear transfers, the reader

should see to HH (1981).

Hasselmann et al. (1973) have demonstrated that for self-similar

spectra of the type

2 -5
E(f,e) = ag f 5 (f/fm, )

the nonlinear transfer Sn, can be scaled with respect to a and fm

according to

Sn1 (f,e) = a3g 2fm 4  (f/fm,) (3.3.24)

Introducing this relation in (3.3.24), we can establish a generalized

formula for the parameterized nonlinear transfer which now accounts for

different a values too. Hence, the one-dimensional form yields
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2.50

2.75
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4.00

4.50

5.00

6.00

7.00

.14135

.17783

.21845

.26047

.28773

.37653

.49220-

.61914

.75797

1.00000

1.07279

1 .24936

1.44900

1.93931

2.50794

3.89577

5.64199

.31378

.34799

.36257

.36256

.43563

.54560

.72983

.87806

.97729

1.00000

1.04830

1 .07432

1.13048

1.16076

1.16069

1.13023

1.19251

_______ II I if

Table 3.2 Transformation parameters for finite depth nonlinear energy
transfer as a function of y. (From Hasselmann and Hasselmann,
1981).
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S( v;a) = (a )( T) (Y ) S (v ;a ) (3.3.25)

a fm

The quality of this simple, efficient algorithm for the nonlinear

transfer is superposed onto Fox's results and illustrated in Figures

3.20 and 3.21. In particular, it shows its superiority over the

narrow-peak results for the "sharp" JONSWAP spectrum.

An important extension of the nonlinear energy transfer to finite

depth gravity-wave spectra was derived by Herterich and Hasselmann

(1980). For waves in water depths greater than approximatly one tenth

of the wave length (kh > 0.7), the finite-depth nonlinear transfer is

related to the infinitely deep ocean transfer rate by a similarity

transformation. These results apply for the asymptotic narrow-peak

aproximation of Longuet-Higgins (1976) and Fox (1976). From their

study Herterich and Hasselmann (1980) found that the finite-depth

transfer Snl(f,; kmh) 2 Snth could be determined from the

infinite depth case, Snl(f,0 ; kmh = o) 2 Snl" by multiplying

with a depth-dependent transformation factor, i.e.,

SnI = R(kmh) - Snlw (3.3.26)

where kmh is the dimensionless depth and km is the wave number

corresponding to the spectral peak frequency fm. Figure 3.23 shows the

theoretical ly determined ratio R from the narrow-peak assumption of

their analysis and the empirically derived values of R from the exact

calculations by HH (1981). The results of the exact integral

computations indicate that the restrictions on the transformation can

be relaxed to kmh = 0.5, which corresponds to waves with wave lengths

-136-



R

100.-
strongly nonlinear

'A
1

weak
I
I
I

'I

V

.
0.2

.
0.5

I

interactions

_-

1
2

5
5

Fig. 3.23 Ratio R of the nonlinear transfer in finite depth to the
transfer rate in deep water. Narrow peak approximation by
Herterich and Hasselmann (---); exact calculations by
Hasselmannhand Hasselmann (-). o = max and x = min values
of exact Sn '

-137-

10-

5-

2..

0.5-

0.2

0.1.

I

10 kmh

now



less than .30 times the water depth. For values of kmh less than 0.5,

the nonlinear energy transfer rapidly intensifies and the waves deform

by becoming steeper until they break. In this region the interactions

gain in strength and the governing weak interaction theory breaks down.

In conclusion, the relation given in (3.3.26) can readily be

generalized using the above results, to express the nonlinear energy

transfer for finite depth waves. For examples, the reader is referred

to HH (1981).
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3.3.3 Dissipation By Wave Breaking

One of the most visual and interesting features of surface gravity

waves in a deep ocean is the formation of "white caps" which result

from air entrainment during the breaking process. Similarly, as waves

approach the shore, they grow to a limiting steepness which triggers

the onset of breaking. At this point, the wave collapses, releasing

its energy through a plunging or spilling motion. In general, wave

breaking is regarded as the process limiting the wave amplitude. But

it takes place with such a tempestuous force and on a time scale so

short that a rigorous study of the breaking process in the field is

extremely difficult. Recent observations of .white caps at sea have

focused on their spatial distribution as a function of wind speed and

intervals of recurrence (Donelan et al., 1972; Ross and Cardone, 1974).

However, more progress has been made in studying wave breaking

under controlled laboratory conditions (Banner and Phillips, 1974; Van

Dorn and Pazan, 1975; Wu et al., 1977; Melville, 1983). Although these

studies have significantly contributed tdthe understanding of the

breaking process for individual or a group of waves, no experimental

results under typical ocean conditions are available to test its effect

as a dissipative mechanism for the wave spectrum. In the context of

practical wave prediction schemes, the wave breaking process is

commonly represented by a weighted or reduced generation source

function. This condition may be stated as
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S = S. - S = (1-r) S.
* *

= (1-r)(a + 6 E)

where Sin is a Phillips-Miles type wave generation source term and

the coefficient r + 0 for E << E., or r + 1 for E > E.. The

saturated wave spectrum E. after Phillips (1958) is given by

E = E (f,O) = ag 2 (2 ) f R(O) (3.3.29)

where O(N) is the angular spreading function. The determination of the

empirical coefficient r varies from one model to another. Barnett

(1968) used the following expression for r:

r = d 1 exp I-d2 (E - E)/E] (3.3.30)

where E =

d2 = 0.5.

expressed

E(f,Q), and the constants were chosen as di = 0.8 and

Alternatively, Ewing (1971) and Cardone et al. (1976)

r in their models as

(3.3.31)r = ( )2
00

whereas Collins

adopt that r is

r =

(1972) and Cavaleri and Malanotte-Rizzoli (1977) simply

appropriately given by

1

0

for E < E00

for E > E
- 00

(3.3.32)

A semi-theoretical treatment of the energy loss due to wave

breaking is given by Longuet-Higgins (1969). A theoretical account of
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white capping and its effect on the spectral energy distribution of

surface gravity waves was first presented by Hasselmann (1974).

Although, wave breaking is locally a highly nonlinear process,

Hasselmann has shown that the dissipation can be related to the wave

spectrum in a quasi-linear manner,

S (k) = - Y (k) F(k) (3.3.33)wb -

where y d is a damping coefficient which depends only on wave number

and integral spectral parameters, such as the average wave steepness.

For the case, when white capping occurs on space-time scales which are

short compared with the characteristic periods and wave lengths of the

spectrum, Hasselmann (1974) found that yd - k. A complete

analysis of Yd(k), however, is still an oustanding problem in wave

research. Transforming (3.3.33) into frequency-direction space yields

S (f'e) = X (2ff )2 E(f6(3.3.34)Swb d E(f,8)

Unfortunately, Xd cannot readily be computed from first principles

and must indirectly be determined from the energy balance in the

high-frequency equilibrium range. Applying the assumption that the net

contribution of wind input, nonlinear transfer and white capping

vanishes at high frequencies, this condition may be stated as

hf hf hf hf
S + S + S = S = 0 . (3.3.35)

in nl wb net

Furthermore, if it is assumed that two of the contributing source

functions in (3.3.35) are known, the remaining one can therefore be
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calculated. As a result, Hasselmann found

d = fm {3.5 x 10o [1 - 4.8 x 10 2 v 1 + 0.5a 2  } (3.3.36)

with a the Phillips constant, fm the peak frequency, v = fmU/g and Ks

a spectral shape factor between 0.12 and 0.16. It is clear that Xd

is really not a constant, but rather depends explicitly on spectral

parameters as fm, a and shape factors. This is a consequence of the

fact that the nonlinear energy transfer in the high-frequency portion

of the spectrum is coupled to the wave-wave interactions near the

spectral peak.

In an effort, describing the relative importance of various

physical processes contributing to the growth and dissipation of waves,

Bouws and Komen (1983) appplied (3.3.34) to a depth-limited windsea.

Since no vanishing equilibrium balance could be found with Xd given

by (3.3.36), Xd was subsequently determined from the requirement that

2
I S (f.) = minimum, for 0.8 fm < f. < 2fm (3.3.37)

net i

such that

2fm
f S df = 0.

0.8fm net

This gave the value of Xd = 1-9 x 10-4 sec, which is only a factor

of 2 smaller, than the values one would calculate from (3.3.36) using

their spectral parameters of fm = 0.086 Hz, a = 0.01, y = 2 and U =

25 m/s.

Under considerations to simulate observed fetch-limited wave

growth in deep oceans, Hasselmann and Hasselmann (1984) proposed the
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following parameterized dissipation function

- 4
f 3 E W ,1

Swb (f,) = - d0( M)3 f 6 E(fe) (3.3.38)

with the constant do = 7.8 x 109. Here E defines the total energy

and wm = 2irfm is the peak radian frequency. In an attempt to

investigate the existence of a fully-developed spectrum, Komen et al.

(1984) generalized the specification of the wave damping coefficient as

Y d w (--) n m (3.3.39)

0 a PM

where & is the integral wave steepness parameter defined as

- 4g2 i-1
a =E /g. , = E fwF(k)dk , d is a constant and n,m are exponents

which must be determined. The theoretical value of the wave steepness

for the PM-spectrum is APM = 4.5 x 10-3. The objective of their

study was to determine the conditions under which an equilibrium

solution can exist for the energy balance equation. In summary, the

results of their analysis demonstrated that for the combination n = m =

2 and d = 3.33 x 10-5, a quasi-stationary solution could be

obtained. For this case, the net residual of 'the energy balance was

two orders of magnitude smaller than the individual source terms.

Surprisingly enough, they found that the resulting one-dimensional

spectral distribution closely resembled the shape of the conventional

Pierson-Moskowitz spectrum. On the other hand, the directional

distribution did not reproduce the functional behavior of commonly

accepted angular spreading factors. It appears that such an approach

should lead to a more definitive specification of the source functions
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and their directional dependence for waves in deep water. A

complementary investigation should also be carried out for waves in

finite depth to examine in detail the influence of the sea bottom

characteristics on the wave spectrum.

3.3.4 Dissipation By Finite Depth Mechanisms

As ocean waves propagate onto the continental shelf, waves, with a

wave length greater than twice the local water depth, will feel the

presence of the sea bottom and begin to interact with the sea bed

characteristics. In a wave spectrum, the low frequency components are

transformed first, while the high-frequency portion still behaves as in

deep water. To demonstrate this numerically, let us define the

high-frequency cut-off at approximatly twice the peak frequency. Then,

for a wave spectrum with a peak frequency, fm = 0.1 Hz, all spectral

components would feel the bottom in waters less than 20 m deep. Both

linear and nonlinear mechanisms will affect the transformation of the

wave spectrum in finite depth seas. Among the linear transformation

mechanisms one can enumerate the dissipative effects of percolation,

soft bottom motion and bottom scattering and the non-dissipative

impacts due to refraction and shoaling. The nonlinear processes, such

as wave-wave interactions and bottom friction are equally dominant when

waves enter shoaling waters. A survey of these mechanisms can be found

in Shemdin et al. (1980). In this section we shall only focus on the

dissipative mechanisms resulting from percolation, bottom motion,

bottom scattering and primarily bottom friction.
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When surface waves propagate over a rigid porous seabed, the

varying wave pressure can induce a considerable flow in the underlying

permeable soil layer. In turn, the induced flow will dissipate some of

the wave energy. This mechanism is called percolation and was first

treated by Putnam (1949) for an isotropic and infinitely deep sand

layer. Reid and Kajiura (1957) re-examined the same problem but in a

more rigorous approach, and disclosed an error in Putnam's dissipation

function. The average rate of energy dissipation due to percolation is

equal to the average rate of work done by the upper fluid on the fluid

within the permeable medium at the interface. In this manner one

obtains

3E tanh /a~7b kd
= -k /'F 2 E(fe) (3.3.40)

cosh kh

where a,b are the horizontal and vertical permeability coefficients,

respectively, and d is the depth of the permeable layer. If the porous

medium is isotropic, a = b, and the layer is sufficiently deep, i.e.,

kd > 2, the equation simplifies

= - 2 E(f,6) (3.3.41)
cosh kh

which is equivalent to Putnam's result, except for a missing factor of

4. Then the fractional decrease of wave energy per radian can be

defined as the damping ratio

1 aE 2 w a(3.4

p = E at g sinh 2kh (3.3.42)
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Sleath (1970) investigated the wave-induced flows in a sand bed under

laboratory conditions. For a coarse sand with mean diameter D5 0 =

1.13 mm and a fine sand with D50 = 0.39 mm, the following isotropic

permeability coefficients of 1.1 cm/sec and 0.121 cm/sec were

calculated for the coarse and fine sand, respectively. Figure 3.24

illustrates the strength of the damping coefficient cp for an 8 and

10 second wave. The sand properties are assumed isotropic, correspond-

ing to typical values for coarse and fine sands.

Real sea bottom sediments rarely consist of just rigid sand

layers, but are more likely to resemble that of a poro-elastic medium.

In this case, the pressure forces of the waves may deform and displace

the bottom. Wave damping results due to the imperfect elasticity of

.the bottom soil. Recently, much effort has focused on the dynamic

behavior of marine sediments. The general analytical treatment of this

type of wave-seabed interaction is derived from the theory of Biot

(1962), which describes the propagation of elastic waves through

fluid-filled porous media. Mei (1983) gives a detailed account of the

basic equations governing such a deformable porous medium, as well as

several examples relevant to ocean engineering. Bottom motions are

also of interest in seismology. Theories describing the origin of

microseisms can be found in Longuet-Higgins (1950) and Hasselmann

(1963c). Wave-induced stresses in a porous sea bed have also been

dealt with by Madsen (1978). Calculations of wave transformation over

soft mud bottoms were performed by Hsiao and Shemdin (1980) and

Yamamoto (1981). The energy transfer from surface gravity waves to the

sediment was also calculated by Rosenthal (1978). When compared with

the attenuation rates for the JONSWAP results, it was inferred that
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wave damping due to bottom motions was at least one order of magnitude

smaller for the JONSWAP site. However, it seems that bottom motions as

a means of wave damping are only dominant in the vicinity of large

river deltas such as the Mississippi and Orinoco. Furthermore, a clear

determination of the mud properties such as viscosity, shear modulus,

density and layer thickness is extremely difficult. Very often these

properties are inferred from observed energy dissipation rates.

Another potential sink of energy could be attributed to the

scattering of surface waves by topographical irregularities. This

particular mechanism was studied by Long (1-973) and applied to the

JONSWAP data. For this case, it could not conclusively be shown that

bottom scattering is the process responsible for the observed swell

attenuation. A more definitive verification of this mechanism is

needed and awaits more accurate measurements of the directional wave

characteristics at both inshore and offshore sites, as well as better

estimates of the bottom spectrum.

By far the most studied and explored wave-bottom interaction

process is bottom friction. Generally speaking, bottom friction is not

only important in damping shallow water surface waves, but also plays a

significant role in sediment transport, bottom boundary-layer flows and

shelf currents. Once the wave motion feels the bottom, a bottom

boundary-layer is generated as result of a non-zero bottom shear

stress. The viscous effects within this boundary-layer causes a

dissipation of mechanical energy and hence attenuates the waves. In

nature this boundary layer is almost always fully rough turbulent and

analogous to boundary layer theory of steady flows, the bottom shear

stress depends upon the roughness of the boundary. In turn, the
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boundary roughness must then be expressed in terms of the actual,

physical features of the sea bed, i.e., sediment size, bedform geometry

(ripples), and sediment transport (Grant and Madsen, 1982). Therefore,

it is essential for accurate predictions of wave energy dissipation due

to bottom friction that the fluid-sediment interaction, e.g., bedform

geometry, be accounted for as precisely as possible.

The shear stress Tb acting on the ocean bottom under a wave can

be expressed as

= 1 (3.3.43)-b 2 w I ab Ig (33.3

where fw is the wave friction factor and 2b is the near-bottom

wave orbital velocity. If the flow is fully rough turbulent, the

friction factor fw depends onty on the relative boundary roughness

kb/Ab, where Ab represents the near-bottom excursion amplitude

and kb is an "equivalent roughness height" which is analogous to the

"equivalent grain size roughness height" concept introduced first by

Nikuradse (1933). From linear wave theory, an estimate of the particle

excursion length for a monochromatic wave is given by

A =1 H (3.3.44)
b 2 sinh kh

with H the wave height. It is clear that fw relates the bottom shear

stress to the roughness of the sea bottom. This immediately implies

that a successful transformation of deep water wave conditions to

shallow water involves an accurate calculation of the friction factor

fw- The theoretical work of Kajiura (1964) provided a consistent

approach for determining fw in an oscillatory flow. In his model
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Kajiura introduced an eddy-viscosity concept to relate the tangential

boundary stress to the velocity gradient within the boundary layer.

Semi-empirical evidence supporting Kajiura's findings was furnished by

Jonsson (1966) and Jonsson and Carlsen (1976) from two laboratory

experiments on artificially roughened bottoms. A purely empirical

study was performed by Kamphuis (1975), who measured the shear stress

directly. In a theoretical study improving his original model Kajiura

(1968) obtained predictions in good agreement with Jonsson's

experimental results. In summary, based on Jonsson's data, the

friction factor fw is commonly determined from the relation

A
Fw + Iog 10F = log 10 k - 0.08 (3.3.45)

where we use the definition Fw = (16fw)-1 1 2 . In a similar

analysis for waves in the presence of currents, Grant and Madsen (1979)

derived an expression relating the friction factor to the bottom

boundary roughness, when the flow is fully rough turbulent. In the

absence of currents, i.e., pure wave motion only, their expression for

fw reduces to

f 0.08[Ke2 1/2 2 1/2 -1 (3.3.46)
w = 0.08[Ker 2E + Kei 24 1(.34,w 0 - 0

which is valid for kb/Ab < 1. Here Ker and Kei refer to Kelvin

functions of zero'th order. The dimensionless roughness length Eo

for fully rough turbulent flow is taken as

= 
(3.3.47)

-150-



where X is a characteristic length scale of the wave boundary layer and

is given by

I = K u *, / (3.3.48)
*,max

in which K = 0.4 is von Karman ts constant and

Uf A W (3.3.49)
*,max 2 w b

For small Eo, Grant (1977) has shown that (3.3.46) reduces to the

form of (3.3.45), except for the constant factor 0.08. Figure 3.25

shows a comparison of commonly accepted, but different formulae for

fw. In essence, this ascertains that the key factor for the bottom

friction mechanism is an accurate prediction of the .roughness on the

ocean bottom. To exemplify this point, we consider the model proposed

by Grant and Madsen (1982) as illustrated in Figure 3.26, which

qualitatively describes the interplay between the near-bottom flow

field and the resulting effective bottom roughness for non-cohesive

sediments on a flat sea bed. For near-bottom flow intensities which

are low and not strong enough to produce sediment movement, the bottom

remains flat and stable. The resistance experienced by the wave motion

is that due to skin friction of the sediment grains, and the friction

factor fw is small. As the wave intensity over the bed is increased

above a certain threshold value (Madsen and Grant, 1976), small ripples

appear due to bottom sediment movements. The bottom roughness is now

on a scale comparable to the ripple height rather than the sediment

grain size. The resulting resistance experienced by the wave is now

attributed to the form drag, hence a larger fw. Further increase of
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the wave orbital velocity results in a gradual trimming of the ripples,

while sediment transport takes place at a higher rate. Eventually the

bottom bedforms are completely washed out and the bed becomes flat

again. Now the bottom roughness is entirely governed by the suspended

sediment motion or sheet flow. The friction factor fw is now

relatively small again. Consequently, it should be realized that an

empirically determined friction factor in a wave model may dangerously

underpredict or overpredict the sea state and may lead to false

conclusions, especial ly in terms of engineering designs. Grant and

Madsen (1982) developed an efficient model to predict the boundary

roughness in unsteady, oscillatory flows over movable, cohesionless

beds (cf. Figure 3.25).

In a rigorous theoretical treatment, Hasselmann and Collins (1968)

derived an expression for the dissipation rate of a wave spectrum.

The average rate of energy dissipation in an oscillatory wave boundary

layer (Kajiura, 1968) or for a random wave field (Hasselmann and

Collins, 1968) can be expressed as

3E -E = - I * u (3.3.50)
at diss -b -b

where the overbar denotes averaging over the wave field. Following

Hasselmann and Collins (1968), equation (3.3.50) can be rewritten in

terms of the frequency-direction spectrum

fW2
= 1 w E(f,8) - <u > (3.3.51)

g sinh kh b
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and <ub> represents the mean value of the bottom velocity spectrum,

i.e.,

2 2
2 1 2 2

<u b> = {<f |> + cos (6 -r )<-> + sin ( _)<->} (3.3.52)

where C represents the angle for which the condition <u 1u2 > = 0

is satisfied. Here, u1 and u2 denote the components of the

near-bottom orbital velocity in the direction of c and perpendicular to

C, respectively. The angle C, which is measured clockwise, may be

derived from the orthogonality condition and is conveniently given by

tan 2 = - v 12 (3.3.53)

11 2 2

with the following definitions:

22
V = 2 E(f,e) cos 26 dfdO

sinh2 kh

2
V 12 = f w2 E(f,0) sine cosO dfdO (3.3.54)

sinh kh

22
V2 2  = 2 E(f,6) sin2 dfd6.

sinh kh

It should be noted, that the equivalent expression of (3.3.53) given in

Collins (1972) (his equation 13) is incorrect. For the zero-current

case, closed form analytical soutions for (3.3.52) may be obtained,
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<Lb> =

2

1 1 >=

2
.0U 2 >

1. 
F

(2/ ) 1/2X

(2/ )1/2 X

(2/ )1/2 X

1E(x)

1E(X) K(x) 2

x x

1--' [~x)- E(x)]
2

where x = (1 - X2 1 ) 1/2 and X and X 2 are given by,

X 1= v 11cos 
2  - 2v12s n cos + V22sin C

X2 = 1 sIn C + 2v12sinCcosC + v22cos .

Here K(x) and E(x) are the complete elliptic integrals of the first and

second kind, respectively. In a similar manner to Collins (1972) we

approximate (3.3.52) by a representative near-bottom velocity value

which is expressed as

U br = <Ub> = { 2 f 2 E(f ,h) } 1/2
sinh kh

(3.3.56)

with E(f,h) the finite depth JONSWAP spectrum (3.1.81). Analogously to

(3.3.42), we may define a dimensionless damping ratio for bottom

friction,

f

C = - 3E ub
f 3g sinh kh

Here C not only depends on the wave frequency and friction factor,

but also on the wave height through ubr. Figure 3.27 shows the
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Fig. 3.27 Dissipation rate due to bottom friction as a function of
wave friction factor, wave period and wave height. (Results
shown correspond to a wave period T = 7 sec. and a wave
height Hs = 2 m.)
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variation of C as a function of fw versus dimensionless

frequency wh for a wave height of 2 m.

Hasselmann et al. (1973) applied (3.3.51) to the JONSWAP data, to

investigate the mechanism responsible for the observed swell decay.

They assumed that tidal currents were dominating the wave orbital

velocities in the near-bottom boundary layer an assumption which can

not be considered valid, in view of the results obtained by Grant and

Madsen (1979). From the analysis of their swell data, an empirical

swell decay rate was derived,

r d n = cfgV (3.3.58)

where I is the energy flux in a narrow swell band and describes a

normalized distance coordinate, referenced from the shoreline, and V is

the mean current near the ocean bottom. From the analysis of 678 swell

spectra during JONSWAP an average value r = 0.038 m2 /sec 3 was

computed. For tidal currents with velocities of 20 - 40 cm/sec

typically measured during JONSWAP, (3.3.58) yields friction factors

fw in the range 0.04 - 0.02. Recently Bouws and Komen (1983)

represented the bottom friction mechanism based on empirical grounds

from the JONSWAP results by

Sbf = -r (g sinh kh2 E(fQ) . (3.3.59)

Comparing the above with the general expression of bottom frictional

attenuation defined in (3.3.51) it follows that

f =r 2 <ub (3.3.60)w <,b>
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When using the JONSWAP parameters for fm = 0.086 Hz, a = 0.01 and

y = 2.0 as reported by Bouws and Komen (1983) for the Texel storm

spectrum, one calculates fw = 0.015. Similarly, using the observed

significant wave height Hs = 6.8 m and a grain size of 0.25 mm, the

approach suggested by Grant and Madsen (1982) which accounts for the

combined roughness under the wave, yields fw = 0.05. These unequal

friction factors are a consequence of using different wave variables to

evaluate them. Conceptually this is correct, since, for example, the

significant wave height is a factor / 2 larger than the rms wave

height. Hence, a larger fw is needed to obtain the same dissipation

rate. Therefore, as long as the proper wave fricton factor is attached

to the appropriate variables, the final analysis should give equivalent

results.

Finally, to illustrate the relative contributions of the various

source functions we have discussed in the previous sections, we use the

observed finite depth wind sea spectrum reported by Bouws and Komen

(1983). Figure 3.28 shows the energy balance comprised of nonlinear

wave-wave interacions, wind input, dissipation by wave breaking and

bottom friction.
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3.4 Wave Energy Flux Versus Wave Momentum

The directional distribution of wave energy is an important aspect

concerning ocean waves. Recently some efforts have been directed

towards the derivation of an equation which describes the response of

the mean direction of a windsea spectrum to changes in wind

directions. To accomplish this, an appropriate vector variable must be

defined. In the past, it was assumed that the two-dimensional energy

spectrum can be written as the product of the one-dimensional frequency

spectrum and a frequency independent angular spreading function

E(f,6) = E(f) - Q(O) (3.4.1)

Many models of Q(6), where 6 is the angle measured from the mean wave

direction, have been proposed to represent the angular spreading of

ocean waves. The most common form was given by Pierson et al. (1955),

(6 ) _ 2 s2 (0 for - i- < 6 < - (3.4.2)cs (0 2- -2

The cosine-square model has a fixed direction width and a standard

deviation ao = 32.5*. Another model, extensively applied to ocean

swell, with a fixed angular width and ao = 25.5* is

8 4 'i it
S(6) - cos (0) for--<0 < . 3.4.3)3 2 - 2

Substantial progress was made by Longuet-Higgins et al. (1963), who

found that their buoy observations fit well a spreading function with a

variable directional width
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2s
S(f,6) = A(s) cos (e/2) for -w < 0 < r (3.4.4)

with a frequency dependent exponent s = s(f). The values of s ranged

from 1 at high frequencies to 10 at low frequencies. The

normalization factor A(s) is expressed as

2(2s-1) r 2(s+1)A(s) =2r(s1 r (2s+1)

where r represents the Gamma function. The particular parameterization

for s was studied by Hasselmann et af. (1980) using data collected

during JONSWAP. Empirical evidence indicated that s could be related

to the local peak frequency fm, in particular,

S 10.99 f/fm) (3.4.5)

4.06 for f < fm
where = -2.34 for f > fm

Additional support for the directional parameterization in (3.4.4) was

presented by Tyler et al. (1974) who concluded that (3.4.4) provided

adequate estimates of the directional distributions for duration-

limited wave fields as observed from radio backscatter. Mitsuyasu et

al. (1975) reached a similar conclusion from their analysis of buoy

measurements. Figure 3.29 gives an impression how these various

angular spreading factors compare to one another.

It is clear from the definition of energy density (3.4.1) that no

mean direction can be extracted. In order to assign a direction to the

waves, a vector quantity is required. The particular choice of such a

vector variable has provoked some controversy within wave research.
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Commonly wave momentum, a vector quantity, is employed in the

mathematical formalism when the directional aspect of the waves is

important. The controversy, whether waves possess momentum or not has

repeatedly troubled the minds of -scientists. McIntyre (1981) shed some

light on the so-cal led "wave momentum myth", by demonstrating on some

simple, classical examples the misuse of the meaning of wave momentum.

For strictly periodic surface gravity waves in an inviscid,

incompressible fluid of large depth and with an irrotational motion,

the total momentum is found near the surface. It turns out to be equal

to the momentum of the Stokes drift. By definition, the Stokes drift

velocity is the difference between the Lagrangian mean particle

velocity and the Eulerian mean velocity, and can be expressed as (Bye,

1967; Kenyon, 1969)

-ff F2k cosh 2k(z+h)
Us (z) = F(k) [ sinh 2kh +] dk (3.4.6)

where z is the vertical coordinate measured positive upward. The

Stokes drift is a generally non-zero wave property. In this case, it

spatially coincides with the total mean momentum, sinte the Eulerian

velocity can not change without the presence of any mean horizontal

pressure gradients during wave generation. The average momentum per

unit surface area is then defined by (Hasselmann, 1963b)

M f pU(z) dz = ff F(k) - dk (3.4.7)
-h - W -

For a single sinusoidal wave component, this relation is conveniently

written (Phillips, 1977) as
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M k (3.4.8)
- C

where k is the unit wave number vector. Starr (1959) has shown that

momentum and energy are related through the phase velocity in analogy

to Einstein's well-known law E = mc2 . This implies that the mean

momentum, associated with the Stokes drift does, by definition, remain

with the waves. However, as pointed out by McIntyre (1981), the

extension to wave trains of finite length cannot be readily made since,

in addition to the Stokes drift portion, there are other contributions

to the momentum of the system. In particular, he cited examples where

the resulting wave momentum can either be equal to zero or different

from the momentum associated with the Stokes drift. Ursell (1950) and

- Hasselmann (1970) have noted that a steady Stokes drift velocity can

not exist in an ocean, because there is no force that counteracts the

effect of the Coriolis force on the translating fluid particles.

This verbal inaccuracy, as remarked by McIntyre (1981), shows up

more readily when using simple wave theory. In terms of the velocity

potential, the wave momentum is mathematically expressed as

M p fu dz (3.4.9)

-h

in which u = V and $ is the velocity potential. The above relation is

also the precise statement of the mass flux associated with the wave

motion. Consequently, the momentum flux is a scalar, since
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U - M =P f (u - u) dz = E (3.4.10)

-h

and defines the energy of the wave motion. The next vector quantity

gives

E = p f(u - u)u dz = c E (3.4.11)

-f -h ~-g ~

which is the energy flux. Therefore, it appears that the energy flux

is a more suitable parameter to describe the direction of the wave

motion, because the underlying physical principle of wave prediction is

based on a wave energy transport equation. Previous approaches have

derived the equations governing the directional relaxation of the wave

field from wave momentum considerations (GUnther et al. 1981). The

energy flux and momentum approaches will both yield the same mean

direction as long as there is no mean motion of the medium. In the

case when currents are present, it can be shown that the wave momentum

follows the direction of the absolute phase velocity vector, ca,

c = c + U - k (3.4.12)
-a -r -

where cr = (w/k)i< is the relative phase velocity vector and U is the

current vector. Similarly, the wave energy flux is in the direction of

the absolute group velocity vector, ga'

c = c + U (3.4.13)
~9a Er -
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where c = Dw/3k is the group velocity of the waves relative to

the fluid motion. In general, the directions specified by these two

equations will not coincide. However, from this it appears that the

energy flux approach is more general, since wave action, energy divided

by the intrinsic frequency, also propagates along trajectories defined

by (3.4.13) (Bretherton and Garrett, 1969). As a matter of fact, the

wave energy flux can be expressed in terms of the wave action variable

A. Let us define the energy flux of a wave spectrum or the wave energy

flux density as Ff(k) =gF(k). Then, the energy flux density

F(k) g
F (k) = (tanh kh + )n(k)

cosh kh

= A(k) G(kh) n(k) (3.4.14)

might be thought of as the product of wave action times a gravity

reduction factor, G(kh), which ranges from 1/2 g in deep water to g in

shallow water. n(k) is a unit vector in the direction of k.

Following GUnther et al. (1981) we can analogously describe the

wave energy flux as a function of frequency and direction by

F (f,O) = c (f) E(f,6) n(O) (3.4.15)

where "n(6) is a unit vector pointing in the direction of wave

propagation 6. Similarly, the x and y components are (0 is measured

clockwise from north, 6 = 0);

Ffx (f,0) = sin@ lF (f,e)
(3.4.16)

F (f,0) = cose F (f,0)fy --
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The total energy flux along the cartesian coordinates is given by the

integrals

X= fF f(f,0) df dO (3.4.17)

I = ffF fy(f,0) df dO.

Then, a mean direction eo averaged over the entire windsea spectrum

may be defined as the direction of the vector

1 = (I ,1 ) (3.4.18)
- x y

and specifically,

6 = tan- [I /I (3.4.19)o x y

with sin60 = Ix/|I and cos6o = Iy/Il|.

Since the description of the wind wave field now incorporates a

directional aspect, we must also generalize the transport equation

previously defined in Section 3.2. Applying the Lagrangian operator

D/Dt to Ff = Sg F(k) yields

DF Ck)D
D F (k) = c (k) - + F(k) D c (k) (3.4.20)
7T -f - -g - -7 - Z-g -

where the first term on the right-hand side is equal to (3.2.4) times

the group velocity. Hence, the energy flux transport equation in wave

number space is

D a
_(k) = - F (k) + (c V ) (k)+ ) F f(k)

DtLf- at -f - -g -x f-f

= c T(k) + c F(k) (3.4.21)
-g - -g -
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The term cg F(k) is explicitly given by

c F(k) = F(k) (c - V ) c = F (k) (V - c ) (3.4.22)
-g - - -g -x -g -f - -x -

Here we assume - C = (k ) = 0.
at -g - -k-

As before, the more convenient form of the transport equation will

be in terms of frequency and direction. Using the same definition of

the Jacobian J given in (3.2.20), we have the relation

Ff(k) = J - Ef(fQ) (3.4.23)

with Ef =gE(f,6). Substituting (3.4.23) into (3.4.21) and noting

that 3J/3t = 3J/36 0, we obtain

-E + (c *V ) E + (-k6)-E =at-f -g -x -f a -k e-f

J 1c T - E (c - V ) J] + E (V - c ) (3.4.24)
-g -f--g -x -f -x g

in which we made use of the relation (3.2.22). The dispersion relation

(3.2.9) has previously been expressed as a function of wh (3.1.41),

X - tanh w h2 X1 = 1 - (3.4.25)

In terms of these variables, the group velocity is given as

c (f,h) = 11 + wh - 1)1 (3.4.26)
g 2OX h

From the dispersion relation we recognize that

1 (3.4.27)
X = tanh kh

and
2kh = Xoh . (3.4.28)
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The refraction term in (3.4.24) is readily rewritten making use of

(3.2.23)

(k y e
=- (X 2

1 ) Ecose - sine ' = 2-axay 0e 3

The shoaling term J-1 (cg - jx)J gives in component form

S.T. = J c aJ ah [si no .
(3.4.30)

The derivative of J with respect to depth h can be evaluated as

follows,

c c

2 2 2

4 [-w + x ) (3.4.31)
+ 2 2 X

x

From the partial differentiation of (3.4.25) we obtain

ax
2 2

W 2 x (x 2 - 1) .

g 1 + Wh2 2
(3.4.32)

Upon substitution of (3.4.32) into (3.4.31) and after some

simplifications gives

M2  1)
= (~~x -1 1

2
2(1 - w )

+ 2 ]
1 + W h (X 1

(3.4.33)

Introducing (3.4.33) and (3.4.26) in (3.4.30) and evaluating the

remaining variables finally yields

2
= X 2 + 2(1 - w ][sino -+ cose a

+ hx - 1) ax
(3.4.34)
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The last term on the right-hand side of (3.4.24) can be determined in a

similar manner, i.e.,

2 222
~~~ a hx -1 (- hah(V -c )E E{ (X -1) (2 sine + cose (3.4.35)-X g -i. X1 + [n (X _1)

Upon substitution of (3.4.29), (3.4.34) and (3.4.35) into (3.4.24) and

combining like terms, finally yields

E-)h ah
= S( -1 -f h~ +' [sin h

+ ( -V ) + - = - af cosX s (3.4.36)

in which S.f = gS(f,O) is the net flux vector due to all sources

and sinks of energy. This equation describes then the balance of the

wave energy flux in frequency direction space due to refraction,-

shoaling and the net effect from the fluxes of energy in and out of the

waves. We recognize that the term (sine ah/ax + cose ah/ay) expresses

the depth gradient parallel to the direction of wave propagation. The

depth gradient perpendicular to the propagation direction as in 0

represents the effect due to refraction. For infinitely deep ocean,

h +o and therefore X + 1, equation (3.4.36) reduces to the familiar

deep water version,

3E
+ c 7 E = T (3.4.37)at -g -x -f -deep
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CHAPTER 4

A PARAMETRIC WINDSEA MODEL FOR FINITE DEPTH

Ss wird nachstens schon besser gehen, Next time, surely you will have more
WOnn lhr lernt alias reduzieren Success, when you have learned how
Und gehorig klassifizieren. To reduce and classify all by its use.

(Mephistopheles)

-- FAUST 1. Studierzimmer
Johann Wolfgang von Goethe

The concept of a parametric windsea description has originally

been proposed by Hasselmann et al. (1973, 1976). Since the inclusion

of the general nonlinear energy transfer integral in a wave prediction

scheme is still computationally infeasible, it is necessary to

represent the wave-wave interaction process by some parameterized form

if it is to be incorporated in a wave model. The JONSWAP results have

shown that in conjunction with the shape-stabilizing effect of the

nonlinear wave-wave interactions, the JONSWAP spectrum with its five

free parameters replicated strikingly well the actual sea state. For

deep water, this approach has been extensively tested with considerable

success (GUnther et al. 1979a, 1979b; Ewing et al. 1979; Graber,

1979). The surface wave field is classified by two domains: a windsea

domain, where the local wind plays an active role during the generation

process and a swell domain, where waves are no longer under the

influence of the local wind and the nonlinear interactions. Combined,

this hybrid representation of the surface wave field is simulated by a

parametric windsea description and by a propagation scheme along

characteristics for the swel I. The later method was first introduced

by Barnett et al. (1969). Both wave domains are allowed to interchange

energies if certain situations arise. Windsea energy is transferred

to swell characteristics when the wind falls below a level such that
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the Pierson-Moskowitz frequency, sustained by this wind, exceeds the

local windsea peak frequency. On the other hand, swell energy can be

picked up by the local windsea when the peak frequency is less than the

frequency bins of ray characteristics with non-zero energy. A detailed

description of these exchanges can be found in GUnther et al. (1979b)

and Graber (1979).

The extension of the parametric approach to finite depth will be

discussed in the following sections.
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4.1 A Parametric Transport Equation Using An Energy Flux Approach

In order to derive equivalent prognostic equations for the JONSWAP

parameters and the directional relaxation parameter, we must make the

following assumptions concerning the windsea wave spectrum in finite

depth:

i. All one-dimensional energy spectra in arbitrary water depths

can be modeled by the family of finite depth JONSWAP spectra.

ii. The TMA spectrum can always be related to its corresponding

deep water spectrum by multiplication of the reciprocal KKZ

factor.

iii. The two-dimensional windsea spectrum has a frequency

independent directional distribution Q, which is centered

around the mean direction of the windsea, 60, i.e.,

F(f,h,) = E(fh) 0(ee) , (4.1.1)

where E(f,h) = fF(f,h,Q) de (4.1.2)

iv. The directional distribution is assumed to be given by

~(,O~ 2 2 -) fo
1 (6 , ) =-cos 2(6 - 6 ) for 6-6 < 2

=0 for 16-6 1 (4.1.3)

v. The nonlinear wave-wave interactions are the prevailing

process and ensure shape similarity of the windsea spectrum

in any water depth.

Combining assumptions (i) - (iv), we can define the finite-depth energy

flux density spectrum as

F(f,O;h,a.) = c (f,0,h) <D( h) E(f;a.) (6 , ) (4.1.4)
-- -<J h o
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where E(f;ai) is the JONSWAP spectrum defined in (3.1.45) and

ai = [fm,a,Y,aaabl is the parameter vector, (wh) is the KKZ

transformation factor as given in (3.1.40), 2g is the group velocity

vector, and 2(6,6 0 ) is the angular distribution from iv., with the

mean.direction parameter a6 = e0.

The next step is to introduce in general terms some algorithms

which extract out of any given flux spectrum the set of individual

parameters by some best-fitting methodology. Let i designate an

algorithm, so that,

a = 4.{FJ for i = 1,...,6 (4.1.5)

In particular, 0I is a differentiable functional and the curly

brackets indicate that the operation of i is carried out on the

enclosed argument. Then a small variation SF in F will evoke a

variation Sal in ai, such that

6a. = n{F.. 6fj 4{F (4.1 .6)

Here i is a linear function of SF and denotes the Fr6chet or

variation derivative of *1. Now the meaning of the curly brackets

should read as: the transformation I applied to 6F at the position

F. The Frechet derivative is generally obtained from the linear term

of the Taylor series expansion (Collatz, 1964),

4.{F +6F_ - .{ _ = $ _6F (4.1.7)

A variation in F can be expressed by the differential
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3F
6F = Sa (4.1.8)

J

and applying (4.1.6) yields the relation

3F 6a
S{ } c aa1  A.(4.1.9)

The Kronecker delta, A .. is unity for i = j and zero for i * j.

For the finite depth case, a small change in the energy flux spectrum

(4.1.4) is approximated by the differential

aF = - a + - h (4.1.10)

and noting that ah/at 3 ah/6 = 0, we can rewrite the energy flux

transport equation (3.4.36) in component form

3F 3a. 3F aa. 3F 3a.
--- + c -----L+ c - I -
aa. at g 3a. 3x g 9 aa. ayJ x J y J

a F a F
S - - ( - h) - IF (4.1.11)

W (, 2 _ )h a h
where = 1 sine - + cosO .

Applying the transformation i to (4.1.11) and invoking the relation

(4.1.9) we obtain the parametric transport equation for arbitrary water

depths
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aa. 3a. aa.
---_ + D + D --- = S. + R. for i,j = 1,...,6 (4.1.12)
at ijx ax ijy y

, 3F , 3
in which D.. =O {c -- }, D.. = {c -} (4.1.13)

ijx g 3a. ijy i 3a.
x J -y j

S = 01 { } (4.1.14)

3F 3

R = Oi { 56 - TF - -(c - V h)} (4.1.15)

The terms Dij in (4.1.13) are the x and y components of the

generalized finite depth propagation matrix, respectively. The source

function Si represents the net effect on the parameter ai due to

the sum of the following processes,

S. = {T +T + +T s} (4.1.16)1 fin -n -bf -ds

with Tin, the energy flux into the waves from the wind; Inl, the

transfer of energy within the spectrum due to nonlinear, resonant

wave-wave interactions; Tbf, the dissipation of energy due to bottom

friction; Tds, the dissipation of energy due to wave breaking. The

remaining terms enumerated in Ri describe the change of the paramet.r

resulting from refraction, shoaling and the spectral adjustment to a

varying bottom topography.
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4.2 The Linear Transformation Functionals

As previously remarked, the purpose of the JONSWAP parameteriza-

tion is to provide a computational tool by which the dependence of the

spectral parameters on fetch, wind speed and direction and other

factors can be studied in a consistent way during the development

stages of the wave spectrum. The original procedures for determining

the set of optimally fitted parameters of any measured windsea spectrum

was presented by MUller (1976). The extension to a continuous

description was made by GUnther et al. (1979b), which proved to be more

convenient for theoretical calculations. It should be realized that

these methods have been specifically derived for the one-dimensional

JONSWAP spectrum in deep water. Thus, from the definition of the

energy flux spectrum (4.1.4) we may alternatively state the JONSWAP

spectrum as

E(f;a.) = c (f,h)( )w h f( F2 (fe) + F2  1/2d6 = F (4.2.1)
S g x' y~fO) O= 421

Now, we can redefine the functionals (4.1.5) operating on F(f,h,e) so

that they reveal the parameters ai of the JONSWAP shape

T[F2(f,O,h) + F2 (f,e,h) 1/2d
a. = { = { c (f,h)C(w ) I = {E} (4.2.2)

g h

Here the operator i applied to F should be interpreted as the

operation ci on the scalar F. Since F is equal to E, by (4.2.1), we

essentially apply i directly to E to recover the JONSWAP

parameters. These functionals are previously defined in Graber (1979)
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and GUnther et at. (1979b). Then the functional derivative - is

straightforward from (4.1.7),

F SF + F ,
6a = _ s Fc {F 7  +F~ dO} = '{6E} (4.2.3)

These derivations are analogous to those described by GUnther et al.

(1981) in terms of the momentum density spectrum. Evaluation of the

insides of C and C recovers the previously defined

functionals for the JONSWAP spectral shape (GUnther et al. 1979b). A

detailed derivation of the same functionals can also be found in Graber

(1979).

Conceptually, the simp rest parameter of a one-dimensional spectrum

E(f) is the peak frequency fm. Thus, fm can be determined from the

solution of the equation.

E'(f) = 3E(f) 0 (4.2.4)

Equation (4.2.4) can be equivalently written in terms of the argument

E, we get

a = fm -- fj = {E} = ff S[E'l d[EI (4.2.5)

where 6 is Dirac's delta and the prime indicates differentiation with

respect to frequency. The a parameter is commonly determined in the

range of 1.35fm to 2.Ofm and is given by

a2 a = $21 2{E,fml (4.2.6)

2.Ofm E f5 (2 T)

0.65fm f 2 exp (4) ~df
1.35fm g
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Once the parameters fm and a are known, the Pierson-Moskowitz spectrum

can be constructed and is restated here as

EPM(f) d g2 (2r 4 f-5 exp[_-2(4f -4] (4.2.7)

The enhancement parameter y can now be calculated from

3 = j = C3{E,fm,cx} =

E(f)

f EPM ( (f - fm)df

For the remaining two spectra

the function, which is valid for y

I bandwidths aa

> 1,

and ab, we use

G(f)

E(f) -0.5
= n [ E (f) ] - e In y

The zeros of G(f) are

za = fm(1 - a)a a and zb = fm(1 + ab ) (4.2.10)

Consequently, we can write for f < fm,

f
a f 1-

(4.2.11)

which is generalized to

= = 1
4 =a = {E. fm,ayj = 1 fm f f 6[G(f)I d[G(f)] (4.2.12)

f<fm

Similarly, for f > fm, we have

f
fbmN -1

(4.2.13)
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which is given in integral form by

a5  ab = =5 5 {E,fm,a,y} = -1 +41 f f 61G(f)I d[G(f)] (4.2.14)
f>fm

Since 6F is the variation of F(f,6,h), the functional derivative

*II{F,6F} = *;{6F} should be understood to mean the operation i

at the position F(f,6,h) in the spectral space applied to 6F = Z

(f,O,h), where Z is an arbitr-ary function in the spectral space

(f,6,h). Analogously, we use the same notation on Ci and define

ifE,SE} = c'{6E}, where 6E = Z(f) is an arbitrary function in

frequency. For the sake of completeness we only state the final form

of the functional derivatives for i = 1,...,5, and the reader is

refered to either GUnther (1981) or Graber (1979) for a detailed

derivation. Thus, we have with this definition

1 Z~( d f f (--5
* 1 {Z(f,,h)} = )Z(f) df (4.2.15)

2.Ofm

S h)= IZ (f) = z(f) df

1.35fm

+ 2 0.72165 4 1{Z (f)} (4.2.16)

S (f,9,)= hZ = 1f(f-fm) E )Z(f)] df
+ E P} (f)}
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1 A Z(f)
$ 4{Z (f,O ,h)} = c jZ(f)} = r[ Z(f)} + 1 ( (f-z df

4 m G (za
a

+ - ( z Z -

-0.5 ,
- e 0 + 3

* 5 {Z(f,e,h)} = c {Z(f)} = - 4 {z

fm ~tm' rL

-0.5

Y 3 {Z (f )})]

- rI Z

for f < fm (4.2.18)

Z(f )

(f)} + , 1 (f(f-zb E(f) df

G (zb

; 1 Z (f)

for f > fm (4.2.19)

This specific set of linear transformation functionals for

= 1,...,5 can now be applied to the energy flux transport equation to

arrive at a set of equivalent prognostic transport equations for the

individual parameters.
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4.3 The Generalized Propagation Terms Dij For Finite Depth

In this section we limit our treatment of the advection terms to

the JONSWAP parameters. The terms involving the directional relaxation

parameter 00 are discussed in more detail in the subsequent section.

The explicit mathematical expressions of the finite depth propagation

terms are determined analogously to the deep water case by applying the

appropriate transformation functional to the advection terms in the

energy flux transport equation. We shall proceed as follows by writing

the partial derivative of (4.1.4) with respect to the parameter aj as

9 3E 2 Cs2 (a-6 s In6(-31
3 3 9a- 7- 0cose o)[cos] (4.3.1)

in which we have substituted the explicit mathematical expressions of

cg, 0 and Q. Further, it is understood that E subsequently refers to

the JONSWAP spectrum (3.1.45). Introducing (4.3.1) in the definition

of Dij (4.1.13) and invoking the operation defined in (4.2.3), we get

for the x and y components, respectively,

I 3E 2 2
D.x = + c (f,h) - f[cos (6-6 ) sine ] de} (4.3.2)
ijx a 3a i 1T

Diy= .c(fh 3E cos2 (4.3.3)
D gyic h -a.itfCos (-60)csoIdeo

Since the functional $j is linear in Z we can carry out the

integrations and simplify so that
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8Dijx 3, 0o I~J

D..= 8 s6 D..

xj 3cosO ij

D = c 9(f ,h)
J

(4.3.4)

(4.3.5)

The determination of the Dij's is straightforward and we will

only sketch some of the pertinent steps and present a detailed example

calculation in Appendix A. Starting with i = j = 1, we obtain

D =c (f, h) aE = c (fm,h)1 + 5A 1 (4.3.6)

where cg(fm,h)

depth h. HereL

is the group velocity at the peak

Al is given by

frequency fm in a

2

A = 220a + In y

2 2 2
4 Wh 2X - 1)(1 - Wh

2 2 2 ]
(1 + ohX - 1)

with wh = 2fffm .'h/g and x = XOh) as determined

Inspection of (4.3.7) reveals that as h + o, we

becomes

lim D = [1 + 5K]
h~oo i i 4nrfm

(4.3.7)

from (3.1.41).

have X + 1 and (4.3.6)

(4.3.8)

with K = a2/(20a 2 + In y). This is exactly the deep water

advection term for the combination (fm, fm) (cf. Graber, 1979; GUnther,

1981). Similarly, as h + 0, we find X + (kh)- 1 and wh + kh.

Hence, Al goes to zero, and (4.3.6) reduces to
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(4.3.9)I im D11  =

h+0

which states that in very shallow water all frequency components

eventually propagate with the same group velocity depending only on the

water depth. Furthermore, two additional results of significance can

be revealed from (4.3.6). As the spectrum becomes extremely narrow,

i.e., y + w, so that we can approximate the wave field as a single

monochromatic wave, we find for any water depth

Iim D
11 ,

(4-3.10)= c (fm,h)
g

since A1 + 0. Conversely, for a very broad spectrum, i.e., y + 1,

and the wave field can be described as a fully developed sea, we obtain

lim D = c (fmh)[1.25 -A*1 (4.3.11)
Y+1

with A* =

2 2 2
Wh (x - 1) (1 -Wh

2 2 2 The group velocity corresponding to
(1 + Wh 2x 1))

the mean frequency of the PM spectrum in deep water (i.e., A* = 0) is

approximately calculated as

cg(f PM ) = 1.3 cg(f ,eo) . (4.3.12)

Comparing (4.3.12) with (4.3.11) shows close agreement. This should

demonstrate that switching to a parametric formulation does not

necessarily imply a loss of the physics.

The remaining two non-zero advection coefficients for the fm

functional are D12 and D13. The effect of aa and ab on fm and

other parameters is negligibly small so that these terms, Di4 and
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Di 5 , are effectively zero for i = 1,2,3. Then, for D12 and D13

we have

D - c (fm,h) ma (4.3.13)12 g aA 1
and

D = - c (fm,h) -A (4.3.14)

Figure 4.1 illustrates the variation of the D1j's as a function of

Wh and for a family of y values.

The propagation terms for the a transport equation are calculated

from the functional expression

D = { (fh) } (4.3.15)
2j ~ 2cg~ aH

J

Upon evaluation of the appropriate derivatives, we obtain these final

express ions

D = cg(fmh) 2A + 3.61A 1 (4.3.16)

D = c 9(fm,h) [A3 - 0.722& 1 (4.3.17)

D = - c (fm,h)23 0.7221 (4.3.18)

where A2 and A3 are integral expressions, which in general can

not be evaluated analytically. They are given in terms of the

variables defined in (4.3.7)

5 wh4X. h 2 2
A2  - h2 2 f 1 + s 2(s) - 1) ds + 0.722 (4.3.19)

0.651 + wh (X - 1) 1.3%h s X (S)
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2

A ~x 2h 1 + s2 2(s) - 1) dA3 x 2 2 s X (S) ds (4.3.20)

0.6511 + wh X - 1)1 1-35w h(4.3.2

The D2j's are shown in Figure 4.2 indicating their relative strength

for different Y values over a range from deep to shal low water.

The coefficients for the y equation are determined in an analogous

manner by applying the functional 4'3 to the advection terms. Thus,

we obtain

D Cg (fm,h) Y [21.39A - A2 1 (4.3.21)

D c (fm,h) 11 - A3 - 4.28A 1 (4.3.22)32 g 3

D33 c 9g(fm,h) 11 - 4.281 1 (4.3.23)

in which A1 , A2, A3 are the same as previously defined.

Figure 4.3 depicts the D3j's for the same parameter values and depth

ranges.

To determine the advection coefficients Di6 we need the partial

derivative of (4.1.4) with respect to 6e0 ,

_ 2.

= c E(fh) 2 sin2(6--O ) s (4.3.24)

Applying the functionals , for i = 1,...,5 to (4.1.13) with the

3F/3aj term given by (4.3.24), one gets for the x and y components,

respectively,

2 2
D = .c E-f sin2(6-e )sin6d6} (4.3.25)
i6x g iT 0

2 2
D6y = . c E -f sin2(6-0 )cos6d6} (4.3.26)
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The integrals can be evaluated and pulled outside the curly brackets,

which yield

D 8 sO D( 4.3.27)i6x N, o 16

8
D 8 - sin6 06 ( 4.3.28)i6y 3ir o 1

where D6 Ig2(f=h) E(fh)} for i =

It turns out that the Di6 are closely related to the coefficients

Di2:

D = a D2 (4.3.29)

with Di2 specified in (4.3.13), (4.3.17) and (4.3.22) for i = 1,2,3,

respectively. Substitu-ion of these expressions into (4.3.29) gives

D16 = -c (fm,h) fm A 1  (4.3.30)

D = c (fm,h) aA3 - 0.722&11 (4.3.31)

D = c 9(fm,h) yH[ - A3 - 4.28A 1 1 (4.3.32)

Figure 4.4 shows the variation of Di6 for a family of y values. As

one might expect, D26 is not too sensitive on the choice of y,

because a characterizes the high-frequency energy level which is quite

independent of the properties around the spectral peak.

For practical applications, the solutions of the transport

equations corresponding to the bandwidth parameters aa and ab are

not explicitly included. In general, their influence on the overall

solution for the wave field is only minor and it suffices to determine
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their values from algebraic expressions as a function of y (cf. Gunther

et al. 1979b). However, for the sake of completeness, the final

expressions for the D4j's and D~j's are given in Appendix A.
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4.4 The Mean Direction Of A Windsea

The inclusion of a directional parameter in the windsea parameter-

ization predicated the use of a vector quantity. It is true that for

most circumstances of practical concern the choice in using wave

momentum or wave energy flux to derive a mean direction averaged over

the windsea spectrum will probably result' in only small deviations of

the computed mean G. However, based on considerations of the physics

governing wave generation, it appears that a wave energy flux approach

is not only more appropriate, but also more general, since it would

also be valid in a moving medium. In deriving the functionals for

performing the windsea parameterization, we will follow the wave

momentum approach by GUnther et al. (1981) and will point out

differences and equalities of the final results.

The energy flux density F(f,6,h) is described by the product of

the group velocity times the energy density

F(f,e,h) = c (f,h) - E(f,O,h) (4.4.1)

with E(f,O,h) denoting the two-dimensional spectrum in arbitrary water

depth. Its x and y components are

F - I I[sn6] (4.4.2)
F coso

where the angle 0 is counted clockwise from north (y-axis). The total

energy flux along the x and y coordinates, respectivley, are defined by
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I = ff F dfdo ; I = ff F dfde (4.4.3)

The mean direction of the wave spectrum is then designated by the

direction of the vector

I = (I ,I ) (4.4.4)

where sin6e = x/lU and cos80 = Iy/1 |1 . In explicit terms,

60 may be calculated from

6 = tan 1[I /1 1 (4.4.5)

The definition of the functional 16{-} can now be stated in terms

of (4.4.3)

a6 =00 = *6{2'} = tan- f f[F dfd] (4.4.6)

Here the same definitions as stated in Section 4.2 do not apply to the

mathematical meaning of 6- Obviously a direction can only be

determined from a vector quantity such as F and not from the scalar E.

Therefore, we can specify the functional 6 directly in terms of F

without the transformation to energy density used in the determination

of the JONSWAP parameters. Hence, following the same procedure in

deriving the Frechet derivatives for the JONSWAP parameters, the first

variation on (4.4.6) yields

I{F2 ffcodfds ff6F dfdO - ffF dfdO ff6F dfdo

$6{ _} = cos 6 2 ' y f d)
(ffF dfdo)2

y

-195-



Upon evaluation of all integrals and simplifying the results, we can

write 6 more compactly as

ff hf (cose i - sine )dedf
1z 0f,6 ,h)} = (4.4.8)

8 -fc (fh) E(fh) df

in which we replaced 6F by an arbitrary function Z(f,O,h) of the

spectral space.

When applying *6 to the energy flux transport equation (3.4.36),

one arrives at the prognostic equation for the parameter 00 ,

36 3a. 3a.
- + D - + D i - S + R (4.4.9)
at 6jx 5x 6jy ay 6 6

The directional dependence of the coupling coefficients D6 ., for j =

1,...,5, can be calculated first using (4.4.8) on (4.1.13)

D s sine D
6jx 32 o 6j

(4.4.10)

D 3ur cosO) D
6jy 7 2 o 6j

It should be remarked that these components represent the advection in

the direction perpendicular to the mean wave direction. Some of the

details to derive D6j are presented in Appendix B. Here, we only

state the final results. Thus, we obtain

3- 12 -2
D = 1 8 6fm (4.4.11)61 128 Jl(whY

D62  3g J2 (WhY) a-1 fm (4.4.12)62 M81 J(W h 97)
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D = 3g - (4.4.13)
63 1 J (fh

in which J1 , J2 are non-dimensional integrals depending only on the

dimensionless water depth and the spectral shape. They are

-6 5 -4 (E -1) 2 -3
J 1 exp[- + Inry exp(--- )] X dE (4.4.14)

o 2a

7 54 ((1) 2 1 + 2 -X 1

J2 fwh' 1 exp[- 5- + Imy exp( (- 2 )--- d
o2a x

(4.4.15)

where E = f/fm and X = X(wh). Evaluation of J1 and J2 must be

done numerically. The D6 j s are depicted in Figure 4.5 for various

spectral shapes as a function of dimensionless frequency, wh-

In the same manner the D66 term can be calculated and one finds

D -ffs ine 0 -co D (4.4.16)
66x s6 '66 ; 66y 16 o 66

in which D66 is given by

D 3g 2 IV1Y)fm (4.4.17)
66 6W J h

The general behaviour of D66 is illustrated in Figure 4.5. The

coefficients D64 and D65 can be neglected, since, as already

remarked, they have only a minor influence on the total solution.

When deriving the same set of D6j's, but instead using the wave

momentum concept of GUnther et al. (1981) one finds notable differences

in their numerical values. This distinct deviation manifests itself

primarily in the integrals. This is so, because in the momentum
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approach the integrals replacing J1 and J2 are proportional, to

(-4) and (-5) power of the dimensionless frequency, respectively.

Whereas, in the energy flux approach, the integrals (4.4.14) and

(4.4.15) contain the dimensionless frequency to the powers (-6) and

(-7), respectively. In summary, these advection terms for the wave

momentum approach turn out to be

Dm - 4 fm-2 (4.4.18)
61

M

1

6m T Fg 27 fm(41.0

D 6 fm~ (4.4.21)66 14F.
1

Here, the superscript m refers to the wave momentum approach. M1 and

M2 are the appropriate integral expressions analogous to (4.4.14) and

(4.4.15), derived from the wave momentum principle. As an example, we

use the deep water form to illustrate the differences between the two

approaches. Figure 4.6 shows a comparison of both approaches in terms

of the ratios of their coupling coefficients for a range of y values.

This clearly reveals that the ratios are only slightly sensitive to the

spectral shape, except for the y terms, where this sensitivity is

somewhat more pronounced.

When waves propagate into a region where the local direction of

the wind differs from the direction of the waves, the wind component

perpendicular to the wave trajectory does work to turn the waves so
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that they eventually become aligned with the direction of the wind.

Hasselmann et al. (1980) and GUnther et al. (1981) have shown that the

high-frequency components of the spectrum almost instantaneously

respond to a sudden change in the wind direction and become aligned.

The lower the frequency, the faster the wave moves relative to a fixed

wind speed and therefore the impact of the wind on this spectral

component is of diminishing strength. The transfer of energy from the

wind takes place in the central region of the surface wave spectrum,

and the nonlinear interaction generally redistribute this influx of

energy over all frequencies. It seems reasonable that the nonlinear

mechanism is also responsible in translating the new direction of the

high-frequency components to lower frequencies until the entire windsea

spectrum is turned parallel to the new wind direction. From this

argument one expects that the source function of the directional

relaxation parameter Qo should involve the wind component

perpendicular to the mean wave direction.

Thus, applying $6 to the Snyder-Cox input term as defined in

(3.3.9) yields the parametric source term

2
S = (T. _) = - C U-i- U sin(w - 00) (4.4.22)

6 6 -in 0 g w 0

where Ow is the direction of the new wind vector. The functional

form of S6 is identical to the source function derived from the wave

momentum principle in GUnther et al. (1981). Although momentum is

proportional to (E/c) and energy flux is given by (cgE), the

functional expression of S6 depends only on the ratios of integral

expressions such as (f E/cgdf)/(fcgEdf) for the energy flux approach
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and (JE/c 3 df)/(fE/cdf) for the momentum approach. Both ratios result

in f2 dependence with the remaining differences contained in the

proportionally constant Co. If this constant Co is determined from

measurements, using (4.4.22), then both approaches yield the same

results. Using field data from JONSWAP, GUnther et al. (1981) have

obtained an average value of

C = 0.12* = 0.21 x 10-2 radians . (4.4.23)
0

However, it can be shown that a theoretical value of Co can also be

obtained by evaluating the operation denoted in (4.4.22). For the mean

JONSWAP spectrum this value is approximately m 0.33 x 10-2 radians

for the energy flux approach, which is roughly off by a factor of 1.5.

Similarly for the wave momentum approach, we find a value m 0.6 x 102

radians. Based on these values one cannot conclude that one approach

is better than the other, since there are still considerable

uncertainties associated with the drag coefficient in the Snyder-Cox

source function.

An alternative approach to investigate the directional relaxation

of the mean wave direction was proposed by Hasselmann et al. (1980).

Instead of the average direction for the entire spectrum, the response

of the mean direction for individual frequency bands O(f) was

considered in the formulation

96 (f )

at - = 2yrf b sin[O w - 0(f)] (4.4.24)

where b = b(U/c; f/fm) is a constant. Their analysis led to the

estimate b = 3 x 10-5. A similar study was performed by Allender et
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at. (1983), but the dependence of U/c was explicitely retained in

(4.4.24). From a simple regression analysis the values determined for

b = b*(U/c) with b, = 2 x 10-5 were generally in good

agreement with those reported by Hasselmann et al. (1980). GUnther et

al. (1981) have shown that under certain conditions, both descriptions

give results of the same order of magnitude.

Since the source function S6 is the same, both wave momentum

and energy flux approaches would yield the same answer under spatially

homogeneous conditions. Nevertheless, to demonstrate their differences

we may- consider the idealized situation of a steady wave field

propagating into a region, where the wind direction undergoes a sudden

step-like change. Furthermore, we assume that the JONSWAP parameters

remain spatially homogeneous. Then, we can write (4.4.9) for a sea of

constant depth and small angles 6= Ow - O as

-
(4.4.25)

with

1024 fm U 1 -1 (4.4.26)

g 2

The resulting approximate solution is

6 = e(r=O)er/R (4.4.27)

and R can be interpreted as a measure of the distance necessary for the

steady wave field to travel to attain a direction coinciding with that

of the wind.

For example, consider a PM spectrum with fm = 0.1 Hz and U = 12.75

m/s, we obtain R.= 90 km. Similarly, using the wave momentum approach,

we get Rm = 75 km.
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4.5 The Parametric Source Functions

As previously discussed we represent the net effect of the various

physical processes of an air-sea-bottom system by

S = S. + S + S + S + R (4.5.1)
in nI ds bf

in which Sin, SnI, Sds and Sbf are the average influx of energy

from the wind, the nonlinear energy transfer due to wave-wave

interactions, the dissipation of energy due to wave breaking and bottom

friction, respectively. The influence of refraction, shoaling and the

adjustment of the spectral shape resulting from a varying bottom

topography are identified as R. To obtain an equivalent set of

parametric source terms we apply the transformation functionals to

(4.5.1),

S = *.(SJ for i = 1,...,5 (4.5.2)

A discussion of the first three terms is given in Hasselmann et al.

(1973, 1976) and the details in deriving their parametric expressions

can be found in GUnther et al. (1979b) and Graber (1979). We will

limit our discussion to stating some of the pertinent points and focus

our attention on changes resulting from the inclusion of the

directional parameter and the extension to waters of finite depth.

a) NONLINEAR TRANSFER

From scaling arguments of the exact nonlinear transfer integral,

the nonlinear source term Snl can be deduced to be of the general
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form (cf. 3.3.25)

Sn g 2 3 -fm4 4J (f/fm) (4.5.3)

Applying the functionals *- to (4.5.3) yields the following

analytical expressions

S = -0.586 a2 2 for y > 1 (4.5.4)

Sl fm (54

= 0 otherwise

S (2) = -5 a3 fm (4.5.5)
nI

(3) 2
S = -16(y - r ) a fm (4.5.6)
nI o

S = -[25.5(a -0.07o ) - 0.5(a -0.09a )la 2fm (4.5.7)
nl a o b o

(5) 2
S = -125.5(ab 0.0;) - 0.5(aa-0.0 7a) la fm (4.5.8)

where

r = 3.3 for v'" > 0.16
0

r = 1 + 2.3 v"- 00.13 for 0.16 > v" < 0.13
0 0.03

r =1 for v" < 0.13

2
a = 16/(y + 0.7)

and v" = fmU/g cos(Ow - 60) is the non-dimensional peak frequency

parallel to the wave direction e0 , and 6w is the direction of the

wind. The above nonlinear source terms are already modified to ensure

a smooth transition from a growing sea to a fully developed sea state.

This impl ies that for v" + 0.13, we require y + 1 which reduces the

JONSWAP spectral shape to a Pierson-Moskowitz spectrum.
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Since the nonlinear transfer rates in finite depths are related to

the deep water nonlinear transfer by a similarity transformation

involving the peak frequency fm (Herterich and Hasselmann, 1980), we

(i)
simply multiply the parametric nonlinear source functions S by then I

depth dependent transformation factor R(wh) as defined in (3.3.27).

The final expressions valid for finite and deep water depths are

S (h) = R(w ) - S (h = 00) (4.5.9)
nI h nl

where wh = (kmh/X)1/2 with X given by (3.1.41).

b) WIND INPUT

Due to the difficulties associated with describing the wave

breaking process by an exact analytic form, we consider the minimal

dissipation case as discussed in~~Fasselmann et al. (1973). This

essentially means that the loss of energy from breaking waves is

restricted to the frequency range f > 2 fm. Then, it suffices to

represent the net energy influx by

Sne = S. + S = S. (4.5.10)
in in ds in

Further, we assume that wave generation is adequately predicted by a

linear Miles mechanism, i.e.,

S. = a(f,e) E(f,8) (4.5.11)in

and from empirical evidence, the growth parameter eif,e) can be

approximated by the functional form proposed by Snyder and Cox (1966),
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1(f 6 (k - U - w) (4.5.12)

= 0 for (k - U - w) <0

Factoring w, we can write (4.5.12) in terms of the ratio U/c,

U
S(f,) W (- cos (B - 0 ) - 1) (4.5.13)

c w

which states that Sin vanishes for wave components with phase

velocities larger than the wind velocity, if e = ew- It is remarked

that the rate of energy transfer from the wind to the waves depends

only on the wind speed relative to the wave speed. This means that it

makes no difference if the wave is in deep or shal low water. However,

the total rate of input may not be equal for a constant ratio U/c,

since the frequency.w will vary in different water depths.

Nevertheless, we may also write

U/c = 2t fU - 2aV (4.5.14)
g tanh kh tanh kh

in which v is the dimensionless frequency. In deep water, when all

spectral componenqts are fully developed, wave growth ceases and this

means the net source function (4.5.1) vanishes. This is characterized

by the Pierson-Moskowitz frequency, fpM,

fPUfPM
v - - 0.13 (4.5.15)

g

which can be introduced in (4.5.14) as.

U/c(fPM) = 0.82 (4.5.16)
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From this we infer for the case of a fully grown spectrum, that the

frequencies containing most of the energy are found slightly below the

frequencies, where the wind input is zero.

This poses the question of the existence of an equilibrium sea

state in shallow waters, such that the sum of all source functions

vanishes. For lack of empirical evidence, we may give some heuristic

arguments as follows. The nonlinear wave-wave interactions main impact

on the wave spectrum is to redistribute energies from the central

portion of the spectrum to lower and higher frequencies. At the same

time, this causes the spectral peak to migrate towards lower

frequencies. Attenuation by bottom friction is strongest at the low

frequency flank of the spectrum. This means that some of the eneray

transferred to these frequencies by the wave-wave interactions are

dissipated by wave-bottom interactions as realized in bottom friction.

Hence, the resulting effect is to slow down the rate of migration of

the peak. Therefore, let us assume that these nonlinear processes both

can be approximated as a reduced nonlinear transfer mechanism. From

(4.5.14) it is clear that the atmopsheric input is increased for a

fixed frequency in finite depth, since tanh kh < 1. If we now assume

that wave breaking is similarly intensified, such that the net

contribution of Sin and Sds is still roughly given by Sin, then

we may conjecture that in shal low water

S (S + S ) + (S. + S ) 0 (4.5.17)nI bf in ds

but the overall rate has been increased by some factor. Since Sin is

functionally the simplest one, we chose this factor to be proportional

to tanh kh. From Figure 3.23 we can infer that the depth-dependent
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transformation factor R for SnI shows at least qualitatively the same

behavior. Thus we may generalize the heuristic lower frequency limit

(PM-frequency) for the peak frequency fm of a windsea spectrum in

finite depth seas to be

fPMU

g tanh kh - h = 0.13 (4.5.18)

Applying i to (4.5.11) yields only one non-zero source function for

the a-parameter

(2) Q(v (4.5.19)
S.n = a fm Qv)(..9inh

in which Q(vh) = 5.022 x 10-3v)4/3 and v" refers to the

depth dependent non-dimensional peak frequency determined from the wind

component U? parallel to the mean--wave direction 60 , i.e.

" fm U" (4.5.20)

Vh g tanh kh " X Ah)

where X is given by (3.1.41). The remaining input source terms are two

orders of magnitude smaller than the corresponding nonlinear source

terms (cf. Hasselmann et al. 1976) and therefore are nealected.

c) BOTTOM FRICTION

A parametric source function for bottom frictional effects can be

deduced from either (3.3.51) or (3.3.59). The former equation is more

general, since it allows specification of the friction factor fw in

terms of local bottom roughness and wave variables. Thus, the analytic

form of Sbf to be used in the wave model is
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Sbf
f 2

W 0 2 <u b> E(f, Oh )
g sinh kh

2
with <u b> = U br = {2 ff s0n2kh E(f,h) df}1/2

sinh kh

a representative mean near-bottom velocity.

approximately be evaluated, so we obtain

gb~ g
u br 2ir f m (W h-Y)

This integral can

(4.5.22)

where I can be calculated numerically from

= {2fy 3exp[- y 4 + Iny exp(
0

- (Y-1) 2

- 6 2

-~ 2
X (y) - 1

2 2 2
X (y)(1 + h 2(y - 1))

When applying the functionals i to (4.5.21), the result is t

parametric source function

S (1) - fw
bf 4_ Yr f mA 0I(w 'y)

where

2
A = a

0 20a 2 + Iny

(X - 1)
X

2 2
- Wh (X + 3)

1 h2 X2 -1)

Similarly, as is the case for the atmospheric input, the remaining

terms are by orders of magnitude smaller and therefore omitted. This

is of no surprise, since we do expect that the bottom frictional effect
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(4.5.23)
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0



should be strongest for the fm parameter and only of minor importance

for the remaining others.

d) REFRACTION, SHOALING, SPECTRAL SHAPE ADJUSTMENT

In-deriving the equivalent parametric energy flux transport

equation we obtained, in addition to refraction and shoaling, a term

relating the change of the spectral shape to the spatial variation of

the bottom topography. They are, respectively,

OF = F{sinl2(-09)Lsej - cos2  c-onO

x 1)(cos0 - sin ) (4.5.25)

F 2

-j t( -X)J + } = a cos2

x cos 2(e.-.e )[s (s]ne + oss) (4.5.26)

E 2cos2 (n]c (sinO + cos -) (4.5.27)

g 3 44.r o .2C~cg2 is covninl expresseda

where we substituted for s and cg as defined in (3.1.40) and

(3.1.37), respectively. The derivative of X with respect to h can be

determined from implicitly differentiating (3.1.41), i.e.,
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tanh (Xw 2) + (1 - tanh2 2 2 2 0 (4.5.29)

Solving for 3X/3h one gets

= 2 (21ax 2 _ (_X (4.5.30)
h g + h2 -2

Combining (4.5.25) - (4.5.27) and simplifying, yields the R term,

R =-Fa ( 2x -1) cos2 (e -.e){ (2tan ( 0 ).e s - coso]) h

+ 4 [sin] h } (4.5.31)

where F= <OcgEJ is the scalar energy flux spectrum, h1 and h" refer

to the depth gradient perpendicular and along the direction 6 of a wave

component, respectively. The transformed parametric expressions are

obtained from applying Oi to (4.5.31). It turns out, due to the

linearity of the functional derivatives $1 that when evaluating the

directional dependence first, the right-hand side of (4.5.31)

simplifies to

R. = -R (sin +cos (4.5.32)

where

R = . { XE for i = 1,...,5
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When evaluating Ri we find

A 2
R,= 7rfm A (4.5.33)

R = 12.31 afm J(wh) + 0.72 R (4.5.34)
2 h fm1

A 2
R = fmyX -1 + R - R (4.5.35)
3 x fm 1 2

The terms R4 and R5 are generally small and are neglected. The

general form of (4.5.32) indicates that the net change of the JONSWAP

parameters is proportional to the depth gradient along the mean wave

direction 00.

Finally, applying 6, the functional derivative governing the

directional relaxation, to (4.5.31) and integrating out the directional

dependence, yields

3 3h 3h
R R (cose - - sine ) (4.5.36)6 64 ox o ay

2

A f~c E (X df
with R 8cJ 2 X

itR6 6fD c E df

Again, the integral expressions can only be determined from numerical

quadrature. The final form of (4.5.36) can be stated as

R g 2 .I1(Wh' ) ah h
R6 3 . 12 W h' (cose 3 - sine -) (4.5.37)

6 T- 12 (Wh Y) o ax o 7

where 11 and 12 are non-dimensional integrals depending on the

spectral shape in finite depth. It is clear that (4.5.37) represents

the influence of a spatially varying sea bottom on the wave spectrum,
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or better known as refraction. The other source term for the 6O

transport equation is due to the spatial inhomogeneity of the

windfield which has already been derived in Section 4.4. For

demonstration purposes we take a simple example to obtain some

numerical values. Consider a mean JONSWAP spectrum with

fm = 0.1 Hz in 20 m of water propagating at an angle Qo = 45* to a

constant bottom slope of 1/2500. The wind is blowing uniformly in the

same direction parallel to the bottom contours, i.e., 6w -Qo =

450, at 20 m/sec. For R6 and S6 , we calculate

R = 3.02 x 10-5 rad/sec

and

S = 3.03 x 10-5 rad-/sec.

For these conditions both mechanisms are of equal strength, but if the

waves were in waters 7.5 m deep, all other variables unchanged, we find

R = 8.8 x 10-5 rad/sec

Now, refraction is clearly dominating the directional relaxation of the

wave spectrum. To counter refraction, the wind speed would need to

increase to almost 60 m/sec.
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4.6 Energy Exchange Between Windsea and Swell

Situations can arise where spectral components, belonaing to both

the windsea and swell domain, are present independent of each other,

but are likely to interact. If interaction takes place, then some

criteria are warranted which control the transfer of energy from one

domain to the other within the wave spectrum. Before we describe these

transfer criteria in detail, it is appropriate to attach a more

specific definition to each wave domain.

The lower heuristic limit of the windsea peak frequency fm is

defined as the Pierson-Moskowitz frequency fPM- Therefore, the

energy of wave components, whose frequencies are greater than the local

PM frequency, are refered to as "windsea", provided their mean wave

direction 60 is aligned with thelocal wind vector. It is remarked

that wave modes satisfying the frequency requirement, but propagating

in a direction differing by 90* or more, are excluded from the windsea

domain and assigned to the swell domain. Also, it should be realized

that with this definition, the limiting windsea spectrum is the PM

spectrum. This spectrum stil I contains energy at frequencies less than

fm = fPM, but with decreasing frequency, the energy density rapidly

diminishes too.

Then, surface waves, characterized as swell, are unaffected by the

local wind. Swell energy of a certain frequency band will propagate

with its associated group velocity along wave characteristics (rays)

which are determined from refraction laws. In deep water, these

characteristics are always straight and thus, the initial propagation

angle remains unaltered.
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The following two situations can occur when energy must be

exchanged between the windsea and swell region. If the wind conditions

suddenly change so that the local PM frequency is located above the

windsea peak frequency, then the energy in excess of what can be

supported by the local PM spectrum is transferred to swell (windsea +

swell transfer). As we shall see, a change in wind conditions can come

about.either by a drop in wind speed, but maintaining the same

direction, or by a veering of the wind angle, holding the wind speed

constant, or by a combination of the two, such that the above rule is

fulfilled.

The reverse happens, when swell is advected into a region, where

the local peak frequency lies below the frequency of a swell bin with

non-zero energy. This energy is instantaneously absorbed into the

windsea spectrum (swell + windsea transfer).

In formulating these dynamical exchange criteria, one must rely

mainly on intuitive arguments, since existing theories can not

adequately explain the exact sequence of events which takes place

through the interplay of two wave domains. The fundamental assumptions

underlying these exchange rules are: First, conservation of total

energy (windsea + swell) is ensured in any transfer; second, nonlinear

interactions between wave modes of the windsea and swell region are

generally very weak, except in cases where swell frequencies span the

windsea.frequency domain. Then, the coupling or decoupling process of

two energy domains is rapidly sped up by nonlinear interactions, and

achieved within one model time step. This concept is supported by

calculations of Hasselmann (1963b) and more recently by numerical

experiments of HH (1981) to test the response of these interactions for
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general cases when swell is present.

In the next two sections we follow the approach presented by

Gunther et al. (1981, 1979b) to derive in some detail and in general

terms the adopted transfer criteria.

4.6.1 Windsea to Swell Transfer

As already mentioned, the frequency border between the windsea and

swell domains results as a consequence of a vanishing source function.

Explicitly, this frequency is defined as

0.13 g tanh kPMh for 6 -6 <

PM ~ U cos(6 -6 ) (4.6.1)

CO for I6 w 6oI>12

where kpM is the wave number corresponding to fPM- In the deep

water limit, (4.6.1) reduces to the equation given by Gunther et al.

(1981). In order to illustrate the necessary sequential steps to

achieve a smooth transition from windsea to swell, we consider the

following example.

Let a uniform wind field U1 = U(u1 ,'1 ) exist over some

finite region of constant depth h. The sea state in this region is

growing accordingly to previously discussed wave theories. Further,

the spectral peak of the wave field is located at fm, where fm >

fPM UN)= fPM,1. Suddenly the wind field drops to a new

value U2 = U(u2, 62) everywhere in this area, such that

fm < fPM(U2) = fPM,2 as determined from (4.6.1) (see Figure

4.7a). This means, that under these conditions the wind can support at
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Fig. 4.7 Schematic representation of energy transfer from WINDSEA to
SWELL.
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most a new spectrum, corresponding to a fully developed sea which is

characterized by fPM,2* Hence, we set fm = fPM,2 (Figure

4.7b). Energy in frequencies greater than the new fm (area A in Figure

4.7b) is instantaneously absorbed by adjusting the a parameter. This

implies to conserve energy in the spectral range greater than the local

fm, we must satisfy

f Ews (a,fm,y) df = f Ews (a , f pM,y= 1  df (4.6.2)

PM PM

in which Ews denotes the parametric windsea spectrum as defined in

(3.1.81). Graphically (4.6.2) corresponds to an equality of areas A

and B in Figure 4.7b. Again these integrals can not be evaluated

analytically. Nevertheless, a close approximation to the exact

solution is given by

4 1 --exp(-1.25 f-4)
a = af 0.7135 g(y) (4.6.3)

where f = fpM/fm is the ratio of the PM frequency to the windsea peak

frequency before the change in the wind, and g(y) is a correction

function resulting from a spectral shape with y * 1. Finally, overall

energy conservation is accomplished by transferring to swell all the

excess energy remaining in the original windsea spectrum below a

certain cut-off frequency fc. The frequency fc specifies the

location for which areas C and D are equal (Figure 4.7b). In integral

form, fc is determined from

f Ews (afm,y)df = f E w(a, f PM y=1) df (4.6.4)
C0
c
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Graphically, the integral equality (4.6.4) and the equality of areas C

and D are not readily obvious. Splitting up (4.6.4) into a sum of two

integrals each, yields

fPM Go

f E (a,fm,y)df + f E (a,fm,y)df
f W fPM

fPM CO
= f E (a, fPM,y=l) df + f E (a , fPM,y=l) df (4.6.5)

0 ~fPM

The second integrals on both sides are clearly the same as given by

(4.6.2). Hence, this simplifies (4.6.4) to the schematically depicted

areas C and D,

PM PM
f E (a,fm,y) df = f E 4F, f PMy=) df (4.6.6)
f W0
c

Similarly, the integrals in (4.6.6) can not be expressed analytically,

but fc is accurately approximated by

f = (1.25)0.25 fm n1 f- 4 ]-025 (4.6.7)
c a

The windsea energy found at frequencies less than fc are transferred

to swell and are distributed with a cosine-squared spreading function

centered around the local mean wave direction eo.
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4.6.2 Swell to Windsea Transfer

In general, newly created swell will leave the generating area

rapidly by means of simple advection without sources. However,

distant, old swell can propagate into a region, where the local windsea

is actively growing at frequencies close enough to/or overlapping the

frequency bins of the swell. Two distinct situations can arise from

this type of interplay which requires an energy exchange criterion

between the two wave domains.

The first case comes into existence when swell energy is found at

frequencies greater than 0.9 fm. Energies within this frequency range

are instantaneously absorbed regardless of direction into the windsea

as a result of nonlinear interactions. The interpretation in this case

is that the nonlinear interactions are effective enough to engulf the

swell modes and then redistribuf7the energy within the windsea domain

to maintain shape similarity. Conservation of energy is obtained by

adjusting the frequency of the windsea peak to a new value fmo, but

keeping a and y fixed. This assumes that the high-frequency portion of

the windsea spectrum remains initially unchanged and that the

redistribution of the swell energy does not alter the spectral shape

(i.e., y) by any significant amount. Hence, in terms of integral

expressions this can be stated as

f Ews (a,fmo,Y)df = AEsw + f Ews (a,fm,Y)df (4.6.8)
0 0

where AEsw represents the total swel I energy to be absorbed. For

illustrative purposes, we depict this procedure schematically in Figure
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(4.8). Clearly, areas A and B are graphically equivalent representa-

tion of (4.6.8). Again, the integrals can not generally be evaluated

in terms of closed form analytic expressions, due to the non-

integrability of the JONSWAP spectral shape for y * 1. The adjusted

windsea peak is closely given by

4 AE
801t 4 Esw -0.25

fm = fm{1 + -- fm }y (4.6.9)

ag

The correction function g(y) can easily be determined from

numerical integration of the JONSWAP spectral shape, i.e.,

(2fm)4 G
g(y) = m) f Ews (a,fm,y)df (4.6.10)

ag 0

A least-square fit of the results to a third-order polynomial in y

yields the algebraic expression

g(Y) = -0.044 + 0. 3 4 4y - 0.112y 2 + 0.012y3  (4.6.11)

The second case to be considered, emerges from the situation

where swell energy exists at frequencies for which the associated

phase speeds are less than the local wind speed, i.e.,

f > fu = g/(2fUcos(Ow-6s)), where 6w-6 s is the angle between

the wind vector and the swell direction; but are outside the range of

influence of nonlinear windsea interactions, i.e., fu < f < 0.9 fm.

These are assumed to grow again through a Phillips-Miles mechanism.

This type of linear atmospheric input is commonly described by the

Snyder-Cox source function (Snyder, 1974)
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S(f,6) = 3(f,8) E sw(f,6) (4.6'.12)

with

= Cd 2nf ( - 1) for f > f
P u

=0 for f < f
- u

Here, Esw is the swell energy density and Pa, Pw are the

densities of air and water, respectively and cd is a drag coefficient

taken as 0.05. Although swell can grow again, it still remains in the-

swell domain and is further advected along prescribed characteristics.

These two outlined transfer criteria provide the vital link

between the swell model and the parametric windsea model. Together

they make up the hybrid wave model.

4.6.3 Propagation Treatment of Swell

The parametric description of the windsea domain is not applicable

to the swell region. This means energy at frequencies f < fpM =

0.13g/(Ucos(Ow-6)) are treated in a different manner. Since swell

lies outside the range where either the wind or nonlinear interactions

can influence its evolution in space and time, a characteristic

approach is used in this model to represent the swell wave field. The

concept of employing discrete spectral rays was originally introduced

by Barnett et al. (1969) as a method to propagate swell over an ocean

of arbitrary depth. If the medium is time independent, then the rays

can be predetermined and for waters of varying bottom topography, the

effects of depth refraction can be included. Generally, swell is
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represented as discrete energy packets defined by their frequency f and

direction 6. The rays are also classified by the pair (f,6). Swell

packets are then located at points along the ray. These incremental

spacings are computed from

AX = At c = At g tanh kh (1 + 2kh (4.6.13)
g 4w f sinh 2kh~

where At is the model time step and c. is the local group velocity at

frequency f and in depth h. The model area is covered with a mesh of

rays at appropriate increments in frequency, angle and (x,y) spacings.

In deep water, this is simplified considerably, since all rays are

straight lines. Energy propagation by one or more time steps is easily

simulated by a computer as an input-output process, by storing the ray

points in a one-dimensional array. In deep water, where refraction

effects are absent, as well as no sources and sinks, this procedure is

rather efficient. In the case of finite depth, the inclusion of

dissipation from bottom friction poses no difficulties (Graber et al.,

1981). Swell packets reaching a model boundary are simply advected out

by purging the energy contents for a given (f,0').

Detailed accounts of the numerical and computational procedures

employed in implementing the hybrid wave model can be found in

Hydraulics Research Station (1977a,b) and Graber (1979).
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CHAPTER 5

MODEL APPL I CAT IONS
Dieser Erdenkreis gewahrt noch Raum For this earthly sphere affords a place
Zu grossen Taten. For 'great deeds.

(Faust)

-- FAUST 1i. Hochgebirg
Johann Wolfgang von Goethe

5.1 Gulf of Alaska (Deep Water Case)

Especially during winter, the Gulf of Alaska is constantly exposed

to adverse meteorological and oceanographic conditions. These extreme

storm conditions are produced by very large, rapidly moving extra-

tropical cyclones. Typically, these storms develop as initially small

depressions in the western part of the North Pacific and quickly

intensify during their movements toward the Gulf of Alaska. The

mountain ranges surrounding the shores of the Gulf present a natural

barrier to the movement of these-torm systems, which cause staanation

and influence the duration of the storms in this region. The combined

effect of storm intensity and duration in conjunction with a very lona

storm track over the open ocean, can generate exceptionally high waves

in the Gulf of Alaska.

Similar in structure to hurricanes, extratropical cyclones have

ordinarily maximum winds of approximately 25 - 30 m/s, but engulf a

large spatial area of the order of 750 km in diameter. The synoptic

weather map for this model storm at its peak is shown in Figure 5.1.

However, these cyclones strikingly differ from hurricanes in their very

high forward velocities and the capability to intensify very rapidly.

These features seem to provide a good test to verify the model's

response to rapidly turning winds. At the same time, this would also
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Fig. 5.1 Synoptic weather map of extratropical cyclone in the Gulf of Alaska for 0600 GMT,
January 30, 1976. (From Overland and Cardone, 1980).
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test the windsea-swell transition regime, because the high forward

velocity of the storm could outrun swell and if stalled, the swell

could catch up and interact again with the local windsea. The

inclusion of directional relaxation should help to minimize the

associated loss by radiation into swell, a fact that was evident in an

earlier model version, where the mean wave direction was always assumed

to align itself instantaneously with the local wind direction.

In addition to wave and wind observations from the EB03 NOAA data

buoy, we have also available waverider and spectral data from five

other locations which were part of the GAWWMP (Gulf of Alaska Wind and

Wave Measurement Program) project. The GAWWMP study was an industry

sponsored effort by a consortium of oil companies to measure winds and

waves in the Gulf of Alaska (McLeod et al., 1975). Figure 5.2 shows

the locations of waverider buoys and recording stations in the Gulf of

Alaska. Except very close to the shore, the water depths within the

model area can be considered infinitely deep. Refraction effects due

to both slowly varying currents and bottom topography are neglected.

No directional wave data was available from any of the stations.

The model grid is set up on a polar stereographic projection with

grid points at constant spacings of approximately 150 km (Figure 5.3).

The cartesian grid is defined by the latitude 0 and longitude X,

(1 + sino) = 0.5 + (x2 + y ) (5.1.1)
8RE

tan 1  ) (5.1.2)

with the origin at the north pole and with the x-axis pointing along

the longitude Xo = 95*W. Here RE (radius of the earth) = 6367 km
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5.1.1 Meteorological Conditions and Wind Fields

The extratropical storm selected for this study occurred during

January 27-31, 1976. The initial development of this storm can be

traced back to a weak depression in the outer circulation of an

intense, northward-moving cyclone (964 mb) heading for the Aleutian

Islands into the Bering Sea. At this time 0600 GMT January 28, our

storm of interest just formed an enclosing isobar of 996 mb and showing

only a slight eastward movement. However, at 1800 GMT January 28, our

storm picked up in movement, turning northeastward and had deepened

very rapidly (980 mb). Figure 5.4 depicts the model wind'fields around

the time of inception (1500 and 1800 GMT). By 0600 GMT January 29, the

storm further intensified (973 mb) and commencing its track towards the

northeast at over 70 km/h (this corresponds to the group velocity of (L

25 s wave in deep water). The storm continued to deepen and turning

more towards the north-northeast. By OPOO GMT January 30, the storm

was fully matured and attained its lowest central pressure of 958 mb

when the "eye" was about 200 miles south of the Trinity Islands.

Figure 5.5 shows the track of the storm's low pressure center .The

National Weather Service had sent out its first advisory for the Gulf

of Alaska (January 29, 2345 GMT) warning of winds up to 23 m/s and seas

in excess of 7 m. Furthermore, the fully developed extratropical storm

how engulfed the entire eastern area within a semi-circle of 800 km

where prevailing winds reached speeds up to 28 m/s. The National

Weather Service issued its second warning (January 30, 1145 GMT),

forecasting heavy rains, high winds and very high seas up to 10 m. The

storm now took a course due north and within six hours, it had crossed
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Fig. 5.4 Examples of wind field input to the numerical model for 1500
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Sitkinak Island and the southern tip of Kodiak Island. Seemingly

uninfluenced by the large land mass, the storm advanced with unchanged

intensity towards Cook Inlet (0600 GMT, January 30) and slowly began to

weaken over land, until it finally entered the Bering Sea on January

31, 1976.

While our storm was heading for land, a new system was developing

in its wake roughly 900 miles south. At 0600 GMT January 30, it was

classified as open cyclone with a central pressure of 988 mb. By early

January 31, the now enclosed cyclone was moving north-northeastward and

provided a sustained flow of moderately high winds over most of the

Gulf of Alaska for the following day. The model wind fields

corresponding to the times when our storm attained its lowest pressure

and subsequently entered the Gulf are shown in Figure 5.6.

The original surface wind field, corresponding to a 10 m

anemometer height, was specified on a Mercator projected grid and a

discussion of the analysis can be found in Cardone et al. (1979).

These winds were transposed onto the polar stereographic projected grid

by means of linear interpolation. To retain the dynamics of the

cyclone, the wind speed to the fourth power was used for interpolation

and the directions were deduced from the Fourier components of the wind

vectors. Interpolation in time is automatically performed by the wave

model using a mixed radix FFT (Singleton, 1969).

5.1.2 Model Results

Three different versions of the deep water hybrid parametric

(HYPA) model were tested against this storm: i. directional relaxation

using an energy flux approach, ii. directional relaxation using a wave
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momentum approach and iii. no directional relaxation. The results of

the approaches i. and ii. showed no discernible differences in either

the mean wave direction or the wave height. These differences were

limited to a few degrees for the mean windsea direction and to about 10

- 20 cm in wave height. The remaining JONSWAP parameters exhibited

hardly any noticable differences. Therefore, all results concerning

the directional aspect of the waves will be present in terms of the

energy flux approach only.

The model results of the no directional relaxation version, i.e.,

the waves are instantaneously aligned with the local wind direction,

differed considerably in all wave parameters from the directional

results. As we discuss the results at the individual stations we shall

point out these differences as deemed necessary. In Figures 5.7 to 5.9

the evolution of wave spectra at each of the six measuring locations

(c.f. Figure 5.2) are depicted. ~B3th locations EB03 and Middleton

Island (Figure 5.7) attained relatively high spectral densities when

compared to the other locations. It should also be noted that the

structure of their spectral form is very similar, indicating that the

storm's influence at both sites was approximately the same. It turned

out that both these locations recorded the highest waves, of the order

of 10 meters. S'itkinak Island (Figure 5.8) was exactly in the path of

the extratropical storm. This is evident in the two pronounced peaks

of a windsea and swell, but the waves never reached heights as high as

at Middleton Island which was situated in the right front quadrant of

the storm. Amatuli Island (Figure 5.8) appeared to be positioned in a

somewhat sheltered location between the northern tip of Kodiak Island
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Fig. 5.7 Evolution of hindcasted wave spectra at station NOAA EB03
(top) and Middleton Island (bottom) for the extratropical
cyclone of January 27-31, 1976.
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Fig. 5.8 Evolution of hindcasted wave spectra at station Sitkinak
Island (top) and Amatuli Island (bottom) for the
extratropical cyclone of January 27-31, 1976.
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Fig. 5.9 Evolution of hindcasted wave spectra at station Icy Bay
(top) and Yakutat Bay (bottom) for the extratropical cyclone
of January 27-31, 1976.
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and the southern part of Kenai Penisula. Although it experienced the

ful I intensity of the storm's onshore blowing winds, the waves didn't

develop as might be expected. Figure 5.9 shows the spectral evolution

at Yakutat and Icy Bays. Both locations show very similar spectral

developments, marked by an initial spectral peak at the beginning of

the modeling period. In the following we will discuss the hindcasted

results for the individual measuring locations and how they compare

with observed data.

NOAA Buoy EB03:

For almost two days, EB03 wa.s recording moderately strong winds

from southerly directions and waves corresponding to an unlimited

fetch. The time history for the grid point closest to EB03 is shown in

Figure 5.10. The stick plot of the wind illustrates the temporal.

variation in speed and direction7'The effect of the approaching

extratropical storm was felt late on January 29, with winds initial-ly

decreasing in speed and shifted towards the east. As the storm came

closer, the winds pick up in speed, reaching up to 25 m/s, and the

direction continuously turned towards the south and southwest. The

plot below shows the behavior of the windsea direction scaled by the

windsea wave height. The mean windsea direction mimics with some delay

the behavior of the local wind vector. The lag between wind and waves

is depicted in the time history plot at the bottom left. The

convention of the lag is as follows: if the wind vector rotates

clockwise, the lag is indicated by a positive value and if the wind

rotates counter-clockwise, the lag is given by a negative value. The

presence of swell is indicated in the plot above. The direction of the
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swell corresponds to the bin containing the most energy and the arrow

is scaled with the total energy in the swell field. From this it is

clear that the wave field always consisted of a relatively equal

windsea and swell, except at the peak of the storm. At this time, the

waves were almost all windsea with very little swell. After the storm

had passed, swell waves were prevailing at EB03.

The right-hand side of Figure 5.10 shows the time series of

significant wave height and mean zero-crossing wave period as compared

with observations recorded at EB03. The overall agreement is

considered good, particularly in the initial rise before and in the

fall after the peak wave conditions. The reason for disagreement in

the peak wave heights as predicted and measured, has several possible

explanations. For one, wave growth of the model is proportional to

U- cos(6w-o), the product of wind speed times the cosine of the

difference angle between the local wind and mean wave direction. This

effectively reduces wave growth for all situations except when wind and

waves are parallel to one another. Two, the wind input occurs via the

a parameter equation, by means of a source function which was derived

from an equilibrium relationship between a and v = fmU/g. This

empirical relationship was established for fetch-limited and less

severe wind conditions. A third possibility is that the two recorded

wave heights at the peak are questionable. This conjecture is

supported by the fact that the observed spectral data showed a

recording error entry for the times at 0600 GMT and 0900 GMT on January

30, 1976. According to D.8. Ross (personal communication), the

recorded data was only scrambled and its spectral densities were

manually re-analyzed.
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If the directional effect on spectral growth seems to be a major

cause in reducing predicted wave heights, then the model run without

the directional parameter should remedy this discrepancy. Figure 5.11

shows these results. The overall wave heights are somewhat increased,

but still the model peak fails to concur with the peak of observa-

tions. The time history of the spectral parameter vs (cf. section

3.1.1) gives an indication of the narrowness of the wave spectrum,

i.e., vs -* 0. The results of Hs, Tz and vs together provide

enough information to determine the joint statistics of waves as

described -in Shum (1984).

Figures 5.12,'5.13 and 5.14 illustrate hindcasted and observed

wave spectra at 0600 GMT, 0900 GMT and 1200 GMT on January 30,

respectively. Maximum.wave conditions occurr at 0900 GMT. Each figure

presents hindcasted spectra from the models including and excluding the

directional parameter, respectively. Generally the agreement is not

too good, which may reflect on the one hand the capability of the model

to respond to rapid growth and on the other hand may also point to a

problem relating to the transition ,region between swell and windsea.

MIDDLETON ISLAND:

The wind history at the grid point simulating wave conditions for

Middleton Island was essentially identical to one of EB03. The time

series of wind and wave parameters are shown in Figure 5.15.

Similarly, the hindcasted maximum wave heicht is well below the

recorded maximum. However, in this case it appears that the model

response regarding the rise and occurrence of maximum wave conditions

are far better than EB03. The mean zero-crossing wave period is
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consistently underpredicted by the model. The data of Tz features an

odd periodicity of one day, where the period Tz seems to dip and then

pick up again. If this behavior is real then it must be of local

origin, because on a synoptic scale there was no indication of this

feature. Another possible source could be Doppler-shifted frequencies

due to currents or long distance swell. The hindcasted results without

the directional parameter (Figure 5.16) show an increased maximum wave

height by more than one meter, although still lying below the observed

wave height peak of over 11 meters. Nevertheless, there appears to be

some discrepancy in the data. Reece and Cardone (1982) reported on the

results of the calibrated GAPS model for the same storm. According to

them, the maximum measured wave height was just over 10 meters which

falls short by 1.5 meters of the data we compared to. The results of

the GAPS model are depicted in Figure 5.17 with our hindcasted

predictions for both model versions. It should be pointed out that no

attempt was made to tune the parametric wave model. In order to

demonstrate the model's sensitivity to the wind field, we made one run

where all winds were categorically increased by 10%. This produced

everywhere an increase of approximately 15% in Hs and is sufficient

to provide a favorable agreement between our model results and data.

SITKINAK ISLAND:

This location was unique, since the storm's low pressure center

passed right over it. This is evident in the very rapid change in the

wind vector (Figure 5.18). Except for the beginning of the modeling

period, this measuring site experienced winds blowing approximately

from south until the second half of January 29. Then, within a very



A0.=O A!.PWP W4qvi "TE S7 'W21: AN . 2 7-3 1. 19 75

STATION 2 "E9LE TOp 15.

WINOSPEE0 AND -OrECTION 9. 10 M/SEC
NORTH * 0f/H

I r

S1GNIFICANT WAVEMEIG"T MS InETERSJ

MERN ZERG-CROSSING WAVE PERIOD TZ ISECONDS)

10 +

SPECTRAL POPIANETER NUJ

0.s--J

76/ 1/27 75/ 1/29 78/ 1/29 76/ 1/30

Fig. 5.16 Time series of hindcasted spectral wave parameters and
measurements (+++) at station Middleton Island using am odel
without directional relaxation.

-250-



32

28

24

.20
0U

16

12

8

4

03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00
1/29/76 1/30/76

TIME(GMT)

Fig. 5.17 Comparison of hindcasted significant wave heights from three
wave models with data for Middleton Island. (-) GAPS
model; (---) HYPA model, no directional relaxation;
(.....) HYPA model, with directional relaxation. (From Reece
and Cardone, 1982).

-251-

0

ete

I 
t

49'

0 6 --

* *I



GULF CF RLASgi6 NA'.E CL!",;E 5T7JDr; JAN. 27 31, 1975
DIAECTIONP.. MELFIq'!C'I; -- Efl.tMT FLL. qPPPCCh- -

VATeIlC = 51MINiAK 15L

MINO5PEED RND -01EC11ON 9, - - 10 "/SEC

MINDSER HEIGHI AND -DIRECTION 8, I-4 - 5 N

NORTH

EAST

1
.50 r

SEAST
5.00

2.50

0.0 0

GULF OF ALR5K' WIAVE CL IMQ7E STUDr: .AN. -31. 1976
DIREMCONSL A nEjLnrD: --Et~nr t .ux Rprnoacn--

WINDSPEED AND -DIRECIION 9. I-. 10 N/SEC

~'mii/IIfli~\\\\\\\\\\\\\\\\1 I I h~

SIGNIFICANT NRVEhEiGT i1S IMCETSt

SWELL HEIGNT AND DOMINANT PEAM DIRECTION I-I a 3 N
NO~hh

A ~ I//If

I
IS5'-

1O

~'EAST

MIND WAVE DIRECTIONA4. LAG

78/ /27_ 70/ '1/2 76/% 1/U20 78/ 3130

5-

0

0.6 -r

0.5 -

0.

HEAN ZERO-CROSSING WAVE PERIOD 1! ISECONDSI

+4.

SPECTRAL PARA"EICE NU

I . I . . I

is/ 1/21 20/- 1/26 751 1i29 I 7/ 1/30

Fig. 5.18 lime series of hfndcasted spectral wave parameters and measurements (+++) at

station Sitkinak Island using a model with directional relaxation.

NORTH

1. d

NORTH

\ W

wU,

EAST

1
so

-02

-25

-50

-//1\\\\1 \\\\li 
2

. ..............................
+ ~ + 4 + + 4+++

-



short time, the winds first blew from east at the storm's edge ahead of

the center and rapidly changed to almost westerly winds behind the

pressure low. The mean wave direction considerably lags the wind

vector during the storm's passage. Hindcasted and observed wave

heights are general ly in good agreement for- the later part of the

hindcast period. The model seems sensitive enough to produce responses

to the smaller secondary maxima prior to the storm. The lower levels

in these secondary peaks may be attributed to the effect of model spin-

up time for the model at this site, as can be seen in the very low

starting wave height. The measured wave period Tz hardly varies over

the entire time from an average value of approximately 9 seconds.

As might be expected, the model without directional relaxation

performed.poorly during the.rapid shift in the wind direction. This is

clearly demonstrated in Figure 5.19, where most of the energy in the

windsea is lost by radiation into swell after the peak occurred.

AMATULI ISLAND:

It was anticipated that the proximity of land on either side at

this measuring site (cf. Figure 5.2) would have some sheltering effect

on the wave climate there. As can be seen in Figure 5.20, the changes

in the wind history for this grid point seem to be more gradual. On *

the average the wave directions were lagging the wind just slightly up

to the time when the cyclone passed over Sitkinak and Kodiak Islands.

Then the difference increased to as much as 60*. This also shows up in

the swell, where for a short period around 0900 GMT January 30,

relatively little swell was present and then was followed by a sudden

increase in swell energy. This is better explained on the significant
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wave height time series. Wave heights considerably dropped just before

the arrival of the cyclone on midnight (0000 GMT) January 30. Th-is was

a consequence of the sheltering provided by Kodiak Island. Then within

six hours, wave heights rose by 5 meters under the wind action of the

approaching extratropical cyclone. By 0600 GMT January 30, the storm

hit land at Sitkinak Island (cf. Figure 5.5), and the windsea wave

height quickly diminished until swell waves arrived from further south

to maintain a level of high waves. This histbry of events is also

evident in the wave periods. The hindcasted wave periods show the same

feature, but more gradually. Nevertheless, the model captures the fall

and rise signature until the arrival of swell, although somewhat

delayed. The geometrical obstruction of Kodiak Island causing the

sheltering effect can hardly be resolved on a model gri.d of this

scale. A finer grid system would be needed to perform better for this

situation. It should be pointed out that the wave periods have the

same underlying periodicity as previously mentioned for Middleton

Island. The results without directional relaxation appear to be

somewhat better, at least with respect to attained maximum wave height

(Figure 5.21).

ICY BAY:

Similarly to Middleton Island, the measuring location at Icy Bay

was completely exposed to the ocean side with the mountains along the

coastline. The winds didn't shift too rapidly, because Icy Bay was

situated more at the outer edge of the cyclonic circulation pattern.

This shows up clearly in the continuously developing windsea as

depicted on the left-hand side of Figure 5.22. At the time of peak
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winds (0900 GMT, January 30) the wave field was almost pure windsea.

Within six hours, swell from the open ocean arrived, dominating the

diminishing windsea. However, a closer look at the time series of Hs

reveals a quite different picture. For one, the observed maximum waves

occured near the end of the day, reaching up to 10 meters as reported

by Reece and Cardone (1982). Maximum winds were present in the early

morning of January 30 (- 21 m/s), and steadily decreased thereafter.

This implies that at this site the highest waves were swell. This fact

is also indicated by the observed wave periods of the order 13 seconds

and more. For two, there was an initial relative peak in wave height

and period prior to the storm (1800 GMT, January 29). We were. not able

to attribute the origin of thi-s relative maxima to any local genera-

tion. The synoptic weather maps for this time showed no small-scale

disturbance, which could.,be the source for this increase. Generally,

the prevailing winds before the.acrival of the storm were well below 15

m/s, which is not sufficient to generate waves of this height (- 6 m).

Finite depth effects were also excluded as a possible generation

mechanism, since the water depth for this area was at least 200 m

deep. Long distance swell was another possible source, but was

considered tinlikely, since aisimilar sianature should have been present

in the records of EB03 and Middleton Island. This leaves the possibil-

ity that these waves could be swell radiated from the storm while it

was still in the open ocean. However, even this seems to be unlikely,

since a similar effect should certainly register at the measuring sites

of EB03 and Middleton Island. For this site, the hindcasted model

results were quite poor when compared with observations. Even the

model without directional relaxation did not perform much better

(Figure 5.23).
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YAKUTAT BAY:

Similarly to the events taking place at the site Icy Bay, Yakutat

Bay also recorded three maxima in wave height (Figure 5.24). The first

one around 1800 GMT, January 29, is again of mysterious origin. The

model predictions do not resolve this feature at all. A second peak,

coinciding with the hindcasted maximum Hs at approximately 1200 GMT,

January 30, appears to be the windsea peak, since winds attained their

highest speed (m 20 m/s) and very little swell was present around this

time (cf. left-hand side of Figure 5.24). The last peak, with a

measured maximum of HS w 9 m occurred at the end of the day. At this

time wind speeds were less than 10 m/s. This implies that most of the

energy was contained in the swell field. There are two possible

explanations, why the model results are in disagreement with the

measured data. As we have already mentioned, a trouble spot of the

hybrid parametric model is its ability to treat the transition region

windsea-swell. The other cause could lie within, the assumption that

the earth is flat over the extent of the model area. A more realistic

representation should account for curvature effects of the earth.

Neglecting this could yield a retardation or a speeding up of the swell

movement in the model. Some indication of this can be seen in Fioure

5.25, where hindcasted wave heights and periods for the model excluding

directional relaxation show a rise iust at the end of the hindcast

period.

Finally, Figure 5.26 gives an impression of the spatial

distribution of significant wave heights, corresonding to the time when

the extratropical cyclone started to intensify and took course towards

the Gulf of Alaska.
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Fig. 5.26 Contours of hindcasted significant wave heights in the Gulf
of Alaska for the extratropical cyclone on 1200 GMT January
28, 1976.



5.2 ARSLOE (Finite Depth Case)

One of the objectives of ARSLOE (Atlantic Remote Sensing Land

Ocean Experiment) was to obtain basic information on wave

transformation in waters of finite depth and provide a testing ground

for shallow water wave models. Along a cross-shaped array, a variety

of measurement devices such as waveriders, wave staffs and directional

sensors were deployed to measure the influence of wave transformation

on the spectral shape and wave directions. The outer most XERB buoy

was located 35 km offshore in waters approximately 36 m deep. Spectral

wave data were recorded as close as 3 km from the shore in a water

depth of 17 m (Figure 5.27).

During the time period of ARSLOE a sharp frontal system made its

passage over the ARSLOE site on October 25, 1980. Winds during the

ARSLOE storm reached gale force and were accompanied with the

generation of relatively high waves. The interesting feature of this

storm was a pronounced flow of onshore winds ahead of the front, which

changed within a few hours to equal ly strong offshore winds after the

front had passed. Thus, within a three hour period the winds

essentially changed direction by as much as 180*. The synoptic weather

map of the frontal system is depicted in Figure 5.28. Examination of

the data confirmed the appearance of multi-peaked spectra as well as

directional cross-seas with swells propagating in an onshore direction

and the newly generated windsea'moving out towards deeper water. This

situation provided an excellent case to test for one, the sensitivity

of the directional parameter to a 180* switch in the wind direction,

and for two, the verification of the finite depth version of the model.
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The model grid for ARSLOE was also established on a polar

stereographic projection as defined in (5.1.1) and (5.1.2) but using a

constant grid spacing of approximately 80 km. Here, the x-axis was

pointing along the longitude Xo = 15*E.

5.2.1 Meteorological Conditions and Wind Fields

On October 24, 1980 a low pressure center developed off the

northern Florida coastline and slowly advanced northward. By the

following morning, October 25, the frontal system had moved to the

vicinity of the ARSLOE site, subjecting the area to strong onshore

winds from the east and northeast with wind speeds up to 15 m/s ahead

of the warm front. For the next three hours, southernly winds within

the warm sector dominated the area until the arrival of the cold front

(cf. 5.28). With the passage of- the cold front, the winds were blowing

offshore up to 20 m/s, generating fetch-limited wave conditions. In

Figure 5.29 the model winds during the frontal passa-ge are shown. Thus

within three hours the wave conditions in the ARSLOE area changed from

northeasterly windseas of unlimited fetch to fetch-limited windseas

propagating against the arriving swell of the earlier windsea.

The wind fields were manually constructed from three hourly

synoptic surface weather maps. Interpolation in time is automatically

performed by the wave model using a mixed-radix FFT (Singleton, 1969).

5.2.2 Model Results

The arbitrary depth version of the HYPA model was applied to this

frontal system during the ARSLOE experiment. The continental shelf
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Fig. 5.29 Examples of wind field Input to the numerical wave
the ARSLOE storm at 1200 GMT and 1500 GMT, October
1980. The vectors show speed and direction of the
dot indicates location of XER8 buoys.

model for
25,
wind. The
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along the east coast of the United States is general ly a few hundred

kilometers wide, which means that finite depth effects for this wave

hindcast will show up only at a few grid points. The bathymetry along

the shelf consisted of approximately parallel contours, with an average

100 bearing to the east from the North-South axis. Figure 5.30a

provides an impression of the evolution of wave spectra at the grid

point closest to the location of the XERB buoy. It clearly

demonstrates the migration of the spectral peak to lower frequencies.

The two days prior the frontal passage was governed by slowly changing,

onshore blowing winds of increasing speed. The spectral evolution

shows quite well the developing windsea until the front passed over the

site. The wave conditions after the front had passed was that of a

cross-sea with multiple spectral peaks due to a strong swell field

refracted towards the shore and a new, opposing windsea developing

under fetch-limited conditions. TIe post-peak development is depicted

in the spectral evolution shown in Figure 5.30b. Several swell peaks

can be recognized as well as the newly developing windsea located

around frquencies = 0.16 Hz and higher.

The model was run for a minimum dissipation case corresponding to

a friction factor fw = 0.025. Both windsea and swell were

attenuated. The hindcasted time series are shown in Figure 5.31. The

uniform, onshore flow governing the ARSLOE site for the two days ahead

of the advancing front is reflected in the stick plot for the wind

history. This pattern is closely described by the windsea for the same

period, and is also evident in the wind-wave directional lag. The

duration-limited windsea dominated the wave field at the XERB buoy.

During this time, swell was either entirely absent or only present in
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Fig. 5.30 Evolution of hindcasted wave spectral at station XERB for

the ARSLOE storm of October 23-26, 1980. (a) pre-storm
development; (b) post-storm development.
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negligible amounts as is easily seen in the swell plot.

Once the front arrived, the winds rapidly turned from the

northeast to southwest, but maintaining roughly the same speed. The

response of the mean windsea direction was initially slow, lagging the

wind by as much as 70*. The large change in direction forced the

windsea to transfer most of its energy to swell as is clearly visible

in the sudden increase of swell at the XERB buoy. For the next 12

hours a strong swell field from the south dominated the new windsea

which now developed under fetch-limited conditions. By the evening of

October 25, the swell waves had substantially diminished in height and

by morning of the next day, swell was comparable to the windsea in

terms of total energy. The uniform, offshore wind and wave conditions

in the post-period of the front is well described by a nearly vanishing

wind-wave directional lag.

The right-hand side of Figure 5.31 shows the model results for the

wave height and wave period. The predicted maximum wave height is 5 m

at 1200 GMT, October 25, which coincides with the measured peak.

Predicted wave periods Tz peaked at 7.5 seconds during the time of

strong swell from the south.

Since the initial period of wave generation was entirely dominated

by a developing windsea, the plot of the spectral parameter vs

represents the feature nicely. At the start of the modeling period the

windsea corresponded to a mean JONSWAP spectrum for which vs - 0.39.

As the spectrum developed vs gradually increased-reach-ing a value

VS w 0.425, corresponding to a Pierson-Moskowitz spectrum, just

before the storm hit. The large values afterwards indicate the

presence of multi-peaked spectra as is the case for wave fields
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consisting of swell and.windsea.

Figure 5.32 shows the hindcasted wave parameters for sionificant

wave height, frequency of spectral peak and mean wave direction

corresponding to the frequency of the spectral peak superposed on the

ARSLOE data set. The overall agreement for all wave parameters can be

considered extremely good. The wave height is presented in Figure

5.32a. The solid line is the model results. As previously mentioned,

the wave field was purely windsea up to the arrival of the front (1200

GMT, October 25). The hindcasted wave heights just hug the upper side

of the data, and follows quite accurately the trend leading up to the

maximum wave height. On the backside of the storm, the predicted Hs

values are generally too high. During this time swell was prominent

everywhere and the windsea was of secondary importance. The level of

windsea energy is approximately7given by the square symbols,

representing measurements from wave riders which were located closer to

shore. Although refraction is included in the windsea description of

the wave model, this is not the case in the swell model. Regardless of

depth, swell is propagated along straight characteristics. The neglect

of swell refraction can lead not only to an overestimate in total wave

height, but also represent a false distribution of energy in terms of

wave spectra. A closer look at the surrounding grid points revealed

that swell was approximately the same everywhere in magnitude and

direction. Therefore,- a simple analysis by refracting each swell

component separately was thought to be adequate to remedy this

problem. The total wave height with swell corrected for refraction

effects is shown by the dashed line. Several things can be observed.

One, the maximum wave height is reduced by = 50 cm. The overall
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agreement is improved, which indicates that swell refraction is

significant to predict wave heights in coastal waters. The remaining

discrepancies between predicted and observed HS values can be

primarily attributed to the resolution of the swell field. This can be

seen in the predicted results on October 26, where most swell energy

was contained in higher frequencies for which refraction effects are of

diminishing significance.

A comparison of hindcasted and observed spectral peak frequencies

is depicted in Figure 5.32b. Here the solid line corresponds tothe

windsea peak frequency parameter fm. Again, for the period before the

storm, this fm parameter describes quite accurately the spectral peak.

As soon as the windsea energy is transfered to swell, indicating the

presence of multi-peaked spectra, the fm parameter can no longer be

used without inspection of the-ctual wave spectra. This explains the

spike in fm right at the time when the front made its passage. For

this time we also plotted the frequency of the swell peak (dashed

line). This frequency seems to be appropriate, since a4.1 the measuring

stations recorded a spectral peak frequency - 0.1 Hz. By the evening

of October 25, three distinct sets of observed peak frequencies are

shown. The top set at = 0.25 Hz corresponds to waveriders very close

to shore which measured the peak frequency of the newly developing

windsea (fetch-limited conditions). The lower set also corresponds to

waveriders which were located at a distance halfway between the XERB

buoy and the shoreline (cf. Figure 5.27). At this site the swell peak

( 0.1 Hz) was still larger relative to the offshore propagating

windsea peak. The data points (stars) in the center correspond to the

XERB buoy. Here the fetch was long enough so that the windsea could
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sufficiently develop and dominate the wave field again. Hence, the

parameter fm appears to be the appropriate one to characterize the

frequency of the spectral peak there.

At this point we should mention that the deep water model version

was also applied to this complex frontal system using the same wind

field and model grid. Both the deep water and finite depth model

predicted identical results in Hs up to the evening of October 24.

Then, the deep water results sicnificantly deviated from data and the

finite depth predictions by shooting up in a linear manner to a peak

wave height of - 5.5 m at 1100 GMT, October 25. This demonstrates the

importance of including finite depth effects, because by noon of

October 24, the peak frequency fm has migrated towards frequencies low

enough where the deep water assumption is no longer valid in a water

depth of 35 m. For example, tlipresence of the bottom in waters 35 m

deep is felt by all spectral components corresponding to frequencies

0.15 Hz or lower.

Finally, we focus our attention on the mean wave direction which

is shown in Figure 5.32c. Here the solid line represents the

hindcasted values of the directional parameter eo. This parameter

characterizes the mean direciton of the windsea only. As could be

anticipated, the agreement of 6O between data and prediction are

excellent for the pre-storm period where the windsea dominated the wave

field. Once the frontal system arrived and had passed, the parameter

6o eventual ly responds to the changing wind vector. Thus for the

time from noon to midnight of October 25, the mean windsea direction,

60, cannot be used to describe the mean wave direction. The data

shows no consistent trend in the wave direction after the frontal
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passage. Although 6 0 has approximately the same trend in the mean

wave direction during post-storm period, the data exhibits considerably

more variability. Nevertheless, these results are encouraging and give

some indication that the approach used to derive the directional

relaxation parameter e0 is correct.

Finally, we show some examples of wave spectra. Figure 5.33

depicts a comparison between a hindcasted and observed wave spectrum

for 1800 GMT, October 24. It should be noted that not only the

location of the spectral peak but also the energy density at the peak

of the predicted energy spectrum almost coincides with the measured

spectrum. From this, one can conclude that the JONSWAP shape can also

describe quite adequately windsea spectra in finite depth. The arrows

show the direction of propagation for the wave components. Since this

is a windsea spectrum, all spec+7 al components propagate in the same

direction as predicted by the directional parameter 00 . Figure 5.34

shows the wave spectrum one hour after the front had arrived. Here the

arrows depict visibly the prominent swell field from the south with a

windsea propagating approximately northwest. In this spectral plot the

swell directions have not been corrected for refraction. The agreement

of the observed and predicted spectral shape is remarkably good, in

particular the energy density at the peak. The discrepancy in the

location of the peak can be attributed to the resolution of the swell

bins. The model uses a bin size of 0.1 Hz.
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Fig. 5.33 Comparison of measured and hindcasted wave spectrum at
station XERB for the ARSLOE storm at 1800 GMT, October 24,
1980.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Wer Wunder hafft, Who hopes for miracles.
Der starke seinen Glauben. Should strengthen his faith.

(Astrologe)

-- PAUST 11. SaaW des Thrones
Johann Wolfgang von Goethe

A hybrid parametric wind-wave model has been developed for general

use in waters of arbitrary depth. This model differs from other.

parametric models in two specifc areas. One, the directional parameter

controlling the relaxation of the mean windsea direction has been

rederived based on more general energy flux arauments. Two, the wave

model is capable of predicting wave spectra and other spectral

parameters not only in deep water, but also in- finite water depths.

The wave model was applied to two test situations. One case study

is a hindcast of deep water wave conditions in the Gulf of Alaska due

to an intense extratropical cyclone. Predicted wave parameters were

compared with measurements from six locations in the Gulf of Alaska.

Generally, the overall agreement of model results with observations at

these sites can be considered good. This study also helped to identify

some weaknesses of the parametric approach. These shortcomings will be

addressed in the following paragraphs of this chapter and suggestions

are made to remedy some of the problems.

The second test case dealt with a frontal passage over coastal

waters on the continental shelf off the North Carolina coast where

depths ranged from infinitely deep water to shallow water of the order

20 m deep. The significance of hindcasting this storm was twofold.

Firstly, the model's capability was tested in predicting transformed
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windsea spectra in shoaling waters. Secondly, since the passage of

this front was associated with a 1800 shift in the wind direction, this

provided an ideal situation to examine the response of the directional

relaxation parameter to such extreme changes. In summary, the model

predictions of significant wave height, spectral peak frequency and

mean wave direction compared exceptionally well with measurements at

the hindcasted location. Some minor shortcomings in the modeling of

swell have been identified and will be discussed in the paragraphs

below.

From the Gulf of Alaska wave study the major conclusion was that

model wave growth was too sluggish in rapidly turning wind fields with

moderately high to very high wind speeds. A possible. explanation of

this shortcoming is given here as follows. Energy input from the wind

is introduced in the model as agurce function in the a parameter

equation, where a characterizes the energy level in the high-frequency

equilibrium range. The functional form of this source function is

based on the empirical a-v relation originally presented by Hasselmann

et al. (1976), in which a has a standard deviation of 38%. Since the

wave height Hs is proportional to J, this implies an error in Hs

of at least 19% due to the uncertainty in this relation. Additional

errors are introduced in determining the model wind fields, which may

be of the order of 15% or more depending on the method used to

calculate surface winds (Cardone et al., 1979). The uncertainty in the

wind speed also enters the a-v relation through the v parameter. It

stands to reason that to some extent the error in the wind speed could

have a cancelling effect on the uncertainty in a, but in the worst

case, could also amplify the total error. Nevertheless, the error
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associated with the a-v relation is inherent to the model regardless of

wind speed accurac. This means that a prediction of a 10 m significant

wave height could be off by approximately 2 m. In order to minimize

this source of error, a new a-v relation is warranted. A subsequent

analysis of this relation should focus especially on extreme wind

situations such as extratropical cyclones and hurricanes.

The effective wave growth is further reduced due to the

incoiporation of directional relaxation, since only the wind component

parallel to the mean wave direction causes waves to grow in the model.

The wind component normal to the mean wave direction prescribes the

rate at which the waves are turned into the direction of the wind.

Hence, the effect of directional relaxation shows up as a reduction in

the wave height and a slower migration of the spectral peak to lower

frequencies. This is particularly noticed in the different results one

obtains for the Gulf of Alaska study when using a model with

directional relaxation and another model version without the

directional parameter. However, it is unfortunate that the Gulf of

Alaska data did not provide any information on wave directions. Such

data could have aided in clarifying the specific cause for the

generally low model wave heights for this study.

The inclusion of directional relaxation and the a-v relation did

not adversely affect the predictions in the ARSLOE wave study. On the

contrary, as already mentioned, the final answers compared favorably

with measurements. One possible reason for this success is due to the

fact that before the arrival of the storm, which consisted of three

sharp fronts, the wind field was relatively uniform over the entire

model area providing duration-limited onshore winds. In addition, wind
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speeds were not much in excess of 15 m/s, which was approximately the

upper limit in determining the empirical a-v relation from the JONSWAP

results.

The transition region between windsea and swell still presents a

difficulty for hybrid parametric wave model. The simple exchange

criteria controlling the transfer of energy between the two wave

domains requires more research and empirical evidence. The inclusion

of directional relaxation provides a physical means by which hybrid

parametric models can simulate more effectively radiation of windsea

energy into 'swell for a continuously revolving wind field. The

treatment of swell in the hybrid parametric model takes up most of the

time. The ARSLOE results have clearly demonstrated that neglecting

refraction effects in the swell can lead to overprediction of the total

wave energy and to incorrect results in the wave direcions. A simple

post-analysis of swell refraction as performed for the ARSLOE case,

cannot always be applied to more general situations. Therefore, a new

algorithm should be developed for the swell part of the hybrid wave

model which includes refraction but is efficient enough so that the

overall model computational efficiency is not reduced.

Similarly, the swell field was not adequately reproduced by either

model version for the Gulf of Alaska, but for different reasons. To

isolate the exact cause for this discrepancy is very difficult, since

several processes take effect at the same time in rapidly turning

winds. Nevertheless, some explanations can be inferred and additional

investigations may lead to more conclusive answers. As already

discussed, a primary source of error is associated with the a-v

relation. The reasoning is as follows. The v parameter controls when
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a transfer of windsea energy to swell takes place. A smaller a value

indicates less energy input into the high-frequency portion of the

spectrum. At the same time this means a reduced rate of energy

transfer to lower frequencies by nonlinear wave-wave interactions.

This in turn implies a slower migration of the windsea peak to lower

frequencies, which indicates the state of wave development. If a

fully-developed state is never reached, i.e., v = 0.13, no eneray is

transfered to swell. A revised a-v relation derived from extreme wind

conditions may provide some answers. In addition, the fact that we

approximate the earth as a plane within our model area, is certainly

not realistic for the Gulf of Alaska study. The neglect of the earth's

curvature may significantly affect swell propagation. This could lead

to a delay in moving swell or conversely, swell could propagate too

fast. In both cases the timing when swell should actually arrive at a

certain location would considerably deviate from the correct one.

Thus, a future modification of the model should incorporate the

flexibility to handle uneven grid spacings and nesting to allow for a

finer resolution in areas of interest.

An important aspect in finite depth wave modeling pertains to the

question of the existence of equilibrium spectra, i.e., the condition

when the net source function vanishes. This calls for more research

elucidating the interplay of the various source functions in shallow

seas. The lack of empirical evidence regarding shallow water wave

generation makes this task more cumbersome to solve. For example, most

data on bottom friction is for monochromatic waves. The bottom

friction mechanism for a monochromatic wave cannot simply be translated

into the spectral space since it is unknown a priori which wave mode,
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e.g., the peak frequency, can be considered representative for the

total frictional effect on the wave spectrum.

The final conclusion of this dissertation can be stated as

follows. The arbitrary depth wave model using a hybrid-parametric

approach demonstrated its capability to predict wave conditions not

only in deep, but also in fairly shallow water. It should also be

realized that the resulting wave predictions are only at best of

synoptic quality, since the winds entered into the wave model are

derived from synoptic weather maps. This leaves still the urgent need

for more accurate and objective methods to calcuate model wind fields

from meteorological data.
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APPENDIX A

Propagation Coefficients For The JONSWAP Parameters In Finite Depth

The general form of the finite depth propagation matrix is defined

in (4.1.13). Here, we have

= c
F(f,6 ,h)

(fh) ~ a.
gkJ

where the depth-dependent group velocity

+ h2kh
sinh 2kh)

1g

S= 1,...
j = 1,...
k = 1,2

is calculated in

+ Wh 2 - 1)]

and the partial derivative is given by

= l-x

&X 3

3E 2 Cs2
-- cos (
J

Because the functionals are

-6 )[ sin]
0 case

line-ir in their arguments, the angular

dependence can be integrated out according to (4.2.3)

8
=- sine D.

= r 0 IJ
D

8

which yields

cose D

and leaves the determination of Di i, where

= {c 9(f,h)
J

Thus for i = j = 1, we have specifically by (4.2.15)

- { 9c (fjh)
= - E"(fm)

6 (f-fm) d ( f ) df

where DE/3fm is the partial derivative of the JONSWAP spectrum

with respect to the peak frequency parameter fm,
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DiJk

c (f,h) = (
9

(A.1)

(3.1.37) as:

(4.3.1)

DF

J a

(A.2)

(A.3)

D.ItJx

D

(A.4)

(A.5)

(A.6)

(3.1.45)

D 1



= 2 -4 -5 5 f -4
-f a (25 f -4 Al-7- jm

= - f -) 4 +

( 1)2

2cr

a2

af
Here, E"(fm) =

f ( - 1)
+ Zny exp[B)[ 2

a fm

Iny exp[BI

. It remains now to show that

dc ( E +
7= -Tf m+

2E
a E (A.8)d inc

where, according

dc
9 -

df

to (A.2) we have

ac ac
__ + -

af 5x af

One finds,

ac

and

4 w('2 W = x4why - 1) +w 2h
h h 2X3
2 2

1 +oh ~x - 1)

ac

ax

+ 22 + 2 )

h

From (3.1.41) we have

26) (X 2

2 2+Wh (x - 1)

x
T

Combining (A.10) - (A.12) and evaluating (A.9) yields

2 2 2
Ih(X - 1)(1 -h

1 2 2
(1+ hX - 1 )) 2

C [1 - 41 1
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(A.7)

(A.9)

91ax

x

(A.10)

(A.1 1)

dc

df

c

(A.12)

(1 - 4 (A.13)



Substitution of (A.13), (A.7) and (A.8) into (A.6) gives after

evaluation of the integral

D = - E"1_m)

c *(f m, h) 5-
(1 -4Z Q(

1m T -
+ c (fm,h)( 20

fm
+ )} E(fm)

a fm

(A.14)

in which

E(fm)

E"(fm)

= ag2 -4 f- 5 expI- 5+ eny I

= E(fm)( + 2 )
fm a fm

(A. 15)

(A.16)

Introducing (A.15) and (A.16) in (A.14) finally yields after some

algebraic manipulations

= c (fm,h)
g

fI + 56 1 (A.17)

where Al is given in (4.3.7).

For the case i = 1 and j = 6 we must use 3_/a6 instead of

(A.3), which is given by (4.3.24) as

aF

0

= E(f) sin2(6

2A- 
I n

Because a is not affected by the operation in (A.6), we can write

9E
3a

_ 1 E
a

Making use of (A.19) in (A.18) and introducing the result in

(A.19)

(A.6) we

get

= ${acg(f ,h) } =- a
Tit(fm) J6 (f - fm) d (cg 5.)df
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(A.18)

(A.20)

D 1

s i no
810 COSV

D 16



We recognize that (A.20) is related to the advection coefficient

D12 . Thus, we obtain

D = aD (A.21)16 12

For the sake of completeness we list the remaining advection

coefficients involving the parameters aa and ab. The derivation of

these terms is quite lengthy and tedious. Using the functional $4 as

defined in (4.2.18) one obtains the following propagation terms for

aa:

c (fm,h) 8.24
D41 = fm 1 a a(1 + [T7 [a 1(1.7 + 2 O a

+ 0.08 A2])} (A.22)

c (fm,h) 0.56a
D =- {A( - 1) + a 1 - A + 2.56
42 a 1 a Lny 3 a

- 4.3A (1 + 11.9a )1} (A.23)1 a

c (fm,h) a
D43 = g { A1 (a a 1 + a [a - A (33a + 2.8)1} (A.24)

D44 = c (fm,h)(1 + a ) (A.25)

Similarly, using $ as defined in (4.2.19), the following coupling

coefficients for ab are obtained:

c (fm,h) 8.24
D51 fm 1 (1 +ab +ab (1 ab - A1 (20ab - 1.7)

-0.08A 21)} (A.26)
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c (fm,h)
D = 9 4A (1 + a)

52 a L1 b
+ ab A - 1 -' 2.5a + 4.3A (11.95a - 1) 1}

ny 3 b 1 b

(A.27)

c (fm,h)

D53

D = c9

A 1(1 + ab) - b -A1 (33aa - 2.8)1}

(fm,h) (1 - ak)
U

Here &l, A2 and A3 have been previously given in (4.3.7),

(4.3.19) and (4.3.20), respectivety. All other coupling coefficients

not explicitly shown are by definition zero.
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APPENDIX B

Propagation Coefficients for the Directional

in Finite Depth

The functional $6 is defined in (4.4.8) as

ff [cos6 SF - sine 6F Idfdo

6_ =El -_ jc * - E(f) df

where the energy flux spectrum F is specified in

Parameter 60

(B.1)

(4.1.4). Applying the

functional *6 to the definition of the Dij's in (4.1.13), we can

write the x and y components for the D6 j term, respectively, as

D6 x = 6 {sine c (f,h)
9F

aa.4J.ai

2 aE
fc 2 -- df
g aa.

9.
fc 9 E df

-- fcos 2(6-6)(coseOsine - sineo cos6 ) sine

(B.2)

= {cose c 9(fh) -a

2 3E8fc -Edf
= r g-

8fc '# E df
g

-fcos (e-6 )(cos6 sino - sineo cose ) cose

(B.3)

Carrying out the integration over the direction e in (B.2) and (B.3)

yields

32 sinnO D32 o 6j (B.4)
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D03y T cosO D (B.5)
6jy 32 os 6j

where

2 aE
fc 2 - df

D .j= (B.6)
6j fc # E df

g

remains to be evaluated. The integral in the demominator of (B.6) is

approximated by

3
f c Z E df = 'g fm-5 (8. (hY )B.7)

g 2(2n)

with J1 given in (4.4.14), which must be numerically integrated. The

integral in the numerator of (B.6) can be written as

fc 2 - df - - c 2D E df (B.8)
g aa. aa. g

J J

since the differentiation does not depend on the intearand. Hence, the

integral is readily evaluated and we get

fc 92 E df = 4 fm-6 2 Wh,y ) (8.9)
g 4(2ir)

with J2 given in (4.4.15). Then for J = 1, we obtain from (B.6)

4 5 -6 J J
D - ag 2(2n) a fm 2 g- 6 fm-2 - (B.10)

61 4(2)6 3 -5 3fm 4rr J4(f g fm1

Combining (B.10) with (B.4) and (B.5), then finally gives

D61x -1-sinG 6 fm- 2 2(.11)
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D - 3g cosO 6 fm.2 12
6 1y = - 0 (B.12)

The remaining coupling terms can be derived following this procedure.
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