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Abstract. The factorization method, first developed by Tomasi and Kanade, 
recovers both the shape of an object and its motion from a sequence of images, 
using many images and tracking many feature points to obtain highly redundant 
feature position information. The method robustly processes the feature trajec- 
tory information using singular value decomposition (SVD), taking advantage of 
the linear algebraic properties of orthographic projection. However, an orthogra- 
phic formulation limits the range of motions the method can accommodate. 
Paraperspective projection, first introduced by Ohta, is a projection model that 
closely approximates perspective projection by modelling several effects not 
modelled under orthographic projection, while retaining linear algebraic proper- 
ties. We have developed a paraperspective factorization method that can be 
applied to a much wider range of motion scenarios, such as image sequences 
containing significant translational motion toward the camera or across the 
image. We present the results of several experiments which illustrate the meth- 
od's performance in a wide range of situations, including an aerial image 
sequence of terrain taken from a low-altitude airplane. 

1 Introduction 

Recovering the geometry of a scene and the motion of the camera from a stream of 
images is an important task in a variety of applications, including navigation, robotic 
manipulation, and aerial cartography. While this is possible in principle, traditional 
methods have failed to produce reliable results in many situations [2]. 

Tomasi and Kanade [9] [10] developed a robust and efficient method for accurately 
recovering the shape and motion of an object from a sequence of images, called the 
factorization method. It achieves its accuracy and robustness by applying a well- 
understood numerical computation, the singular value decomposition (SVD), to a large 
number of images and feature points, and by directly computing shape without com- 
puting the depth as an intermediate step. The method was tested on a variety of real 
and synthetic images, and was shown to perform well even for distant objects. 

The Tomasi-Kanade factorization method, however, assumed an orthographic pro- 
jection model, since it can be described by linear equations. The applicability of the 
method is therefore limited to image sequences created from certain types of camera 
motions. The orthographic model contains no notion of the distance from the camera 
to the object. As a result, shape reconstruction from image sequences containing large 
translations toward or away from the camera often produces deformed object shapes, 
as the method tries to explain the size differences in the images by creating size differ- 
ences in the object. The method also supplies no estimation of translation along the 
camera's optical axis, which limits its usefulness for certain tasks. 

There exist several perspective approximations which capture more of the effects of 
perspective projection while remaining linear. Scaled orthographic projection, some- 
times referred to as "weak perspective" [4], accounts for the scaling effect of an object 
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as it moves towards and away from the camera. Paraperspective projection, first intro- 
duced by Ohta [5] and named by Aloimonos [1], models the position effect (an object 
is viewed from different angles as it translates across the field of view) as well as the 
scaling effect. 

In this paper, we present a factorization method based on the paraperspective pro- 
jection model. The paraperspective factorization method is still fast, and robust with 
respect to noise. It can be applied to a wider realm of situations than the original fac- 
torization method, such as sequences containing significant depth translation or con- 
taining objects close to the camera, and can be used in applications where it is 
important to recover the distance to the object in each image, such as navigation. 

We begin by describing our camera and world reference frames and introduce the 
mathematical notation that we use. We then present our paraperspective factorization 
method, followed by the results of several experiments using synthetic data which 
explore the method's performance. We conclude with the results of two experiments 
using real image sequences, which demonstrate the practicality of our system. 

2 P r o b l e m  Descr ipt ion  

In a shape-from-motion problem, we are given a sequence of F images taken from a 
camera that is moving relative to an object. We locate P prominent feature points in 
the first image, and track these points from each image to the next, recording the coor- 
dinates (uh,v h) of each point p in each image f. Each feature point p that we track cor- 
responds to a single world point, located at position s e in some fixed world coordinate 
system. Each image y was taken at some camera orientation, which we describe by the 
0rthonormal unit vectors i I, Jl, and k s, where ij and jy correspond to the x and y axes 
of the camera's image plane, and k i points along the camera's line of sight. We 
describe the position of the camera in each frame f by the vector t s indicating the cam- 
era's focal point. This formulation is illustrated in Fig. 1. 
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Fig. 1. Coordinate system 

The result of the feature tracker is a set of P feature point coordinates (uh,vyj) for 
each of the F frames of the image sequence. From this information, our goal is to esti- 
mate the shape of the object as ge for each object point, and the motion of the camera 
as ~s, ]y, ~e and ts for each frame in the sequence. 

3 T h e  P a r a p e r s p e e t i v e  F a e t o r i z a t i o n  M e t h o d  

3.1 Paraperspective Projection 
Paraperspective projection was first developed by Ohta [5] in order to solve a shape 
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from texture problem. It closely approximates perspective projection by modelling 
both the scaling effect (closer objects appear larger than distant ones) and the position 
effect (objects in the periphery of the image are viewed from a different angle than 
those near the center of projection [1]), while retaining the linear properties of 
orthographic projection. The paraperspective projection of an object onto an image, 
illustrated in Fig. 2, involves two steps. 

1. An object point is projected along the direction of the line connecting the focal 
point of the camera to the object's centroid, onto a hypothetical image plane par- 
allel to the real image plane and passing through the object's centroid. 

2. The point is then projected onto the real image plane using perspective projec- 
tion. Because the hypothetical plane is parallel to the real image plane, this is 
equivalent to simply scaling the point coordinates by the ratio of the camera focal 
length and the distance between the two planes. 1 
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Fig. 2. Paraperspective projection in two dimensions 
Dotted lines indicate true perspective projection 

..-7".~" indicate parallel lines. 

In frame f,  each object point sp is projected along the direction c - t/(which is the 
direction from the camera's focal point to the object's centroid) onto the plane that 
passes through the object's centroid c and has normal ks. The result of this projection 
is scaled by the ratio of the camera's focal length l to the depth to the object's centroid, 
z: = (c - t:) �9 ks. For simplicity, we assume unit focal length, I = 1 . 

Without loss of generality we simplify the mathematics by placing the world origin 
at the object's centroid e so that by definition 

c = ~ sp = O. (1) 
p = l  

1. The scaled orthographic projection model (also known as "weak perspective") is similar to 
paraperspective projection, except that the direction of the initial projection in step 1 is parallel 
to the camera's optical axis rather than parallel to the line connecting the object's centroid to the 
camera's focal point. This model captures the scaling effect of perspective projection, but not the 
position effect. See [6] for details. 
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The equations for paraperspeetive projection using this formulation are 

l{f. i:'ts 7 I s [Js "~zt:k:] u:~=z: L,:+ -~k:J �9 s~- (t:- i:) } %= { + -s,-(ts. js)} (2) 

These equations appear much more complicated than the corresponding equations for 
orthographic projection, which are simply U:p = i:. ( sp- t : )  and rip = j : .  ( s p - t : ) .  
However, both can be rewritten in the form 

Usp = mS. sp + xf vsv = ns . sp+y  f, (3) 
although the corresponding definitions of  x s, .Ys' ms' and n: differ. In the orthographic 

case, m s = i s, n: = jr, x: = - i  s �9 t:, and y: = -is.  t s. In the paraperspective case, the def- 
initions are 

z/= -ty. k: (4) 

t:.i: t:. b 
x: . . . .  yf = - - -  (5) 

z: z: 

b-x#/ jr-y/ks In/- - -  n: - (6) 
z: z: 

This similarity in the form of  the projection equations enables us to perform the basic 
decomposition of  the matrix in the same manner that Tomasi and Kanade did for the 
orthographic case, as is described in the following section. 

3.2 Paraperspeet ive  Decomposi t ion 

We can combine 3), for all points p from 1 to P, and all frames f from 1 to F, into 

the single matrix ec uation 

U l l  . . .  Ulp  

NF1 "'" blFP 

VII  . . .  V l p  

VFI . . .  VFp 

or in short 

r "1 - - 

t m , I  x l 
i 

k . . . . .  

~  . . .  

Ypl _Y~_ 

w = M s + r  b ... ~ .  

(7) 

(8) 

The 2F x P matrix W, called the measurement matrix, collects all of  the image mea- 
surements (U:p,V:p) such that each column of  W contains all the observations for a sin- 
gle point, while each row contains the observed u- or v-coordinates for a single frame. 
M is the 2F x 3 motion matrix whose rows are the m s and n: vectors, S is the 3 x P 
shape matrix whose columns are the sp vectors, and T is the 2F x 1 translation vector. 

Using (1) and (3) we can write 
P P P 

Zus,, = Z (ms'~.o+Xs)=ms" Zs,+e~s=e~: 
P = : P = * P = : (9) 

P P P 

Z vf, : Z (n:" se + YY) =n/. Z sp + Pyf= Pyy 
p = l  p = l  

Therefore we can compute x: and y:, which are 
T, immediately from the image data as 

1 " 1 v 

X r=-fi~.~u.fp Y.f=~ Z vfp. (10) 
p = l  p = l  

p = l  

the elements of  the translation vector 
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Once we know the translation vector T, we subtract it from W, giving the registered 
measurement matrix 

W* = W-T[1 ... 1] = MS. (11) 

Since W* is the product of two matrices each of rank at most 3, W* has rank at most 
3, Oust as it did in the orthographic projection case. When noise is present, the rank of 
W will not be exactly 3, but by computing the SVD of 14:* and only retaining the larg- 
est 3 singular values, we can factor it into 

w* = &D, (12) 
where ~ is a 2F x 3 matrix and ~ is a 3 x P matrix. Using the SVD to perform this 
factorization guarantees that the product ~ is the best possible rank 3 approximation 
to W*, in the sense that it minimizes the sum of squares difference between corre- 
sponding elements of W" and ~ .  

3 .3  P a r a p e r s p e c t i v e  N o r m a l i z a t i o n  

The decomposition of W* into the product of ~ and ~ by (12) is only determined up to 
a linear transformation. Any non-singular 3 • 3 matrix A and its inverse could be 
inserted between ~ and ~, and their product would still equal W*. Thus the actual 
motion and shape matrices are given by 

M = h~/A S = A-iS, (13) 
with the appropriate 3 x 3 invertible matrix A selected. The correct A is determined by 
observing that the rows of the motion matrix M (the m s and n/vectors) must be of a 
certain form. Taking advantage of the fact that i s, Js, and k/are unit vectors, from (6) 
we observe that 

Imp2 _ I +x~ 1 +y~ (14) 

Zs Zs 
We know the values of x s and yf from our initial registration step, but we do not 

know the value of the depth z s. Thus we cannot impose individual constraints on the 
magnitudes of m s and n s as was done in the orthographic factorization method where 
we required that m s and n s each have unit magnitude. Instead we adopt the following 
set of constraints on the ratios of the magnitudes of m s and n s. 

Imp{ 2 _ [n~ 2 ( = 1 " ) .  (15) 

l+x~ l+y~ t z;J 
There is also a constraint on the angle relationship of m s and n s. From (6), and the 

knowledge that i s, is, and k s are orthogonal unit vectors, 

ms'n/= i:- x:k s jf- ysks _ xyy.: (16) 
2 " 

z: z s Zs 

The problem with this constraint is that, again, z/is unknown. We could use either 
1 2 �9 �9 �9 of the two values given in (15) for /z:, but in the presence of noisy input data the two 

will not be exactly equal, so we use the average of the two quantities, We choose the 
arithmetic mean over the geometric mean or some other measure in order to keep the 
solution of these constraints linear. Thus our second set of constraints is 

: l ( Imsl2 + lnsl2 ] (17) 
2 2 " ms'ns XsYs2 t.1 +x s l +ys J 

This is the paraperspective version of the orthographic constraint that required that the 
dot product of m s and n s be zero. 
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Equations (15) and (17) are homogeneous constraints, which could be trivially satis- 
fied by the solution Vf m s = ny = 0, or M = 0. To avoid this solution, we impose the 
additional constraint 

lmll = 1. (18) 
This does not effect the final solution except by a scaling factor. 

Equations (15), (17), and (18) give us 2F+ 1 equations, which are the paraperspec- 
rive version of the metric constraints�9 We compute the 3 • 3 matrix A such that 
M = /f/A best satisfies these metric constraints in the least sum-of-squares error sense. 
This is a simple problem because the constraints are linear in the 6 unique dements of 
the symmetric 3 x 3 matrix Q = ArA. Thus we compute Q by solving the overcon- 
strained linear system of 2F + 1 equations in 6 variables defined by the metric con- 
straints, compute its Jacobi Transformation Q = LAL r (where A 7is the diagonal 
eigenvalue matrix), and as long as Q is positive definite, A = (LA 1/2) . 

3.4 Paraperspeetive Motion Recovery 

Once the matrix A has been determined, we compute the shape matrix S = A-I~ and 
the motion matrix M = ,r For each frame f,  we now need to recover the camera ori- 
entation vectors i s, •, and ~s, as well as the depth to the object z s, from the vectors m s 
and n s, which are the rows of M. From (6) we see that 

|s = zsm:+ xsk s ]: = zsns+ yy~:. (19) 
Since the |s, J~, and ~: produced must be orthonormal, they can be written as functions 
of only three rotational variables. We can then view the problem as, for each frame f,  
solving an overconstrained system of 6 equations (the expansion of (19) to each of its 
vector components) in 4 variables (the three rotational variables and zs). These small 
systems of equations can be solved quickly and efficiently using any one of a variety of 
equation solving techniques. Due to the arbitrary world coordinate orientation, to 
obtain a unique solution we then rotate the computed shape and motion to align the 

^ T ^ T 

�9 , �9 r and" - world axes with the first f rames  camera axes, so that ,1 = L 1 0 o] J1 - E0 1 0] . 
All that remain to be computed are the translations for each frame. We calculate the 

depth z s from (15)�9 Once we know x s, Ys' zs' ~s, is, and ~s, we can calculate i s using (4) 

and (5). 

4 C o m p a r i s o n  o f  M e t h o d s  u s i n g  S y n t h e t i c  D a t a  

In this section we compare the performance of our new paraperspective factorization 
method with the previous orthographic factorization method. The comparison also 
includes a factorization method based on scaled orthographic projection, which mod- 
els the scaling effect of perspective projection but not the position effect, in order to 
demonstrate the importance of modelling the position effect for objects at close range 1. 
Our results show that the paraperspective factorization method is a vast improvement 
over the orthographic method, and underscore the importance of modelling both the 

scaling and position effects�9 

4.1 Data  Generation 
Each synthetic feature point sequence was created by moving a known unit-sized 
"object" (a set of 60 3D points) through a known motion sequence. The motion con- 

1. The scaled orthographic factodzation method is equivalent to using the paraperspective fac- 
torization method with the focal length of the camera set to infinity. It uses for metric constraints 
]m~ = In~, m s- n s = 0, and Iml] = 1. See [6] for more details about this method. 
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sisted of 60 image flames of an object rotating through a total of 30 degrees each of 
roll, pitch, and yaw. The "object depth" (the distance from the camera's focal point to 
the front of the object) in the first frame was varied from 3 to 60 times the object size. 
In each sequence, the object translated across the field of view by a distance of one 
object size horizontally and vertically, and translated away from the camera by half its 
initial distance from the camera. Each "image" was created by perspectively projecting 
the 3D points onto the image plane, for each sequence choosing the largest focal length 
that would keep the object in the field of view throughout the sequence. The coordi- 
nates in the image plane were then perturbed by adding gaussian noise, to model track- 
ing imprecision. 

4.2 Error Measurement  

We ran each of the three factorization methods on each synthetic sequence and mea- 
sured the rotation error, shape error, X and Y offset error, and Z offset (depth) error. 
The errors shown are the root-mean-square (RMS) difference between the known 
shape or motion parameters and the measured values. Since the shape and translation 
are only recovered up to a scaling factor, we first scaled these results by the factor that 
minimized the RMS error. The term "offset" refers to the translational component of 
the motion as measured in the camera's coordinate frame rather than in world coordi- 
nates; the X offset is i s �9 is, the Y offset is i s �9 is, and the Z offset is i s- ~s. Note that the 
orthographic factorization method supplies no estimation of translation along the cam- 
era's optical axis, so the Z offset error could not be computed for that method. 

4.3 Discussion of Results 
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Fig. 3. Methods compared for a typical case 
noise standard deviation = 2 pixels 

Fig. 3 shows the average errors in the solutions computed by the various methods, as a 
functions of object depth in the first frame. We see that the paraperspective method 
performs significantly better than the orthographic factorization method regardless of 
depth, because orthography cannot model the scaling of the image that occurs due to 
the motion along the camera's optical axis. The figure also shows that the paraperspec- 
rive method performs substantially better than the scaled orthographic method at close 
range, while the errors from the two methods are nearly the same when the object is 
distant. This confirms the importance of modelling the position effect when objects are 
near the camera. 

In other experiments in which the object was centered in the image and there was no 
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translation across the field of view, the paraperspective method and the scaled 

orthographic method performed equally well, as we would expect since such image 

sequences contain no position effects. Similarly, we found that when the object 

remained centered in the image and there was no depth translation, the orthographic 

factorization method performed very well, and the paraperspective factorization 

method provided no significant improvement since such sequences contain neither 

scaling effects nor position effects. 

Our C implementation of the paraperspective factorization method required 20-24 

seconds to solve a system of 60 frames and 60 points on a Sun 4/65, with most of this 

time spent computing the SVD of the measurement matrix. 

4.4 Analysis of Paraperspective Method using Synthetic Data 

Now that we have shown the advantages of the paraperspective factorization method 

over the previous method, we further analyze the performance of the paraperspective 

method to determine its behavior at various depths and its robustness with respect to 

noise. The synthetic sequences used in these experiments were created in the same 

manner as in the previous section, except that the standard deviation of the noise was 

varied from 0 to 4.0 pixels. 
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Fig. 4. Paraperspective shape and motion recovery by noise level 

In Fig. 4, we see that at high depth values, the error in the solution is roughly pro- 

portional to the level of  noise in the input, while at low depths the error is inversely 

related to the depth. This occurs because at low depths, perspective distortion of the 

object's shape is the primary source of error in the computed results. At higher depths, 

perspective distortion of the object's shape is negligible, and noise becomes the domi- 
nant cause of error in the results. For example, at a noise level of i pixel, the rotation 

and XY-offset errors are nearly invariant to the depth once the object is farther from 

the camera than 10 times the object size. The shape results, however, appear sensitive 

to perspective distortion even at depths of 30 or 60 times the object size. We also found 

that the error in the recovered depth to the object in each frame (Z offset error, not 

shown), was nearly proportional to both the noise level and the initial depth. 

5 S h a p e  a n d  M o t i o n  R e c o v e r y  f r o m  R e a l  I m a g e  S e q u e n c e s  

We tested the paraperspective factorization method on two real image sequences - a 

laboratory experiment in which a small model building was imaged, and an aerial 
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sequence taken from a low-altitude plane using a hand-held video camera. Both 
sequences contain significant perspective effects, due to translations along the optical 
axis and across the field of view. We implemented a system to automatically identify 
and track features, based on [10] and [3]. This tracker computes the position of a 
square feature window which minimizes the sum of the squares of the intensity differ- 
ence over the feature window from one image to the next. 

5.1 Hotel Model Sequence 

A hotel model was imaged by a camera mounted on a computer-controlled movable 
platform. The camera motion included substantial translation away from the camera 
and across the field of view (see Fig. 5). The feature tracker automatically identified 
and tracked 197 points throughout the sequence of 181 images. 

Fig. 5. Hotel Model Image Sequence 

We analyzed this sequence using both the paraperspective factorization method and 
the orthographic factorization method. The shape recovered by the orthographic fac- 
torization method was rather deformed (see Fig. 6) and the recovered motion incorrect, 
because the method could not account for the scaling and position effects which are 
prominent in the sequence. The paraperspective factorization method, however, mod- 
els these effects of perspective projection, and therefore produced an accurate shape 
and accurate motion. 
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Fig. 6. Comparison of Orthographic and Paraperspeetive Shape Results 

Several features in the sequence were poorly tracked, and as a result their recovered 
3D positions were incorrect. While they did not disrupt the overall solution greatly, we 
found that we could achieve improved results by automatically removing these fea- 
tures in the following manner. Using the recovered shape and motion, we computed 
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the reconstructed measurement matrix W r . . . .  , and then eliminated from W those fea- 

tures for which the average error between the elements of W and W r . . . .  was more than 

twice the average such error. We then ran the shape and motion recovery again, using 

only the remaining 179 features. Eliminating the poorly tracked features decreased 

errors in the recovered rotation about the camera's x-axis in each frame by an average 

of 0.5 degrees, while the errors in the other rotation parameters were also slightly 

improved. The final rotation values are shown in Fig. 7, along with the values we mea- 

sured using the camera platform. The computed rotation about the camera x-axis, y- 

axis, and z-axis was always within 0.29 degrees, 1.78 degrees, and 0.45 degrees of the 

measured rotation, respectively. 
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Fig. 7. Hotel Model Rotation Results 

5.2 Aerial Image Sequence 

An aerial image sequence was taken from a small airplane overflying a suburban Pitts- 

burgh residential area adjacent to a steep, snowy valley, using a small hand-held video 

camera. The plane altered its altitude during the sequence and also varied its roll, pitch, 

and yaw slightly. Several images from the sequence are shown in Fig. 8. 
Due to the bumpy motion of the plane and the instability of the hand-held camera, 

features often moved by as much as 30 pixels from one image to the next. The original 
feature tracker could not track motions of more than approximately 3 pixels, so we 
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Fill pattern indicating points visible in each frame 

Fig. 8. Aerial Image Sequence 

implemented a coarse-to-fine tracker. The tracker first estimated the translation using 
low resolution images, and then refined that value using the same methods as the initial 
tracker. 

The sequence covered a long sweep of terrain, so none of the features were visible 
throughout the entire sequence. As some features left the field of view, new features 
were automatically detected and added to the set of features being tracked. A vertical 
bar in the fill pattem (shown in Fig. 8) indicates the range of frames through which a 
feature was successfully tracked. A total of 1026 points were tracked in the 108 image 
sequence, with each point being visible for an average of 30 frames of the sequence. 
The data still contained more than sufficient redundancy to recover the shape and 
motion, but we could not compute the SVD of the measurement matrix since for some 
pairs (f, p) ,  usp and rip were unknown. In order to accommodate the missing observa- 
tions, we developed a new method for decomposing W into W =/f/~ + T without using 
the SVD, described in [6]. This slightly modified factorization method was then used 
to recover the shape of the terrain and the motion of the airplane. Two views of the 
reconstructed terrain map are shown in Fig. 9. While no ground-truth was available for 

the shape or the motion, we observed that the terrain was qualitatively correct, captur- 

Fig. 9. Two Views of Reconstructed Terrain 
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ing the flat residential area and the steep hillside as well, and that the recovered posi- 
tions of  features on buildings were elevated from the surrounding terrain. 

6 Conclusions 

The principle that the measurement matrix has rank 3, as put forth by Tomasi and 
Kanade in [9], was dependent on the use of  an orthographic projection model. We have 
shown in this paper that this important result also holds for the case of  paraperspective 
projection, which closely approximates perspective projection. We have devised a 
paraperspective factorization method based on this model, which uses different metric 
constraints and motion recovery techniques, but retains many of  the features of  the 
original factorization method. 

In image sequences in which the object being viewed translates significantly toward 
or away from the camera or across the camera's field of  view, the paraperspective fac- 
torization method performs significantly better than the orthographic method. The 
paraperspective method requires that the camera's focal length and center of  projection 
be known in order to accurately model the position effect. In cases in which these are 
not known, the scaled orthographic factorization method can still be used to model the 
scaling effect of  image projection. Both methods also compute the relative distance 
from the camera to the object in each image and can accommodate missing or uncer- 
tain tracking data, which enables their use in a variety of  applications. 
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