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Abstract 

Numerical and asymptotic results are presented for a coupled PDE system that models recent experiments of the self- 
focussing of laser light in a nematic liquid crystal. This study complements previous asymptotic analyses which, in a 
narrow-beam limit, describe two essential features observed in nematic self-focussing - the undulation and filamentation 

of a laser beam. These numerical computations represent a direct emulation of the experimental configuration within the 
context of a paraxial PDE model. In addition to providing numerical corroboration to these earlier asymptotic analyses, 
these results suggest that initial focussing caustics play a critical rtle in the formation of beam filament pairs. 

1. Introduction 

Typical self-focussing experiments require high- 

intensity pulsed lasers (,~ MW/cm 2) for weak 

nonlinear effects to become apparent [ 1 ]. By com- 

parison, the optical nonlinearity of a nematic liquid 

crystal is enormous - a factor of 6-10 orders of mag- 

nitude larger than doped glasses is not uncommon 

[2]. As a result, strong self-focussing of light can be 

achieved in a nematic crystal using continuous-wave 

lasers of moderate power (,,~ kW/cm 2) in a much 

less exotic experimental setting. In nematics, most 

previous works study the focussing by thin-films [3 ] 

where the focussing occurs external to the media. Re- 

cent experiments of Braun et al. [4] in long nematic 

samples observed an unexpected sequence of com- 

plex optical beam structures where the self-focussing 

occurred within the media itself. Most notably, as 

optical intensity was increased, these experiments 

demonstrated first, the formation of focal spots, fol- 

lowed by an off-axis meandering (undulation) and a 

break-up (filamentation) of the beam (Fig. 1) [5]. 

The numerical computations presented here were de- 

signed to mimic this experimental configuration up to 

the simplifications inherent in a paraxial PDE model. 

In our numerical emulation of the original experi- 

ments, it was also possible to follow the development 

of spatial structure with increasing input beam inten- 

sity. These computations successfully recovered the 

most salient features of the experimental observations; 

and in this sense form, together with the physical ex- 

periments and concurrent asymptotic analyses, a com- 

prehensive investigation of these optical self-focussing 

phenomena. The major result of these computations 

is a possible mechanism for beam filamentation, in 

which filament pairs originate f rom caustics created 
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Fig. 1. Three longitudinal photographs of the self-focussing pro- 
cess in a capillary tube from ([5]). Images (a)-(c) show the 
development of optical structure - focal spot, undulation, filamen- 
tation - as the input beam intensity is increased. 

by extreme focussing at the first focal spot. 

Several reduced mathematical models for the opti- 

cal self-focussing process in a bulk of nematic liquid 

crystal have been derived beginning from the most 

fundamental coupled field models for light and nemat- 

ics - the vector forms of the Maxwell and Frank free- 

energy equations [6]. One particularly simple model 

PDE captures the essential coupling between opti- 

cal refraction and nematic deformation, and evinces 

two of the most intriguing of the experimentally- 

observed features, undulation andfilamentation [5]. 

The analysis is based upon our development of a 

matched-asymptotic adaptation of geometrical optics 

[7,8]. This optical free-boundary analysis exploits a 

separation of scales induced by the high-wavenumber 

nature of light to obtain two decoupled systems, dis- 

tinguished by spatial scale, each of which provides a 

theoretical corroboration of these unusual nonlinear 

optical behaviors. 

At the heart of this derivation, however, lies the 

assumption that the light energy remains confined by 

self-focussing into a narrow beamline region - and that 

the required separation of spatial scales is somehow 

initiated naturally through the self-focussing process. 

Since the asymptotic analysis essentially assumes 

quasi-steady propagation, it neglects any effects of 

the finite extent of the medium - the question of what 

initial scales are realized with the actual experimental 

set-up is beyond the scope of this approach. One of 

the primary alms of these computations then, is to es- 

tablish to what degree this creation of scales, and its 

associated optical structures, might be an inevitable 

consequence of the initial self-focussing at the first 

focal spot. 

The paraxial PDE model used in this study mod- 

els the interaction between optics and nematic by the 

propagation of a parabolic wave through a nonlinear 

Poisson-type medium. Although much simplification 

is obtained by considering only a two-dimensional 

spatial ( x - z )  domain, the need to resolve structure 

over a wide range of spatial scales poses consider- 

able computational difficulty. In particular, the high- 

wavenumber character of optics in the parabolic wave 

equation produces extremely rapid transverse (x) os- 

cillations across very narrow beams. On the other 

hand, the elliptic nature of the nematic equation sup- 

ports structure over the full computational domain. For 

the most effective resolution, a non-uniform gridspac- 

ing is utilized for the transverse (x) coordinate when- 

ever possible - this concentrates the numerical effort 

at the center of the paraxial beam. Stability considera- 

tions for the parabolic wave dictates a finer longitudi- 

nal (z)  grid, and requires additional interpolation of 

the Poisson field. 

This paper begins with abbreviated overviews of the 

original experiments, the PDE modelling and the opti- 

cal free-boundary asymptotic theory. Next, the numer- 

ical method and implementation are presented. This 

is followed by the computational results - these are 

roughly organized into two sequences. The first mim- 

ics the experiments by showing the development of 

beam structure with increasing input intensity. The 

second benchmarks the generation of spatial structure 

in the approach to the high-wavenumber limit. Lastly, 

an asymptotic construction of two types of waveguide 

structures produces a scaling argument in support of 

a connection between the numerically-produced caus- 
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tics with the birth of the asymptotically-predicted fil- 

aments. 

2. Experiments & theory 

The initial motivation for studying the optics of ne- 

matic liquid crystals was to investigate the possibil- 

ity of complex spatio-temporal behaviors in a strongly 

nonlinear system. Although the (non-thermal) optical 

response of nematic materials is typically too slow for 

direct feedback with light, the nonlinear self-focussing 

proved sufficiently powerful to induce an unusual cas- 

cade of time-independent spatial structures. While the 

details of these experiments and the resulting math- 

ematical theory is presented elsewhere [4,8], brief 

overviews of these follow. 

2.1. Optics in a tube 

As a medium for a nonlinear optical experiment, 

the dominant attributes of nematic liquid crystals are 

its extremely strong nonlinear response and its strict 

anchoring conditions at boundaries. Although the self- 

focussing of light by thin films of nematic is a well- 

documented phenomena [3,9], these most recent ex- 

periments were designed specifically to investigate the 

self-focussing process in a thick nematic media, where 

the focussing occurs within the nonlinear medium it- 

self. The most successful configuration for these stud- 

ies involved the directing of a continuous wave (CW) 

beam of linearly-polarized laser light along the axis 

of a nematic-filled capillary tube. 

The unique aspect of this choice of geometry was 

that a microscope could be used to visualize the lon- 

gitudinal propagation of the beam. Unlike most ex- 

periments where only near- or far-field projections are 

obtainable, the small diameter of the capillary tube 

permitted a clear longitudinal view of transverse struc- 

tures developing in the beam as it propagated through 

the medium. The experimental photographs (Fig. 1) 

clearly show that the beam develops unusual spatial 

structure - time-independent features which become 

increasingly-complex with higher intensities of the in- 

coming light. 

A characteristic feature of nematic optics is the 

Frederiks transition, an intensity threshold that is re- 

quired in order to establish optical self-focussing. Be- 

yond this transition three basic stages in the develop- 

ment of optical structure were identified: 

a: formation of focal spots (distinctive narrowing 

of the beam), 

b: undulation (off-axis wandering of the beam), 

c: filamentation (break-up into a multiple-beam 

structure). 

These basic features are illustrated by the photographs 

in Fig. 1. The first image a shows the intense (trans- 

verse) focussing into a narrow beam which follows 

the tube axis - in fact, the formation of a single focal 

spot can be seen in the figure. The second image b 

captures, at a higher input laser intensity, the develop- 

ment of undulations - off-axis wandering of the beam 

in a manner that could be interpreted as oscillatory. 

And the final image c shows, at the highest beam in- 

tensities, the rather striking break-up of the beam into 

two distinct co-propagating filaments. 

The photographs in Fig. 1 represent a distinguished 

plane of optical interest defined by the tube axis and 

the linear polarization of the incoming beam. The pla- 

nar character of these optical structures is easily veri- 

fied by a 90 ° rotation of the cross-sectional view where 

neither undulation, nor filamentation is discerned. As 

a final note, it is emphasized that all of these observa- 

tions are made after the relaxation of initial transients 

and are therefore time-independent phenomena. 

2.2. Optical free-boundary asymptotics 

As an applied mathematical problem, the distin- 

guishing character of this light-nematic system de- 

rives from the wide variation of active spatial scales 

involved. The short scale (A ~ 0.5 /zm) is set by 

the optical wavelength for blue-green laser light. The 

large scale (rc ,~ 0.75 mm) is introduced through the 

nematic geometry and defined to be the capillary tube 

radius. In the non-dimensionalized governing equa- 

tions for this light/nematic system, this separation of 

scales appears as a large dimensionless wavenumber 

parameter 
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27rrcnll 
k=  h ~ l ' 4 x  104 (1) 

where nil ~ 1.5 is the minimum index of refraction 

for the nematic liquid crystal. 

The rationale behind the optical free-boundary 

methodology derives from the observation that, in the 

experiments, the laser light is strongly confined into 

a relatively narrow beam near the capillary axis. This 

seemed to suggest the possibility of a self-focussed 
nematic waveguide, where the nematic deformation 

creates a refractive index profile that confines the 

propagation of light to a narrow beamline. Thus, the 

Maxwell equation need only be solved within a nar- 

row beamline whose k-dependent width is determined 

by a matched asymptotic balance between diffrac- 

tion and nematic refraction. On the other hand, the 

nematic equation is solved on the full domain and is 

free of the electric field coupling everywhere except 

in the vicinity of the beamline region. 

One perspective on this optical free-boundary 

methodology is that the two fields are scale-separated 

through an interior-layer type of asymptotics, which 

is then wedded to a large-wavenumber (k) paraxial 

theory that describes the optical beam propagation. 

In this manner, the coupled PDE model decomposes 

into: 

- an outer free-boundary problem for the nematic ori- 

entation field; and 

- an inner paraxial wave evolution for the optical in- 

tensity field. 

But most surprisingly, these problems truly decouple 

so that the leading-order outer nematic field is com- 

pletely determined by two integrals of the incoming 

electric field - the intensity (conserved) and trans- 

verse momentum. The coarse-scale features of the ne- 

matic are thus demonstrated to be independent of the 

fine-scale details of the inner beam propagation. 

Analysis of the outer problem reveals that beamline 

undulations are generated through initial misalignment 

of the incoming beam. Once off-axis, the long-range 

influence of the nematic boundary conditions provides 

an effective restoring force back towards the tube axis 

- which results in the undulation of the beam about 

the tube centerline. Analysis of the inner evolution 

demonstrates an extremely strong self-confinement of 
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the beam sufficient to support the co-propagation of 

filamented beam structures on this finer scale. 

A special waveguide case of this optical free- 

boundary asymptotics is presented in Section 6. How- 

ever, the detailed development of the general optical 

free-boundary decomposition as applied to the PDE 

model studied here is described elsewhere [7,8]. 

2.3. Coupled field computations 

The most important result of the optical free- 

boundary analysis is the identification of a critical 

lengthscale (k-2/3) where the effects of self-focussing 

are in balance with diffraction. Roughly speaking, 

this is interpreted to be the transverse lengthscale as- 

sociated with the beam filaments. Furthermore, in the 

actual experiments, which were performed prior to 

this analysis, the spot size of the incoming laser beam 

was estimated to be about 50 /zm - considerably 

larger than the several microns to be consistent with 

the k -2/3 scaling. However, despite this difference, 

the asymptotic theory clearly demonstrates that both 

the undulation and filamentation phenomena are sup- 

ported within the context of the simple PDE models. 

The first important issue addressed by this computa- 

tional study is to what extent the nematic waveguide 

effects, as understood within the PDE asymptotics, 

are robust features that persist beyond the strict as- 

sumptions of the optical free-boundary analysis. 

The second issue involves the origins of the twin- 

filamented structure that is illustrated by Fig. lc. Al- 

though such behavior has been computationally ver- 

ified to be supported by the nonlocal paraxial evolu- 

tion [8], this behavior had to be instigated through 

an appropriate choice of initial beam conditions. It is 

also possible by this nonlocal theory, that more than 

two filaments can be sustained. A series of computa- 

tions that models the initial self-focussing of a beam 

entering a nematic medium seems to suggest that the 

creation of the twin-filamented beam structure is as- 

sociated with pairs of caustics that can be created by 

extremely strong focussing at the first focal spot. Mo- 

tivated by this hypothesis, the asymptotic construction 

of the special caustic waveguide in Section 6 demon- 

strates the coincidence that both filaments and caustics 
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are transverse structures at the k -2/3 lengthscale. 

3. The model equations 

The computations performed here are based on a 

simple two-dimensional ( x - z )  and time-independent 

coupled PDE model that are known, asymptotically, 

to support both the undulation and filamentation phe- 

nomena. Two scalar quantities, F( x, z ) and O( x, z ), 

represent the optical and nematic fields and are gov- 

erned by the coupling between a parabolic wave equa- 

tion and a nonlinear elliptic equation - which will be 

referred to as the simple paraxial model: 

2ikFz + Fxx + k2a sin 2 0 F = 0 (2) 

Oxx + Ozz + IFI2 sin20 = 0. (3) 

The x and z-coordinates identify the transverse and 

longitudinal directions, and the two parameters k and 

a denote the non-dimensionalized wavenumber and 

refractive anisotropy. 

At the transverse boundaries (x = +1) ,  Dirichlet 

conditions are applied to both electric and nematic 

fields: 

F ( x = + l , z )  =0,  O ( x = + l , z )  =0.  (4) 

The incident light field is introduced through by an ini- 

tial value of F(x ,  z = 0) for the parabolic wave evolu- 

tion, the majority of the simulations use the Gaussian 

profile 

F ( x , z  = O) = Foe -(16x)2 (5) 

which models the incoming laser spot. Finally, because 

of the elliptic nature of the nematic PDE, boundary 

conditions at both longitudinal boundaries (z = 0, L) 

are required - unless specified otherwise, these are 

assigned as: 

O ( x , z = O ) = O ,  O z ( x , z = L )  =0.  (6) 

The Dirichlet condition at (z = 0) simulates perpen- 

dicular anchoring of the nematic at the entry end of 

the capillary. The Neumann end condition at (z = L) 

is an artificial boundary condition used to approximate 
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a semi-infinite tube. These nematic end conditions are 

chosen to be in reasonable correspondence with the 

original experiments - a free-boundary (meniscus) at 

the front end of an ostensibly infinite length capillary 

tube. 

The system (2) , (3)  represents a considerable sim- 

plification from any realistic model of the interaction 

between light and a nematic liquid crystal. But the 

justification for its use as a basis for investigation de- 

rives from its ancestry as an extreme form of one of 

the fundamental models given by the coupling of the 

time-harmonic vector Maxwell equation to the static 

Frank free-energy nematic equation [ 6] : 

V x V x E - k 2 [ E +  a ( n .  E)n]  = 0 (7) 

n x  [ ( V 2 n ) + ( n . E * ) E + ( n . E ) E  *] =0.  (8) 

In the above, both the electric and nematic fields are 

vectors and, roughly speaking, relate to the reduced 

model (2),  ( 3 ) through the paraxial substitution [ 10 ] 

(i) (si0°/ E = e ikz, n = . (9) 

c o s  O / 

In a slowly-varying approximation based upon the 

large wavenumber (k >> l )  and small anisotropy 

(a  << 1 ) the longitudinal electric field becomes neg- 

ligible (H  << F)  so that the electric field is char- 

acterized only by F(x ,  z )  to leading order. After the 

(exact) restriction to two space dimensions, the con- 

nection to the reduced scalar system (2) , (3)  is es- 

tablished for a limit of very weak nematic anisotropy 

(a  << 1 ). And although in actuality, the experimental 

value of the anisotropy parameter was not particularly 

small (t~ ~ 0.25) it has been shown that more faithful 

asymptotic, but non-paraxial, models do not produce 

qualitatively different results [ 8,6]. 

The paraxial model (2) , (3)  contains all of the es- 

sential physics required to observe the phenomena 

of self-focussing, undulation and filamentation. The 

complex-valued paraxial equation (2) includes the 

effects of diffraction (Fxx) and nematic anisotropy 

(re sin 2 0) - but by its scalar nature, neglects any po- 

larization effects. Also omitted, even within the orig- 

inal Maxwell equation (7),  is any form of scattering 
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loss - which in the experiment is considered signif- 

icant only over propagation distances of several mil- 

limeters (mm). The optical influence appears as the 

nonlinear term in the elliptic equation (3) which acts 

as a source of intensity-induced (IF[ 2) nematic defor- 

mation. 

The potential difficulties in computing solutions to 

even the simple paraxial PDE model (2) , (3)  can be 

inferred by the presence of the large wavenumber 

parameter k in the paraxial F-equation. The natural 

evolution of this PDE will tend to produce highly- 

oscillatory complex phase modulations in both the lon- 

gitudinal and transverse directions that necessitates a 

very high-resolution discretization. In contrast, the ne- 

matic equation is transparent to the complex phase 

modulations of F and demands a less-refined resolu- 

tion, but by its elliptic nature must be resolved over 

the full two-dimensional ( x , z )  domain. 

4. Numerical  method 

The paraxial model is unusual in that it involves the 

mixed coupling of two classes of PDE - a parabolic 

wave equation for the optics and an elliptic problem 

for the nematic. Numerically, this requires the imple- 

mentation of a mixed algorithm. In this section, we 

discuss the computational method used for solving the 

paraxial PDE (2) , (3) .  

4.1. The functional iteration 

Of the two parts of the coupled system (2) , (3) ,  it 

is the elliptic nature of the nematic equation which re- 

quires the majority of the computational effort. Given 

the nematic field O(x, z ), determining the optical field 

F ( x ,  z ) is a direct integration of the paraxial wave 

evolution (2).  This, in effect, allows the nematic equa- 

tion (3) to be considered as a nonlinear, nonlocal el- 

liptic problem 

Oxx "Jr- Oyy "[- IF[0] 12 sin(20) = 0 ,  (10) 

where the optical field F[O] can be treated as a func- 

tional of 0. The nematic field is then obtained by the 

natural iteration 
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on+l on+l +[F[On]12sin(20 n) = 0  (11) 
xx  "~ -- yy 

which involves the repeated solution for 0 n+z by Pois- 

son inversion. The functional F n = F[ O n ] is obtained 

from the paraxial equation 

2ikF~ + Fjnx + k2ot sin 2 O n F n = 0. (12) 

This initial value problem is solved by direct integra- 

tion in z for the initial condition (5).  The boundary 

conditions (4) and (6) are also exactly applied at 

each stage. This functional iteration has been chosen 

for convenience and convergence is observed numeri- 

cally. However as a referee has pointed out, more rapid 

convergence could have been achieved for the global 

iteration ( 11 ) if a Newton-type of iteration had been 

employed. 

The Poisson inversion for 0 ~+l from ( 11 ) involves 

an additional iterative procedure. The scheme used is 

successive over-relaxation (SOR) with Chebyshev ac- 

celeration [ 11 ]. However, rather than iterate the Pois- 

son inversion to convergence, we find it sufficient to 

fix the number of SOR iterations to 100 at each step 

of the global iteration. Although this may be an insuf- 

ficient number for good convergence at earlier stages 

of the global iteration, when nearer to convergence the 

100 SOR iterations are more than enough for achiev- 

ing adequate results. A convergence criterion for the 

global iteration is established in terms of the squared 

L2-norm 

ez o f f  i0-, 0,12 dedz < , , 3 ,  

Here, the variable ~: is a stretched variable introduced 

in the next section. Finally, extra care is required near 

the initial Frederiks threshold (I  ~ 1.07) where ex- 

ceptionally slow convergence rates are observed due 

to the proximity of the supercritical bifurcation. 

4.2. The spatial discretization 

Although the computing of both fields is fairly 

straight-forward, simultaneous resolution over the 

wide range of spatial scales is efficiently handled by 

the introduction of  a non-uniform grid. It is apparent 

in both the experiments and our previous numerical 



D.W. McLaughlin et al. / Physica D 88 (1995) 55-81 

F" F-ield 

61 

xro 

2o 

l o  

Fig. 2. Surface plot of  IF(x,z)l for a large intensity Gaussian (5)  input beam (F0 = 12.0) - the confinement  of  beam to the vicinity of  

the center axis is clearly evident. 

computations [ 7 ] that the light remains confined into 

a beam that is typically very narrow relative to the 

tube width. This localization of the F-field near a cen- 

tral beamline motivates the use of a non-uniform grid 

in the transverse x-direction. For beams which prop- 

agate along the tube axis x = 0, the non-uniformity 

is implemented through a (z-independent) change of 

variables x(s  c) 

x ( ( )  = ~[ 1 ÷ q((P - -  1 ) ] , ( 1 4 )  

which for p and q constant represents a map from the 

interval [ - 1 , + 1 ]  onto itself. Here 0 < q < 1, and 

p > 1 is an even integer. Denser grids near x = 0 are 

realized as q --+ 1 and for larger powers p. Typical 

values used in the computations are q = 0.7 and p = 4. 

In the most extreme case, q = 0.9 and p = 7. 

This change of variables with a uniform discretiza- 

tion in the (-coordinate clusters the gridpoints in the 

vicinity of the beamline. As a result, rewriting the 

paraxial model (2, 3) in terms of the new variables 

( ( ,  z) requires only a modification of the transverse 

derivatives by the metric x~(( )  

10{1F"  ~ 
2ikFz +--~--~,--~ ¢] + kZot (s inO)2e=o,  (15) 

1 O( +Ozz + [F[2sin(20) = 0 .  (16) 
x( 

On the line plots of Figs. 8 and 9, the non-uniform 

discretization of the transverse grid is indicated by 

marks along the top axis. Second-order finite differ- 

encing is used for the transverse (-derivatives, primar- 

ily on the basis of simplicity and speed considerations. 

The boundary conditions, as stated earlier ( 4 ) - ( 6 ) ,  

are unchanged. 

The paraxial equation (15) for the field F(~:, z) 

is directly integrated in z by a fourth-order Runge- 

Kutta method, with the incoming F ( ( ,  0) (typically 

Gaussian) specified as initial data. Accordingly, the 

longitudinal grid size must be small enough to en- 

sure numerical stability of the integration method, 

most especially at larger values of k. On the other 

hand, considerably less resolution is required for the 

elliptic 0-equation. For computational efficiency, the 

nematic field is solved with a moderate z-gridsize, 
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Fig. 3. Four fixed-z profiles of  IF (x ) l  for the large intensity case (F0 = 12.0) - the initial Gaussian, first focal spot, and two profiles 

suggestive of  filament/caustic-like structures. 

while the optical field is evolved on a much finer sub- 

discretization. Values for/9 at intermediate grid points 

are approximated from the coarser nematic grid by 

cubic spline interpolations. Typical runs required a 

factor of 60 finer discretization in z for F; at the most 

extreme optical intensities, factors as large as 400 

were used. 

Notr ~tonally we will represent the grid by N~ x Nz x 

(M) .  Here Ne is the number of  grid points in s c, N z the 

number of  grid points in z for 8, and N z x M gives the 

number of grid points in z for F. The longitudinal grid 

spacing for 0 is L / N z .  And so, the factor M gives the 

number of additional interpolations of 8, within each 

such grid spacing, required for the integration of F. 

4.3. Code benchmarking & verification 

To illustrate the accuracy of the code, we present 

the results for the most extreme case in wavenumber 

(k = 104) and intensity (F0 = 12.0,1 = 7.8). The 

anisotropy is set by a -- 0.1 and the length by L = 10. 

The numerical solutions are shown as a surface plot 

of  IFI 2 in Fig. 2, line plots of  IFI 2 at four values of z 

in Fig. 3, and a contour plot of 0 in Fig. 4c. 

A simple way of reducing the computational cost is 

to initiate the calculation on a coarse spatial grid, then 

interpolate onto successively finer grids to obtain the 

final result. This computation is initiated on a coarse 

grid of size 401 x 1001 x (60). After 25 functional iter- 

ations the grid is refined to 801 x 1001 x (200). After 
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Fig. 4. Nematic contour plots 

Omax = 0.295, 1.230, 1.458. 

u . , j l  ~ 

i J I i I I J I i E I 

-0 .5  0.o 

X 

of O(x,z) for a series of input intensities 

an addit ional  25 functional iterations, the grid is again 

refined to its final resolution of  1601 x 1001 x (400) .  A 

converged solution is achieved with E 2 = 0.9 x 10 -8. 

We found that a relaxation of  the convergence require- 

ment on the global  iteration had very little effect on 

the results, suggesting that discretization error, rather 

than the convergence criterion, is the primary source 

of  error. 

I 1 I I I I 

0.5 1 0 

(F0 = 3.7,7.0,12.0). The maximum values are 

The truncation error in the solution 0 is measured in 

terms of  both maximum and L2-norms of  the residual 

Eres(O) = IOxx +O~z + IFl2sin201 • (17)  

The maximum and L2-norms of  the residual error, Eres, 

are 5.05 x 10 - s  and 4.7028 x 10 -3, respectively. 

One (weak)  indication o f  the accuracy of  the z- 

integration of  F is gotten by monitoring the conserva- 
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tion in z o f  its transverse L2-norm, the intensity 

+1 

/ = f IF(f, z)12x~ d~:. 
- 1  

(18) 

For this case, we find that I is conserved to 10 digits 

at z = 1, and while the error increases monotonical ly 

as z increases, I is still conserved to over 7 digits at 

z = L ( =  10). As a more stringent test, we have used 

the finest mesh calculation as a base calculation from 

which to estimate the errors on the coarser meshes. 

Fig. 5 shows the relative errors of  the 401 × 1001 x 

(60) calculation (dashed)  and the 801 × 1001 × (200)  

calculation (so l id) ,  from the 1601 × 1001 × (400)  

base calculation, as a function of  z. This relative error 

is computed as 

l i E ( ' ,  z )  - F*(',z)llv 
E r ( Z )  = IIF*(',z)IIL2 ' 

where F* is given by the finest mesh calculation, and 
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the integration is the transverse variable ~:. The func- 

tional iteration at each resolution was continued to 

convergence. The errors are largest at z = L -- 10, 

at which there is an improvement in this L 2 error by 

a factor of  7 from the 401 × 1001 x (60) mesh to 

the 801 × 1001 x (200)  mesh. This latter, intermedi- 

ate mesh calculation has about 5% relative error. We 

emphasize that this error does not  measure the error 

on the finest mesh, but does demonstrate consistency 

with convergence as the mesh is refined. We can very 

reasonably expect a yet higher accuracy on our finest 

mesh. And we further reiterate that this benchmarking 

study has been carried out fo r  that calculation which 

we found the most difficult to resolve. 

5. Numerica l  results 

Three sets of  numerical simulations are pre- 

sented which correlate the behaviors of  the paraxial 
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Fig. 5. The relative error Er of the lower resolution calculations 

from the finest resolution calculation, for the most extreme case 

considered (k = 10 4, Fo = 12.0, 1 = 7.8). 

PDE model with the original experiments and free- 

boundary asymptotics. In the first set, the formation 

and behavior of focal spots is observed with increas- 

ing input beam intensity. In the second series, the 

development of increasingly complex structures are 

followed in the approach to the large wavenumber k 

limit. In the third set, two special solutions are re- 

produced. One verifies the asymptotic prediction of 

the nematic waveguide scale, the other demonstrates 

the undulation of a beam with an initial off-axis 

deflection. 

To present the computational results, several visu- 

alization formats are used. The variations in the ne- 

matic angle O(x, z ) are shown on contour plots which 

correspond, in the context of this scalar Helmholtz 

model, to the level curves of the index of refraction. 

The evolution of the electric field IFI 2 are displayed 

in transverse line plots for fixed z, x-z  surface plots, 

or in ( - z  grayscale density plots. The advantage of 

the grayscales are their resemblance to the actual ex- 

perimental photographs - note however that they are 

only presented in the stretched sO-coordinate. 

5.1. Self-focussing & filamentation 

Independent of the electric field IFI 2, the nematic 

equation ( 3 ) i s  always satisfied by the trivial 0 = 0 

solution. This represents a uniform and undistorted 

liquid crystal state. A characteristic feature of the in- 

teraction of light with liquid crystal is a supercriti- 

cal bifurcation above which a non-uniform structured 

state becomes energetically preferred. This symmetry- 

breaking is referred to as a Frederiks bifurcation [2]. 

The first series of computations simulates the ne- 

matic self-focussing of an incoming beam with a 

Gaussian profile, 

F(x,  z = 0) = F0exp -(16x)2 (19) 

where the beamwidth roughly corresponds to the ex- 

perimental beam spot width of 50 microns. The total 

intensity of the beam is given by the integral 

+1 

I=  IF(x ,z  = 0 ) 1 2 d x = - i - g V ~ - ,  (20) 

--1 

whose value is a constant for all values of z. The 

anisotropy is set to the modest value of cr = 0.1, and 

the wavenumber is given the relatively large value of 

k= 104. 

Asymptotic theory for an infinitely-thin beam of fi- 

nite intensity [5] predicts the critical Frederiks tran- 

sition to occur at I = 1 (F0 ~ 3.6). For these simula- 

tions, we anticipate that the transition should occur at 

a" slightly elevated intensity due to the combined in- 

fluences of the finite width of the beam and the finite 

longitudinal (z)  nematic boundary conditions. And 

indeed, the computations show a transition intensity of 

I ~ 1.07 (F0 = 3.7). The contour plot of the nematic 

distortion is shown in Fig. 4a. Just like the convex sur- 

faces of a magnifying lens, the curved contours of the 

nematic angle 0 result in optical focussing. The forma- 

tion of a focal spot is clearly evident in the grayscale 

density plot of IFI 2 in Fig. 6a. At lower values of the 

field amplitude, a non-zero nematic distortion cannot 

be sustained and, in the absence of any index vari- 

ations, the beam suffers pure diffractive broadening 

(not shown). 

With increasing field strengths, the formation of 

multiple focal spots is clearly evident from the density 

plots as shown in Figs. 6a-c and 7a for the sequence of 

amplitudes F0 = 3.7,3.75,4.0 (I  ,.m 1.07, 1.10, 1.46). 

Note the formation of secondary (and tertiary) focal 

spots that occur with the refocussing of the beam, and 

especially the advance of the focal spots towards the 

primary focus. 

For the value of F0 = 7.0 ( I  ~ 3.84), Fig. 7a shows 

three well-developed focal spots within the interior of 
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Fig. 6. Self-focussing simulations plotted as grayscale where higher intensities [F(~:, z )12 are in white. For clarity, the axes are left in 
the non-uniform coordinates. As the input intensity of the initial Gaussian beam (5) is increased (F0 = 3.7, 3.75,4.0), the formation and 

advance of multiple focal spots is clearly seen. 
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the computational domain. As the beam intensity is 

increased beyond this point, however, the following 

two crucial differences are observed: (a) the primary 

focal spot seems to remains at a fixed location behind 

the beam entry point (z = 0); and (b) the secondary 

focal spots now recede away from the primary focus. 

This behavior is demonstrated by the series of density 

plots in Figs. 7a-c which are produced for larger am- 

plitudes F0 = 7.0,9.0, 12.0 ( I  ~ 3.84,6.34, 11.28). 

These computations suggest the following scenario 

as the input beam intensity is increased: 

- Initially, the amount of nematic distortion increases 

as does the focussing - this results in the forward 

advance of all focal spots. 

- Eventually the refractive effects of sin 2 0 saturate 

and the advance of the primary focal spot becomes 

limited by the creation of the front-edge nematic 

boundary layer apparent in Figs. 4b,c. 
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Fig. 6-- continued. 

- Beyond this point, the increased focussing serves 

only to generate strong caustics exiting the primary 

focus - their resemblance to filaments is suggested 

by comparing Fig. lc with Fig. 7b,c. 

- The extreme transverse divergence of these caustics 

after the primary focus requires longer propagation 

distances between subsequent refocussings and re- 

sults in the recession of the secondary foci. 

It is also noteworthy that, like the experimental ilia- 

ments, the numerical appearance of these caustics only 

occur for intensities well beyond the initial Frederiks 

threshold. Furthermore, the experiments also report 

that the characteristic length between successive focal 

spots exhibited the same advance-to-recession transi- 

tion when filament crossings are interpreted as refo- 

cussings [4]. 

This correlation between the computations and 

the experiments provides the most compelling, albeit 
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Fig. 7. Grayscale plots of [F(~, z )12 like those of Fig. 6, but for higher intensities (Fo = 7.0, 9.0, 12.0). The formation of strong caustics 

is clearly demonstrated as well as the recession of secondary focal spots. 
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somewhat circumstantial, evidence that the mech- 

anism by which beam filaments form is intimately 

linked to the creation of a caustic pair under the 

extreme self-focussing of the beam. 

This suggested connection of filaments with caus- 

tics in the PDE system (2) , (3)  is further supported by 

an asymptotic discussion of two special waveguide so- 

lutions. These solutions - one which is filament-like, 

the other caustic-like - are shown in Section 6 to be 

both characterized by the k -2/3 lengthscale. 

5.2. Fine-scale structure 

A key result of the optical free-boundary asymp- 

totics is the identification, through significant balance 

arguments, of a critical transverse length that scales 

on k -2/3. A sequence of four focussing simulations 

were performed for wavenumbers spanning k = 4000- 
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10000. Although the range of wavenumbers available 

to our computational resources was insufficient to pos- 

itively detect a k -2/3 dependence, Figs. 8 and 9 clearly 

indicate an increase in the fine-scale structure with 

wavenumber at two fixed longitudinal positions. On 

more careful inspection, the nematic profiles for all 

four runs are virtually identical (over all values of z, 

not just those shown), and the same might be said in 

the gross features of the IF[ 2 envelope profiles. 

5.3. Beam undulation 

Fig. 10a illustrates the propagation (in z ) of a sim- 

ple waveguide eigenmode. The asymptotic calcula- 

tion of this solution to the paraxial PDE model is 

sketched in Section 6. The unchanging nature of this 

self-trapped beam is due to the exact balance between 

diffraction and the nonlinear focussing. 

When the x --, - x  symmetry of this initial condi- 
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Fig. 8. Transve~e line plots of I F(x)l for an initial Gaussian beam (5) at fixed input intensity and longitudinal position (Fo = 5.0, z = 3.0). 
These plots suggest a similarity of the envelopes over the four values of wavenumber (k = 4, 6, 8, 10 × 103) shown. 

tion is broken by a multiplicative factor of  e icx, where 

c ~ 0 imparts an initial transverse momentum, the 

resulting evolution is the off-axis undulation shown in 

Fig. 10b (c  = 50). In the experiments, non-zero trans- 

verse beam momentum is naturally introduced when 

the optical polarization vector interacts with the bro- 

ken 0 --~ - 0  symmetry of  the nematic that occurs at 

the Frederiks transition. 

This computation provides a numerical confir- 

mation of  the primary result of  the free-boundary 

asymptotic analysis. These asymptotics construct a 

self-confined paraxial beam that follows an undulating 

ray path through the nematic medium - this is pre- 

cisely the situation that is demonstrated by Fig. 10b. 

Furthermore, although the domain length (L = 20) 

is insufficient to capture a full period of  the. undula- 

tion, it appears that its wavelength is on the order of  

15-20. This value is consistent with the asymptotic 

free-boundary predictions [ 5 ]. 

6. Nonlinear eigenmodes 

The computations suggest that filaments may be 

naturally created by focussing caustics. One charac- 

teristic feature of  a filament is that its transverse width 

scales o n  k -2/3 and is determined by a critical bal- 

ance between diffraction and nonlinear self-focussing. 

Although a general caustic analysis for the paraxial 

model seems unlikely, a special caustic solution can 
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Fig. 9. Line plots of IF(x)] like those of Fig. 8 but for z = 10. This similarity of envelopes over varying k is apparent for any fixed 

longitudinal position z. 

be constructed asymptotically and also occurs at the 

same k -2/3 scale. The two analyses that follow es- 

sentially construct two extremes of waveguide modes: 

the first is narrow and resembles a single filament, the 

second is broad and possesses caustic fringes. 

Consider solutions of  the paraxial PDE model where 

both the optical intensity IFI 2 and the nematic angle 

0 are independent of  z 

F(x,  z)  = f ( x )  e iktxz , O(x , z )  = r (x ) ,  (21) 

where the constant/x plays a r61e as a nonlinear eigen- 

"value. The transverse profiles f ( x )  and r(x)  satisfy 

the real ODE boundary-value problem 

f"  + k 2 (or sin2r - 2/x) f = O, 

r " +  f2 sin2r = O, 

with f ( x  = ~ 1 )  = r(x  = ± 1 )  = 0  (22) 

as obtained from direct substitution of  (21) into the 

paraxial model (2 ) , (3 ) .  The basic character of  this 

ODE eigenvalue problem is that of  a Schr6dinger 

equation for f whose potential r is itself determined 

by a nonlinear coupling to f2.  In the limit of  large 

wavenumber k, two types of  solutions are constructed 

- one resembling a single filament, and the other a 

broad eigenmode delineated by two turning points 

(caustics). The key result is that the k -2/3 spa- 

tial scale of  the single filament exactly matches the 

scaling found locally at the caustic turning points - 

asymptotic evidence that supports the evolution of  
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Fig. 10. (a )  PDE simulat ion initialized to the filament solution of the ODEs (22)  with 1 ~ 1,96. Note that the nematic boundary at z = 0 

is set to the ODE solution and not to O = 0. (b)  PDE simulation of an undulating beam. The initial condition is the filament of (a )  with 

some transverse momentum introduced through an additional factor of e icx in the F-field. 
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Fig. 1 0 - -  continued. 

filaments from focussing caustics. 

6.1. Simple filament scaling 

The following asymptotic construction for this sim- 

ple eigenmode is a special case of the optical free- 

boundary method. A numerically obtained solution is 

-shown in Fig. 11 for the value of k ~ 1000. For large 

k the optical energy is assumed to be strongly con- 

fined near x = 0 so that away from the origin f is ex- 

ponentially small. Since f is ostensibly zero, the ne- 

matic r has the piecewise linear outer representation 
for x v~ 0: 

f --~ exponentially small, 

r ,-~ R0 (1 - I x l ) ,  (23) 

which satisfies the homogeneous Dirichlet boundary 

conditions and continuity, but at x = 0 has derivative 

jump. This discontinuity can be interpreted as the op- 

tical beam f having a delta-function transverse profile 

in the k ~ o~ limit. The derivative jump is smoothed 
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Fig. 11. Two special waveguide solutions of the paraxial PDE model that are obtained by solving the nonlinear eigenvalue problem (22). 
Note the similarity between the (a) filament and the largest peak of the (b) caustic. 

by introducing a fine lengthscale 

2 = Y x (24) 

that resolves the optical-layer solution in the vicinity of 

the origin. The parameter y is a large scaling parameter 

whose dependence on k is determined by asymptotic 

matching. 

Within the narrow optical-layer, the following per- 

turbation expansions are used: 

f ~ v ~ f ( ~ ) ,  

r ~ R0 + 1 ?(2) 
Y 

° (  ' ) N ~  sin 2 R o + -  s in2Ro~ , (25) 

where it is essential that the amplitude of f be 

rescaled in a manner that preserves the O(1) inte- 

grated intensity. The nematic correction term (?) 

effects a smooth connection between the outer linear 

asymptotes (23). Direct substitution into the ODEs 

(22) gives to leading-order, a modified nonlinear 

eigenvalue problem 

k 2 
f " +  ~7 a (sin2Ro) ( ~ - / 2 )  f = 0 ,  

f "  + (sin2Ro) f 2  = 0, 

with f ( ~  = :t:c~) = 0, (26) 
F($ ~ -4-c~) ~ q:R02 
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which balances all of  the inner corrections f ,  ~ and/2 

provided the parameter y is chosen to be 

(27) y ,~ (k2a sin 2Ro) 1/3. 

Devoid of the large k parameter, numerical eigensolu- 

tions for (26) are readily obtained - Fig. 11 ( k ~ 103) 

and the initial conditions for the PDE computation of 

Fig. 10a (k = 104) were generated in this manner. 

Note that the inhomogeneous nematic condition at 

infinity guarantees a consistent asymptotic match to 

the outer solution (23). Moreover, a necessary condi- 

tion on the eigensolutions is obtained by direct inte- 

gration of the ?-equation (26) 

(28) 

q-o<) 

2R0 > 1 
I -- f z ( ~ )  d~ = sin 2 R ~  - 

- -OO 

which reproduces the unity Frederiks threshold for this 

special class of soluti~m. 

But of most importance is the conclusion that simple 

filament structures are created by the balance between 

diffraction and nonlinear self-focussing which occurs 

at the k -2/3 spatial scale. 

6.2. Special caustic scaling 

This asymptotic construction of an extended eigen- 

mode is a nonlinear adaptation of the WKBJ expres- 

sion of an eigenfunction with two turning points. A 

numerically-generated solution of (22) for k .~ 1000 

in Fig. 11 clearly illustrates an interior oscillatory 

regime terminated by a pair of turning points, or caus- 

tics. In comparison to linear Schrtidinger WKBJ, the 

analysis here requires modification for both the non- 

linearity and the separation of scales between the f 

and r components. 

For large wavenumber k, the solutions in the oscil- 

latory region are characterized by two scales 

x and ~ F ~ k ¢ ( x )  (29) 

where gt constitutes the scale of the rapid oscillations 

which also has a weak variation in x. The nonlinear 

geometrical optics begins from asymptotic expressions 

for the f and r components 

f ~ A(x )  S ( 9 t ( x ) ) ,  

r ~ R(x)  + 1 T~(~(x) ,  R(x ) ,  A ( x ) ,  Ct(x) . . . .  ) 

(30) 

and results in slow-scale averaged equations for the 

envelope A and mean R. The f-field is an ampli- 

tude/phase representation where S is a 27r-periodic 

sinusoid in the unscaled phase gt = O(k).  The r-field 

is a near-identity decomposition where 7"¢. contains 2~r- 

periodic and zero-mean fluctuations on the scale of 

the rapid phase. These fluctuations are not visible in 

Fig. 11, but are clearly discerned for smaller values 

of k. In addition, we restrict this construction to solu- 

tions for which the mean R has even symmetry about 

the origin. 

The key to the above representations is that the x- 

dependence is now completely imbedded into the three 

quantities A(x ) ,  R(x)  and ¢ ( x ) .  Direct substitution 

of the expressions (30) into the ODEs (22) results in 

the two perturbation series 

[ ~b' 2A ] {S~,  + S} 

,-~ [ (~b ~2 - as in  2 R + 2~) A ] S 

k [ 2v@-(v@A)'  1 & + O (31) 

[~b t2 ] {7"4,.~.,t,} -k- [ A 2 ( S  2 -  ½) sin2R ] 

, . ~ - [ R " + ½ a 2 s i n 2 R ] + O ( ~ )  (32, 

where the left-hand sides constitute ODEs in ~ for 

the rapidly fluctuating S and ~ .  Note that the square- 

bracketed factors are all independent of the rapid vari- 

able ~ .  

Periodic solutions for S and ~ which satisfy the 

left-hand sides of (31) and (32) are given by 

S ,.~ ~ c o s ~  (even symmetry) 

t sin g" (odd symmetry) 

A 2 sin 2R 
T~ ,-~ 4~b' ~ {1 _ S2} (33) 

where ~ has zero-mean by virtue of S having a mean- 

square of 1/2. 

By the sinusoidal nature of S, both ,S and S~ per- 

turbations on the right-hand side of (31 ) will result 
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in secular-in-~ growth unless both terms are zero to 

(at least) O(1/k2) .  These solvability conditions es- 

sentially yield the eikonal and transport relations of 

linear WKBJ theory, but as a manifestation of the non- 

linearity, are not decoupled. Finally, the constant-in-~ 

perturbation on the right-hand side of (32) will not 

preserve the zero-mean property of 7~ unless this term 

also vanishes. This establishes a condition for the ne- 

matic average R(x). 
These solvability conditions- eikonal, transport and 

nematic average - yield three relations that determine 

the slowly-varying quantities ~O'(x), A(x) and R(x) 

/ 
~ '  ~ ¢ a s i n  2 R - 2/z > 0 (34) 

a2 ~b~ A2 (35) ~at 
A 2 

R" ~ , - - -  sin2R (36) 
2 

which can be shown to be nominally correct to 

O( l / k2 ) .  The subscript 0 denotes initial values at 

x = 0. The above ODE system (although it may be 

argued that only the final equation truly constitutes a 

differential relation) possesses the first integral 

cr (R')  2 - 2A 2 (~p~ - ~b') ~p~ = 0 ,  (37) 

where this expression assumes the even symmetry of 

R by taking R~ = 0. By (34), the vanishing of ~p' 

defines the conditions for a turning point at x = +xr 
with the associated values 

Rr = sin-~ ~ / r ~ ,  R}=qzWf~¢6Ao (38) 

that are obtained from (34) and the first integral (37). 

The vanishing of ~b' in the transport equation (35) also 

requires that the amplitude A 2 diverge to infinity at 

the turning point. This signature behavior of a caustic 

is resolved by a rescaling local to the turning points. 

As in the previous filament-scale analysis, introduce 

a fine lengthscale local to the turning point (take xr > 

0) 

2 ~ g ( x -  Xr) (39) 

where again y(k) is determined by asymptotic bal- 

ance. In this stretched variable, the following pertur- 

bation expansions are used 

f , - ,  s (y )  f ( ~ ) ,  

1 
r ,-~ Rr + - R~-~ + ?(.~) (40) 

Y 

where the scale factor s (y )  is to be determined. An- 

ticipating that the correction ? is smaller than the first 

two Taylor terms of r, the rescaled f satisfies the Airy 

equation 

f , , _ / d  (a leVI sin 2Rr) ~ f  = 0 (41) 

so that f = Ai(~) on a caustic scale defined by 

y ~ ( k 2 a  IR~I sin2Rr) 1/3. (42) 

Finally, as a verification of consistency, the scales 

S ( T ) =  O(k l / 6 ) ,  r =  O ( ~ )  (43) 

are obtained by matching to the solutions from the 

oscillatory region. 

The lengthscales for both the simple filaments and 

these special caustic solutions at the turning point 

are thus shown to both have the same k-Z/3-scaling 

property. This similarity of scaling supports the nu- 

merical observation that the filament structures in the 

optical/nematic experiments originate from focussing 

caustics. Observe the scaling similarity between the 

largest caustic peak and the single filament in Fig. 11. 

Also note the caustic-like resemblance in the z = 2.0 

line plot of Fig. 3. 

The numerical solutions of Fig. 11 were obtained 

by a numerical shooting method. Parameters for the 

filament were ce = 0.25, IF0] 2 ~ 79.4, R0 = 1.1 and 

k ~ 1188.3 for which the eigenvalue/.t ~ 0.098 was 

obtained. Parameters for the caustic were a = 0.25, 

IF012 ~ 7.26, R0 = 1.1 and k ~ 1077.8 for which the 

eigenvalue p~ ~ 0.084 was obtained. As a technical 

note, since both f and r must vanish at x = 4-1 one 

might expect a two-parameter shoot, however this can 

be avoided by shooting in the eigenvalue/z on the de- 

cay of f and renormalizing the domain size as defined 

by the zero-crossings of r(x) to the interval [ - 1 ,  1 ]. 
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7. Closing remarks 

Within the context of a simple PDE model incor- 

porating diffraction, refraction and nematic distor- 

tion, these computations clearly reproduce the self- 

focussing, undulation and filamentation phenomena 

as seen in the optical experiments and substantiated 

by asymptotic analysis. In our simulation of the ex- 

perimental configuration, the numerics qualitatively 

reproduce the development of optical structure follow- 

ing the Frederiks transition of focal spots to filament 

pairs. These results also suggest how the undulation 

and filamentation of the quasi-steady asymptotic the- 

ory naturally arise from an initial value problem that 

more closely reflects the experimental situation. 

While the paraxial PDE system (15),(16) models 

the physics of the self-focussing process in a nematic 

liquid crystal, it also bears considerable similarity to 

the nonlinear optics of thermal self-focussing. Since 

the nematic equation is in effect a time-independent 

nonlinear heat equation with a steady source term, it 

is not implausible that these results are related to the 

filamentation that has been observed in other nonlinear 

optical media [ 12,13]. 

The major simplifications inherent in the parax- 

ial PDE model studied here are the reduction to 

two-dimensions, the omission of birefringence and 

polarization influences, and the neglect of scattering 

and absorption losses. Of these, the most restrictive 

assumption, in terms of phenomenology, seems to be 

the reduction of dimensionality. While the quantita- 

tive effects of the latter two are certainly important, 

their impact in the behavior of the PDE model seem 

qualitatively of lesser significance. The greatest ob- 

stacle to obtaining more quantitative comparison 

between experiment and the mathematics is that the 

cross-sectional intensity in two-dimensions has the 

wrong units. This is essentially because the indepen- 

dence in the y-coordinate is equivalent to a sheet of 

laser light (having infinite power) rather than a beam 

having finite cross-sectional area. 

Analysis of a full-dimensional model which re- 

places the second derivative in x by an x-y Laplacian 

might possibly address two unresolved issues. The 

first is the discrepancy in the undulation wavelength 

from theory and computation (,-~ 15-20) to that ob- 

served in the experiment ( ~  1-4). Re-establishing 

the correct dimensionality is likely to affect this wave- 

length since, from a Lagrangian perspective [6,9], 

there will be a proper scaling of the bulk light energy 

to the boundary energy of nematic. The second is the 

difference in the typical transverse profiles (Fig. 3) 

with two maxima from the distinct formation of 

filaments as interpreted from the experimental pho- 

tographs. A possible resolution of this issue lies in a 

conjecture that the tendency to form distinct filaments 

is more prevalent in three dimensions. A derivation 

of scalings for an optical free-boundary asymptotics 

that includes the additional transverse y-dimension is 

under consideration. 
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