
REVUE FRANÇAISE D’AUTOMATIQUE, INFORMATIQUE,
RECHERCHE OPÉRATIONNELLE. INFORMATIQUE THÉORIQUE

MARIANGIOLA DEZANI-CIANCAGLINI
A parenthesis machine for string manipulation
Revue française d’automatique, informatique, recherche opération-
nelle. Informatique théorique, tome 8, no R3 (1974), p. 37-46.
<http://www.numdam.org/item?id=ITA_1974__8_3_37_0>

© AFCET, 1974, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique, infor-
matique, recherche opérationnelle. Informatique théorique » implique l’ac-
cord avec les conditions générales d’utilisation (http://www.numdam.org/legal.
php). Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1974__8_3_37_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O.
(8e année, R-3, 1974, p. 37 à 46)

A PARENTHESIS MACHINE
FOR STRING MANIPULATION

par Mariangiola DEZANÏ-CIANCAGLINI (*)

Communicated by G. AUSIELLO

Abstract. — A parenthesis machine, provided with a stack and an auxiliary memory, is descrihed
and then used for :

1) The évaluation of programs of a scheme P of parenthesis languages.

2) The implementation of a gênerai bottom-up analyzer for context-free, total precedence
languages.

INTRODUCTION

This paper describes a parenthesis machine, provided with a stack and an
auxiliary memory, which can be used as a string manipulator. This parenthesis
machine rewrites a séquence of symbols, belonging to a given alphabet, on
the stack. A right parenthesis interrupts this rewriting and acts as a replace-
ment command for the substring enclosed between this parenthesis and the
corresponding left one. Such a replacement dépends on the memory state and,
in its turn, can modify it.

A pioneer work in this field is that of Dijkstra [5], in which the rôle of the
right parenthesis is played by the character « E ». The present work is an
improvement, essentially because :

/) the addition of left parentheses allows the string to be substituted to
be of arbitrary length ;

iï) the existence of an auxiliary memory gives much greater freedom in
writing programs.

The present parenthesis machine has been used with some modifications
for the réduction of X-formulas to their principal |3-r|-normal forais, should
they exist [2] [3].

In the present paper this parenthesis machine is described (section 1)

(1) Istituto di Scienza deU'Infbrmazione, Torino.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle n° déc. 1974, R-3.

38 M. DEZANI-CIANCAGLINI

and then directly applied. Section 2 shows a scheme P of parenthesis languages,
solving some programming problems, such as :

1) the recursive calls of procedures with uniform conventions ;
2) the transmission of parameter values.

Lastly, section 3 exhibits the embedding of a gênerai bottom-up analyzer
for context-free, total precedence languages in this parenthesis machine.

1. A PARENTHESIS MACHINE

We consider a parenthesis machine consisting of a stack and an auxiliary
memory, that is a set of < name, value > pairs (environment). The elementary
actions of this machine are the copying of a string onto the stack and the
interprétation of a given string as a command. The commands can modify
the memory state, which in its turn détermines the process of the computation
because every « name » enclosed by a pair of parentheses at the top of the
stack is replaced by the corresponding « value ». The machine évaluâtes a
string built from an alphabet together with a legitimate use of parentheses
which subdivide it arbitrarily. This string is copied from left to right on the
stack until the first right parenthesis is reached. The point of interruption of
copying is, as usual, denoted by a pointer. The right parenthesis constitutes
the order to interpret the substring, enclosed between it and the çorresponding
left parenthesis, as a command. For this purpose it is sufficient (with regards
to the parenthesis structure) that the string be « dynamically » legal, i.e.,
that the strings written onto the stack have legal parenthesis structures (1),
which does not necessarily imply that the input string be « statically » legal, i.e.,
that it itself, have a legal parenthesis structure. This balance between the
number of left and right parentheses has one exception; to make possible the
élimination of the go to (see section 2.2) we assume, naturally enough, that a
right parenthesis, to which no left parenthesis corresponds, acts as a STOP
command.

EXAMPLE. The following is an example which, although not çorresponding
to any programming language, shows the évaluation technique of this machine.
Let us ^assume that every string which does not occur as a « name » in the
environment must be replaced on the stack with itself. We now give the suc-
cessive stack configurations for the évaluation of the string :

(1(42)(3(114)5)(6(78)8))

(1) We say that a parenthesis structure is legal iff, scanning it from left to right, the number
of left parentheses is always not less than the number of right parentheses, and they are equal
at the end of the structure.

Revue Française d'Automatique^ Informatique et Recherche Opérationnelle

A PARENTHESIS MACHINE FOR STRING MANIPULATION

when the environment consists of the following pairs :

< 42,1 > < 78,3 > < 114,2 > < 325,1 >< 111638,5 >

39

stack configurations pointer positions
(1(42)T(3(114)5)(6(78)8)>

(11(3(114)
(11(325)

(111(638)
(111638)

5

(1(42)(3<114)5)T(6(78)8)>
(1<42>(3(114)5)<6<78)*8)>
(l(42)O(114)5)(6<78)8)t)
(l(42)(3(114)5)(6(78)8))t
(l(42)(3(lU)5)(6(78)8))t

The string evaluated in this example has a statically légal parenthesis
structure. Examples of programs with parenthesis structures only dynami-
cally légal are given in section 2.

2. A SCHEME P OF PARENTHESIS LANGUAGES

Let us describe a scheme P of parenthesis languages. Every program of
this scheme consists of a string of a given alphabet inerged into a parenthesis
structure dynamically légal (the only exception being a right parenthesis
without a corresponding left one which acts as STOP command). The types
of strings, which can occur enclosed in a parenthesis pair at the top of the
stack, Le., the types of commands, are six. Each is replaced uniquely at the
top of the stack by a given string and can modify the environment. The fol-
lowing table lists the six types of strings, the strings replacing each one of
these on the stack top, and the possible modifications of the environment :

TYPE NAME

Functional string

Predicative string

Assigment string

Name string

Jump string

Label string

TYPE OF STRING

(ƒ (n)*i . - * ,)

(a 0 0 *! •-.*„)

(VALUE = : NAME)

(NAME)

(v LABEL)

(A LABEL)

TO BE
REPLACED BY

ƒ<">[*!,...,<]

ot«">[xlf...,*J

e

VALUE (of the
corresponding pair)

String following
(A LABEL) (2)

£

MODIFICATION
OF ENVIRONMENT

-

-

<NAME, VALUE) (l)

-

—

-

(1) If a pair whose first component is NAME already exists, it is deleted
(2) This string must be uniquely determined, otherwise the program is incorrect.

n° décembre 1974, R-3.

40 M. DEZANI-CIANCAGLINI

where ƒ(/l) is an n-ary function, a(n) is an /z-ary predicate, e dénotes the empty
string and v and A , respectively, true and false. It is not necessary to give
formai définition of « LABEL », because any string following the two sym-
bols v and A is considered as a « LABEL ».

EXAMPLE. Program for the computatiön of the G.C.D. of two integers a, b,
with a ^ b > 0.

Let us define the following unary predicate and binary function :
v if x = 0
A if x / 0

m[x? y~] = remainder upon division of x by y.

Then the desired program is :

(a(b(A 1)= :*)= :y)((3(m(y)(x)))2)((x)((m(y)(x))(v 1)(A2)(X).

The successive stack configurations, environments and pointer positions
for the case a ~ 6, b = 4 follow.

stack configurations

(6(4-:x)

environments pointer positions

<(Mm6(x)
<<*>(m64)

C(?>2)
(A2)
((x)
<4((m(y)
(4(<ra6(x)
(4((m64)
(4(2(V1)
(4(2-:x)

<x,2 <y,6>

(V2)
(x)
2

2.1 Completness with respect to the partial recursive functions

We now give a constructive proof of the following fact : P is complete
with respect to the partial recursive functions. Following [1] we use the fact
that every partial recursive function can always be obtained from the basic
functions :
0(m) zero function of m variables 0(m)[xls ..., xm] = 0 (m ̂ 0)

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

A PARENTHESIS MACHINE FOR STRING MANIPULATION 4 1

S+ successor S+[x] = x + 1
S~ predecessor S~[JC] = x — 1
t/(f

m) sélection function Uf}[xu ..., xm] = xf (0 ^ i < m)
by means of the successive applications of the following rules :

1) Composition. If fiJ) is a partial recursive function and #jm) are partial
recursive functions (where m ^ 0, j > 0, 1 < i < 7), then also function h{m)

defined by

is partial recursive.

2) Recursion. If ƒ, # are partial recursive functions of one variable, p is a
partial recursive function of two variables, a is a recursive predicate of one
variable, then the function h defined by :

i f a[x]istrue

1 , * [0 | >]]] if «Wisfalse

is also partial recursive (x).

Since the functions of the scheme P have been ieft indeterminate until now
it is possible for scheme P to include the operators corresponding to the
above-mentioned basic functions. The proof is therefore completed by giving
the program schemes which carry out the rules of composition and recursion :

Composition ^ V / " ' * ! ... xm)... (g^x, ... *J)

Recursion : (a(x= :a)(A l)((oi(a))2)((g(a))= :a)((p(a)(v3(v 1)(A 3)(a))= :a)

Peculiar to the program scheme P is the fact that the composition is direc-
tly interpreted without any translation. It should be noted that, in the recur-
sion program, the number of left parentheses is not statically equal to that of
right ones, but that légal parenthesis structures are always dynamically
obtained. This trick has been used for the very purpose of being able to memo-
rize the number of times that function/? has been applied, in order to calculate
its arguments correctly. The recursion is implemented without having a
stack of values for every variable appearing as parameter of the recursive
function. Really, only the current value of each variable is retained in the

(1) The restriction to one variable is possible, because a pairing function jL.g. the cantorian

oney(x, y) = x + (* y Jj and its inverses K, L such that j(K(z), L(z)) = z are definable

inside the given scheme and a rc-tuple <,vlî..., x„ > can be expressed a.sj{j{...(j(0, xx + 1), x2),..., xn).

n° décembre 1974, R-3.

42 M. DEZANI-CIANCAGLINI

environment, while all preceding values which must still be used are, in fact,
conserved on the stack.

EXAMPLE. We present the successive stack configurations, environments
and pointer positions, according to the above program scheme for recursion
in the case a[x] = A and a[^[x]]] = v .

pointer positionsstack configurations
(a(x-:a)
(a(Al)
(a(U(a)
(•a<Ux>
<a(A2)
(a ((g (a)
(a ((g x)

(a ((p (a)
(a ((p g l x] <V3(V1)
< a ((p g t x] (V 3 (U (a)
< a ((p g t x] (V 3 ((* g [x l)
< a ((p g [x] <V3(V2)
(a ((p g [x] (V 3 ((f (a)
(a { (p g (x l (V 3 ((f g t x l)
(a ((p g [x] (\ /3(f [g [x]] - : a :
(a ((p g [x] (V3(AA)
(a ((p g [x] <y3)
(a ((p g (x] (a)
U U p g t x] £[g [x]])
(a(p[g[x] , f [g [x]]] - : a)
(a(VA)

environments
<a,x>

H

"

n

;;

<a,g[xl >
'•

\ "
< a , f [g (x]] >

<a,pt gtxl ,f

?[g[

. ((f (a

. ((f (a

. ((f (a)) - : a) (A 4) L

. (A 3) (a) r) - : a > . . .

. (A 3) (a)) t - : a)
)

2.2 Inclusion of procedure feature

The introduction of procedures into this scheme P can be attained in a
fairly natural way by allowing the value associated to a certain name to be a
program. In this case, the création of some pairs < name, value > act as proce-
dure définitions, and the replacement on the stack of the corresponding names
(in parentheses) by their values act as procedure calls. Clearly [6], it is possible
to eliminate the labels by means of procedures, thus representing more direc-
tly the links due to jumps. This modifies the évaluation of the jump string as
follows :

symbols v and A act as commands to copy onto the stack the string up
to and including the right parenthesis corresponding to the left one which
précèdes them :

— symbol v invokes the computation to proceed with the string which
follows it, i.e. : (v (.. .)) has as value (. . .)

— symbol A invokes the deletion of the string which follows it, i.e. :
(A (...)) has as value 8.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

A PARENTHESIS MACHINE FOR STRING MANIPULATION 4 3

EXAMPLES. The following procedures :

d\ 1 = <f ̂ M if a ^ is tme
L J \ d [» [x]] if <x[x] is false

, _ ƒ JJ[>] if <x[x] is true

~ t/WöW]] if «Mis false

correspond, respectively, to the program schemes : (x(d) (x(r) with the
environment :

< d,= :a)((0L(a))(

< r, = :a)((a(a))((h(a))(s)))(f((g(a))(r) > < *,)(*) >

The above programs exemplify cases where a right parenthesis without a
corresponding left one interrupts the computation.

3. BOTTOM-UP ANALYSIS

We implement now a gênerai bottom-up analyzer in the parenthesis
machine described in section 1. The following hypotheses should be made
about the grammar according to which we will parse the input string :

1) The grammar is a context-free, total precedence grammar (*).
2) Parenthesis symbols must not belong to the alphabet of terminais.
To carry out the bottom-up analysis of a string xl ... xn, according to a

grammar that satisfies the above conditions, it is sufficient to retain as the
environment the matrix of the precedence among the terminal and non-
terminal symbols and the production rules of the grammar itself, and to
give as a program the string to be examined, parenthesized as follows :

(* xx)... xn) *)

where the symbol « 4= » identifies the beginning and the end of the string.
The three possible relations ==, <•, •> between two symbols y and z,

terminal or not, give rise respectively to the following environment :

< yz, iy((z > if y o z
(yz,y{z} if y = z
(yz,y)(z>> if y •> z
< yz, ERROR > otherwise

(1) For this and other définitions, we refer to the papers of Wirth and Weber [8] and
Colmerauer [4].

n° décembre 1974, R-3.

4 4 M. DEZANI-CIANCAGLINÏ

The relations between every symbol y (terminal or not) ând the symbol =t=
are expressed by the environment :

< * y, (* ((y >

The p production rules of the grammar :

ut -» c ; (1 ^ i < p)

give rise to the following environment :

<a„K,)> (1 < / < / ») .

To the previous environment should be added the following two pairs :

<s,sy

so that at the end of the computation the stack should contain « YES » iff
the examined string belongs to the language. If, on the other hand, the com-
putation is interrupted because the top of the stack contains ERROR, then
the string does not belong to the language.

EXAMPLE. Let us consider the following grammar satisfying the desired
conditions taken from [4] :

S -* a, S -> aSB, S -> bSB, B^b

whose precedence matrix is :

s B a b

s • ? • «
B • •> . • >

a m •> «* O

b • •> o <•

For our évaluation mechanism, the environment corresponding to the
production rul.es are therefore :

< a, S) > < aSB, S) > < bSB, S) > < b, B) >

and those corresponding to the precedence matrix :

< SS, ERROR > < SB, S{B > < Sa, ERROR > < Sb, (S((b >
< BS, ERROR > < BB, B)(B > < Ba, ERROR > < Bb, B){b >
< aS, a(S > < aB, a)(B > < aa, (a((a > < ab, (a((b >
< bS, b{S > < bB, b)(B > < ba, (b((a > < bb, (b{(bb >

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

A PARENTHESIS MACHINE FOR STRING MANIPULATION 45

to which should be added the following pairs which concern the symbol 4= :

< 4= S, (* ((S >< 4= 5, (4= p) (+ a, (4= ((a >< * Z>, (4= ((& >

and lastly :

< 5 , S > < 4 = S 4 = , Y E S > .

We now plot step by step the configurations of the stack during the parsing
of the string ababb, to which corresponds the computation of the program :
(* a)b)a)b)b) *).

Stack configurations
1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .
1 0 .
1 1 .
1 2 .
1 3 .
1 4 .

(*a)
(*((ab)
(*((a((ba)
(*(<«<<b(<ab)
(*((a(<b((a((bb)
(*C(a((b((a((b((b*)
(* ((a ((b ((a ((b (b)
(* ((a ((b ((a ((bB)
(*C(a((b((a(b)

(*((a((b((aB)
<*<(a(<b<a)
(*((a((bS)
<*<(a(b<S(B(B*)
(*((a(b(S(BB)

1 5 .
1 6 .
1 7 .
1 8 .
1 9 .
2 0 .
2 1 .
2 2 .
2 3 .
2 4 .
2 5 .
2 6 .
2 7 .
2 8 .

(*((a(b(SB)
(*<<a(bS(B(B*)
(*(<a(bS(BB>
(*<(a(bSB>
(*((aS)
(*(a(S(B*>
(*(a(SB)
(*(a S(B*>
(*<aSB)
(*s)
(* ((S *)
(* (S)

YES

CONCLUSION

This paper présents some applications of an évaluation mechanism, pro-
vided with a stack and an auxiliary memory, to string manipulation. The
évaluation technique of this mechanism is naturally by value, the only excep-
tion being the rule added to allow the conditional procedure calls described
in section 2.2 which imposes évaluation by name. Actually, this mechanism
could be used as a « définition technique » of some programming languages
in the sense of [7]. The main différence with the Vienna method is that the
latter uses abstract syntaxes in which the génération trees are non-ordered,
as every branch has a label. To the contrary, the present parenthesis machine
treats trees whose branches are unlabeled and which must therefore be orde-
red. This implies, together with the parsing, a normalization of the language
to be interpreted with respect, for example, to the relative positions of opera-
tors and operands.

n° décembre 1974, R-3.

46 M. DEZANI-CIANCAGLINI

REFERENCES

[1] C. BÖHM, On a Family of Turing Machines and the Related Programming Languages,
ICC Bulletin, 3, 3 (1964).

[2] C. BÔHM and M. DEZANI, A CUCH-Machine : the Automatic Treatment of Sound
Variables, Int. Journal of Computer and Information Sciences, 7, 2, (1972), pp. 171-
186.

[3] C. BÔHM and M. DEZANI, Notes on a CUCH-Machine : the Automatic Treatment
of Sound Variables, Int. Journal of Computer and Information Sciences, 2, 2 (1973),
pp. 157-160.

[4] A. COLMERAUER, Total Precedence Relations, Journal of the ACM, 17, 1, (1970),
pp. 14-30.

[5] E. W. DIJKSTRA, An Attempt to Unify the Constituent Concepts of Sériai Program
Execution, in Symbolic Languages in Data Processing, éd. Gordon and Breach,
Rome (1962), pp. 237-252.

[6] J. MCCARTHY, Recursive Functions of Symbolic Expression and their Computation
by machine : Part I, Comm. ACM, 3, 4, pp. 184-195.

[7] P. WEGNER, The Vienna Définition Language, ACM Computing Surveys, 4, 1 (1972),
pp. 5-62.

[8] H WIRTH and H. WEBER, Euler : a Generalization of ALGOL and its Formai
Définitions : Part I and 11, Comm. ACM, 9, 1 (1966), pp. 13-25, 9, 2 (1966),
pp. 89-99.

ACKNOWLEDGMENT

The author is grateful to Prof. C. Bôhm who encouragée this research and to Prof. G. Ausiello
for his criticism.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle n° déc. 1974, R-3.

