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Abstract

In recent years, we are observing an increased demand for processing large amounts of data. The MapReduce

programming model has been utilized by major computing companies and has been integrated by novel cyber

physical systems (CPS) in order to perform large-scale data processing. However, the problem of efficiently scheduling

MapReduce workloads in cluster environments, like Amazon’s EC2, can be challenging due to the observed trade-off

between the need for performance and the corresponding monetary cost. The problem is exacerbated by the fact

that cloud providers tend to charge users based on their I/O operations, increasing dramatically the spending budget.

In this paper, we describe our approach for scheduling MapReduce workloads in cluster environments taking into

consideration the performance/budget trade-off. Our approach makes the following contributions: (i) we propose a

novel Pareto-based scheduler for identifying near-optimal resource allocations for user workloads with respect to

performance and monetary cost, and (ii) we develop an automatic configuration of basic tasks’ parameters that allows

us to further minimize the user’s spending budget and the jobs’ execution times. Our detailed experimental

evaluation using both real and synthetic datasets illustrate that our approach improves the performance of the

workloads as much as 50%, compared to its competitors.
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1 Introduction
In recent years, we observe a tremendous increase in the

amount of data that needs to be stored and processed.

Analyzing this large amount of data is a high priority task

for many companies. Moreover, the sheer volume of data

exceeds the capabilities of existing commercial databases.

For this reason, novel distributed processing frameworks

have been proposed. Google’s MapReduce [1] is the most

commonly used parallel and distributed programming

model for performing Big Data processing on clusters of

commodity hardware. Hadoop [2], which is MapReduce’s

most popular open-source implementation, is utilized by

major companies including Twitter [3] and Yahoo [4] for

analyzing their workloads, mainly due to its scalability fea-

tures [5]. Furthermore, even traditional industries, such

as banking and telecommunications, are adopting the use
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of Hadoop in their environments, due to their demand of

processing fast-growing volumes of data [6].

One area where the MapReduce programming model

is efficiently applied is in the context of Cyber Physi-

cal Systems (CPS). CPS are integrations of computational

resources (e.g., commodity machines) with physical pro-

cesses [7, 8]. Inmost cases, embedded networked comput-

ers control and monitor physical resources (i.e., sensors),

usually with feedback loops, where the physical resources

are strongly coupled and interact with the computational

resources. Examples of Cyber Physical Systems range from

traffic monitoring systems [9, 10] to smart grids [11]. In

order to perform the feedback loop, it is necessary to

process historical data and build models (e.g., using data

mining techniques [12]) for the physical resources. Due

to the high volume of data, it is common practice to use

Big Data frameworks like Apache’s Hadoop or Apache’s

Spark [13] for processing the historical data. Many CPS

[12, 14] execute their MapReduce applications on pub-

lic cloud infrastructures [15] like Amazon’s EC2 [16] or
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Microsoft’s Azure [17] as these offer the necessary com-

puting resources and enable the automatic deployment

of the Hadoop framework. Usually, users of cloud infras-

tructures are charged based on the amount of processing

and storage resources they reserve [18]. For example, in

Amazon EC2 [16], users are charged on a per hour basis

based on the amount of time they bind the reserved vir-

tual machines (VMs) and also based on the amount of I/O

operations performed by their applications [19].

Challenge 1. A challenging task for users in such envi-

ronments is to efficiently determine how many VMs they

should bind in order to satisfy their performance goals

(e.g., minimize their jobs’ execution times) without over-

spending. More specifically, a MapReduce job comprises

multiple map/reduce tasks that execute on the available

map/reduce slots. The number of map/reduce slots of the

MapReduce job essentially correspond to the VMs’ pro-

cessing cores that will be used for the execution of the

job. Increasing the number of slots used by a job, typi-

cally increases the number of VMs that will be reserved

and this can impact the user’s budget (assuming a typical

pricing policy like Amazon’s). The problem becomesmore

challenging when users submit multiple jobs (i.e., MapRe-

duce workload) concurrently to the cluster. In this case,

the possible slots’ allocations can grow exponentially and

thus determining the allocation that minimizes the work-

load’s end-to-end execution time (i.e., makespan) and at

the same does not overcharge the user, is not trivial.

Challenge 2. The second important challenge derives

from the fact that the performance and the monetary cost

of MapReduce jobs can be affected by a wide range of

configuration settings. Hadoop has over 190 configuration

parameters [20] (in Table 1, we present the most represen-

tative ones). Currently, the burden of tuning these param-

eters falls on the user who submits the jobs. Many users

lack the expertise to properly configure these parameters,

and this can easily lead to serious performance degra-

dation [21]. Companies like Cloudera [22] provide rule

Table 1 Hadoop’s basic configuration parameters

Parameter Description Default

value

Mapred.reduce.tasks Number of reduce tasks 1

Io.sort.mb Map buffer size in MB 100

Io.sort.record.percent The percentage of the map buffer’s

size used for metadata 0.05

Io.sort.spill.percent Threshold in the map buffer’s size

that if exceeded in-memory data

are stored in local files 0.80

Dfs.block.size HDFS block size, determines the

number of map tasks 128 m

of thumb recommendations for the basic configuration

parameters; however, such approaches cannot be easily

applied to a wide range of applications [20].

In Fig. 1, we illustrate with an example, the effect of the

configuration parameters on the performance of a typi-

cal Twitter friendship job and a Sort job. The Twitter job

processes 1.2 GB tweets and identifies all unique men-

tioned and tagged friends per user, while the Sort job

sorts 5 GB of randomly generated data (for more infor-

mation about the jobs see Section 6). We run the jobs

in our local 8-VM cluster (i.e., 1 Master and 7 Worker

nodes), which consists of 14 map and 14 reduce slots.

As you can observe in Fig. 1, with appropriate tuning

of the reduce tasks parameter (i.e., mapred.reduce.tasks

parameter in Table 1), we are able to reduce the execu-

tion time of a job by half. In the specific experiment,

you can observe that by increasing the number of reduce

tasks, we exploit the available parallelism (i.e., the avail-

able reduce slots) and thus we can decrease the execution

time. However, increasing beyond the available resources

can be sub-optimal as this can increase the execution

rounds of the reduce tasks. More specifically, if we use

more reduce tasks than the available 14 reduce slots, not

all tasks can run in parallel and this increases the execu-

tion time. Figure 1 also illustrates that by tuning the buffer

size in the map phase (i.e., io.sort.mb parameter), we can

decrease the amount of data that is read and written by

the map tasks, reducing considerably the performed I/O

operations.

In MapReduce environments, a few recent works study

the problem of scheduling MapReduce jobs on cluster

resources in order to minimize standard scheduling the-

ory metrics [23, 24]. More specifically, in [23], they mini-

mize the workload’s makespan while in [24], they focus on

maximizing a profit metric which depends on the amount

of jobs that satisfy their execution time deadlines. How-

ever, both techniques do not consider the impact of the

scheduling decisions (i.e., allocation of map/reduce slots)

on the user’s spending budget. Furthermore, works like

[20, 25] have been proposed for automatically tuning the

job’s configuration parameters (e.g., number of reduce

tasks) in order to minimize its execution time. However,

all these works do not examine how the available slots

should be allocated among concurrently running jobs to

satisfy both budget and performance constraints. More-

over, another parameter that is not taken into account

in these works is how the I/O operations can affect the

user’s budget and how by controlling the buffer-related

parameters we can minimize its impact. To the best of our

knowledge, we are the first to focus on the multi-objective

optimization problem of minimizing the makespan and

required budget for the execution of MapReduce work-

loads in a single Hadoop cluster. Solving this problem is

beneficial to all users of the Hadoop ecosystem including
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Fig. 1 Impact of configuration parameters (i.e., number of reduce

tasks and map buffer size) on the job’s end-to-end execution time

and the amount of data that are read/written by the map and reduce

tasks. a Reduced tasks impact on job’s execution time. bMap buffer

size impact on the job’s I/O operations

CPS [12] that utilize Hadoop to generate performance

models (i.e., using data mining MapReduce jobs) for the

physical resources they monitor.

1.1 Contributions

In this work, we aim at providing a novel MapRe-

duce scheduler that will enable the study of the

makespan/monetary cost trade-off for MapReduce work-

loads that execute on homogeneous VMs in public

cloud infrastructures like Amazon’s EC2 [16], and at the

same time will automatically tune the jobs’ configuration

parameters to improve further the jobs’ performance and

reduce the spending budget. The key contributions of our

work are as follows:

• We introduce the design and implementation of a

novel Pareto-based scheduler that, given a user’s

MapReduce workload and budget range, detects

map/reduce slot allocations that minimize the

workload’s makespan without overcharging the user.

Our approach is able to detect all valid map/reduce

slots allocations for a given budget range and to

present them to the user. To the best of our

knowledge, our scheduler is the first that enables the

user to examine the trade-off between the two

metrics of interest and decide the slots’ allocation

that meets her requirements. Our scheduler differs

from all previous schemes that schedule Hadoop jobs

[23, 24], in the fact that we solve a multi-objective

optimization problem that targets at minimizing both

the workload’s makespan and the user’s budget, while

all previous schedulers aim at minimizing only one

performance objective. Furthermore, our proposed

scheduler is the first that provides all near optimal

slots’ allocations. We argue that our scheduler can be

helpful for all Hadoop users in multiple application

domains (including CPS) that execute their

applications (e.g., transportation [9], Mahout [26]

applications) on public cloud infrastructures as they

are able to observe the expected workload’s

makespan for different spending budgets and then

determine the slots’ allocations they consider most

appropriate for their workload. We believe that our

approach is more generic and more useful as it

provides more choices to the user compared to a

single solution which is the aim of the previous works

(that minimize one of the two metrics of interest,

either the makespan or the budget).
• We use a novel Pareto frontier greedy search

algorithm for detecting near-optimal slots’ allocations

in a fast and scalable way, considering two different

policies for traversing the frontier. The first policy,

Slots’ Allocation, assigns an extra slot (i.e., either map

or reduce) to the job that affects the most the

workload’s makespan while the second, VMs’
Allocation, reserves an extra VM for this job. Slots’

Allocation searches the frontier more thoroughly as it

gives one slot at a time, so we expect it to take longer

to detect all the valid allocations. In contrast, VMs’

Allocation is more lavish as it allocates one VM at

each iteration step so we expect it to finish the search

faster but it will detect less plans than the Slots’

Allocation algorithm.
• We enhance the system’s performance and decrease

the user’s spending budget through the automatic

configuration of five basic MapReduce configuration

parameters. More specifically, we tune the number of

map and reduce tasks as we observed that by tuning

these two parameters, we can decrease further the

job’s execution time. Furthermore, we consider three

configuration parameters that control the map buffer

size. These buffer-related parameters affect the

number of I/O operations and thus the job’s

monetary cost. We formulate the impact of these five



Zacheilas and Kalogeraki EURASIP Journal on Embedded Systems  (2017) 2017:29 Page 4 of 24

parameters on the job’s execution time and monetary

cost and propose two greedy algorithms for

automatically tuning them. We avoid more elaborate

techniques like [27] as we want to tune the

parameters as fast as possible in order to be able to

utilize our techniques in real-time. For the

adjustment of the map-buffer parameters, we use a

Random Search algorithm in order to sample fast the

search space and detect the parameters that

minimize the I/O cost. While for the map/reduce

task adjustment, we use a Hill climbing algorithm

that gradually increases the number of map and

reduce tasks used for the job, keeping the

configuration that minimizes its execution time.
• We conduct an extensive evaluation study using both

simulation and empirical workloads. For the

simulation workloads, we use traces from Yahoo! [28]

and Taobao [29], while for the empirical workloads,

we execute short-running jobs from the PUMA

benchmark [30] to display the applicability of our

framework in commonly used workloads from major

companies like Twitter. Our experimental results

illustrate that our search algorithm outperforms

state-of-the-art schemes by a few orders of

magnitude in terms of execution time. Finally, our

automatic parameters configuration approach

minimizes further the required budget and the

workload’s end-to-end execution time.

2 Background
In this section, we first provide a brief introduction on the

MapReduce programming model and then describe how

MapReduce is utilized by current CPS.

2.1 MapReduce preliminaries

In this section, we provide a concise description of the

MapReduce programming model and put emphasis on

Hadoop’s implementation.

2.1.1 Programmingmodel

A MapReduce job is modelled as a sequence of two

computational phases, the map and the reduce phase.

Each phase comprises multiple tasks that execute in par-

allel (i.e., see Fig. 2). Tasks are modelled as follows:

map(k1, v1) ⇒[k2, v2] and reduce(k2, [v2] ) ⇒[k3, v3].

Map tasks take as input (k1, v1) pairs and return a list of

intermediate (key,value) pairs of possibly different types,

k2 and v2. The values associated with the same key are

grouped together into a list and are passed as input to

the appropriate reduce task using a partitioning function.

Finally, the reduce tasks emit arbitrary (key,value) pairs of

a final type, k3 and v3.

2.1.2 Job execution

The cluster’s processing resources determine the maxi-

mum number of map and reduce tasks that can execute

concurrently. The cluster provider sets these resources by

determining the number of slots that can run on the clus-

ter nodes. Slots are used to execute map and reduce tasks.

In most cases, each node is configured with one slot per

processing core. Users in public clouds can reserve a fixed

number of nodes (and the corresponding slots) for the

execution of their jobs based on the budget they are will-

ing to spend [18]. If the reserved slots are fewer than the

job’s tasks, the latter are added in a FIFO queue and wait

for their execution. In Fig. 2, we illustrate how a job runs

on a Hadoop cluster. The job consists of five map and four

reduce tasks, while three map and two reduce slots have

been reserved. Thus, the job requires two rounds (also

called waves) of task execution in the reserved slots in

order to finish.

2.1.3 Map task execution

Map tasks usually read their input data from the Hadoop’s

distributed file system (HDFS). For each input file, a map

task is spawned. When the map function is invoked and

starts generating output data, it does not simply write

them on disk. As shown in Fig. 2, a more complex process

takes place exploiting the use of in-memory buffers and

some presorting. Each map task contains a circular mem-

ory buffer (with default size 100 MB) where the output

data are kept. Apart from the actual data, for each output

record, 16 bytes of metadata are kept and used for sort-

ing, partitioning, and indexing. When the buffer reaches

a certain threshold (by default 80% of its size) either due

to the actual data or metadata sizes, a background thread

spills the output records to disk (spill files in Fig. 2). Nowa-

days, we observe a trend from major cloud providers (e.g.,

Amazon) to charge users based on the amount of I/O

operations in the local disks [19]. So, the buffers used by

the map tasks can affect significantly this cost as they can

minimize the required I/O operations by keeping more

data in memory.

2.1.4 Reduce task execution

Initially, reduce tasks fetch the output data generated

by the map tasks and stored on the local disks, using

a partitioning function. This procedure is called shuf-

fle and can affect significantly the execution time as

it depends on the available cluster bandwidth. The

retrieved data are stored on the memory buffer for

reduce tasks. The size of the buffer is controlled via the

mapred.job.shuffle.input.buffer.percent (set by default to

70%) parameter which specifies the proportion of the

task’s heap size that will be used for the buffering. When

all data have been fetched, the reduce function is invoked

and the output data are stored in the HDFS. The num-

ber of reduce tasks (by default the value is equal to 1) is

user-specified via the mapred.reduce.tasks configuration

parameter. Using the default, reduce task parameter may
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Fig. 2MapReduce job execution in a Hadoop cluster

not be beneficial because it can lead to under-utilization

of the reserved slots. For example in Fig. 2, if we used only

one reduce task, we would not exploit fully the available

parallelism (i.e., the other one reserved reduce slot).

2.2 CPS andMapReduce

In recent years, we see the wide adoption of novel Big

Data processing frameworks by CPS mainly due to the

large volume of data that they generate. As you can see

in Fig. 3, CPS consist of two layers [7], the physical and

the computational. The physical layer comprises a wide

variety of input sensors that periodically send reports

to the computational layer and also expect input from

these computational resources in order to dynamically

adapt to possible changes in the environment. In Fig. 3,

we display a traffic monitoring CPS [9, 10, 31] that

we have deployed in the city of Dublin. The physical

layer receives input from sensors mounted on top of

public buses, SCATS sensors mounted on road intersec-

tions, CCTV cameras, and mobile applications. All these

sensors periodically report the traffic conditions in the

city. The computational layer is responsible to process

these reports and to inform the sensors to take precau-

tionary actions if it is necessary. For example, it may

inform the users of the mobile application to change their

route if we expect heavy traffic in the upcoming min-

utes in specific traffic routes. Therefore, we have a feed-

back loop between the computational and the physical

Fig. 3 An example of a traffic monitoring CPS which exploits Big Data frameworks
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layer as physical resources affect the computations and

vice versa.

The computational layer needs to exploit the improve-

ments and benefits offered by the latest Big Data frame-

works in order to be able to handle the sheer volume of

data produced by the physical layer. More specifically, the

system must be able to take actions as fast as possible and

adapt to possible changes in the environment. For exam-

ple, if a traffic accident is detected by the CCTV cameras,

all the nearby users of the mobile app must be informed.

So we need to be able to process all the incoming images

in real-time and also inform users in case of such an event.

For this reason, most CPS [12] adopt the use of distributed

stream processing systems like Apache’s Storm [32] or

IBM’s Streams [33]. Furthermore, the CPS must be able to

detect abnormal behavior so we have to analyze past sen-

sors’ reports and model the expected behavior overtime

using data mining techniques [12]. Novel batch process-

ing frameworks based on the MapReduce programming

model like Apache’s Hadoop or Apache’s Spark are used

for these computations as they can handle the high vol-

ume of historical data by scaling the processing inmultiple

computing nodes.

Hadoop is themost widely used framework for the batch

processing computations in CPS and has been applied in

different settings like smart grids [11] and traffic moni-

toring [9]. Optimizations on top of Hadoop can improve

the performance of the whole CPS. For example, because

multiple jobs are executed concurrently (i.e., a MapRe-

duce workload) in order to generate the sensors’ perfor-

mance models (e.g., different jobs compute models for the

bus sensors and the CCTV cameras) if we minimize the

workload’s makespan, the CPS will be able to utilize the

generated models faster in the stream processing compo-

nent and thus inform the physical layer more quickly in

case of a change in the current conditions. Finally, as we

mentioned in Section 1, Hadoop usually runs in public

cloud infrastructures where users are charged based on

the amount of reserved resources so CPS will also ben-

efit from techniques that target at minimizing the jobs’

monetary cost. Therefore, we argue that the study of the

budget/makespan trade-off is very important for CPS’

that adopt the use of Hadoop as their batch processing

component.

3 Systemmodel
In this section, we describe the basic parameters of our

approach. Our model is based on MapReduce 1 but

recently Hadoop has produced a new version, MapRe-

duce 2 [34]. The main difference of the two versions is

the fact that MapReduce 2 no longer considers separately

the slots used for the map and reduce tasks, but for each

node, it defines the number of containers it can support.

In each container both map and reduce tasks can run. Our

model can be easily extended to support this new version

of Hadoop as we still have to determine how the con-

tainers should be allocated for the execution of map and

reduce tasks (i.e., how many container will be used for

map/reduce tasks).

Initially, the cluster administrator needs to provide the

following information:

• msPerVM, rsPerVM: the number of map and reduce

slots per VM. So in each VM, we have both map and

reduce slots. This parameter depends on the VM’s

CPU cores. For example, if a VM has 4 CPU cores, we

can use two cores as map slots (i.e., msPerVM = 2)

and the other two cores as reduce slots (i.e.,

rsPerVM = 2). It should be clear that map slots are

used for the execution of map tasks while reduce slots

are utilized for the execution of reduce tasks. These

parameters are not workload specific as the cluster

may be used by multiple users. For example, in major

companies like Yahoo!, multiple users submit their

workloads concurrently in the cluster so the

administrator has to determine how many map and

reduce slots will be available per cluster’s VM.

Furthermore, when these parameters are changed,

the Hadoop cluster needs to be restarted therefore it

is not possible to modify their values during the

execution of jobs.
• Cost : the per hour cost for reserving a VM in the

cluster. We follow a cost policy like Amazon’s EC2

[16] and Microsoft’s Azure [17] where the budget that

the user will pay depends on the amount of time she

has reserved a VMmultiplied by the per hour cost.
• IOCost : the monetary cost of an I/O operation. We

consider as I/O operation the data/metadata reads or

writes to the local disk.

Each user’s workload comprises a set of Hadoop jobs

(Jobs). A user in our setting can be CPS like [11] that

use Hadoop for the data analysis of historical data and

exploit the processing resources of a public cloud infras-

tructure like Amazon’s EC2. The submitted workload is

characterized by the following metrics:

• BudgetMin, BudgetMax: the minimum/maximum

budget the user is willing to spend for executing the

workload’s jobs. In our system, we wanted to enable

even a non-expert to provide us feedback in terms of

the money he/she is willing to spend. In the worst

case scenario, the user will provide a budget range

where our scheduler cannot find a feasible solution

(i.e., very small BudgetMin and BudgetMax parameters

for the amount of work that needs to run) so in such

cases he/she will be informed that no resource

allocation is possible and the user will have to provide

new values for these parameters. If the user does not
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provide BudgetMin, we solve a single-objective

optimization problem that minimizes the user’s

spending budget for the current workload and then

we use this value as BudgetMin. While this approach

automatically determines the BudgetMin parameter it

also adds extra computational cost as we have to

solve an extra optimization problem.
• Budget : the actual budget the user will spend for the

execution of the workload.
• Deadline : the constraint imposed by the user on the

workload’s end-to-end execution time.
• Makespan : the workload’s end-to-end execution time

after we determined the map/reduce slots to use for

the workload’s jobs. Ideally, this value should be

smaller than Deadline; if this is not achieved we

assume that we have a service level agreement (SLA)

violation as we are not able to satisfy the user’s

performance requirements.

Each job j ∈ Jobs is characterized by the following

parameters:

• msj, rsj: the number of map/reduce slots that will be

reserved for job j.
• VMsj: the number of VMs used by job j calculated via

the following formula:

VMsj = max
(

⌈
msj

msPerVM
⌉, ⌈

rsj

rsPerVM
⌉

)

(1)

In each VM, both map and reduce slots are available.

If the job requires more map slots than reduce slots

then the number of reserved VMs will depend on the

map slots; otherwise, it will be determined by the

number of reduce slots reserved by the job.
• mtj, rtj: the number of map/reduce tasks used by job j.
• budgetj: the monetary cost for running job j. This

metric depends on the amount of occupied VMs, the

time that these VMs are reserved and the cost of the

I/O operations.
• mtimej, rtimej, stimej: the estimated execution time

of the map, reduce, and shuffle phases of job j.
• jtimej: the estimated execution time in seconds of the

whole job which depends on the estimations of the

three previous metrics.
• ioCostj: the monetary cost of the I/O operations

performed by job j.
• mBufferj: the size of the buffer used by the map tasks

(controlled by Hadoop’s io.sort.mb parameter). This

value depends on the memory that has been allocated

to the JVM that will execute the task. For example, if

the cluster consists of nodes that have 8 GB RAM

and we want to use one map and one reduce slot in

each node then the maximum value of mBufferj will

be 4 GB.

• metaPercentj: the percentage of the map buffer size

that will be used for storing metadata, configured by

the io.sort.record.percent parameter. This parameter

is significantly smaller than the percentage used for

the actual data; however, it is important as it can lead

to increased I/O operations if its value is too small.

The interval of this parameter is defined via the

following equation:

0 < metaPercentj < 1 (2)

• bThrj: the threshold in the mBufferj and

metaPercentj parameters which if exceeded, data are

spilled to disk. Similarly to the above parameter, this

interval is defined via the following formula:

0 < bThrj < 1 (3)

• outSizej(mtj): the size in bytes of a map task’s

intermediate data when mtj map tasks are used. The

number of map tasks will affect this metric as the

output size will decrease when more map tasks are

utilized.
• outRecj(mtj): the amount of intermediate data

records generated by a map task of job j when mtj
map tasks are used for the job. Each output record

adds 16 bytes metadata information in the map

buffer. We expect fewer output records per task

when we increase the number of map tasks.
• recSizej(mtj): the average record size in bytes which

is computed via the following formula:

recSizej(mtj) =
outSizej(mtj)

outRecj(mtj)
(4)

4 Ourmethodology
Our goal in this work is twofold: First, we aim at devel-

oping a novel Hadoop scheduler that will provide a set of

possible slots’ allocations for the users’ workloads based

on the makespan-cost trade-off so that they can choose

the allocation that satisfies their requirements. Second, we

seek at enhancing the performance of the users’ jobs (i.e.,

reduce their end-to-end execution time) and decrease

further the monetary cost by adjusting five basic con-

figuration parameters. More specifically, we adjust the

number of map/reduce tasks (i.e., mtj, rtj) as these param-

eters affect significantly the duration of the map/reduce

phase. Furthermore, similar to Amazon’s EBS [19], we

consider the impact of the jobs’ I/O operations on the

observed monetary cost. For this reason, we tune the

three basic map-buffer parameters (i.e., mBufferj, bThrj,

metaPercentj) that control the amount of intermediate
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data that will be spilled to local disks, trying to minimize

the impact of the storage cost on the total budget that will

be spent by the user.

In the following sections, we describe the methodol-

ogy we follow to tackle the aforementioned problems. Our

approach consists of the following steps:

1. We formulate the multi-objective optimization

problem we are solving (i.e., Section 4.2).

2. We propose a novel Pareto frontier search algorithm

that generates map/reduce slots’ allocations, given

the user’s budget range. Furthermore, we extend the

algorithm by automatically tuning the number of

map/reduce tasks, minimizing further the workload’s

makespan (i.e., Section 4.3).

3. Finally, we model the impact of the map-buffer

configuration parameters on the user’s budget and

provide an algorithm for automatically tuning them

(i.e., Section 4.4).

4.1 High level overview

In Fig. 4, we display the high level overview of our pro-

posed scheduling approach. The user interacts with the

system by providing a set of jobs to execute concurrently

in the cluster and then our scheduler computes all the

nearly optimal resource allocations so that the user can

choose the one that best fits his needs. Furthermore,

the proposed scheduler is capable of automatically tuning

basic configuration parameters that impact both the user’s

budget and the workload’s makespan.

As can be observed in Fig. 4, our scheduler consists of

the following steps:

• The user submits a set of jobs to execute in the

cluster. For each job, the user has to provide the

implementation of the map and reduce functions.
• Our Pareto-search algorithm receives the user’s

workload and is responsible for determining all the

slots’ allocation plans that minimize both the

makespan and the spending budget (discussed in

detail in Algorithm 1 in Section 4.3).
• The Pareto-search algorithm traverses the search

space using one of two policies, i.e., either the Slots’

Allocation policy (i.e., Algorithm 2 in Section 4.3) or

the VMs’ Allocation policy (i.e., Algorithm 3 in

Section 4.3). Depending on the policy used, we can

end up with a different slots’ allocation.
• When the Pareto-search algorithm has reserved

resources (using either the Slots’ or the VMs’

allocation technique) for a job it invokes the Task

Adjustment component in Fig. 4 to tune the number

of map/reduce tasks (i.e., mtj, rtj,∀j ∈ Jobs) for this

job in order to minimize further the job’s execution

time (i.e., Algorithm 4 in Section 4.3).
• When all the near-optimal slot allocations plans have

been generated by the Pareto-search algorithm, they

are forwarded to the Buffer-Tuning component. The

latter is responsible for tuning the

mBufferj, bThrj,metaPercentj,∀j ∈ Jobs to minimize

further the per job I/O cost and thus the total user’s

spending budget (i.e., Algorithm 5 in Section 4.4).

4.2 Our multi-objective optimization problem

In order to formally define our multi-objective optimiza-

tion problem, we need to estimate the impact of the possi-

ble slots’ allocation on the workload’smakespan and user’s

budget. In our problem, we made the following assump-

tions: (i) there is no cap on the number of available VMs

in the public cloud infrastructure, (ii) each VM is used for

the execution of a single job (upon the job completion,

the VM is turned-off if no other job needs to be sched-

uled), and (iii) the cluster comprises homogeneous VMs.

We claim that our assumptions are valid as the number

of VMs provided by major cloud providers like Amazon’s

EC2 are significantly larger than the amount of VMs that

can be reserved by a single user. Regarding the second

Fig. 4 Pareto-based scheduler’s high level overview
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assumption, we consider workloads where the jobs exe-

cute concurrently on the available resources. However, we

argue that if this assumption does not hold, our approach

can still be applied by splitting the workload in smaller sets

of jobs and schedule each set by applying our proposed

techniques.

4.2.1 Makespan computation

First, we describe how we compute the workload’s

makespan. There is a plethora of techniques for estimating

this metric, such as building job profiles based on previ-

ous executions [35] or using debug runs prior to the actual

job execution [36]. The main benefit of the job profiling

approach is that it does not require the invocation of extra

jobs as it exploits the already available historical data. The

debug run techniques run the job twice and they estimate

the execution time of the second invocation using the exe-

cution time observed in the first run. The benefit of this

technique is that it does not require to keep historical

data or train complex models for capturing the execution

time. In our scheduler, we exploit the first approach as

we focus on the execution of repetitive but aperiodic jobs

so we assume that we have the required historical data

for building the job profiles. Furthermore, we avoid the

use of debug runs as they execute each job two times and

thus they penalize the workload’s makespan. For this rea-

son, we applied the current state-of-the art job-profiling

approach [35] which is effective both in homogeneous and

heterogeneous environments [37] and has been efficiently

applied by various recent works [38–40]. This prediction

technique works well in cases where jobs’ tasks have simi-

lar execution time requirements which is the vast majority

of jobs executing on Hadoop clusters. The execution time

of a MapReduce job is modelled as the sum of the exe-

cution times of the three different computation phases,

specifically the map, the shuffle, and the reduce phases.

Each phase is bounded by a lower and an upper limit.

In order to compute the lower and upper bounds, we

exploit the following theorem (similarly to [35]):

Makespan Theorem: The makespan of a greedy task

assignment is at least ⌈n/k⌉ ·µ and at most ⌈(n− 1)/k⌉ ·

µ + λ

where µ = (
∑n

i=1 Ti)/n is the mean duration of n tasks

(i.e., Ti the execution time of task i) and λ = maxi{Ti}

the maximum task duration. The lower bound is trivial to

compute as the best case is when all n tasks are equally

distributed among the k available resources and require

approximately the same execution time. Thus, the over-

all makespan is at least ⌈n/k⌉ · µ. For the upper bound,

consider the worst case scenario, i.e., the longest task T
′

with duration λ is the last processed task. In this case,

the time elapsed before the final task T
′
is scheduled is at

most the following: (
∑n−1

i=1 Ti)/k ≤ ⌈(n − 1)/k⌉ · µ + λ.

Thus, the makespan of the overall assignment is at most

(⌈(n − 1)/k⌉ · µ + λ). The difference between lower and

upper bound provides the range of possible completion

times for the jobs due to non-determinism and schedul-

ing. These bounds can be very useful in cases when λ ≪

⌈n/k⌉ · µ (i.e., when the duration of the longest task is

small as compared to the total makespan). We argue that

the vast majority of MapReduce applications have simi-

lar behavior; thus, we exploit this prediction model in our

setting.

We provide only the equations used for the estimation

of the map phase’s execution time but their applicability

for the other two phases is trivial. The lower limit of the

execution time of the map phase is given via the following

formula:

mtimelowj = ⌈
mtj

msj
⌉ × tavg(mtj),∀j ∈ Jobs (5)

where tavg(mtj) is the average execution time of the

map tasks and it includes both the CPU time and

the time required for I/O operations (i.e., tavg(mtj) =

tcpuavg(mtj) + tioavg(mtj)). It should be clear that jobs

execute on separate VMs so there is no sharing of the

I/O resources and the CPU cores, and thus there is no

overhead on the map phase’s execution time. The ratio

⌈
mtj
msj

⌉ depicts the impact of the execution rounds (map

or reduce) on the expected execution time. Using fewer

slots than the assigned tasks leads to an increase in the

observed execution time as the phase will require multi-

ple execution rounds. For example, assume that we have

a job that consists of 10 map tasks and 3 available slots

and the average task execution time is 5 s. The map phase

will require 4 execution rounds. Each round will require

approximately 5 s as the task execute concurrently on each

round therefore the lower bound of the map execution

time will be 20 s. Contrary to existing works such as [35]

that assume a fixed average execution time of the tasks, we

model tavg as a function that depends on the number of

tasks. Using more tasks decreases the amount of data that

will be processed by each task so their average execution

time will be smaller (as you observe in Fig. 5). Specifically

for the reduce tasks, their impact is more evident when the

jobs’ intermediate data are skewed [41]. Because the jobs

in our framework are repetitive, we apply extrapolation to

approximate the tavg(mtj) function. The upper limit in the

execution time is computed with the following equation:

mtime
up
j = ⌈

mtj − 1

msj
⌉ × tavg(mtj) + tmax(mtj),∀j ∈ Jobs

(6)

where tmax(mtj) is the maximum execution time observed

in the map tasks. The limits for the other two phases (i.e.,

shuffle and reduce) are computed in a similar way using

the appropriate task/slots parameters and their mean and
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a

b

Fig. 5 Number of tasks impact on mean execution time of a Twitter

job that processes 1.2 GB of input data. a Number of map tasks

impact on task’s mean execution time. b Number of reduce tasks

impact on task’s mean execution time

max execution times. Thus, we compute the upper and

lower bound limits for the job’s total execution time with

the following two formulas:

jtimelowj = mtimelowj + stimelowj + rtimelowj ,∀j ∈ Jobs

(7)

jtime
up
j = mtime

up
j + stime

up
j + rtime

up
j ,∀j ∈ Jobs

(8)

Finally, the job’s estimated end-to-end execution time as

it was pointed out in [35] is given as the average of the two

limits:

jtimej = ⌈(jtime
up
j + jtimelowj )/2⌉,∀j ∈ Jobs (9)

With the above estimation, we compute the workload’s

end-to-end execution time as follows:

Makespan = maxj∈Jobs{jtimej} (10)

Thus, the workload’s end-to-end execution time

depends on the slowest running job. In the case that no

enough resources are available, the workload’s jobs are

split into waves of execution and the jobs that comprise a

wave are executed in the available VMs. The workload’s

makespan is computed as the sum of Eq. 10 for the dif-

ferent execution waves. Before splitting the workload’s

jobs into waves, we sort them based on their execution

time in ascending order to make sure that the jobs with

the smaller execution time requirements will be sched-

uled first. Our goal is to satisfy the user’s performance

requirements; therefore, the workload’s makespan should

not exceed the user specified Deadline. So the following

constraint should be satisfied when we determine the

map/reduce slots to use per job:

Makespan ≤ Deadline (11)

4.2.2 Budget computation

The second metric we consider in our multi-objective

problem is the spending budget. To compute this metric,

we first calculate the per job monetary cost. We applied

a pricing model similar to the one used by popular cloud

providers like Amazon [16]. For each j ∈ Jobs, given a

slots’ allocation (msj, rsj), we compute the required VMs

via Eq. 1 and then the budget can be calculated using the

following equation:

budgetj = VMsj × cost×⌈
jtimej

3600
⌉+ ioCostj,∀j ∈ Jobs

(12)

The per-job spending budget depends on the number

of reserved VMs, the per VM cost as it was decided by

the provider and the required execution time in hours.

So similar to Amazon’s EC2, the VM usage is charged

based on the amount of time the VM is reserved. Ama-

zon charges users on a per hour basis (e.g. $0.539 per

hour for the m2.2xlarge instance [16]), so we divided the

jtimej metric that depicts the execution time in seconds

with 3600 s. Amazon provides different VM types that

can be reserved by the users and the pricing is adjusted in

accordance to the VMs’ processing capabilities (i.e., high-

performance VMs have increased per-hour cost). In this

work, we consider only homogeneous VMs but as future

work, we plan to extend our approach to heterogeneous

environments. Furthermore, the required budget for the

I/O operations performed by the job needs to be added

as extra cost. Our budget computation differs from other

approaches like [18, 42] in the fact that we consider the

impact of the amount of I/Os in the observed monetary

cost, as there is a growing trend from cloud providers to

charge users based on this metric [19]. The I/O cost is not

negligible as the user pays approximately $0.05 per 1 mil-

lion I/O requests. Assuming that the user’s jobs process
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large datasets, there will be many I/Os which will lead to a

larger cost. We compute the I/O cost for a job as follows:

ioCostj = mtj × spillsj(mtj) × spillSizej(mtj)

×IOCost,∀j ∈ Jobs
(13)

We consider the cost of the performed I/O operations

when the intermediate data generated by the map tasks do

not fit in their memory buffer and therefore are written

in local files. The observed cost depends on the average

number of these spill files per map task (i.e., spillsj(mtj)),

the average size of these files (i.e., spillSizej(mtj)), the

per I/O operation cost as it was decided by the provider

(i.e., IOCost), and the number of map tasks (i.e., mtj). We

explain in more details how the spill files are created and

how we compute their sizes in Section 4.4. Currently, in

our framework, we focus on the I/O operations performed

by the map tasks due to the fact that map tasks usually

process smaller sized input data (e.g., in the orders of

MB). In contrast, reduce tasks process significantly larger

input data as they are fewer than the map tasks so more

data have to be spilled in the local files [25]. Therefore,

adjusting the reduce tasks’ buffer size will provide limited

benefit to the observed ioCostj. The total budget that will

be spent by the user is computed as follows:

Budget =
∑

j∈Jobs

budgetj (14)

The total budget for executing the workload is com-

puted as the sum of the budget spent for all the user’s

jobs. The required budget needs to satisfy the following

constraint based on the user’s budget range:

BudgetMin ≤ Budget ≤ BudgetMax (15)

Allocating more slots than the assigned tasks is ineffi-

cient, as the extra slots will remain idle during the job’s

execution, leading to an unnecessary increase in the mon-

etary cost. For this reason we bound the map/reduce slots

with the following two constraints:

msj ≤ mtj,∀j ∈ Jobs (16)

rsj ≤ rtj,∀j ∈ Jobs (17)

Based on the allocations of map and reduce slots (i.e.,

msj and rsj,∀j ∈ Jobs), we end up with different Budget

andMakespan values. In Fig. 6, we illustrate with a simple

example using a single job, how the different allocations

of map/reduce slots can affect its execution time and cor-

responding budget. In this experiment, we used a typical

Yahoo! job as described in [28] (for more details about

the experiment see Section 6). Our problem is more com-

plex as we have to consider multiple concurrently running

jobs, so the search space is larger than the one displayed in

Fig. 6. However, you can observe that there is a trade-off

between the job’s execution time and the required bud-

get: as when we increase the number of slots, we decrease

the job’s execution time but this can lead to an increase in

the spending budget; on the other hand, if the user utilizes

fewer resources, the spending budget may decrease but

at the same time the execution time increases. There are

multiple slots’ allocations with respect to the achievable

Budget and Makespan values that are optimal. Therefore,

our multi-objective optimization problem can be formally

described as follows:

Problem Definition. Determine all (msj, rsj),∀j ∈ Jobs

allocations such that:

minimize : Makespan = maxj∈Jobs{timej}

Budget =
∑

j∈Jobs

budgetj

subject to : Makespan ≤ Deadline

BudgetMin ≤ Budget ≤ BudgetMax

msj ≤ mtj,∀j ∈ Jobs

rsj ≤ rtj,∀j ∈ Jobs

4.3 Pareto-search algorithm

The problem we solve in this work is how to appropri-

ately allocate map/reduce slots to a user’s jobs in order to

minimize the workload’s makespan and at the same time

minimize the user’s spending budget. As we explained in

Section 4.2, this is a multi-objective optimization prob-

lem due to the trade-off between the workload’s makespan

and the required budget. One of the most common ways

of detecting appropriate solutions in such problems is by

constructing the Pareto frontier [43]. Pareto-based search

techniques have been commonly applied to similar prob-

lems [44] where the goal is to detect multiple optimal

solutions and present them to the user in order to decide

the solution that satisfies her requirements.

In our case, we consider as solutions the different slots’

allocations (i.e., the allocation of map/reduce slots per

job for the user’s workload) that can be applied. In order

to detect the optimal solutions in the examining search

space, wemust define the notion of dominance [44]. Given

two slots’ allocations SA1 and SA2, allocation SA2 domi-

nates SA1 (SA2 
 SA1) if one of the two cases occurs: (1)

the budget for SA2 is less than equal to the one required

for SA1 and the makespan of SA2 is less than SA1’s or (2)

SA2 requires strictly less budget than SA1 and also the

makespan of SA2 is less than or equal to the makespan of

SA1.

The set containing all the non-dominated allocations

constitutes the Pareto frontier of the available solution
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Fig. 6 Slots impact on the job’s execution time and required budget

space as we illustrate in Fig. 7. Our aim is to con-

struct this frontier and present it to the user so that

she can decide the slots’ allocation she is willing to use.

The displayed Pareto points are optimal allocations with

respect to both budget and workload’s end-to-end exe-

cution time objectives. That is, there are no other slots’

allocations that, for the given budget range and dead-

line, achieve smaller execution time for the workload.

All the other possible allocations constitute the feasi-

ble region and are sub-optimal as you can observe in

Fig. 7.

However, computing the Pareto frontier is a com-

putationally costly process. For example, the simplest

approach for finding the Pareto frontier is to enumerate

all the possible combinations of jobs’ and slots’ alloca-

tions and keep the non-dominated ones. Each combina-

tion can be considered a slot allocation plan. To define it

more formally, let Jobs
′

be a set of jobs, where for each

Fig. 7 The Pareto frontier and the feasible region of our

multi-objective optimization problem

job j ∈ Jobs
′

we have decided its msj and rsj parame-

ters. The msj, rsj parameters that will be allocated for a

job will determine the number of VMs used (i.e., VMsj
parameter in Section 3). Based on the chosen msj and

rsj parameters for the jobs that comprise Jobs
′

we will

end up with different Budget and Makespan. Further-

more, the total number of such Jobs
′

combinations that

need to be examined by this simple exhaustive search

approach will be N |K | where N is the maximum num-

ber of VMs that can be reserved by a job and K is

the number of jobs that comprise the workload. There-

fore, this exhaustive search algorithm has exponential

complexity (i.e., O(NK )) as it generates all these N |K |

slot allocation plans and then keeps those that are non-

dominated with respect to the Budget and Makespan

metrics. We argue that the computation overhead of this

algorithm is very high and so it cannot be used when

we consider workloads that consist of a large number

of jobs.

We propose a novel approach that detects near-optimal

slots’ allocations in an efficient and fast way without

requiring to enumerate all the possible plans. Our greedy

algorithm approximates the Pareto-optimal frontier by

allocating new resources to the job that affects the most

the workload’s makespan. Our proposed technique does

not enumerate all the possible slots’ allocations but keeps

searching for new slots’ allocations as long as it has not

exceeded the given budget range. As we illustrate in Algo-

rithm 1, we traverse the frontier starting from the plan

that uses minimum resources and at each step we try to

improve the observed makespan and monetary cost. So

initially, we reserve one map and one reduce slot for each

job (msj = 1 and rsj = 1,∀j ∈ Jobs). We keep increasing

the jobs’ slots trying tominimize the workload’s makespan

until we have not exceeded the available user’s budget

(i.e., BudgetMax metric). In each step of the search, we
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Algorithm 1 Pareto-search Algorithm

1: Input: Jobs: the user’s workload, BudgetMin: the minimum

user’s budget, BudgetMax: the maximum user’s budget,

Deadline: the deadline in the workload’s makespan.

2: Output: Plans: the Pareto-efficient slots’ allocations.

3: plan ← Get plan that usesmsj = 1, rsj = 1, ∀j ∈ Jobs

4: Plans ← {}

5: if (plan.Budget ≥ BudgetMin ∧plan.Budget ≤ BudgetMax ∧

plan.Makespan ≤ Deadline) then

6: Plans ← Plans ∪ {plan}

7: while TRUE do

8: j
′
← Find j ∈ Jobs that affects the mostMakespan

9: plan ← planDetection(j
′
, Jobs)

10: if (plan.Budget < BudgetMin ∨ plan.Makespan >

Deadline) then

11: continue

12: if (plan.Budget > BudgetMax ∧ |Plans| > 0) then

13: break

14: addPlan ← TRUE

15: for all prevPlan ∈ Plans do

16: if (plan.Budget > prevPlan.Budget ∧

plan.Makespan < prevPlan.Makespan) then

17: continue

18: if (plan.Budget ≤ prevPlan.Budget ∧

plan.Makespan < prevPlan.Makespan) then

19: Plans ← Plans − {prevPlan}

20: continue

21: addPlan = FALSE

22: break

23: if addPlan == TRUE then

24: Plans ← Plans ∪ {plan}

25: return Plans

Algorithm 2 Slots’ Allocation Algorithm

1: Input: Jobs: the user’s workload, j
′
: the job that will receive

the extra resources.

2: Output: plan: the detected slots’ allocation plan.

3: jtime
′

j
′ ← Compute execution time of j

′
usingmsj′ + 1.

4: jtime
′′

j
′ ← Compute execution time of j

′
using rsj′ + 1.

5: if (jtime
′

j
′ < jtime

′′

j
′ ) then

6: msj′ ← msj′ + 1

7: else

8: rsj′ ← rsj′ + 1

9: Makespan ← Compute makespan usingmsj′ and rsj′

10: Budget ← Compute budget usingmsj′ and rsj′

11: plan ← createPlan(Makespan,Budget)

12: return plan

detect the job (j
′
in Algorithm 1) that affects the most

the observed makespan and reserve extra resources for it

(Line 9 in Algorithm 1).

We considered two policies for allocating slots for the

job that affects the makespan:

Algorithm 3 VMs’ Allocation Algorithm

1: Input: Jobs: the user’s workload, j
′
: the job that will receive

the extra resources,msPerVM: the number ofmap slots per

VM, rsPerVM the number of reduce slots per VM.

2: Output: plan: the detected slots’ allocation plan.

3: ms
′

j
′ ← msj′ + msPerVM

4: rs
′

j
′ ← rsj′ + rsPerVM

5: Makespan ← Compute makespan usingms
′

j
′ and rs

′

j
′

6: Budget ← Compute budget usingms
′

j
′ and rs

′

j
′

7: plan ← createPlan(Makespan,Budget)

8: return plan

Algorithm 4 Task Adjustment Algorithm

1: Input: j: the job for which task must be adjusted, sl: the

number of slot’s to use, isMs: the boolean variable that

determines if the slots correspond to map or reduce slots.

2: Output: tasks: the number of tasks to use.

3: tasks ← sl

4: jtimej ← Compute execution time using Eq. 9

5: while TRUE do

6: tasks
′
← tasks + 1

7: jtime
′

j ← Compute execution time using Eq. 9

8: if (jtime
′

j ≥ jtimej) then

9: break

10: jtimej ← jtime
′

j

11: tasks ← tasks
′

12: if (isMs) then

13: Apply buffer tuning for job j using Algorithm 5

14: return tasks

1. Slots’ Allocation (i.e., Algorithm 2): In this policy, we

increase the amount of resources allocated to each job

by one slot at a time. More specifically, we examine

the impact on the job’s execution time first if we

increase the map slots by one, and then if we increase

the number of reduce slots. Based on the type (map

or reduce) of the slot that improves the execution

time the most, we make the corresponding change.

2. VMs’ Allocation (i.e., Algorithm 3). The second

policy is more lavish as you can see in Algorithm 3, as

it concurrently increases the map and reduce slots

reserved by the job, allocating a new VM for the jobs’

tasks. The VMs’ Allocation policy offers a fast

approach for distributing the available resources to

the submitted jobs leading to faster search times. On

the other hand, the Slots’ Allocation policy reserves

one slot at a time; although this may increase the

search time of our approach, it can lead to better

allocations as the two phases (i.e., map and reduce)

are examined separately.
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The two policies use a different atomic unit for detect-

ing near-optimal plans (i.e., the Slots’ allocation uses a

single slot while the VMs’ Allocations reserves a whole

VM) so the two algorithms will traverse the search space

differently. The Slots’ Allocation policy will make more

fine-grained decisions as it examines one slot at a time

while the VMs’ Allocation policy will assign a new VM

to the job that has the highest execution time. Even if the

two techniques end up detecting solutions that require the

same number of VMs, the slots that have been allocated to

the jobs will be different as the Slots’ Allocation will dis-

tribute more efficiently the slots between the workload’s

jobs as it examines them one at a time.

When the extra slots for the job have been reserved, we

create a new allocation plan that consists of new msj′ and

rsj′ allocations. The next step is to examine if this new plan

should be added in the frontier. First, we check if the con-

straints are satisfied (lines 10–13 in Algorithm 1) and then

we compare this new plan with the already detected plans

to examine whether it is dominated or not (lines 15–22

in Algorithm 1). If the new plan dominates a previously

detected plan in both metrics, we remove the previous

plan from the detected solutions set (lines 18–20 in Algo-

rithm 1). In case that the plan is non-dominated, we add it

in the solutions set (lines 23–24 in Algorithm 1) that will

be displayed to the user when the search has finished.

4.3.1 Task adjustment

We extend our Pareto-based scheduler to automatically

adjust the map/reduce tasks while we allocate slots to

jobs in order to minimize further the workload’s end-to-

end execution time. Each time we increase a job’s map

or reduce slot (or both of them if the VMs’ Allocation

policy is applied), we also adjust the corresponding tasks

(i.e., map/reduce) that will be utilized. The goal is to min-

imize further the per job execution times (i.e., Eq. 9) and

thus reduce the workload’s makespan. For deciding the

appropriate number of tasks, we apply a Hill Climbing

search algorithm (i.e., Algorithm 4) that tries to minimize

the job’s execution time by gradually increasing the num-

ber of tasks. The algorithm initially sets the number of

tasks equal to the number of slots (i.e., mtj = msj and

rtj = rsj), and then keeps increasing the tasks by one as

long as the job’s execution time decreases. The rationale

behind our approach comes from Eq. 5, where the average

execution time of map/reduce tasks depends on the num-

ber of tasks. So an increase in the number of tasks can

decrease their average execution time. However, when we

increase the number of tasks, we also increase the num-

ber of execution rounds and this may penalize the job’s

execution time. So we increase the number of tasks only

when the extra execution round does not deteriorate the

task’s execution time (i.e., the improvement in the phase’s

execution time due to the decrease of the tasks’ average

execution time is negligible). In most cases, the cost of the

extra round will be larger so the algorithm will simply set

the number of tasks equal to the number of the allocated

slots. We argue that it is important to adjust the number

of map/reduce task parameters as usually the users sub-

mit jobs with higher number of tasks than the slots that

will be allocated to them. Therefore, Algorithm 4 will be

helpful in such cases as it will decrease the number of exe-

cution rounds as it starts its search from the solution that

performs a single execution round.

Finally, special care must be given when the number of

map tasks for a job changes as it can lead to different I/O

monetary cost (see Eq. 13 in Section 4.2) than the initially

computed (i.e., via the algorithm proposed in Section 4.4).

For this reason, we re-apply the algorithm described in

Section 4.4 (i.e., Algorithm 1) to re-configure the map

buffer parameters (i.e., mBufferj, metaPercentj and bThrj)

whenever we change the number of map tasks.

4.4 Buffer tuning

Our work puts emphasis on the monetary cost due to the

I/O operations performed by a job’s map tasks (as can

be seen in Eq. 13 in Section 4.2). Once we model the

impact of I/O operations on the user’s budget, we min-

imize it by adjusting appropriately the parameters that

affect the size of the map tasks’ buffers. As we described in

Section 2.1, the map buffer consists of two parts, the first

part is responsible for storing metadata, specifically the

record bounds in the blocks, while the second part keeps

the actual data. The buffer is split and its data are stored in

local files in two cases, either when the metadata exceed

their allocated space or when the actual data exceed their

own limit. The maximum size of actual data that can be

kept in the buffer is defined via the following equation:

maxSizej = (1 − metaPercentj) × mBufferj × bThrj

(18)

Similarly, the maximum metadata size in bytes that can

be kept in the buffer is defined with the following formula:

maxMetaSizej = metaPercentj × mBufferj × bThrj

(19)

As we mentioned in Section 2.1, the same buffer thresh-

old is used for determining when the available space

(either for actual data or metadata) has been exceeded and

thus data must be split in the local file system. The size

of the metadata is small (i.e., 16 bytes per record); how-

ever, the percentage of the metadata that can be kept in

the buffer is important as it affects the number of local

files that will be created. Given the maximum size that can
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be kept on the buffer before a spill file is created, we can

estimate the number of spills using the following equation:

spillsj(mtj) = max
{

⌈
outSizej(mtj)

maxSizej
⌉,

⌈
outRecj(mtj)×16

maxMetaSizej
⌉

} (20)

So the number of spills depends heavily on the type of

job we examine. For example, if the job has large-sized

output records (i.e., large outSizej(mtj)) then the number

of spills will be adjusted due to the actual data size. On

the other hand, if map tasks generate many small-sized

intermediate records (i.e., large outRecj(mtj)), the meta-

data part of the buffer will affect the number of spill files.

In general, as you can see in Fig. 8, based on the split-

ting reason, we will end up either with a small number of

large-sized files (i.e., spill occurred due to the actual data)

or with a large number of small-sized files (i.e., data have

been spilled due to the metadata). Depending on the rea-

son of splitting, we end up with different spill file sizes that

are computed using the following formulas:

spillSizej(mtj) =

⎧

⎨

⎩

maxSizej +
maxSizej

recSizej(mtj)
× 16 (21a)

maxMetaSizej +
maxMetaSizej

16 × recSizej(mtj) (21b)

The first case occurs when data are spilled due to the

actual buffer size, while the second when the metadata

space exceeds its limit. Given the spill size and the num-

ber of spill files, we can compute the cost of the job

with respect to I/O operations via Formula 13. The spill

size and the number of spills are computed using the

recSizej(mtj), outRecj(mtj), and outSizej(mtj) parameters.

These parameters depend on the number of map tasks,

so in order to compute them, we use historical data from

previous execution runs. In general, we expect that the

values of these metrics will decrease when the number

of map tasks increases as the input data will be splitted

into smaller parts. In order to minimize the impact of

this cost, we must configure three different parameters,

mBufferj, metaPercentj, and bThrj ∀j ∈ Jobs. We solve

the problem for each job that participates in the workload

Fig. 8Map buffer’s splitting conditions

Algorithm 5 Buffer Tuning Algorithm

1: Input: j: the job for which the buffer parameters must be

adjusted, iterations: the number of iterations to perform.

2: Output: mBufferj: the map buffer size, metaPercentj: the

metadata percentage, bThrj: the map buffer’s threshold.

3: itCount ← 0

4: ioCost ← Double.MAX_VALUE

5: while itCount < iterations do

6: itCount ← itCount + 1

7: mBuffer
′
,metaPercent

′
, bThr

′
← Sample the parameters

using three uniform distributions.

8: ioCost
′
← Compute I/O cost using Eq. 13.

9: if (ioCost
′
> ioCost) then

10: continue

11: if (ioCost
′
== ioCost ∧ mBuffer

′
> mBufferj) then

12: continue

13: ioCost ← ioCost
′

14: mBufferj ← mBuffer
′

15: metaPercentj ← metaPercent
′

16: bThrj ← bThr
′

17: returnmBufferj,metaPercentj, bThrj

by applying a greedy Random Search [45] algorithm on

the parameter spaces of these variables and keeping the

combination that minimizes Eq. 13. In Algorithm 5, we

provide the pseudocode for tuning these parameters. The

algorithm runs for a fixed number of iterations and uses

three uniform distributions for sampling the three param-

eters of interest. We decided to use uniform distributions

in order to be able to sample uniformly the search space

for the three parameters and minimize the bias in our

search [45]. For each parameter, a different uniform dis-

tribution is used and the upper and lower limits are the

ones described in Section 3. Regarding the mBufferj, the

upper bound depends on the memory that has been allo-

cated for the map tasks. As we pointed out in Fig. 1, using

all the available memory may not lead to a decrease in the

I/O cost. For this reason, we argue that mBufferj should be

also sampled and we have to keep its smallest value that

minimizes the ioCostj metric. The remaining free mem-

ory could be allocated for the tasks’ processing (e.g., map

tasks may use in-memory data structures). So if Algo-

rithm 5 finds two solutions that lead to the same ioCostj,

we keep the one that uses the least mBufferj parame-

ter. In each iteration, we compute the I/O monetary cost

for the randomly sampled parameters (i.e., lines 7–8 in

Algorithm 5) and update the configuration parameters

that will be used by the job, only if we are able to reduce

the currently minimum computed I/O cost (i.e., lines 9–14

in Algorithm 5).

5 Implementation
We have implemented our Pareto-based scheduler as

a daemon running on the master node of a Hadoop
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1.2.1 [2] cluster. The scheduler has been implemented

in Java 1.7. In Fig. 9, we show at high level how our

approach works. The user submits a MapReduce work-

load along with the budget range she is willing to spend

to Hadoop’s master node. More specifically, the user

submits a JSON file where she specifies the necessary

information for the Hadoop jobs that comprise the work-

load and also her budget and performance requirements.

For each job, the user must also provide the classes

that implement the map and reduce [46] Java interfaces.

Then the Jobs Submitter component is responsible to

forward this information to the daemon running in the

Hadoop cluster. Our framework is able to support all

types of Hadoop jobs including those offered by the

Mahout machine learning library [26], without requiring

any modification in their implementation. Our proposed

scheduler replaces the default Hadoop scheduler (i.e.,

FIFO) and applications (e.g., Mahout [26], PUMA [30])

can execute unmodified on top of the Hadoop frame-

work and take advantage of the scheduling optimiza-

tions provided by our Pareto-based scheduler to speed

up their execution time and minimize their monetary

cost.

The daemon invokes the search algorithm described in

Section 4.3. The Pareto-Search Algorithm component ini-

tially interacts with the Parameters Tuning component

in order to adjust the map-buffer related parameters to

minimize the I/O cost (Section 4.4). Also, the Pareto-

Search Algorithm component uses historical data of the

already executed jobs in order to create the job’s execu-

tion time estimation model we described in Section 4.2.

We gather the necessary job’s historical data using the

Apache’s Rumen [47] log analyzer when the all job’s tasks

have finished. Statistics are kept in a MySQL database

(i.e., Jobs’ statistics in Fig. 9). After the valid slots’ allo-

cations have been detected by the Pareto-Search Algo-

rithm component, the daemon informs the user about

the possible allocations and the latter responds with her

chosen allocation based on the budget she is willing

to spend.

When the scheduler has received the user’s choice about

the allocation that will be applied, the Queues Manager

component is responsible to create a separate schedul-

ing queue for each job. Queues Manager configures each

queue to have the same number of map/reduce slots for

the corresponding job as the number used in the cho-

sen slots’ allocation plan. We follow this approach to limit

the number of slots used per job to the chosen number.

For the actual execution of the jobs in the cluster, we use

Hadoop’s FAIR [2] scheduler in order to force the con-

current execution of jobs in the available resources (i.e.,

by setting the queue sizes in fair_scheduler.xml file [48]).

Our approach cannot work with the default Hadoop FIFO

scheduler as FIFO assumes that all resources are available

to the submitted jobs, so a single job may occupy all the

slots in the cluster. Our framework can be easily extended

to support other Hadoop schedulers such as the Capacity

Scheduler [2].

After the Queues Manager has configured the slots per

queue, it informs the Jobs Submitter that the required

slots for the execution of the workload have been reserved.

The latter then uses the Hadoop API (i.e., Job class [46])

Fig. 9 Implementation details
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to actually submit the jobs for execution in the cluster.

For each job, a separate process is used for the submis-

sion so all the jobs that comprise the workload will be

assigned simultaneously to the cluster. When all the jobs

have finished, the Jobs Submitter informs the scheduler

daemon so that the latter can retrieve the necessary statis-

tics used for building the jobs’ execution time models

described in Section 4.2.

6 Evaluation
6.1 Setup

We have conducted a detailed experimental evaluation

with both (a) simulations and (b) empirical workloads in

our local cluster. Our cluster consisted of 8 VMs (Ubuntu

12.04), allocated with two CPU processors and 3096 MB

RAM. One of the VMs was used as the Master node and

the others were Worker nodes. Each Worker node was

equipped with two map and two reduce slots. We demon-

strate the performance of our approach performing both

simulations in larger settings and also empirically running

experiments on our local cluster, to illustrate the benefits

of our approach. In the experiments we performed with

simulation workloads, we assumed that we had no limit

on the number of available VMs (i.e., the available VMs

were not 8 as in our local cluster) because we wanted to

examine the applicability of our approach when we have

significantly larger workloads that execute on public cloud

infrastructures like Amazon’s EC2. So in these experi-

ments, the resource allocations that can be detected were

only constrained by the minimum and maximum budget.

In our experiments, we defined the cost of reserving a

VM to be $1 per hour which is a typical value for high-

performance nodes [16] and also is a value that makes the

cost savings more pronounced. The I/O monetary cost

was set to $0.05 per 1 million I/O requests, a commonly

used charging policy [19].

For the synthetic workloads, we did not have informa-

tion about the I/Os performed by jobs so we did not

use the buffer tuning optimization in the experiments

we performed with the synthetic workloads. It should be

clear that in all the experiments that depict the detected

Pareto frontiers (i.e., Figs. 11, 14, 15, 16 and 17) we also

tune the buffer parameters (i.e., only in the empirical

workloads) and the number of tasks parameters, unless

it is stated otherwise. Finally, we conducted detailed

experiments to illustrate the performance of our tuning

adjustment techniques (i.e., Figs. 17, 18, and 19) and the

improvements they offer in terms of makespan (i.e., the

task adjustment) and budget (i.e., the buffer adjustment

technique).

6.2 Workloads

Our simulation workloads were based on the Hadoop

workload analysis performed in the Yahoo! [28] and

Taobao [29] Hadoop clusters. According to these works,

in the Taobao workload, the map tasks execution times

can be modelled by a log normal distribution with mean

equal to 1.95 and standard deviation 1.67. Similarly, a log

normal distribution can be used for the reduce tasks exe-

cution time with 3.52 mean and 1.56 standard deviation.

The deadline when 10 Taobao jobs were submitted in the

cluster was set to 3000 s. Regarding the Yahoo! workload,

we simulated the task execution similarly to [23], so tasks

weremodelled via a normal distribution with 50mean and

200 standard deviation for map tasks’ execution times,

while for reduce tasks, the mean was 100 and the stan-

dard deviation 300. For generating the number of tasks,

we used a normal distribution with 154 mean and 558

standard deviation for the map tasks and 19 mean and

145 standard deviation for the reduce tasks. The budget

range was set between $10 and $80. For the 10 Yahoo!

jobs, we set the deadline to be equal to 4000 s. Further-

more, we examined the performance of our approach on

our local cluster, running empirical workloads similar to

the ones provided by the PUMAbenchmark [30].We used

a subset of common jobs and generated different work-

loads (see Table 2 for more details). The user’s budget for

the real workloads was set between $6 and $20 as we

are constrained by our computing resources (i.e., 8 VMs

cluster).

6.3 Estimation error

First, we evaluated the accuracy of our prediction model

when estimating the jobs’ execution time. In this experi-

ment, we considered the jobs in our empirical workloads.

All jobs ran in our local 8 VMs cluster. We examined

Table 2 Empirical workloads

Workload Jobs No. of map tasks No. of reduce tasks Deadline (s) Input size

Twitter friendship 3 20 10 1000 1.2 GB tweetsa

Sort 3 80 10 2500 5 GB random data

Wordcount 3 47 10 1000 3.2 GB movie reviews

Twitter-Wordcount 1 Twitter and 20 Twitter and 10 Twitter and 1000 3.2 GB movie reviews

2 Wordcount 47 Wordcount 10 Wordcount and 1.2 GB tweets

aExtracted during the period of January 1, 2013 to April 30, 2013 using the Streaming API 2 of Twitter
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how close the estimated execution time is to the actu-

ally observed one for different applications in order to

prove that this prediction model can efficiently capture

the required parameters for estimating the workload’s

makespan and budget. Furthermore, we display the lower

and upper bounds of the execution as we described them

in Section 4.2. We used 10 previous execution runs for

gathering the data necessary for the prediction and then

we estimated the execution time of a newly assigned job.

As we illustrate in Fig. 10, the estimated execution time

is very close to the actual, so applying this prediction

model for estimating the jobs’ execution time is a valid

choice.

6.4 Simulation results

6.4.1 Allocation policies

The first experiment we conducted was to compare the

two different policies (proposed in Section 4.3) for allocat-

ing resources to the job that affects the most the observed

makespan. In Fig. 11, we present the detected frontiers

when the VMs’ and Slots’ allocations policies are utilized

both in the Yahoo! and the Taobao workloads. The Slots’

Allocation policy outperforms the other approach as it

makes a better decision in regards to where the slots will

be assigned (i.e., for map or reduce tasks). More specif-

ically, the Slots’ Allocation policy can decide to assign

more map than reduce slots if it observes a better per-

formance in terms of the execution time. In contrast,

the VMs’ Allocation policy is more lavish as it assigns

immediately a new VM instance and therefore it is not

able to make more fine-grained decisions than the other

approach which may use fewer VMs for achieving the

exactly same Makespan and Budget. Also, it should be

clear that throughout the search of the parameters’ space,

the two approachesmake different decisions and thus may

end up with different slots’ allocations. It is possible that

the two algorithms may utilize the same number of VMs

Fig. 10 Prediction model’s accuracy

a

b

Fig. 11 Detected frontiers comparison using different allocation

policies. a 10 Yahoo! jobs workload. b 10 Taobao jobs workload

but there will be a difference in terms of the slots used by

the jobs so different values for the Makespan and Budget

metrics will be observed. Furthermore, as you can observe

in Fig. 12, the overhead of the Slots’ Allocation in the

execution time is negligible. Thus, in the rest of the exper-

iments, we use the Slots’ Allocation policy for allocating

map/reduce slots.

6.4.2 Comparisonwith other search algorithms

We compared our Pareto frontier search algorithm with

the following algorithms: (i) NSGA-II [49] which is a

genetic-based multi-objective optimization algorithm, (ii)

GDE3 [50], an algorithm that extends the Pareto differ-

ential evolution method for global optimization, and (iii)

Starfish [20] which uses the Recursive Random Search

(RRS) [27] algorithm for detecting appropriate solutions.

We applied RRS in our case by invoking it for each

budget value in the given range, detecting the slots’ allo-

cations that minimize Eq. 10 from Section 4.2. Both

genetic algorithms are well-known techniques for solving
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a

b

Fig. 12 Comparison of the execution times of the different allocation

policies. a Yahoo! workload. b Taobao workload

multi-objective optimization problems and approximate

the actual frontier by examining a sample of the different

combinations.

In this set of experiments, we did not apply the buffer-

tuning optimization so the default parameters were used

and thus all approaches had the same I/O cost. We var-

ied the number of jobs issued by the user to measure

the execution time required for detecting the frontier. As

Fig. 13 illustrates, our proposal requires the minimum

execution time (i.e., less than 150 ms for 25 jobs) as it

does not consider multiple combinations of the possible

allocations. Furthermore, the detected frontiers in both

workloads are very close to the frontiers detected by the

two genetic algorithms as you can see in Fig. 14. Starfish

is able to quickly detect valid allocations; however, as you

can observe in Fig. 14, the detected solutions deviate sig-

nificantly from ours in both workloads, as the randomly

chosen allocations can be sub-optimal. Therefore, our

proposal is able to find a good approximation of the actual

frontiers and at the same time requires minimal execution

time.

a

b

Fig. 13 Comparison of the execution times of the different search

algorithms. a Yahoo! workload. b Taobao workload

6.4.3 Comparisonwith Optimal

Finally, we examined the accuracy of our algorithm by

comparing it with the Optimal algorithm that considers

all the possible allocations of slots to jobs and then detects

all the non-dominated allocations. More specifically, this

algorithm enumerates all the possible slots’ allocations

for the jobs that comprise the workload and then keeps

the allocations that are non-dominated. For example, in

case that we want to schedule a workload of 2 jobs

and each job consists only of map tasks that require at

maximum 2 map slots then we have the following slots’

allocation plans: < 1, 1 >, < 1, 2 >, < 2, 1 >, <

2, 2 > to consider. As we pointed out in Section 4.3, this

algorithm has exponential complexity so it can only be

applied when the workload consists of a small number

of jobs. In Fig. 15, we display the frontier found by our

approach compared against the one found by the Opti-

mal algorithm when 3 jobs are executing in the cluster.

As you can observe there is a small difference between

the two detected frontiers. However, the differences in

the execution times are huge as our algorithm requires
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a

b

Fig. 14 Detected frontiers comparison using different search

algorithms. a Ten Yahoo! jobs workload. b Ten Taobao jobs workload

only 30 ms while the Optimal requires approximately

7.5 minutes.

6.5 Empirical results

6.5.1 Detected frontiers

In Fig. 16, we illustrate the detected frontiers for the

different empirical workloads. As you can observe, our

algorithm is able to find appropriate solutions for all the

workloads. Furthermore, our scheduler utilizes more slots

only if there is a benefit in the observed makespan. For

example, in the Sort workload using more than $11 would

lead to the same end-to-execution, so the corresponding

points are not added in the displayed solutions.

6.5.2 Task adjustment

In regards to the automatic adjustment of the number

of map/reduce tasks, in Fig. 17, we illustrate the bene-

fits of our proposal. Jobs without the task optimization

(i.e., the displayed frontiers in Fig. 16) used the num-

ber of tasks specified in Table 2. As you can observe in

Fig. 17, the detected allocations require the same budget

a

b

Fig. 15 Detected frontier comparison with the Optimal frontier.

a Three Yahoo! jobs workload. b Three Taobao jobs workload

as in Fig. 16 but with significantly reduced end-to-end

execution time for the workload. Specifically, for the Sort

workload the benefits are in the order of 600 s. The

reason for this is the fact that our algorithm minimizes

the execution rounds and it increases the number of tasks

Fig. 16 Detected frontiers for empirical workloads
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Fig. 17 Detected frontiers for empirical data with task adjustment

enabled

only if we have a performance gain. Our cluster environ-

ment had minimum resources, so our algorithm adjusted

the tasks to be equal to the allocated slots minimizing the

required execution rounds and correspondingly the end-

to-end execution time. So we argue that it is extremely

important to adjust the number of jobs’ tasks as we can

gain significant performance improvements in terms of

the workload’s makespan.

6.5.3 Buffer adjustment

Finally, we evaluated the impact of the automatic map

buffer size configuration. Our Random Search algorithm,

described in Section 4.4, performed 10,000 iterations.

We compared our proposed algorithm with the one that

exhaustively enumerates all the possible configurations

and keeps the setting that minimizes the I/O cost. The

three buffer parameters are three float numbers, so in

order to sample them, we use three small float as step sizes

for the sampling procedure. For example, the mBufferj
parameter had as initial value 128.0 MB while its maxi-

mum value was 512.0 MB. Then we sampled this range

of values using 25.0 MB as the step size. It should be

clear that, similarly to the Optimal algorithm, we used

for the Pareto frontier construction in Fig. 15, this tech-

nique requires to generate all the possible combinations

of the values of these three parameters. We considered

this technique to display how close our approach is to the

optimal configuration. Also, we compared our approach

with the RRS algorithm used by Starfish and with an enu-

meration algorithm that puts the worst possible settings.

The latter was used to depict the impact of these param-

eters in the observed cost. RRS [27] extends the Random

Search technique by performing more iterations in areas

of the solution space where a good solution has been

detected. More specifically, in the beginning of the search,

RRS performs sampling from the whole parameter space

and thus detects a solution similar to the one found with

the Random Search algorithm. Then the search continues

by gradually shrinking the sample space to detect better

configurations as we expect them to be near the already

detected configuration. So in general it requiresmore time

to tune the parameters but the detected configuration will

be better than the one found with the simple Random

Search technique. For the RRS algorithm we also set the

maximum number of allowed iterations to be equal to

10,000.

In Fig. 18, we illustrate the benefits of our approach. We

reduce significantly the required budget and our proposal

is comparable to the optimal configuration. The execu-

tion time of our approach is rather small as it requires

less than 100 ms (as you can see in Fig. 19) compared to

RRS approach that performs a more thorough search of

the search space until it converges to an optimal configu-

ration. In our problem, we tune only three configuration

parameters; therefore, the overhead imposed by RRS does

not prove beneficial in the quality of the detected solu-

tions and only increases the execution time of the search

procedure.

7 Related work
7.1 Task scheduling

The problem of real-time scheduling of bag-of-tasks

applications in cloud environments is a well-known and

thoroughly studied problem [51], where different schedul-

ing criteria have been considered including completion

time [52], cost [53], and energy consumption [54]. How-

ever, we argue that the MapReduce environment is coher-

ently different from the environments considered in these

works. The MapReduce paradigm is probably the most

widely adopted approach today to simplify the devel-

opment and parallel execution of data processing jobs.

The benefit over traditional schemes is that the MapRe-

duce framework provides a more generic key/value data

Fig. 18 I/O cost comparison using different buffer adjustment

techniques
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Fig. 19 Comparison of the execution times of the different buffer

adjustment techniques

model which allows programmers to define arbitrarily

complex user functions which then are wrapped as map

and reduce tasks. This way, non-expert users or appli-

cation programmers can rely on the semantics of the

map/reduce functions and are not concerned with the

concrete parallelization strategies. However, in MapRe-

duce environments, it is necessary to tune a large num-

ber of configuration parameters that can affect the jobs’

execution times so these parameters should be also con-

sidered during the scheduling process. The closest work

in this domain that bares similarities to our problem was

examined in [44]. The authors applied a Pareto frontier

construction technique for detecting the task replication

to use in a mixed cloud and grid environment. How-

ever, they examine different parameters as they aim at

determining the optimal replication level and deadlines to

use. Furthermore, their parameter space is limited so the

Pareto frontier is constructed using exhaustive search. In

contrast, our search space grows exponentially based on

the number of jobs that comprise the workload therefore

exhaustive search is not applicable.

7.2 MapReduce job scheduling

There has been prior work in regards to optimizing the

slots’ allocation for a single job minimizing the monetary

cost while at the same time meeting deadline criteria [55].

We focus on multiple concurrently running jobs and not

in a single job optimization. Furthermore, approaches like

[23], [24], and [41] try to minimize standard scheduling

theory metrics (e.g. makespan) in MapReduce workloads

but they do not consider the reserved resources impact on

the user’s budget.

7.3 Autotuning MapReduce Jobs

Works regarding the automatic configuration and job pro-

filing have mainly been done by [20] and [25]. In [20],

they provide a profiler for the jobs and a what-if engine

where queries can be issued to check the performance

of the job for different configurations and resource allo-

cations. They use the Recursive Random Search (RRS)

algorithm for detecting the configuration parameters that

maximize their objective function. Another recent pro-

posal for Hadoop autotuning was described in [25] where

they tune parameters to minimize the execution time of a

single job. In their proposal, they focus on overlapping the

execution time of map and reduce phases. However, they

do not clearly specify how they allocate the slots to their

jobs. We differ from these approaches in the fact that we

examine a multi-objective optimization problem where

the user submits multiple jobs and we want to provide her

near-optimal slots’ allocations.

7.4 Budget Allocation in MapReduce

Allocating the users’ budget for executing MapReduce

jobs in a cloud environment was first studied in [18],

where they provide a schema that allocates slots to

user’s jobs based on the currently allocated budget. Our

approach differs in the fact that the users submit mul-

tiple jobs each with different requirements. Authors in

[42] examine the budget allocation problem in the con-

text of MapReduce workflows, while in [56], they deter-

mine the optimal cluster setup for a Hadoop workload.

Both works examine two different optimization prob-

lems, the first has as constraint the necessary budget

while the second constraints the workload’s makespan;

in contrast, we focus on the multi-objective version of

the aforementioned problems. In our previous work [57],

we motivated the necessity of cost-effective slots’ allo-

cations and provided an overview of a framework for

detecting them.

7.5 Multi-cluster environments

Finally, another problem that is studied by the research

community is how to distribute the execution of a

MapReduce workload among multiple clusters and bal-

ance the resource usage between them [58]. This is a

different problem than ours as we focus on the exe-

cution of the workload in a dedicated Hadoop cluster,

examining the budget/makespan trade-off. In our previ-

ous work [40], we also examined the scheduling prob-

lem in multiple-clusters environments focusing on the

budget/performance trade-off of the possible jobs-to-

clusters assignments. This is essentially a different prob-

lem than the one studied in this work. More specifically,

our proposed Pareto-based scheduler can be used for

the intra-job scheduling (i.e., determine the per clus-

ter map and reduce slots’ allocation) in the individual

clusters while the scheduler proposed in [40] can be

used for determining how jobs should be assigned to the

available clusters.
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8 Conclusions
In this paper, we present a novel Pareto-based scheduler

for exploring cost-performance trade-offs for MapReduce

workloads. Our proposal is beneficial to CPS and enter-

prises that execute their MapReduce workloads in public

cloud infrastructures like Amazon’s EC2. Our scheduler

methodically searches and detects slots’ allocations for

the jobs that balance the workload’s makespan and mon-

etary cost, using a novel search algorithm. Furthermore,

we show that by automatically tuning basic configuration

parameters, such as the number of tasks and the map

tasks’ buffer size, we can greatly improve the applications’

performance and decrease further the user’s spending

budget.

Our detailed experimental evaluation with both simula-

tion and empirical workloads illustrates that our Pareto-

based scheduler is able to detect valid slots’ allocations

and outperforms significantly current state-of-the-art

techniques, like genetic algorithms and Starfish, in terms

of the required execution time. More specifically, Pareto-

based scheduler requires less than 100 ms for scheduling

25 concurrently submitted jobs while all the other tech-

niques require more 5 s. Furthermore, in the empirical

evaluation, we demonstrate that it is important to tune

the map buffer parameters in all the examined work-

loads as we can reduce the I/O monetary cost more than

25%. Finally, our proposed task adjustment optimization

enhances the performance of the Pareto-based sched-

uler by minimizing further the workload’s makespan. For

example, in a Sort workload, we are able to decrease its

execution time more than 600 s. Therefore, we argue

that task adjustment should be always applied when the

scheduler determines the per job slots’ allocations.
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