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Abstract: 

Strong electron interactions can drive metallic systems toward a variety of well-known 

symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling 

have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in 

the metallic pyrochlore Cd2Re2O7 using spatially resolved second-harmonic optical anisotropy 

measurements. Like previously discovered electronic nematic phases, this multipolar phase 

spontaneously breaks rotational symmetry while preserving translational invariance. However, it 

has the distinguishing property of being odd under spatial inversion, which is allowed only in the 

presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic 

order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2Re2O7 

and induces a parity-breaking lattice distortion as a secondary order. 



Main Text: 

In the presence of strong Coulomb interactions, the fluid of mobile electrons in a metal can 

spontaneously break the point group symmetries of the underlying crystal lattice, realizing the 

quantum analogue of a nematic liquid crystal (1). Like their classical counterparts, quantum 

nematic phases generally preserve spatial inversion symmetry and are therefore anisotropic but 

centrosymmetric fluids. Experimental evidence of such nematic order was first detected in a two-

dimensional (2D) GaAs/AlGaAs quantum well interface on the basis of a pronounced resistivity 

anisotropy between the two principal directions of the underlying square lattice (2, 3). 

Subsequently, similar behavior has been reported in a number of quasi-2D square lattice 

compounds, including Sr3Ru2O7 (4), URu2Si2 (5), and several families of both copper- (6, 7) and 

iron-based (8–11) high-temperature superconductors, suggesting possible connections between 

even-parity nematic fluctuations and unconventional s- and d-wave Cooper pairing (12). 

 

Extending earlier work on Fermi liquid instabilities in the p-wave spin interaction channel (13), 

it has recently been predicted that correlated metals with strong spin-orbit coupling may realize a 

fundamentally new class of electronic nematic phases with spontaneously broken spatial 

inversion symmetry (14), including a quantum analogue of the unusual NT nematic phase 

discussed in the context of classical bent-core liquid crystals (15). Theoretical models have 

shown that parity-breaking nematic fluctuations can induce odd-parity p- or f-wave Cooper 

pairing and thus provide a route to topological superconductivity (16, 17). In addition, because 

inversion symmetry breaking necessarily lifts the spin degeneracy of bulk energy bands in a 

spin-orbit coupled system, odd-parity nematic order offers a potential mechanism for generating 

topologically protected Weyl and nodal-line semimetals and for designing highly tunable charge-

to-spin current conversion technologies for spintronics applications. 

 

The order parameter for this predicted new class of spin-orbit-coupled parity-breaking electronic 

nematic phases—so-called “multipolar” nematics (14)—can be represented by a symmetric 

traceless second-rank pseudotensor 𝑄𝑄𝑖𝑖𝑖𝑖 that is odd under spatial inversion. This order parameter 

induces a deformation and spin splitting of the Fermi surface via the spin-orbit interaction 

Hamiltonian 𝐻𝐻𝑆𝑆𝑆𝑆 = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 , where 𝜎𝜎𝑖𝑖 are the Pauli matrices and 𝑘𝑘𝑖𝑖 is the crystal momentum 

(14, 18). In a cubic material, for example, this order parameter can have either 𝐸𝐸𝑚𝑚 or 𝑇𝑇2𝑚𝑚 

symmetry. An example of a spin-polarized Fermi surface distortion induced by 𝑇𝑇2𝑚𝑚 multipolar 

nematic order is shown in Fig. 1A. 

 

The correlated metallic pyrochlore Cd2Re2O7 has been proposed as a candidate for hosting 

multipolar nematic order because of the strong spin-orbit coupling of Re 5d valence electrons. 

Detailed Raman scattering (19), x-ray (20, 21) and neutron (22) diffraction, and optical second-

harmonic generation (SHG) (23) studies have shown that at critical temperature (Tc) ~ 200 K, the 

material undergoes a continuous phase transition from a centrosymmetric cubic structure (space 

group 𝐹𝐹𝑑𝑑3�𝑚𝑚) to a noncentrosymmetric tetragonal structure (space group 𝐼𝐼4�𝑚𝑚2) that breaks 

threefold rotational symmetry about the 〈111〉 axis (Fig. 1, B and C). This phase transition has 

traditionally been attributed to the freezing of a soft phonon mode with 𝐸𝐸𝑚𝑚 symmetry, dominated 

by the displacement of O(1) atoms (19, 24, 25). However, the observation of extremely small 



changes in lattice parameters (21, 22), an anomalous temperature dependence of superlattice 

Bragg peaks (20), and a dramatic reduction in the electronic density of states across Tc (26–29) 

calls this interpretation into question and raises the possibility that a hitherto undetected 

electronic order is driving the transition. 

 

Unlike the previously studied even-parity nematic phases, multipolar nematic order cannot be 

experimentally identified by using charge transport anisotropy measurements because the loss of 

inversion symmetry is manifested in the spin texture of the Fermi surface. Moreover, 

observations of conventional nematic order have often relied on an alignment of nematic 

directors by using applied magnetic (4) or uniaxial strain (9) fields in order to measure 

macroscopic symmetry-breaking responses, but neither magnetic nor strain fields couple linearly 

to 𝑄𝑄𝑖𝑖𝑖𝑖 because they are parity-even. Nonlinear optical anisotropy measurements can overcome 

these challenges because they probe the structure of higher-rank susceptibility tensors that 

contain full point group information (30) and can be performed in a spatially resolved manner. 

Optical SHG is particularly well-suited to identifying odd-parity phases because the leading-

order electric dipole contribution, which is described by a third-rank susceptibility tensor relating 

the incident electric field to the nonlinear polarization induced at twice the incident frequency via 

the equation 𝑃𝑃𝑖𝑖(2𝜔𝜔) = 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖(𝜔𝜔)𝐸𝐸𝑖𝑖(𝜔𝜔), is only allowed if inversion symmetry is broken. 

Because of this property, optical SHG has been used recently to study noncentrosymmetric Weyl 

semimetals (31) and odd-parity order in correlated iridates and cuprates (32, 33). To completely 

resolve the structure of 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖 for Cd2Re2O7, we used a recently-developed high-speed rotational 

anisotropy (RA) technique (34, 35) that involves focusing a beam of light obliquely onto the 

surface of a single crystal and measuring variations in the intensity of reflected SHG light as the 

scattering plane is rotated about the surface normal. By projecting the SHG signal radiated at 

different scattering plane angles 𝜙𝜙 onto a circular locus of points on a stationary 2D detector 

(Fig. 2A), the experiment can be carried out at very high rotational frequencies (~ 4 Hz), which 

greatly enhances the sensitivity to small changes in symmetry by averaging over laser 

fluctuations. 

 

In order to isolate a single-phase domain for detailed RA-SHG study, we carried out three 

successive stages of microscopy on the natural (111) facet of a Cd2Re2O7 single crystal grown by 

means of vapor transport [section S1 of (36)]. First, white-light microscopy was used to select a 

smooth area free of surface striations (Fig. 2B). Next, wide-field SHG images [section S2 of 

(36)] were acquired on this area both above and below Tc (Fig. 2C). For T > Tc the SHG signal is 

dominated by the electric dipole response at the surface (𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆 ), where inversion symmetry is 

necessarily broken. The observed spatial uniformity of the intensity indicates a single cubic 

structural domain. For T < Tc, a strong bulk response (𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵 ) develops owing to the inversion-

symmetry-breaking tetragonal distortion. Three types of tetragonal domains with sharply-defined 

linear boundaries are clearly resolved, associated with orientations of the main tetragonal axis 

along each of the three equivalent cubic lattice directions [section S4 of (36)]. Last, we 

performed scanning RA-SHG measurements [section S3 of (36)] within a single tetragonal 

domain. Because inversion symmetry is spontaneously broken at the phase transition, domains 

with opposite parity, which we label (+) or (−), will naturally form. Because the sign of 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵  

reverses upon spatial inversion, these parity domains exhibit distinct SHG responses (𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖 =



𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆 ± 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵 ) arising from interference between the surface and bulk terms. This in turn produces 

distinct RA-SHG patterns (Fig. 2D). 

 

To finely resolve the symmetries broken across Tc, we performed detailed temperature-

dependent RA-SHG measurements on a single domain using different combinations of incoming 

(in) and outgoing (out) light polarizations, which can be either parallel (P) or perpendicular (S) to 

the scattering plane [Fig. 2A and section S5 of (36)]. Examples of RA-SHG patterns acquired 

with a Sin‒Pout polarization geometry for a selection of temperatures near Tc are shown in Fig. 3. 

For T > Tc, the raw RA-SHG images show disconnected arcs centered at 𝜙𝜙 = 0° and every 60° 
interval (Fig. 3A). A polar plot of SHG intensity versus 𝜙𝜙 extracted from the raw data shows that 

the six intensity peaks are equal in magnitude. This is because the (111) surface of Cd2Re2O7 

contains three mirror planes and an axis of three-fold rotational symmetry. By imposing these 

point group symmetries on 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆 , the number of independent non-zero elements is greatly reduced 

[section S6 of (36)]. The nonlinear polarization from the surface calculated under a Sin‒Pout 

geometry takes the simple form 𝜒𝜒𝑆𝑆 cos(3𝜙𝜙), where 𝜒𝜒𝑆𝑆 is shorthand for the 𝜒𝜒𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆  tensor element. 

The resulting RA-SHG intensity pattern, which is proportional to the squared magnitude of the 

nonlinear polarization, exactly reproduces the high-temperature data and reaffirms its surface 

origin. 

 

Upon lowering the temperature only slightly (< 1 K) below Tc, we observed a dramatic change in 

the symmetry of the RA-SHG pattern (Fig. 3B) caused by the coherent addition of a bulk SHG 

contribution to the existing surface signal. Surprisingly, the data cannot be accounted for by the 𝐸𝐸𝑚𝑚 lattice distortion alone. This is already apparent at the qualitative level because the 𝐼𝐼4�𝑚𝑚2 

lattice structure preserves mirror symmetry across the vertical (11�0) plane (Fig. 1C) whereas the 

RA-SHG pattern is clearly not symmetric under a 𝜙𝜙 → −𝜙𝜙 transformation. To express this 

analytically, the SHG susceptibility tensor in the case of 𝐸𝐸𝑚𝑚 order contains only one independent 

non-zero element: 𝜒𝜒𝐸𝐸𝑢𝑢 ≡ 𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = 𝜒𝜒𝑦𝑦𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑦𝑦𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦/2 = −𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥/2, where the 

Cartesian coordinates x, y, and z are chosen to be aligned along the tetragonal a, b, and c axes, 

respectively. With a Sin‒Pout geometry, this introduces a bulk nonlinear polarization term of the 

form  𝜒𝜒𝐸𝐸𝑢𝑢 cos(𝜙𝜙) that is even in 𝜙𝜙 like the surface term, generating an RA-SHG pattern that is 

likewise even in 𝜙𝜙. This is incompatible with the data and suggests that an additional inversion-

symmetry-breaking order parameter emerges together with the 𝐸𝐸𝑚𝑚 structural order parameter 

below Tc. 

 

Among the four other odd-parity irreducible representations of the octahedral point group (𝐴𝐴1𝑚𝑚, 𝐴𝐴2𝑚𝑚, 𝑇𝑇1𝑚𝑚, and 𝑇𝑇2𝑚𝑚), only an order parameter with 𝑇𝑇2𝑚𝑚 symmetry can couple to the 𝐸𝐸𝑚𝑚 structural 

order parameter and produce a RA-SHG pattern that breaks mirror symmetry across the (11�0) 

plane. In the particular case of a multipolar nematic instability, it is the spin texture on the Fermi 

surface that explicitly breaks this mirror symmetry (Fig. 1A). The SHG susceptibility tensor 

associated with 𝑇𝑇2𝑚𝑚 multipolar nematic order (𝑄𝑄𝑥𝑥𝑦𝑦 ≠ 0) contains two independent non-zero 

elements: 𝜒𝜒𝑇𝑇2𝑢𝑢 ≡ 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑦𝑦𝑦𝑦𝑥𝑥 = −𝜒𝜒𝑦𝑦𝑥𝑥𝑦𝑦 and 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑥𝑥𝑦𝑦𝑦𝑦. The absence of any 

detectable bulk SHG signal in a Sin‒Sout geometry [section S5 of (36)] imposes the additional 

constraint 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −2𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥, reducing the number of independent tensor elements to just one. For a 



Sin‒Pout geometry, this tensor structure produces a bulk nonlinear polarization of the form 𝜒𝜒𝑇𝑇2𝑢𝑢 sin(𝜙𝜙), which taken alone would lead to a RA-SHG pattern that is even in 𝜙𝜙. However, a 

coherent superposition of the 𝜒𝜒𝑇𝑇2𝑢𝑢 sin(𝜙𝜙), 𝜒𝜒𝐸𝐸𝑢𝑢 cos(𝜙𝜙), and 𝜒𝜒𝑆𝑆 cos(3𝜙𝜙) terms, illustrated in the 

right column of Fig. 3, generates a RA-SHG pattern that breaks 𝜙𝜙 → −𝜙𝜙 symmetry. 

 

To quantitatively assess the validity of this model, we performed fits to the RA-SHG data in all 

four polarization geometries simultaneously. We fixed 𝜒𝜒𝑆𝑆 at its fitted 𝑇𝑇 > 𝑇𝑇𝑐𝑐 value (Fig. 3A) 

because it does not measurably change across Tc [section S5 of (36)], leaving the two complex 

numbers 𝜒𝜒𝐸𝐸𝑢𝑢 and 𝜒𝜒𝑇𝑇2𝑢𝑢 as the only free parameters. This model provides an excellent and unique 

fit to the data (Fig. 3), providing further evidence of coupled 𝑇𝑇2𝑚𝑚 and 𝐸𝐸𝑚𝑚 order parameters below 

Tc. As the temperature is further cooled to just several kelvin below Tc, 𝜒𝜒𝐸𝐸𝑢𝑢 becomes dominant 

and a pronounced transformation of the RA-SHG pattern towards a |𝜒𝜒𝐸𝐸𝑢𝑢cos(𝜙𝜙)|2 form takes 

place (Fig. 3C), obscuring the 𝑇𝑇2𝑚𝑚 order parameter. The relative faintness of the 𝑇𝑇2𝑚𝑚 signal is 

consistent with a nematic instability that predominantly affects states only near the Fermi level 

and naturally explains the absence of any detectable 𝑇𝑇2𝑚𝑚 distortion by structure-sensitive probes 

(19–22). 

 

Distinguishing a genuine electronic nematic phase transition from a simple ferrodistortive 

transition is a well-known experimental challenge (11) because the electronic and structural 

order parameters are typically coupled and have a concurrent temperature onset, as is the case for 

Cd2Re2O7. The task of disentangling primary from secondary order parameters can be 

approached by studying the critical exponents 𝛽𝛽 of the order parameter temperature scaling law 

|1− 𝑇𝑇/𝑇𝑇𝑐𝑐|𝛽𝛽. SHG is particularly well-suited for this because 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖 is linearly proportional to 

order parameters that are parity-odd [section S7 of (36)]. To obtain the temperature dependence 

of the 𝐸𝐸𝑚𝑚 and 𝑇𝑇2𝑚𝑚 order parameters, we acquired RA-SHG patterns over a series of finely spaced 

temperatures below Tc and fit them to the model previously described. Because cos(3𝜙𝜙), 

cos(𝜙𝜙), and sin(𝜙𝜙) are orthogonal functions, the fitted values of 𝜒𝜒𝐸𝐸𝑢𝑢  and 𝜒𝜒𝑇𝑇2𝑢𝑢 at any given 

temperature can be determined uniquely. Furthermore, because the 𝐸𝐸𝑚𝑚 and 𝑇𝑇2𝑚𝑚 tensors have no 

elements in common, every bulk SHG response channel 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖 couples to only one of the two 

order parameters. The temperature dependence of |𝜒𝜒𝑇𝑇2𝑢𝑢|, which is proportional to the 𝑇𝑇2𝑚𝑚 order 

parameter, was extracted from such fits (Fig. 4A). An onset temperature of 𝑇𝑇𝑐𝑐 ≈ 201 K and a 

critical exponent of 𝛽𝛽 ≈ 1/2 are obtained from a least-squares fit to the scaling law, which is 

consistent with the mean-field prediction for a primary order parameter. At temperatures below ~ 

198 K, the 𝑇𝑇2𝑚𝑚 response is overwhelmed by the 𝐸𝐸𝑚𝑚 response (Fig. 3C) and can no longer be 

reliably extracted from the data. 

 

The temperature dependence of |𝜒𝜒𝐸𝐸𝑢𝑢|, which is proportional to the 𝐸𝐸𝑚𝑚 order parameter, also 

exhibits an onset at 𝑇𝑇𝑐𝑐 ≈ 201 K (Fig. 4B), demonstrating that it is coupled to the 𝑇𝑇2𝑚𝑚 order 

parameter. It has a linear temperature dependence (𝛽𝛽 ≈ 1) extending over a wide temperature 

range below Tc. This behavior is contrary to that expected of a primary order parameter because 

critical fluctuations may reduce 𝛽𝛽 from its mean-field value but can never increase it. Instead, the 𝐸𝐸𝑚𝑚 structural distortion must be a secondary order parameter. To place this interpretation on 

firmer theoretical grounds, we used a phenomenological Landau free energy analysis. A system 



with an odd-parity primary order parameter Ψ𝑚𝑚 and a secondary 𝐸𝐸𝑚𝑚 order parameter Φ𝐸𝐸𝑢𝑢 is 

described by the generic Landau free energy expansion 

 𝐹𝐹 = 𝐹𝐹0 − �1− 𝑇𝑇𝑇𝑇𝑐𝑐� �𝑎𝑎𝑔𝑔Ψ𝑔𝑔2 + 𝑎𝑎𝑚𝑚Ψ𝑚𝑚2� + 𝑏𝑏Φ𝐸𝐸𝑢𝑢2 − 𝑔𝑔Ψ𝑔𝑔Ψ𝑚𝑚Φ𝐸𝐸𝑢𝑢 + higher order terms, 

 

where 𝑎𝑎𝑔𝑔, 𝑎𝑎𝑚𝑚, 𝑏𝑏, and 𝑔𝑔 are temperature-independent parameters. To realize a linear coupling 

between Ψ𝑚𝑚 and Φ𝐸𝐸𝑢𝑢, an additional even-parity primary order parameter Ψ𝑔𝑔 that transforms like 

the product Ψ𝑚𝑚Φ𝐸𝐸𝑢𝑢  must be introduced. By construction, minimization of the free energy gives Ψ𝑚𝑚 ∝ Ψ𝑔𝑔 ∝ |1 − 𝑇𝑇/𝑇𝑇𝑐𝑐|1/2 and Φ𝐸𝐸𝑢𝑢 ∝ Ψ𝑚𝑚Ψ𝑔𝑔 ∝ |1− 𝑇𝑇/𝑇𝑇𝑐𝑐|, which exactly reproduces our 

experimental results. By performing a general symmetry-based analysis of the Landau expansion 

[section S8 of (36)], it is possible to constrain the irreducible representations of Ψ𝑚𝑚 and Ψ𝑔𝑔 to 𝑇𝑇2𝑚𝑚 

and 𝑇𝑇1𝑔𝑔, respectively. This serves as a strong self-consistency check of our RA-SHG data 

analysis. The 𝑇𝑇1𝑔𝑔 order parameter uncovered by this analysis preserves inversion symmetry and 

is therefore not detectable with SHG. It is possible that interactions among electrons in Re t2g 

levels may realize a correlated spin-triplet state with 𝑇𝑇1𝑔𝑔 symmetry [section S8 of (36)], and 

nuclear quadrupole resonance measurements have in fact detected a moderate ferromagnetic 

enhancement below Tc (37). Further study, however, is required to firmly establish a microscopic 

origin of the 𝑇𝑇1𝑔𝑔 order.  

 

Our data and analysis reveals the existence of a 𝑇𝑇2𝑚𝑚 electronic order in Cd2Re2O7 that drives the 

200 K phase transition and induces the 𝐸𝐸𝑚𝑚 lattice distortion as a secondary order parameter. The 

assignment of the 𝑇𝑇2𝑚𝑚 order to a multipolar nematic phase is supported by previous experiments 

that show only weak 𝐸𝐸𝑚𝑚 structural distortions (20–22) accompanied by large electronic 

anomalies across Tc (26–29), the absence of any charge or magnetic order below Tc (37), and full 

agreement with theoretical prediction (14). More generally, our results establish a distinct class 

of odd-parity multipolar electronic nematic phases in spin-orbit coupled correlated metals and 

demonstrates an experimental strategy for uncovering further realizations of such order. 

Carefully examining the competing phases in the vicinity of odd-parity nematic order, including 

the superconducting phase below ~ 1 K in Cd2Re2O7 (38–40), may prove fruitful for uncovering 

other unconventional phases of matter.  
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Fig. 1. Illustration of electronic and structural order parameters in Cd2Re2O7. (A) 𝑇𝑇2𝑚𝑚 

distortion of a spherical Fermi surface induced by a 𝑄𝑄𝑥𝑥𝑦𝑦 multipolar nematic order parameter. The 

Fermi surface is split into two non-degenerate surfaces of opposite spin texture (arrows), with the 

largest splitting at the equator and zero splitting at the poles. (B) The ideal pyrochlore structure 

of Cd2Re2O7 viewed along the 〈111〉 axis. Only Re (yellow tetrahedra) and O(1) (green 

octahedra) sublattices are shown. Dashed lines depict mirror planes. For clarity, an enlarged view 

of two neighboring subunits from an alternative angle is also displayed. (C) The effect of the 𝐸𝐸𝑚𝑚 

lattice distortion. The vertical dashed line depicts the preserved (1�10) mirror plane and arrows 

show the displacement directions of the O(1) atoms. 



B

Sample

Input

Polarizer Phase

Mask

Collimating

Lens

Dichroic

Mirror

Output

Polarizer

Objective

LensEM-CCD Detector

+1

4 Hz

A

Pin

Sin

Sout

Pout

Cd2Re2O7 (111)

ω

2ω

ϕ

ϕ

Micrograph

c

ba

D RA-SHG (Pin‒Pout)

(+) Domain (–) Domain

Min Max

C SHG Imaging

(–)

(+)

100 μm1 mm 100 μm
(T > Tc) (T < Tc)

50 μm

Fig. 2. Spatially resolved optical SHG anisotropy measurements. (A) Schematic of the RA-

SHG setup. A circularly polarized laser beam (red) with center wavelength at 800 nm is sent 

through a linear polarizer (to select either Pin or Sin polarization) and onto a phase mask. The +1 
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a circle on the camera as the scattering plane angle 𝜙𝜙 changes. (B) Optical micrograph of the 

(111) surface of a Cd2Re2O7 single crystal. (C) Wide-field SHG image of a striation-free region 
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Materials and Methods 

S1.  Sample Growth and Characterization 

Sample Growth 

Single crystals of Cd2Re2O7 were grown by vapor transport (41). X-ray diffraction measurements 

were performed on pulverized single crystals using a PANalytical X'Pert Pro powder x-ray 

diffractometer with Cu Kα radiation. No impurity peaks were observed. An elemental analysis was 

performed using a Hitachi TM-3000 scanning electron microscope equipped with a Bruker 

QUANTAX 70 energy dispersive x-ray system. The analysis confirmed an equal amount of Cd 

and Re within the resolution of the instrument. Magnetic susceptibility measurements were 

performed using a Quantum Design Magnetic Property Measurement System at temperatures 

ranging from 2 to 350 K. The results indicated high quality crystals without the presence of ReO2 

inclusions. 

Stoichiometric Origin of SHG Heterogeneity 

Wide-field SHG microscopy uncovered an inhomogeneous bulk response of the sample consisting 

of bright and dark regions. The boundaries between these regions are curved, tend to be near the 

edges of the sample, appear to be unaffected by structural domains, and have the same size scale 

as the single crystal itself. These facts strongly suggest chemical inhomogeneity during sample 

growth as a likely cause. To verify this hypothesis, we performed energy-dispersive x-ray 

spectroscopy (EDS) using an Oxford X-MaxN silicon drift detector attached to a Zeiss LEO 

1550VP scanning electron microscope (SEM). This technique allows us to measure the spatially-

resolved chemical composition of the sample near its surface. We collected EDS spectra at eight 

points—four inside a dark region and four inside a bright region—near a well-defined feature on 

the (111) sample surface, as shown in Fig. S1. 

A typical EDS spectrum is shown in Fig. S1C. Peaks from O, Cd, and Re atoms can be identified, 

and fitting the spectrum allows us to infer the atomic percentages of the atoms at each sample 

location. Our results are summarized in the following table: 

Location Region O atomic % Cd atomic % Re atomic % Cd/Re ratio 

1 Dark 61.85 19.17 18.98 1.0100 

2 Bright 64.31 18.14 17.55 1.0336 

3 Bright 62.39 19.08 18.53 1.0297 

4 Dark 62.75 18.82 18.43 1.0212 

5 Bright 62.52 19.08 18.40 1.0370 

6 Dark 62.09 19.06 18.85 1.0111 

7 Bright 60.86 19.73 19.41 1.0165 

8 Dark 61.16 19.56 19.28 1.0145 
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Variability of oxygen stoichiometry is a known issue in the growth of Cd2Re2O7 (41) and is a 

prime candidate for the origin of the heterogeneity, but the oxygen atomic percentage does not 

appear to correlate with the bright and dark regions within the resolution of our experiment. We 

do detect, however, a difference in the average Cd/Re atomic ratio: 1.029 ± 0.009 in the bright 

region and 1.014 ± 0.005 in the dark region. A Student's t-test of the data shows that the difference 

is statistically significant (p = 0.027). The measured deviations of the Cd/Re ratio from 1 are within 

the absolute accuracy of the EDS instrument, so we cannot determine which of the two regions is 

more stoichiometric. 

In oxide pyrochlores with chemical formula A2B2O7, the A and B cations can intermix under 

certain conditions and may even form a stable disordered phase (42). Indeed, in so-called “stuffed 

spin-ice” pyrochlores, the A/B atomic ratio can exceed 1.9 (43). Given our various observations 

as a whole, the most likely scenario is that inhomogeneous growth conditions cause Re atoms, 

with a much smaller ionic radius, to occupy some of the Cd sites in the darker regions of the 

sample. This will cause the nanoscale crystallinity to be slightly worse there (and may result in 

some localized metallic doping). It is then natural to expect the order parameter to be weaker in 

the more disordered regions of the sample, as we observe. For this reason, our study focuses on 

bright regions, where the bulk order parameters are larger with respect to the surface term. 

Fig. S1. Spatial mapping of sample stoichiometry. (A) SHG image of the sample at 150 K near 

a well-defined feature on the surface. Eight sample points in bright and dark regions measured 

with EDS are indicated. (B) SEM image showing four of the rectangular regions used for EDS 

measurements. (C) Typical EDS spectrum, with x-ray peaks identified for O, Cd, and Re atoms. 

S2.  Wide-Field SHG Microscopy 

Wide-field SHG imaging was performed using ultrashort 100 fs optical pulses with a center 

wavelength of 800 nm produced at a 100 kHz repetition rate by a regeneratively-amplified 

Ti:sapphire laser system (Coherent Vitara-S and RegA 9050). The beam illuminated the entire 

(111) sample facet at an oblique 20° angle of incidence and with a fluence below 30 μJ cm-2. The 

reflected second-harmonic light was selected with a 400 nm narrow bandpass filter and linear 

polarizer, collected by an objective lens, and focused onto an EM-CCD camera (Andor iXon Ultra 

897). Each pixel in the image captured a 6 × 6 μm2 area on the sample surface. Upon temperature 

cycling, we did not observe any movement of tetragonal domains, suggesting that they are pinned 

by static strain fields and other crystallographic defects. 
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S3.  RA-SHG Measurements 

RA-SHG measurements were performed with the same 800 nm light source as that used for the 

microscopy measurements. Both the sample and detector remained fixed. Rotation of the scattering 

plane was achieved by mechanically spinning transmissive optical elements about the central beam 

axis. A detailed description of the novel RA-SHG apparatus used can be found in Ref. 34. The 

laser was obliquely incident on the sample with a fixed 10° angle between the beam and the sample 

surface normal. The fluence of the beam was maintained at 600 μJ cm-2, with no noticeable 

degradation of the sample with time. The laser spot size on the sample was 30 μm full-width at 

half-maximum. Reflected second-harmonic light at 400 nm was selected with a narrow bandpass 

filter and measured with a two-dimensional EM-CCD (Andor iXon Ultra 897). Each complete RA 

pattern was acquired with a 30 s exposure time. Samples were measured in an optical cryostat with 

a vacuum pressure below 10-6 Torr. We point out that an 800 nm wavelength (ℏ𝜔𝜔 = 1.5 eV) is 

resonant with interband transitions between occupied O 2p and unoccupied Re 5d states in 

Cd2Re2O7 (44–46), significantly enhancing the SHG response of the crystal at this wavelength. 

We did not observe substantial steady-state heating of the sample based on the close agreement 

between Tc measured using SHG and Tc previously reported in the literature (26). This is consistent 

with a calculation of the heating amount (~ 2 K) using a thermal conductivity of 3 W m-1 K-1 (47). 

S4.  Identification of All Six Domain Types 

A cubic-to-tetragonal distortion will in general result in three types of domains, with each aligned 

along one of the three equivalent cubic lattice directions in the crystal. In addition, a parity-

breaking distortion can occur in two separate ways related by inversion symmetry. Aided by SHG 

imaging, we are indeed able to find all six possible types of structural domains (three tetragonal × 

two parity) on the (111) sample surface. Performing RA-SHG measurements at each of the six 

domains yields distinct RA patterns, allowing us to fully distinguish them, as shown in Fig. S2. 

Fig. S2. Identification of domains via RA-SHG. Normalized Sin–Pout RA-SHG patterns 

measured at 150 K at various locations on the sample surface showing all six possible structural 

domains. The three types of tetragonal domains (a, b, c) are distinguished by the directions of the 

RA lobes, which differ by 120°. The two types of parity domains (+, –) are distinguished by the 

shapes of the RA lobes, which differ because of interference between bulk and surface SHG. 
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S5.  RA-SHG Data for All Four Polarization Geometries 

 

To minimize systematic errors, we use all four linear polarization geometries when fitting the 

nonlinear susceptibility to the data. At each temperature, all four RA patterns (Pin–Pout, Pin–Sout, 

Sin–Pout, and Sin–Sout) are measured and fit simultaneously with the same set of free parameters. 

Fig. S3 displays RA patterns and resulting fits for a representative selection of temperatures taken 

at (+) and (–) domains in dark regions of the sample, as well as a (–) domain in a bright region of 

the sample. Notably, there is no detectible bulk response for Sin–Sout. We use this fact to constrain 

some of the bulk susceptibility components, as discussed in S6 below. Parity domains can be 

clearly distinguished from each other by the anisotropy resulting from interference with the surface 

SHG component. Because the bulk response is much stronger relative to the surface in the bright 

regions, our sensitivity to bulk symmetry breaking near Tc is increased there. 

 

 

 
 

 

Fig. S3. RA-SHG domain contrast. (A)-(D) RA-SHG data with all four polarization geometries 

for a (+) domain (A, B) and a (–) domain (C, D) taken above Tc at 210 K (A and C) and below Tc 

at 170 K (B and D). At high temperatures, only the surface SHG contributes and the two domains 

are identical. Below Tc, interference between the static surface and growing bulk SHG 

contributions generates RA contrast between the parity domains. (E)-(I) Pin–Sout and Sin–Pout RA-

SHG data taken at 204.5 K (E), 200.7 K (F), 200.2 K (G), 199.7 K (H), and 199.2 K (I). The loss 

of horizontal reflection symmetry in the RA curves is clearly detected below Tc but is not captured 

by fitting the data to a 4�2𝑚𝑚 bulk point group (dashed curves). A 4� bulk point group, however, fits 

the data well (solid curves). 
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S6.  Surface and Bulk Susceptibility Tensors 

In our RA-SHG measurements, we observe a static, temperature-independent SHG component 

from inversion symmetry breaking at the sample surface. To isolate this component from the bulk 

response, we split the second-order optical susceptibility tensor that we measure into surface and 

bulk parts. Optical susceptibilities are complex. Our experiments, however, are only sensitive to 

relative phase differences between the susceptibility components, so we define the surface part to 

be strictly real but allow a complex phase for the bulk: 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆 + 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵 . 

In the cubic phase, the (111) surface of Cd2Re2O7 contains three mirror planes and a three-fold 

rotation axis and is represented by point group 3m. This symmetry group, together with SHG 

permutation symmetry, restricts the possible nonzero tensor elements of 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆  to 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 =𝜒𝜒𝑦𝑦𝑦𝑦𝑥𝑥 = 𝜒𝜒𝑦𝑦𝑥𝑥𝑦𝑦, 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑦𝑦𝑦𝑦, 𝜒𝜒𝑦𝑦𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = 𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 = −𝜒𝜒𝑦𝑦𝑦𝑦𝑦𝑦, and 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥, where coordinate axes are 

chosen so that one of the mirror planes is perpendicular to the x-axis and the surface normal is 

parallel to the z-axis (30). At high temperatures, where only 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆  is nonzero, we find best agreement 

with our data when 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −0.9, 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = 0, and 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = 200, in units where 𝜒𝜒𝑦𝑦𝑦𝑦𝑦𝑦 = 1. We fix 

these values during our low-temperature fits and do not let them vary. In the y-axis labels of Fig. 

4, “|𝜒𝜒𝑆𝑆|” is shorthand for the value of the 𝜒𝜒𝑦𝑦𝑦𝑦𝑦𝑦 surface tensor element. 

Our experiments show that 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵  cannot be faithfully represented by a point group of higher 

symmetry than 4�, whose nonzero tensor elements are 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑦𝑦𝑦𝑦𝑥𝑥 = −𝜒𝜒𝑦𝑦𝑥𝑥𝑦𝑦, 𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 =𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = 𝜒𝜒𝑦𝑦𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑦𝑦𝑥𝑥𝑥𝑥, 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑥𝑥𝑦𝑦𝑦𝑦, and 𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = 𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 (30). Here, the coordinate axes x, y, and z 

are chosen to be aligned with the cubic crystallographic directions a, b, and c, respectively. As 

discussed in the main text, it is physically more appropriate to split this general bulk tensor into 

two parts, labeled 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑢𝑢  and 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇2𝑢𝑢, that transform like point groups 4�2𝑚𝑚 (the isotropy group induced

by 𝐸𝐸𝑚𝑚 order) and 4�𝑚𝑚2 (the isotropy group induced by 𝑇𝑇2𝑚𝑚 order), respectively. Strictly speaking, 

these point groups are synonymous, differing by a trivial 45° rotation about the 4� axis. Within a 

space group, however, the cubic crystallographic axes define fixed directions in space and the two 

become inequivalent. This decomposition of the 4� tensor can be performed without loss of 

generality and unambiguously because 4�2𝑚𝑚 tensors contain only 𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = 𝜒𝜒𝑦𝑦𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑦𝑦𝑥𝑥𝑥𝑥 and 𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = 𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 and 4�m2 tensors contain only 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑦𝑦𝑦𝑦𝑥𝑥 = −𝜒𝜒𝑦𝑦𝑥𝑥𝑦𝑦 and 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑥𝑥𝑦𝑦𝑦𝑦. In 

particular, no tensor elements are shared between the two point groups. 

We observe an additional symmetry in the 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵  tensor: 𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = −2𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 and 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −2𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥. 

Experimentally, this symmetry is manifest in the complete absence of bulk SHG for the Sin–Sout 

polarization geometry (see S5 above). For 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑢𝑢 , this constraint is directly related to the fact that a

general 4�2𝑚𝑚 tensor transforms like the direct sum 𝐸𝐸𝑚𝑚⊕𝐴𝐴2𝑚𝑚. By setting 𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = −2𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥, the 𝐴𝐴2𝑚𝑚 

part is projected out of the susceptibility tensor. For 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇2𝑢𝑢, the constraint 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −2𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 is not

imposed by 𝑇𝑇2𝑚𝑚 macroscopic symmetry considerations alone, but may follow from symmetries in 

the microscopic Hamiltonian. A further discussion of these additional symmetries can be found in 

S7 below. 
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In the end, only two independent complex parameters are allowed to vary with temperature in the 

susceptibility model that we employ: 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 and 𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥. In the y-axis labels of Fig. 4, “|𝜒𝜒𝐸𝐸𝑢𝑢|” is 

shorthand for the magnitude of the 𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 bulk tensor element and “|𝜒𝜒𝑇𝑇2𝑢𝑢|” is shorthand for the 

magnitude of the 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 bulk tensor element. 

S7.  Linear Proportionality of Bulk Susceptibility and Odd-Parity Order Parameters 

For a parity-breaking phase transition, we expect the bulk second-order optical susceptibility 

tensor to be linearly proportional to the order parameter for temperatures sufficiently close to Tc. 

The susceptibility, like the order parameter, is zero in the high-temperature centrosymmetric phase 

and nonzero in the low-temperature noncentrosymmetric phase. Furthermore, if the order 

parameter reverses sign, for example in different parity domains related by spatial inversion, so 

does the susceptibility. We have observed this sign reversal in our measurements and it allows us 

to distinguish (+) and (–) domains, as shown in S5 above. This means that a generic series 

expansion of the susceptibility in the order parameter will include only odd powers, with a linear 

term being the first allowed. 

A more rigorous proof that the nonlinear optical susceptibility is linearly proportional to the odd-

parity order parameters may be obtained by expanding the Landau free energy up to lowest order 

in powers of components of the electric polarization P (a polar vector transforming like 𝑇𝑇1𝑚𝑚) and 

the odd-parity order parameters Ψ𝑚𝑚 (representing 𝑇𝑇2𝑚𝑚 order) and Φ (representing 𝐸𝐸𝑚𝑚 order) (48): 𝐹𝐹(P) = 𝐹𝐹0 +
𝑚𝑚2 𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖 − 𝐸𝐸𝑖𝑖𝑃𝑃𝑖𝑖 − 𝑏𝑏Ψ𝑚𝑚𝐹𝐹1(P)− 𝑐𝑐Φ𝐹𝐹2(P) + ⋯, 𝐹𝐹1(P) = �𝑃𝑃𝑥𝑥2 − 𝑃𝑃𝑦𝑦2�𝑃𝑃𝑥𝑥�1− 𝑑𝑑𝑃𝑃𝑥𝑥2/�𝑃𝑃𝑥𝑥2 + 𝑃𝑃𝑦𝑦2 + 𝑃𝑃𝑥𝑥2��, 𝐹𝐹2(P) = 𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦𝑃𝑃𝑥𝑥�1− 3𝑃𝑃𝑥𝑥2/�𝑃𝑃𝑥𝑥2 + 𝑃𝑃𝑦𝑦2 + 𝑃𝑃𝑥𝑥2��, 

where summation over repeated indices is implied, E is the externally applied optical electric field, 

a > 0 because the system is not ferroelectric, b and c are constants coupling the electric polarization 

to the 𝑇𝑇2𝑚𝑚 and 𝐸𝐸𝑚𝑚 order parameters, respectively, and d is a dimensionless constant determined by 

the microscopic Hamiltonian of the system. Minimizing the free energy with respect to variation 

of the components of the electric polarization gives 𝑃𝑃𝑖𝑖 =
1𝑚𝑚𝐸𝐸𝑖𝑖 + �𝑏𝑏Ψ𝑢𝑢𝑚𝑚 � 𝜕𝜕𝐹𝐹1𝜕𝜕𝑃𝑃𝑖𝑖 + �𝑐𝑐Φ𝑚𝑚 � 𝜕𝜕𝐹𝐹2𝜕𝜕𝑃𝑃𝑖𝑖. 

By noting that 𝑃𝑃𝑖𝑖 = 𝜒𝜒𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖 + 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝐸𝐸𝑖𝑖 + ⋯, we may write 

𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖 =
12 𝜕𝜕2𝑃𝑃𝑖𝑖𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝐸𝐸𝑘𝑘�𝐸𝐸=0 =

12𝑚𝑚2 lim𝑃𝑃𝑖𝑖→0 lim𝑃𝑃𝑗𝑗→0 lim𝑃𝑃𝑘𝑘→0 𝜕𝜕2𝑃𝑃𝑖𝑖𝜕𝜕𝑃𝑃𝑗𝑗𝜕𝜕𝑃𝑃𝑘𝑘. 
This formula gives 𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = 𝜒𝜒𝑦𝑦𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑦𝑦𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦/2 = −𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥/2 = 𝑐𝑐Φ/2𝑎𝑎3, explicitly 

showing the linear proportionality of 𝜒𝜒𝐸𝐸𝑢𝑢  and Φ and confirming the additional symmetry constraint 𝜒𝜒𝑥𝑥𝑥𝑥𝑦𝑦 = −2𝜒𝜒𝑥𝑥𝑦𝑦𝑥𝑥 discussed in S6 above. We also obtain 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑦𝑦𝑦𝑦𝑥𝑥 = −𝜒𝜒𝑦𝑦𝑥𝑥𝑦𝑦 =𝑏𝑏Ψ𝑚𝑚/𝑎𝑎3 and 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −𝜒𝜒𝑥𝑥𝑦𝑦𝑦𝑦 = (1− 𝑑𝑑)𝑏𝑏Ψ𝑚𝑚/𝑎𝑎3, showing the proportionality of 𝜒𝜒𝑇𝑇2𝑢𝑢 and Ψ𝑚𝑚. 
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Interestingly, the empirical relation 𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 = −2𝜒𝜒𝑥𝑥𝑥𝑥𝑥𝑥 that we observe in our measurements is 

achieved if d = 3, which is likely the result of a microscopic symmetry in the Hamiltonian of the 

system and offers a strong constraint on possible theories of the multipolar nematic phase in 

Cd2Re2O7. 

S8.  Landau Theory Symmetry Analysis 

Within Landau's theory of second-order phase transitions, an order parameter Φ that grows linearly 

with temperature in the low-symmetry phase, Φ ∝ (1 − 𝑇𝑇/𝑇𝑇𝑐𝑐) for 𝑇𝑇 < 𝑇𝑇𝑐𝑐, must be secondary, 

induced by a coupling to a primary order parameter Ψ with mean field temperature dependence Ψ ∝ �1 − 𝑇𝑇/𝑇𝑇𝑐𝑐 (49). The so-called “faintness index” n ≥ 2 encodes the exponent of the primary 

order parameter that couples to the secondary order parameter in the Landau free energy, 

producing an invariant term of the form Ψ𝑛𝑛Φ (50). Ferroic transitions that occur under these 

conditions are labeled “improper” (49–51). In particular, for a secondary order parameter with 

linear temperature dependence, n = 2. 

A parity-breaking secondary order parameter with n = 2 implies the existence of exactly two 

coupled primary order parameters, one that breaks inversion symmetry and one that preserves it. 

This is because a term like Ψ2Φ is not invariant under the parity operation if Φ breaks inversion 

symmetry. In analogy with Mulliken notation, let us call the parity-even order parameter Ψ𝑔𝑔 and 

the parity-odd order parameter Ψ𝑚𝑚. Then a coupling term like Ψ𝑔𝑔Ψ𝑚𝑚Φ is invariant with respect to 

inversion symmetry and is allowed in the Landau free energy 𝐹𝐹(𝑇𝑇) = 𝐹𝐹0 − 𝑚𝑚2 �1 − 𝑇𝑇𝑇𝑇𝑐𝑐� �Ψ𝑔𝑔2 + Ψ𝑚𝑚2� +
𝑏𝑏2Φ2 − 𝑔𝑔Ψ𝑔𝑔Ψ𝑚𝑚Φ +

𝑐𝑐4 �Ψ𝑔𝑔4 + Ψ𝑚𝑚4� + ⋯,

where a, b, and c are positive constants to guarantee a stable solution and g controls the strength 

of the coupling between the primary and secondary order parameters. For convenience, we have 

taken the expansion coefficients of Ψ𝑔𝑔 and Ψ𝑚𝑚 to be identical (𝑎𝑎𝑔𝑔 = 𝑎𝑎𝑚𝑚) and have ignored higher-

order terms in the expansion; such simplifications are irrelevant to the arguments that follow. It 

should be noted, however, that the identical temperature dependence of the leading order 

coefficients for the primary order parameters—positive above Tc and negative below Tc—ensures 

that Ψ𝑔𝑔 and Ψ𝑚𝑚 become nonzero at the same temperature. Although not strictly guaranteed by 

theoretical arguments alone, such a condition is realized in practice if the coupled primary orders 

have the same physical origin. For example, the improper ferroelectric transitions observed in 

PbTiO3/SrTiO3 superlattices and (Ca,Sr)3Ti2O7 are driven by the simultaneous freezing of two 

phonon modes of different one-dimensional irreducible representations, one preserving inversion 

symmetry and the other breaking it (52, 53). 

Minimization of the free energy with respect to variation of the order parameters gives 

Ψ𝑔𝑔(𝑇𝑇) = Ψ𝑚𝑚(𝑇𝑇) = � 𝑚𝑚𝑏𝑏𝑏𝑏𝑐𝑐−𝑔𝑔2�1 − 𝑇𝑇𝑇𝑇𝑐𝑐 ,    Φ(𝑇𝑇) = � 𝑚𝑚𝑔𝑔𝑏𝑏𝑐𝑐−𝑔𝑔2� �1 − 𝑇𝑇𝑇𝑇𝑐𝑐�. 
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By construction, we obtain a linear temperature dependence for the secondary order parameter Φ. 

Higher-order terms in the free energy expansion or differing coefficients for Ψ𝑔𝑔 and Ψ𝑚𝑚 will, in 

general, change the constant factors in the above expressions but will not change the temperature 

dependence near Tc. This analysis shows that in Cd2Re2O7, the 𝐸𝐸𝑚𝑚 structural distortion occurring 

at the 200 K phase transition (here represented by Φ) must be driven by a pair of primary order 

parameters Ψ𝑔𝑔 and Ψ𝑚𝑚. 

 

To proceed further, we impose four rules constraining the irreducible representations of the 

primary order parameters Ψ𝑔𝑔 and Ψ𝑚𝑚. 

 

• Rule #1: The Landau condition must hold, which states that for a second-order 

phase transition, no third-degree term can appear in the free energy expansion. This 

eliminates the 𝐴𝐴1𝑔𝑔, 𝐸𝐸𝑔𝑔, and 𝑇𝑇2𝑔𝑔 irreducible representations for Ψ𝑔𝑔 (54). 

• Rule #2: Ψ𝑚𝑚 cannot transform like 𝐸𝐸𝑚𝑚. Otherwise, the term Ψ𝑚𝑚Φ would occur in 

the free energy and the transition would not be improper (Φ would have a square-

root temperature dependence). 

• Rule #3: In order for Ψ𝑔𝑔Ψ𝑚𝑚Φ to be an allowed invariant in the free energy, the 

symmetric direct product of the irreducible representations for Ψ𝑔𝑔 and Ψ𝑚𝑚 must 

contain 𝐸𝐸𝑚𝑚. 

 

These first three rules immediately imply that Ψ𝑔𝑔 must transform like 𝑇𝑇1𝑔𝑔, and leave only two 

possibilities for the irreducible representation of Ψ𝑚𝑚: 𝑇𝑇1𝑚𝑚 or 𝑇𝑇2𝑚𝑚. We now invoke the so-called 

“maximal isotropy group condition” (51), which states that because Ψ𝑔𝑔 and Ψ𝑚𝑚 transform like 

multidimensional irreducible representations, their directions in order parameter space must 

correspond to a maximal isotropy subgroup. Thus, we restrict our attention to the tetragonal 

isotropy subgroups that result from order parameter directions aligned with one of the cubic 

crystallographic axes. The 𝐸𝐸𝑚𝑚 structural order parameter in Cd2Re2O7 is two-dimensional, but only 

the 𝐸𝐸𝑚𝑚(2)
 partner is observed by structure-sensitive probes. This fact leads to a final rule that allows 

us to resolve the ambiguity in the symmetry of the Ψ𝑚𝑚 order parameter. 

 

• Rule #4: In the free energy expansion, Ψ𝑔𝑔Ψ𝑚𝑚 cannot couple to the structural partner 𝐸𝐸𝑚𝑚(1)
. Otherwise, it would be finite below Tc and detected by experiment. 

 

Only one pair of order parameter symmetries is consistent with this final rule: Ψ𝑔𝑔 transforms 

according to 𝑇𝑇1𝑔𝑔 in the 〈001〉 direction [isotropy subgroup I41/𝑎𝑎 (48)] and Ψ𝑚𝑚 transforms 

according to 𝑇𝑇2𝑚𝑚 in the 〈001〉 direction [isotropy subgroup I4�2𝑑𝑑 (48)]. The maximal common 

subgroup of the order parameter isotropy groups is I4�, which is the true space group of Cd2Re2O7 

in the low temperature phase. 

 

We emphasize that this analysis, which is based solely on the observed linear temperature 

dependence of the 𝐸𝐸𝑚𝑚 order parameter, necessitates the existence of a 𝑇𝑇2𝑚𝑚 primary order parameter 

and therefore serves as a strong self-consistency check of our observations. This symmetry-based 

evidence of 𝑇𝑇2𝑚𝑚 order also predicts the existence of a coupled 𝑇𝑇1𝑔𝑔 primary order. The apparent 

coupling between the 𝑇𝑇2𝑚𝑚 and 𝑇𝑇1𝑔𝑔 primary orders suggests that they have a similar physical origin, 
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and we now discuss a possible mechanism for 𝑇𝑇1𝑔𝑔 electronic order in Cd2Re2O7 (𝑇𝑇1𝑔𝑔 transforms 

like a rotation, such as an angular momentum). Re5+ ions have a 5d2 valence configuration. Density 

functional theory calculations show that the octahedral crystal field strongly splits the 5d orbitals, 

pushing the unoccupied 𝑒𝑒𝑔𝑔 states ~ 5 eV higher in energy than the occupied 𝑡𝑡2𝑔𝑔 states (44–46). If 

we consider a single Re5+ ion in isolation, the spatial part of the two-valence-electron wave 

function will transform according to the direct product 𝑡𝑡2𝑔𝑔⊗ 𝑡𝑡2𝑔𝑔 = 𝐴𝐴1𝑔𝑔 + 𝐸𝐸𝑔𝑔 + �𝑇𝑇1𝑔𝑔�+ 𝑇𝑇2𝑔𝑔, 

where the brackets denote the antisymmetric combination. According to Hund's first rule, electron 

interactions will favor the spin triplet state with term symbol 𝑇𝑇1𝑔𝑔3  (55). Although the preceding 

argument applies only to isolated ions, we anticipate that within Cd2Re2O7 interactions among 

electrons in the Re 𝑡𝑡2𝑔𝑔 levels may favor a correlated triplet state with 𝑇𝑇1𝑔𝑔 symmetry. A nuclear 

quadrupole resonance experiment indeed detected a moderate ferromagnetic enhancement, but no 

static magnetic order was observed (37), calling a simple spin triplet state into question. More 

theoretical work is necessary to identify a suitable physical mechanism for 𝑇𝑇1𝑔𝑔 electronic order. 


	arXiv version
	References and Notes:
	Acknowledgments:
	We thank J. P. Eisenstein, L. Fu, T. Hsieh, P. A. Lee, A. de la Torre, and L. Zhao for useful discussions. RA-SHG experiments were supported by the U.S. Department of Energy under grant DE-SC0010533. Instrumentation for the RA-SHG setup was partially ...
	Supplementary Materials:
	Fig. 1. Illustration of electronic and structural order parameters in Cd2Re2O7. (A) ,𝑇-2𝑢. distortion of a spherical Fermi surface induced by a ,𝑄-𝑥𝑦. multipolar nematic order parameter. The Fermi surface is split into two non-degenerate surfaces...

	Figure1
	Figure2
	Figure3
	Figure4
	ARR_Cd2Re2O7 Supplementary Material
	Materials and Methods
	S1.  Sample Growth and Characterization
	S2.  Wide-Field SHG Microscopy
	S3.  RA-SHG Measurements
	S4.  Identification of All Six Domain Types
	S5.  RA-SHG Data for All Four Polarization Geometries
	S6.  Surface and Bulk Susceptibility Tensors
	S7.  Linear Proportionality of Bulk Susceptibility and Odd-Parity Order Parameters
	S8.  Landau Theory Symmetry Analysis


