
A PARSER FOR PORTABLE NL INTERFACES

USING GRAPH-UNIFICATION-BASED GRAMMARS

Kent Wittenburg

Microelectronics and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputer Technology Corporation

Abstract

This paper presents the reasoning behind the selection and design

of a parser for the Lingo project on natural language interfaces at

MCC. The major factors in the selection of the parsing algorithm

were the choices of having a syntactically based grammar, using a

graph-unification-based representation language, using

Combinatory Categorial Grammars, and adopting a one-to-many

mapping from syntactic bracketings to semantic representations in

certain cases. The algorithm chosen is a variant of chart parsing

that uses a best-first control structure managed on an agenda. It

offers flexibility for these natural language processing applications

by allowing for best-first tuning of parsing for particular

grammars in particular domains while at the same time allowing

exhaustive enumeration of the search space during grammar

development. Efficiency advantages of this choice for graph-

unification-based representation languages are outlined, as well as

a number of other advantages that acrue to this approach by

virtue of its use of an agenda as a control structure. We also

mention two useful refinements to the basic best-first chart

parsing algorithm that have been implemented in the Lingo

project.

1. Introduction

In designing a portable natural language (NL) interface, one of

the first crucial decisions is whether to require of the grammar

used in the system that it be syntactically or semantically based.

Existing NL interface systems can be classified along these lines:

there are those that use a syntactically based, general grammar of

English, e.g., TEAM (Martin, Appelt, and Pereira 1983), versus

those that use a semantically based grammar particular to the

domain, e.g., Plume (Hayes, Andersen, amd Safier 1985). The

semantically based grammars offer customization of the entire

system for the domain; robustness of parsing along domain

sensitive lines is an advantage usually cited. However, they

generally suffer from patchiness of syntactic coverage and the

grammar must be rewritten from scratch, in general, for each new

domain. The syntactically based grammars, on the other hand,

offer the advantage of being able to avoid rehacking the grammar

for each new domain and achieving a greater level of generality

and sophistication in the syntactic variations of the input.

Robustness of parsing is a component in the syntactically-based

systems which, along with semantics generally, must be attended

to separately; though robustness is obviously not precluded by this

initial design choice, it does not come for free since it is not

entwined with the grammar itself.

may offer advantages in the short run for relatively

unsophisticated systems in highly constrained domains,

syntactically based grammars offer a modularity in design that

will achieve greater payoffs in the long run. Not only does the

modularity enhance transportability to new applications, but also,

it makes possible the greater sophistication required for interfaces

to knowledge-based applications of the future.

Given this first design choice, the next step was to choose a

formalism for grammar representation and an approach to the

grammar itself. The representation language chosen was a graph-

unification-based formalism, in particular, one based on Karttunen

(1984) and Shieber (1984). Graph-unification-based representation

languages have had a tremendous impact in the field of

computational linguistics, and in fact have been incorporated in

one form or another into a number of influential linguistic theories

(see Shieber 1986 for discussion). Among the many advantages of

a graph-unification-based formalism are (i) it is easy to use,

requiring no special training for grammar writers with linguistics

backgrounds; (ii) it is a language separable from any particular

machine-dependent implementation and thus amenable to

optimizations at many levels; (iii) it avoids the typical explosion of

ad hoc procedural operations in the grammar, being a purely

declarative language; (iv) it is very flexible, accommodating a

variety of grammatical theories; and (v) it is order free, which

among other things means that the same grammar rules can be

used to generate as well as to analyze.

Our choice for an approach to the grammar was Combinatory

Categorial Grammar (Ades and Steedman 1982, Steedman 1985).

Though untested in natural language applications to date, we felt

this approach to grammar was particularly promising in the

following respects: (i) it handles English extraction phenomena

(wh-questions, relative clauses, etc.) efficiently and elegantly

withough resorting to empty rewrite rules or complicated feature

passing schemes; (ii) it accounts for more of English coordination

than alternative approaches without special rules or ad hoc

operations; (iii) it offers a method of accounting for free word

order and partially free word order with a simple and easily

extendable formalism; (iv) it suggests natural techniques for

dealing with lexical ambiguity and heuristic rule preferencing; (v)

it is particularly suitable for left-to-right, incremental processing

designs; and (vi) it is able to accomplish all this with a very small

rule base, relative to the alternatives.

Given the three design decisions just mentioned, we now come to

the subject of this paper, namely, the selection and design of a

parser for NL interface applications using the grammars and the

representation language we have just mentioned.

One of the first decisions in the MCC Lingo project on natural

language interfaces was to go with a general, syntactically-based

grammar. It was felt that, although semantically-based grammars

NATURAL LANGUAGE / 1053

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

2. Charts

First let us ask what we should expect from the parser

independently of the choices related to the grammar. The

following desiderata should speak for themselves: -

l A formally sound basis for the algorithm in order to

ensure termination, completeness, and tractability.

l Modes for grammar development that maximize

debugging facilities and inspection of parsing steps.

l The ability to tune particular grammars in particular

domains such that prototypes for efficient applied

systems can be developed.

l The potential to integrate semantics and contextual

factors into preferencing factors for the purposes of

tuning.

l A design that in principle allows for incorporating

credit assignment schemes to automate

individual performance situations.

adaptation to

l A design that does not preclude future adaptation to

parallel processing schemes.

For maximum flexibility and formal soundness, the most obvious

place to begin in constructing a parser is with some variant of

chart parsing (Kay 1980). The many advantages of charts have

been extolled by Kay and others and will not be repeated here.

One of the most persuasive pieces of evidence in favor of charts is

their widespread adoption. Charts, or something very similar,

have figured prominently in important theoretical work on parsing

from the computer science perspective, e.g., Earley (1970), in

natural language research, e.g., Kaplan (1973), Bear and

Karttunen (1979), Thompson (1981), Ford, Bresnan, and Kaplan

(1982), Martin, Church, and Patil (1981), Shieber (1985), and in

applied systems, e.g., Slocum (1981).

However, despite the popularity of chart parsing in the

literature, there has been relatively little attention in the more

theoretical quarters to the role of agendas in chart parsing For

whatever reason, there seems to be an association of chart parsing

in most published work with exhaustive breadth-first control

designs, despite the fact that Kay (1980) and also Kaplan (1973)

have written of the possibility of using an agenda to control the

enumeration order in maximally flexible ways. Research into

agenda driven chart parsers, on the other hand, seems to have

been mainly driven by psycholinguistic concerns (e.g., Ford,

Bresnan, and Kaplan 1982), not specifically by the need to develop

efficient applied systems.

However, for the needs of NL interface development, an agenda

is in fact the key ingredient. The advantages of having an agenda

as a control mechanism for a parser go well beyond matters of

increased efficiency. Retaining maximum flexibility for later

adjustments to a parser without having to scrap or radically alter

existing code or existing grammars is a major advantage. We will

see an example shortly of ‘the relative ease of adding meta-level

operations to the agenda structure. Other possible uses of an

agenda are (i) as a means of integrating semantics and contextual

factors into the scoring; (ii) as a framework for credit assignment

schemes to automate adaptation to individual performance

situations; and (iii) as the control mechanism for parallel

processing of parsing steps, a natural use of agendas pointed out

by Kay (1980), among others. And, to complete our list of

criteria, the presence of an inspectable control structure makes it

possible to develop sophisticated grammar development tools so

that the state of a parse can be examined at any point.

Another point worth making about chart parsing with agendas is

its relation to questions of whether the control proceeds left-right,

right-left, or some version of middle-out in processing natural

language input. Enumeration in this respect is completely

controlled by the heuristic ordering on the agenda, and any of

these designs can be achieved as long as appropriate heuristics and

agenda operations can be designed. In fact, an agenda can be

designed to allow any mix of these orders; attention can be

directed to any arbitrary area of the chart at any time, a property

which produces the effect of being able to suspend processing on

less promising paths with the possibility of resuming such

processing later if necessary. Thus it is hard to imagine a more

general algorithm with respect to control decisions.

2.1. Exhaustive VS. Partial Enumeration

While many chart-parsing algorithms use control schemes that

exhaustively enumerate the search space, there are a number of

reasons why exhaustive enumeration is unsuitable for NL interface

applications given the choices mentioned. The most obvious

reason is that syntactically based grammars of extensive coverage

admit staggering amounts of syntactic ambiguity for certain kinds

of constructions. For example, working with a corpus collected

through a Wizard-of-Oz experiment, Martin, Church, and Patil

(1981) found 958 parses for the sentence In as much as allocating

costs is u tough job I would like to have the total costs related to

each product. It seems safe to say that no matter what

optimizations are added to the parser, and Martin, Church, and

Patil added many, exhaustive enumeration in the face of such data

will probably not lead to satisfactory performance for a natural

language interface application.

Our choices relating to the representation language and the

grammar approach add further weight to this argument against

exhaustive enumeration. It is a commonly acknowledged fact that

unification of graphs tends to be expensive computationally,

mostly because unification is destructive of the graphs on which it

is called (see, e.g., Karttunen 1984). The expense is particularly

evident in chart parsing because, by definition, one needs to retain

edge graphs in their original state before unification as well as

create new edge graphs that reflect the result of unifying the

originals. Optimizations of the unification algorithm itself have

been suggested as a means for coping with this problem (Pereira

1985; Karttunen and Kay 1985). While such optimizations are

obviously welcome, another place to cut costs is to minimize the

calls to unification in the first place.* Avoiding complete

enumeration is a first step in this line.

Certain properties of Combinatory Categorial Grammars also

suggest that exhaustive enumeration in parsing is inappropriate.

As is detailed in Wittenburg (1985), a consequence of the

mechanism for handling extraction and certain kinds of

coordination in these grammars is the potential for ambiguous

interpretations that have identical content. Another way to say

this is that there are multiple paths through the search space of

rule firings which lead to the identical solution. The obvious

search method to use in such a domain avoids enumeration of all

paths, since there is no obvious reason to do so. This general plan

*
It is relevant to report, based on unpublished work by David Wroblewski, that

unification using structure sharing may not yield the expected dramatic

improvements in parsing performance. In fact, unification with structure sharing

has been (at least temporarily) shelved in the Lingo project.

1054 / ENGINEERING

has been embraced in the theoretical linguistics literature dealing

with the formal devices utilized in Combinatory Categorial

Grammar. It has been suggested that one should use heuristic

strategies in processing with these grammars in order to control

which grammar rules are most appropriate to fire in a given

context; as long as one proceeds forward to a successful parse, one

has no reason to fire all the rules one can.

There is one further motivation for avoiding exhaustive

enumeration that should be mentioned. Let us assume that

certain individual syntactic analyses admitted by the grammar are

designed so as to be ambiguous with respect to semantic

interpretation. This general idea has previously surfaced in work

by Church (1980), Pereira (1983), and Marcus, Hindle, and Fleck

(1983). In Wittenburg (1986a) various arguments are advanced for

using a one-to-many mapping from syntactic bracketings to

semantic interpretations in the case of extraposition from noun

phrases. Rich et al. (1986) g ive an account of how such ideas can

be extended to a variety of syntactic constructions and to the

semantic representation itself. Given this picture, we again have a

case of a search domain in which it is inappropriate to generate all

paths. For if we are able to reach a semantic interpretation

through more than one path, then we have no reason to continue

generating all paths once we have reached the first one. The

reason we can reach the same solution in these cases is different

than the reason mentioned above. We are assuming that within

the set of interpretations assigned to some syntactic analysis

reached by one path, there may be one or more of those

interpretations that are reachable by a different path. An example

would be a treatment of prepositional phrase attachment in which,

say, “high” attachment would yield the full set of attachments

from the semantic point of view while “low” attachment would

yield only one semantic interpretation that happens to be a

member of the first set.

Despite all these arguments against using exhaustive enumeration

in an application mode, there are arguments for using exhaustive

enumeration in a grammar development mode. Assuming that

there will be times when parsing fails in an application (whether

“hard” or “soft”), circumstances will probably arise in which all

the search space &ill have to be explored. It is very important to

have anticipated such an event during grammar development so

that undesirable rule interactions can be eliminated. Also it is

important to take note of the performance characteristics of the

parser under such circumstances. Thus a parser that can be

toggled between exhaustive and minimal enumeration, as well as

arbitrary points in between, is the best we can ask for. Agenda

controlled chart parsing offers this sort of flexibility.

2.2. Enumeration Order

The Earley algorithm (Earley 1970), along with other breadth-

first ordering schemes associated with chart parsing, is designed

for exhaustive enumeration of the grammar with respect to some

string during parsing. Although such a control mechanism by

itself is ill-suited for anything but exhaustive enumeration, there

have been some efforts at partitioning grammars in such a way as

to get partial enumeration with basically breadth-first ordering

(Slocum 1984). Given our additional motivation for keeping rule

firings to a minimum, however, even restricted breadth-first search

is less desirable than some of the alternatives. We should

distinguish, then, what is about to be proposed from other

suggestions in the literature for heuristically ordering a collection

of parses achieved with some form of breadth-first enumeration

(e.g., Robinson 1982, Heidorn 1982, Slocum 1984). What is of

maximum benefit for our purposes is a design that could return

just the best parse, first of all, but that could continue to

enumerate other parses if subsequent semantic processing deems

it necessary.

Among the alternatives to breadth-first order is a depth-first,

backtracking design, but since a strength of charts in general is

that they do not require backtracking, a more attractive choice is

a so-called “best-first” control scheme. Best-first search is of

course a well-known paradigm in the A.I. literature. A number of

interesting observations can be made about chart parsing from the

perspective of heuristic graph search.

l The search can be represented as a standard or graph

(as opposed to an and/or graph).

l The system is commutative in the sense of Nilsson

(1980); thus the control scheme can be irrevocable, i.e.,

it need not involve backtracking.

l The chart itself as database has, under certain

conditions, the implicit effect of merging nodes in the

search graph appropriately; thus, there may be no need

to check whether newly added nodes have already been

generated in the search graph.

l The relative lengths of alternate paths through the

search graph to the solution are of little importance;

thus admissability of the search algorithm is not a

strong factor.

l On the other hand, the optimality of the algorithm,

i.e., a measure of the total number of nodes in the

complete search graph that are expanded, will have a

strong bearing on efficiency.

l The set of edges appearing on a chart can be looked at

as the closed nodes in a best-first search algorithm; the

other data structure we need is one to keep track of

open nodes, which can be viewed as an agenda of

possible actions to take.**

These characteristics of chart parsing, then, allow a

simplification of the general graph-searching procedure presented

in Nilsson (1980). We now turn to an overview of the algorithm

itself.

3. The Best-First Algorithm

My purpose here is not to present the best-first chart parsing

algorithm in depth. Readers may consult the original sources or

Wittenburg (1986b) for detail in this respect. What I wish to do is

highlight certain features of the algorithm that help achieve the

goals outlined above.

The parser for this project has been dubbed Astro, which is a

reflection of the importance of the A* search algorithm (Hart,

Nilsson, and Raphael 1968) in its design. The algorithm we use is

less general than previously published chart parsing algorithms in

two respects. We assume a grammar whose rules have only binary

or unary daughters. Such a simplification is a consequence of the

**
Intuitively, closed nodes in a heuristic search algorithm are options that have

been exercised; open nodes are options which have been generated during the search

but which have not yet been exercised. The observation that chart edges can be

viewed as closed nodes must be understood in light of the fact that in the algorithm

discussed here, an edge is placed on the chart concurrent with the expansion of all

successors of that edge on the agenda.

NATURAL LANGUAGE ! 1055

grammars being used in the MCC Lingo project, and not an

inherent restriction due to chart parsing. Most published chart

parsing algorithms generalize to grammars that have rules with

right hand sides of arbitrary length by using the dotted rule

technique introduced by Earley (1970). However, there is no

motivation for complicating the algorithm in this way when using

Combinatory Categorial Grammars; the effect of dotted rules is in

fact already achieved in the categories of such grammars. The

only binary rules that are needed are a small, fixed number of

very general combination rules, operating over these complex

categories. The remainder of the grammar consists of unary rules,

which have the effect of altering the complex categories in some

way. The second point about this chart parsing algorithm with

respect to previously published ones is that it does not permit

formal operations such as transformations or register setting as

was done by Kaplan (1973), nor is it designed for backtracking. In

our experience, these simplifications allow more flexibility in some

of the agenda maintence aspects of the system.

3.1. The Main Loop

The following procedure suffices as a basis for the main loop; it

follows the basic organization of Nilsson (1980:64).

1. Initialize *agenda*

2. Initialize *chart*.

3. LOOP: if *agenda* is empty, exit with failure.

4. Select the best action from the *agenda*, remove it

from the *agenda*, and apply the action, Set *best-

edge* to the new edge added to the *chart*, if any;

else, NIL.

5. If *best-edge* satisfies the terminating conditions, exit

successfully.

6. If *best-edge* is non-nil, generate the

successors. Install the members of M on

following a heuristic ordering scheme.

7. Go LOOP.

algorithm that achieves a major

set A4 of its

the *agenda*,

3.2. Generating Successors

The critical feature of this

efficiency advantage for graph-unification-based formalisms can be

found in the generate successors step, which appears in step 6 of

the main loop, and also in chart initialization. We make a critical

distinction between checking to see if a rule call is likely to

succeed and actually applying a rule to a set of edges. The

checking operation is a part of generating the successors of a new

edge on the chart, leading to augmentations on the agenda only,

while actually applying a rule call is done only when invoking the

highest ranked action on the agenda. Given this distinction, we

can make make use of an optimized test function for checking edge

graphs for rule application, leaving actual unification with its

destructive effects to applying a rule call. Since the latter

operation is invoked much less often than the generate successors

step, there are major savings in unification costs. For graph

unification-based grammars, at least three options present

themselves for the test function. First is Shieber’s notion of

restricted unification (Shieber 1985). Second, Karttunen (1986)

has suggested a scheme where the destructive effects of unification

can be undone. Last, a more “porous” , but more efficient

check-graphs function could be used that is nondestructive of its

graph arguments. The last of these options is the one used in the

Lingo project; it seems the best choice given our algorithm because

there are no penalties, except a slight downgrade in performance,

if rule calls generated in step 6 fail to apply successfully once they

are chosen upon iteration in step 4.

3.3. The heuristic function

Critical to the success of this algorithm, as with all algorithms

based on heuristic graph search, is the choice of a heuristic

function to order the successors of a given node expansion.

Developing the right set of heuristics is the product of intuition,

trial, and error, and depends upon the particulars of the grammar

and the domain. Here we mention some general factors that are a

start for designing a heuristic function.

l An important factor in scoring any rule call is the span

of the edge to be added to the chart if the rule fires

successfully. This span can be computed from the

spans of the daughter edges in the rule call. In general,

longer spans should be favored.***

l The rules that are more likely to lead to success should

be given higher intrinsic scores, and play a role in

scoring a rule call.

l The linguistic content in the edges involved in a rule

call should also play a role. Differentiating among the

scores of ambiguous lexical sense assignments is one

method for designing heuristics that take advantage of

the fact that some word senses will be statistically

more likely than others in certain domains of discourse.

Naturally, such heuristics will tend to become much more refined

and sophisticated through experience with particular grammars,

lexicons, and corpora. Automated techniques for statistical

information gathering and heuristic refinement are always a

possibility.

4. Refinements

We make mention here of two useful refinements to the basic

chart parsing algorithm. The first introduces a technique for

making environments for unary rules more restrictive, thus
a

avoiding ultimately useless unary rule applications. Also we

review a technique to partition the rules of the grammar that is

used to optimize the generate successors step. The partitioning of

the grammar in this way also allows for further heuristic control

of the parser’s actions.

4.1. Avoiding useless unary rule proposals

Many chart parsing algorithms developed for context-free

grammars make use of relations in the grammar which can prune

the total search space. Kay (1980) mentions collecting this sort of

reachability information into tables which help control parsing

actions. Calls to unary rule productions are an obvious candidate

to attempt to prune from the search space for Combinatory

Categorial Grammars. It is a general fact about unary rules that

*et
Note that this scheme by itself will tend to favor binary rule applications over

unary rule applications.

Among

ungrammatical

This

agenda items

the rules may be some whose function is to

input. These, in general, will receive a lower priority.

recover from

augmentation also helps to establish a heuristic scoring technique for

involving unary rule calls. See Wittenburg (1986b) for details.

1056 / ENGINEERING

they tend to be overly promiscuous, i.e., typically, the right-hand- grammar by assigning different weights to partitions as a whole.

side of the rule is a poor measure by itself of the ultimate Thus we can postpone the checking of subsets of rules that are less

usefulness of a unary rule application. Even when a unary rule

call can succeed in adding an additional edge to the chart, that

edge often turns out to be unable to combine with edges on either

side. Adding superfluous edges like this in chart parsing has the

effect of making subsequent operations more expensive since this

new edge must now be taken under consideration in all generate

successors procedures involving any adjacent edges. What is

called for then is the computation of some grammar relation that

can be used to further restrict the conditions for applications of

unary rules. A relation that has been found to be useful in this

regard we call the e&ended sister relation. It is defined as

follows: node A is an extended sister of node B if and only if there

exists some node (Y that is a sister of node p where cr is a non-

branching exhaustive dominator of A and @ is a non-branching

exhaustive dominator of B. In the derivation tree below, extended

sisters of A are shown as all B’s that can stand in the relation

shown.

likely or perhaps whose checking is more expensive than other

subsets. Also, it is possible to define a single check for an entire

grammar partition that in one fell swoop can eliminate the further

consideration of any of those rules for the edge sets in question.

5. Evaluation and further study

Since the makeup of the heuristic function itself plays such a

critical role in a parser based on heuristic graph search, it is

difficult to evaluate the efficiency of the design in the general case

when compared to other non-heuristically based designs. For

chart parsing systems that use different representation languages

and different grammars than the ones used in the Lingo project,

some of the arguments advanced here in favor of a best-first

enumeration order would lose force. However, given an NL

interface application, a graph-unification-based representation

language, Combinatory Categorial Grammars, and a many-to-one

mapping from syntactic bracketings to semantic representations, it

is hard to imagine that any radically different alternative could

beat the parsing program we have outlined here on the grounds of

efficiency, clarity, and flexibility. Experience in the Lingo project

indicates an overwhelming performance improvement with a best-

first parsing design when compared to a non-selective, bottom-up,

/\/\

P Q P

I I I

= = =

I I I

B A B

The extended sister relation is used in the following way. We

precompute a grammar table that holds the extended sisters for

the left-hand-sides of each unary rule. An additional condition for

unary-rule-call successors of a new edge is now that some adjacent

edge must match at least one of the extended sisters of the left-

hand-side of that unary rule. As pointed out in Wittenburg

(1986b), a consequence of this move is that the generate successors

step now has to consider as successors of a given edge not just

those unary rule calls which apply to the edge directly, but also

those unary rule calls which involve the edge as an extended sister.

4.2. Mets Agenda Items

An additional augmentation that we have implemented involves

adding a new type of agenda item. In the basic best-first

algorithm, agenda items are made up of rule calls over a set of

edges. These agenda items are generated by checking these edges

against all the rules in in the grammar, weeding out all rules

which fail the test. It is also possible to define a meta agenda item

that generates these basic agenda items, i.e., that itself generates

these rule calls. This augmentation is a way of breaking apart the

iteration of checking the edges with respect to the whole grammar

into n steps corresponding to a partitioning of the set of grammar

rules into n cells.

the edges in E’ with respect to the grammar rules of partition P

Adding this sort of agenda item has the effect that in the

only. Any rules which then pass these further tests will result in

generate successors step, we produce agenda items of this new

type at the first pass. These new agenda items will have the form

[i, P, E’], where i is a heuristic score assignment, P is a partition

cell of the grammar rules, and E’ is a triple that represents the

new edge and its adjacent edges at the time the new edge was

added. Exercising an agenda item of this form involves checking

breadth-first

operation.

design that figured in our original bootstrapping

Current research involves evaluation and refinement of heuristic

scoring methods as well as a consideration of further design

changes involving the agenda. We are using a set of tools for the

tuning of grammars for particular corpora which take advantage

of the inspectable control structure of the chart. Longer-term

research includes the possibility of designing credit assignment

schemes to automatically adapt to specific performance situations.

We also count the possibility of incorporating some form of

buffering within the agenda structure so that attention can be

focused incrementally on local areas of the chart. Initial

experience indicates that such a factor would improve the

reliability of heuristics, which tends to be best when considered in

a local fashion rather than globally. Also, left-to-right buffering

could lead to a cascading design feeding into semantic and

pragmatic components, an important step towards any future

approximations of real-time parsing.

Acknowledgements -

The work reported on here involved many others at MCC

besides the author. I gratefully acknowledge the contribution of

other members of the Lingo team to this work. In particular,

Elaine Rich made extensive contributions to the research itself and

also offered valuable comments on earlier drafts of this paper.

David Wroblewski has also made significant contributions to this

work, including the coding of structure-sharing algorithms for

graph unification and the design and coding of the window system

interface to the parser and grammar development environment. I

also wish to thank Lauri Karttunen for his long-standing support

and advice on parsing matters.

References
rule calls added to the agenda of a type that we assumed

previously. 1. Ades, A. and M. Steedman. 1982. On the Order of

Words. Linguistics and Philosophy 4: 517-558.

The advantages of incorporating this new type of agenda item

are that it is possible to heuristically order the iteration over the

NATURAL LANGUAGE / 1057

2. Bear, J., and L. Karttunen. 1979. PSG: A Simple

Phrase Structure Parser. Texas Linguistic Forum 15:

l-46.

3. Church, K. 1980. On Memory Limitations in Natural

Language Processing. MIT Doctoral Dissertation.

[Available through the Indiana University Linguistics

Club.]

4. Earley, J. 1970. An Efficient Context-Free Parsing

Algorithm. Communications of the ACM 13:94-102.

5. Ford, M., J. Bresnan, and R. Kaplan. 1982. A

Competence-Based Theory of Syntactic Closure. In

J. Bresnan (ed.), The Mental Representation of

Grammatical Relations, pp. 727-796. Cambridge,

Mass.: MIT.

6. Hart, P., N. Nilsson, and B. Raphael. 1968. A Formal

Basis for the Heuristic Determination of Minimum Cost

Paths. IEEE Transactions on SSC 4:100-107.

7. Hayes, P., P. Andersen, and S. Safier. 1985. Semantic

Caseframe Parsing and Syntactic Generality. In

Proceedings of the 23rd Meeting of the Association for

Computational Linguistics, pp. 153-160.

8. Heidorn, G. 1982. Experience with an Easily

Computed Metric for Ranking Alternative Parses. In

Proceedings of the 20th Meeting of the Association for

Computational Linguistics, pp. 82-84.

9. Kaplan, R. 1973. A General Syntactic Processor. In

R. Rustin (ed.), Natural Language Processing, pp.

193-241. New York: Algorithmics.

10. Karttunen, L. 1984. Features and Values. Proceedings

of Coling, pp. 28-33. Association for Computational

Linguistics.

11. Karttunen, L. 1986. HUG: A development environment

for unification-based grammars. Unpublished ms., SRI

International and CSLI, Stanford University.

12. Karttunen, L., and M. Kay. 1985. Structure Sharing

with Binary Trees. In Proceedings of the 23rd Meeting

of the Association for Computational Linguistics, pp.

133-136.

13. Kay, M. 1980. Algorithm Schemata and Data

Structures in Syntactic Processing. Xerox Palo Alto

Research Center, tech report no. CSL-80-12.

14. Marcus, M., D, Hindle, and M. Fleck. 1983. D-Theory:

Talking about Talking about Trees. In Proceedings of

the 21st Annual Meeting of the Association for

Computational Linguistics, pp. 129-136.

15. Martin, P., D. Appelt, and F. Pereira. 1983.

Transportability and Generality in a Natural-Language

Interface System. In Proceedings of IJCAI, pp.574-581.

16. Martin, W., K. Church, and R. Patil. 1981.

Preliminary Analysis of a Breadth-First Parsing

Algorithm: Theoretical and Experimental Results.

MIT tech report no. MIT/LCS/TR-261.

17. Nilsson, N. 1980. Principles of Artificial Intelligence.

Palo Alto, Ca.: Tioga.

18. Pereira, F. 1983. Logic for Natural Language Analysis.

Technical note 275, A.I. Center, SRI International.

19. Pereira, F. 1985. A Structure-Sharing Representation

for Unification-Based Grammar Formalisms. In

Proceedings of the 23rd Meeting of the Association for

Computational Linguistics, pp. 137-144.

20. Rich, E., J. Barnett, K. Wittenburg, and

G. Whittemore. 1986. Ambiguity and Procrastination

in NL Interfaces. Technical report no. HI-073-86,

Microelectronics and Computer Technology

Corporation.

21. Robinson, J. 1982. DIAGRAM: A Grammar for

Dialogues. Communications of the ACM 25:27-37.

22. Shieber. S. 1984. The Design of a Computer Language

for Linguistic Information. Proceedings of Coling84,

pp. 362-366. Association for Computational Linguistics.

23. Shieber, S. 1985. Using Restriction to Extend Parsing

Algorithms for Complex-Feature-Based Formalisms. In

Proceedings of the 23rd Meeting of the Association for

Computational Linguistics, pp. 145-152.

24. Shieber, S. 1986. An Introduction to Unification-Based

Approaches to Grammar. Chicago: University of

Chicago Press, forthcoming.

25. Slocum, J. 1984. METAL: The LRC Machine

Translation System. Paper presented at the ISSCO

Tutorial on Machine Translation, April 2-6, 1984,

Lugano, Switzerland. [Working paper no. LRC-84-2,

Linguistics Research Center, University of Texas at

Austin .]

26. Steedman, M. 1985. Dependency and Coordination in

the Grammar of Dutch and English. Language

61:523-568.

27. Thompson, H. 1981. Chart Parsing and Rule

Schemata in PSG. In Proceedings of the 19th Annual

Meeting of the Association for Computational

Linguistics, pp. 167-172.

28. Wittenburg, K. 1985. Some Properties of Combinatory

Categorial Grammars of Relevance to Parsing. Paper

presented at the Annual Meeting of the Linguistics

Society of America, December 27-30, Seattle. [MCC

tech report no. HI-012-86.1

29. Wittenburg, K. 1986a. Extraposition from NP as

Anaphora. To appear in Syntax and Semantics,

Volume 20: Discontinuous Constituencies. New York:

Academic. [MCC tech report no. HI-118-85.1

30. Wittenburg, K. 1986b. Parsing as Heuristic Graph

Search. Technical report no. HI-075-86,

Microelectronics and Computer Technology

Corporation.

1058 / ENGINEERING

