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Abstract 

This paper presents the reasoning behind the selection and design 

of a parser for the Lingo project on natural language interfaces at 

MCC. The major factors in the selection of the parsing algorithm 

were the choices of having a syntactically based grammar, using a 

graph-unification-based representation language, using 

Combinatory Categorial Grammars, and adopting a one-to-many 

mapping from syntactic bracketings to semantic representations in 

certain cases. The algorithm chosen is a variant of chart parsing 

that uses a best-first control structure managed on an agenda. It 

offers flexibility for these natural language processing applications 

by allowing for best-first tuning of parsing for particular 

grammars in particular domains while at the same time allowing 

exhaustive enumeration of the search space during grammar 

development. Efficiency advantages of this choice for graph- 

unification-based representation languages are outlined, as well as 

a number of other advantages that acrue to this approach by 

virtue of its use of an agenda as a control structure. We also 

mention two useful refinements to the basic best-first chart 

parsing algorithm that have been implemented in the Lingo 

project. 

1. Introduction 

In designing a portable natural language (NL) interface, one of 

the first crucial decisions is whether to require of the grammar 

used in the system that it be syntactically or semantically based. 

Existing NL interface systems can be classified along these lines: 

there are those that use a syntactically based, general grammar of 

English, e.g., TEAM (Martin, Appelt, and Pereira 1983), versus 

those that use a semantically based grammar particular to the 

domain, e.g., Plume (Hayes, Andersen, amd Safier 1985). The 

semantically based grammars offer customization of the entire 

system for the domain; robustness of parsing along domain 

sensitive lines is an advantage usually cited. However, they 

generally suffer from patchiness of syntactic coverage and the 

grammar must be rewritten from scratch, in general, for each new 

domain. The syntactically based grammars, on the other hand, 

offer the advantage of being able to avoid rehacking the grammar 

for each new domain and achieving a greater level of generality 

and sophistication in the syntactic variations of the input. 

Robustness of parsing is a component in the syntactically-based 

systems which, along with semantics generally, must be attended 

to separately; though robustness is obviously not precluded by this 

initial design choice, it does not come for free since it is not 

entwined with the grammar itself. 

may offer advantages in the short run for relatively 

unsophisticated systems in highly constrained domains, 

syntactically based grammars offer a modularity in design that 

will achieve greater payoffs in the long run. Not only does the 

modularity enhance transportability to new applications, but also, 

it makes possible the greater sophistication required for interfaces 

to knowledge-based applications of the future. 

Given this first design choice, the next step was to choose a 

formalism for grammar representation and an approach to the 

grammar itself. The representation language chosen was a graph- 

unification-based formalism, in particular, one based on Karttunen 

(1984) and Shieber (1984). Graph-unification-based representation 

languages have had a tremendous impact in the field of 

computational linguistics, and in fact have been incorporated in 

one form or another into a number of influential linguistic theories 

(see Shieber 1986 for discussion). Among the many advantages of 

a graph-unification-based formalism are (i) it is easy to use, 

requiring no special training for grammar writers with linguistics 

backgrounds; (ii) it is a language separable from any particular 

machine-dependent implementation and thus amenable to 

optimizations at many levels; (iii) it avoids the typical explosion of 

ad hoc procedural operations in the grammar, being a purely 

declarative language; (iv) it is very flexible, accommodating a 

variety of grammatical theories; and (v) it is order free, which 

among other things means that the same grammar rules can be 

used to generate as well as to analyze. 

Our choice for an approach to the grammar was Combinatory 

Categorial Grammar (Ades and Steedman 1982, Steedman 1985). 

Though untested in natural language applications to date, we felt 

this approach to grammar was particularly promising in the 

following respects: (i) it handles English extraction phenomena 

(wh-questions, relative clauses, etc.) efficiently and elegantly 

withough resorting to empty rewrite rules or complicated feature 

passing schemes; (ii) it accounts for more of English coordination 

than alternative approaches without special rules or ad hoc 

operations; (iii) it offers a method of accounting for free word 

order and partially free word order with a simple and easily 

extendable formalism; (iv) it suggests natural techniques for 

dealing with lexical ambiguity and heuristic rule preferencing; (v) 

it is particularly suitable for left-to-right, incremental processing 

designs; and (vi) it is able to accomplish all this with a very small 

rule base, relative to the alternatives. 

Given the three design decisions just mentioned, we now come to 

the subject of this paper, namely, the selection and design of a 

parser for NL interface applications using the grammars and the 

representation language we have just mentioned. 

One of the first decisions in the MCC Lingo project on natural 

language interfaces was to go with a general, syntactically-based 

grammar. It was felt that, although semantically-based grammars 
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2. Charts 

First let us ask what we should expect from the parser 

independently of the choices related to the grammar. The 

following desiderata should speak for themselves: - 

l A formally sound basis for the algorithm in order to 

ensure termination, completeness, and tractability. 

l Modes for grammar development that maximize 

debugging facilities and inspection of parsing steps. 

l The ability to tune particular grammars in particular 

domains such that prototypes for efficient applied 

systems can be developed. 

l The potential to integrate semantics and contextual 

factors into preferencing factors for the purposes of 

tuning. 

l A design that in principle allows for incorporating 

credit assignment schemes to automate 

individual performance situations. 

adaptation to 

l A design that does not preclude future adaptation to 

parallel processing schemes. 

For maximum flexibility and formal soundness, the most obvious 

place to begin in constructing a parser is with some variant of 

chart parsing (Kay 1980). The many advantages of charts have 

been extolled by Kay and others and will not be repeated here. 

One of the most persuasive pieces of evidence in favor of charts is 

their widespread adoption. Charts, or something very similar, 

have figured prominently in important theoretical work on parsing 

from the computer science perspective, e.g., Earley (1970), in 

natural language research, e.g., Kaplan (1973), Bear and 

Karttunen (1979), Thompson (1981), Ford, Bresnan, and Kaplan 

(1982), Martin, Church, and Patil (1981), Shieber (1985), and in 

applied systems, e.g., Slocum (1981). 

However, despite the popularity of chart parsing in the 

literature, there has been relatively little attention in the more 

theoretical quarters to the role of agendas in chart parsing For 

whatever reason, there seems to be an association of chart parsing 

in most published work with exhaustive breadth-first control 

designs, despite the fact that Kay (1980) and also Kaplan (1973) 

have written of the possibility of using an agenda to control the 

enumeration order in maximally flexible ways. Research into 

agenda driven chart parsers, on the other hand, seems to have 

been mainly driven by psycholinguistic concerns (e.g., Ford, 

Bresnan, and Kaplan 1982), not specifically by the need to develop 

efficient applied systems. 

However, for the needs of NL interface development, an agenda 

is in fact the key ingredient. The advantages of having an agenda 

as a control mechanism for a parser go well beyond matters of 

increased efficiency. Retaining maximum flexibility for later 

adjustments to a parser without having to scrap or radically alter 

existing code or existing grammars is a major advantage. We will 

see an example shortly of ‘the relative ease of adding meta-level 

operations to the agenda structure. Other possible uses of an 

agenda are (i) as a means of integrating semantics and contextual 

factors into the scoring; (ii) as a framework for credit assignment 

schemes to automate adaptation to individual performance 

situations; and (iii) as the control mechanism for parallel 

processing of parsing steps, a natural use of agendas pointed out 

by Kay (1980), among others. And, to complete our list of 

criteria, the presence of an inspectable control structure makes it 

possible to develop sophisticated grammar development tools so 

that the state of a parse can be examined at any point. 

Another point worth making about chart parsing with agendas is 

its relation to questions of whether the control proceeds left-right, 

right-left, or some version of middle-out in processing natural 

language input. Enumeration in this respect is completely 

controlled by the heuristic ordering on the agenda, and any of 

these designs can be achieved as long as appropriate heuristics and 

agenda operations can be designed. In fact, an agenda can be 

designed to allow any mix of these orders; attention can be 

directed to any arbitrary area of the chart at any time, a property 

which produces the effect of being able to suspend processing on 

less promising paths with the possibility of resuming such 

processing later if necessary. Thus it is hard to imagine a more 

general algorithm with respect to control decisions. 

2.1. Exhaustive VS. Partial Enumeration 

While many chart-parsing algorithms use control schemes that 

exhaustively enumerate the search space, there are a number of 

reasons why exhaustive enumeration is unsuitable for NL interface 

applications given the choices mentioned. The most obvious 

reason is that syntactically based grammars of extensive coverage 

admit staggering amounts of syntactic ambiguity for certain kinds 

of constructions. For example, working with a corpus collected 

through a Wizard-of-Oz experiment, Martin, Church, and Patil 

(1981) found 958 parses for the sentence In as much as allocating 

costs is u tough job I would like to have the total costs related to 

each product. It seems safe to say that no matter what 

optimizations are added to the parser, and Martin, Church, and 

Patil added many, exhaustive enumeration in the face of such data 

will probably not lead to satisfactory performance for a natural 

language interface application. 

Our choices relating to the representation language and the 

grammar approach add further weight to this argument against 

exhaustive enumeration. It is a commonly acknowledged fact that 

unification of graphs tends to be expensive computationally, 

mostly because unification is destructive of the graphs on which it 

is called (see, e.g., Karttunen 1984). The expense is particularly 

evident in chart parsing because, by definition, one needs to retain 

edge graphs in their original state before unification as well as 

create new edge graphs that reflect the result of unifying the 

originals. Optimizations of the unification algorithm itself have 

been suggested as a means for coping with this problem (Pereira 

1985; Karttunen and Kay 1985). While such optimizations are 

obviously welcome, another place to cut costs is to minimize the 

calls to unification in the first place.* Avoiding complete 

enumeration is a first step in this line. 

Certain properties of Combinatory Categorial Grammars also 

suggest that exhaustive enumeration in parsing is inappropriate. 

As is detailed in Wittenburg (1985), a consequence of the 

mechanism for handling extraction and certain kinds of 

coordination in these grammars is the potential for ambiguous 

interpretations that have identical content. Another way to say 

this is that there are multiple paths through the search space of 

rule firings which lead to the identical solution. The obvious 

search method to use in such a domain avoids enumeration of all 

paths, since there is no obvious reason to do so. This general plan 

* 
It is relevant to report, based on unpublished work by David Wroblewski, that 

unification using structure sharing may not yield the expected dramatic 

improvements in parsing performance. In fact, unification with structure sharing 

has been (at least temporarily) shelved in the Lingo project. 
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has been embraced in the theoretical linguistics literature dealing 

with the formal devices utilized in Combinatory Categorial 

Grammar. It has been suggested that one should use heuristic 

strategies in processing with these grammars in order to control 

which grammar rules are most appropriate to fire in a given 

context; as long as one proceeds forward to a successful parse, one 

has no reason to fire all the rules one can. 

There is one further motivation for avoiding exhaustive 

enumeration that should be mentioned. Let us assume that 

certain individual syntactic analyses admitted by the grammar are 

designed so as to be ambiguous with respect to semantic 

interpretation. This general idea has previously surfaced in work 

by Church (1980), Pereira (1983), and Marcus, Hindle, and Fleck 

(1983). In Wittenburg (1986a) various arguments are advanced for 

using a one-to-many mapping from syntactic bracketings to 

semantic interpretations in the case of extraposition from noun 

phrases. Rich et al. (1986) g ive an account of how such ideas can 

be extended to a variety of syntactic constructions and to the 

semantic representation itself. Given this picture, we again have a 

case of a search domain in which it is inappropriate to generate all 

paths. For if we are able to reach a semantic interpretation 

through more than one path, then we have no reason to continue 

generating all paths once we have reached the first one. The 

reason we can reach the same solution in these cases is different 

than the reason mentioned above. We are assuming that within 

the set of interpretations assigned to some syntactic analysis 

reached by one path, there may be one or more of those 

interpretations that are reachable by a different path. An example 

would be a treatment of prepositional phrase attachment in which, 

say, “high” attachment would yield the full set of attachments 

from the semantic point of view while “low” attachment would 

yield only one semantic interpretation that happens to be a 

member of the first set. 

Despite all these arguments against using exhaustive enumeration 

in an application mode, there are arguments for using exhaustive 

enumeration in a grammar development mode. Assuming that 

there will be times when parsing fails in an application (whether 

“hard”  or “soft” ), circumstances will probably arise in which all 

the search space &ill have to be explored. It is very important to 

have anticipated such an event during grammar development so 

that undesirable rule interactions can be eliminated. Also it is 

important to take note of the performance characteristics of the 

parser under such circumstances. Thus a parser that can be 

toggled between exhaustive and minimal enumeration, as well as 

arbitrary points in between, is the best we can ask for. Agenda 

controlled chart parsing offers this sort of flexibility. 

2.2. Enumeration Order 

The Earley algorithm (Earley 1970), along with other breadth- 

first ordering schemes associated with chart parsing, is designed 

for exhaustive enumeration of the grammar with respect to some 

string during parsing. Although such a control mechanism by 

itself is ill-suited for anything but exhaustive enumeration, there 

have been some efforts at partitioning grammars in such a way as 

to get partial enumeration with basically breadth-first ordering 

(Slocum 1984). Given our additional motivation for keeping rule 

firings to a minimum, however, even restricted breadth-first search 

is less desirable than some of the alternatives. We should 

distinguish, then, what is about to be proposed from other 

suggestions in the literature for heuristically ordering a collection 

of parses achieved with some form of breadth-first enumeration 

(e.g., Robinson 1982, Heidorn 1982, Slocum 1984). What is of 

maximum benefit for our purposes is a design that could return 

just the best parse, first of all, but that could continue to 

enumerate other parses if subsequent semantic processing deems 

it necessary. 

Among the alternatives to breadth-first order is a depth-first, 

backtracking design, but since a strength of charts in general is 

that they do not require backtracking, a more attractive choice is 

a so-called “best-first”  control scheme. Best-first search is of 

course a well-known paradigm in the A.I. literature. A number of 

interesting observations can be made about chart parsing from the 

perspective of heuristic graph search. 

l The search can be represented as a standard or graph 

(as opposed to an and/or graph). 

l The system is commutative in the sense of Nilsson 

(1980); thus the control scheme can be irrevocable, i.e., 

it need not involve backtracking. 

l The chart itself as database has, under certain 

conditions, the implicit effect of merging nodes in the 

search graph appropriately; thus, there may be no need 

to check whether newly added nodes have already been 

generated in the search graph. 

l The relative lengths of alternate paths through the 

search graph to the solution are of little importance; 

thus admissability of the search algorithm is not a 

strong factor. 

l On the other hand, the optimality of the algorithm, 

i.e., a measure of the total number of nodes in the 

complete search graph that are expanded, will have a 

strong bearing on efficiency. 

l The set of edges appearing on a chart can be looked at 

as the closed nodes in a best-first search algorithm; the 

other data structure we need is one to keep track of 

open nodes, which can be viewed as an agenda of 

possible actions to take.** 

These characteristics of chart parsing, then, allow a 

simplification of the general graph-searching procedure presented 

in Nilsson (1980). We now turn to an overview of the algorithm 

itself. 

3. The Best-First Algorithm 

My purpose here is not to present the best-first chart parsing 

algorithm in depth. Readers may consult the original sources or 

Wittenburg (1986b) for detail in this respect. What I wish to do is 

highlight certain features of the algorithm that help achieve the 

goals outlined above. 

The parser for this project has been dubbed Astro, which is a 

reflection of the importance of the A* search algorithm (Hart, 

Nilsson, and Raphael 1968) in its design. The algorithm we use is 

less general than previously published chart parsing algorithms in 

two respects. We assume a grammar whose rules have only binary 

or unary daughters. Such a simplification is a consequence of the 

** 
Intuitively, closed nodes in a heuristic search algorithm are options that have 

been exercised; open nodes are options which have been generated during the search 

but which have not yet been exercised. The observation that chart edges can be 

viewed as closed nodes must be understood in light of the fact that in the algorithm 

discussed here, an edge is placed on the chart concurrent with the expansion of all 

successors of that edge on the agenda. 
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grammars being used in the MCC Lingo project, and not an 

inherent restriction due to chart parsing. Most published chart 

parsing algorithms generalize to grammars that have rules with 

right hand sides of arbitrary length by using the dotted rule 

technique introduced by Earley (1970). However, there is no 

motivation for complicating the algorithm in this way when using 

Combinatory Categorial Grammars; the effect of dotted rules is in 

fact already achieved in the categories of such grammars. The 

only binary rules that are needed are a small, fixed number of 

very general combination rules, operating over these complex 

categories. The remainder of the grammar consists of unary rules, 

which have the effect of altering the complex categories in some 

way. The second point about this chart parsing algorithm with 

respect to previously published ones is that it does not permit 

formal operations such as transformations or register setting as 

was done by Kaplan (1973), nor is it designed for backtracking. In 

our experience, these simplifications allow more flexibility in some 

of the agenda maintence aspects of the system. 

3.1. The Main Loop 

The following procedure suffices as a basis for the main loop; it 

follows the basic organization of Nilsson (1980:64). 

1. Initialize *agenda* 

2. Initialize *chart*. 

3. LOOP: if *agenda* is empty, exit with failure. 

4. Select the best action from the *agenda*, remove it 

from the *agenda*, and apply the action, Set *best- 

edge* to the new edge added to the *chart*, if any; 

else, NIL. 

5. If *best-edge* satisfies the terminating conditions, exit 

successfully. 

6. If *best-edge* is non-nil, generate the 

successors. Install the members of M on 

following a heuristic ordering scheme. 

7. Go LOOP. 

algorithm that achieves a major 

set A4 of its 

the *agenda*, 

3.2. Generating Successors 

The critical feature of this 

efficiency advantage for graph-unification-based formalisms can be 

found in the generate successors step, which appears in step 6 of 

the main loop, and also in chart initialization. We make a critical 

distinction between checking to see if a rule call is likely to 

succeed and actually applying a rule to a set of edges. The 

checking operation is a part of generating the successors of a new 

edge on the chart, leading to augmentations on the agenda only, 

while actually applying a rule call is done only when invoking the 

highest ranked action on the agenda. Given this distinction, we 

can make make use of an optimized test function for checking edge 

graphs for rule application, leaving actual unification with its 

destructive effects to applying a rule call. Since the latter 

operation is invoked much less often than the generate successors 

step, there are major savings in unification costs. For graph 

unification-based grammars, at least three options present 

themselves for the test function. First is Shieber’s notion of 

restricted unification (Shieber 1985). Second, Karttunen (1986) 

has suggested a scheme where the destructive effects of unification 

can be undone. Last, a more “porous” , but more efficient 

check-graphs function could be used that is nondestructive of its 

graph arguments. The last of these options is the one used in the 

Lingo project; it seems the best choice given our algorithm because 

there are no penalties, except a slight downgrade in performance, 

if rule calls generated in step 6 fail to apply successfully once they 

are chosen upon iteration in step 4. 

3.3. The heuristic function 

Critical to the success of this algorithm, as with all algorithms 

based on heuristic graph search, is the choice of a heuristic 

function to order the successors of a given node expansion. 

Developing the right set of heuristics is the product of intuition, 

trial, and error, and depends upon the particulars of the grammar 

and the domain. Here we mention some general factors that are a 

start for designing a heuristic function. 

l An important factor in scoring any rule call is the span 

of the edge to be added to the chart if the rule fires 

successfully. This span can be computed from the 

spans of the daughter edges in the rule call. In general, 

longer spans should be favored.*** 

l The rules that are more likely to lead to success should 

be given higher intrinsic scores, and play a role in 
**** 

scoring a rule call. 

l The linguistic content in the edges involved in a rule 

call should also play a role. Differentiating among the 

scores of ambiguous lexical sense assignments is one 

method for designing heuristics that take advantage of 

the fact that some word senses will be statistically 

more likely than others in certain domains of discourse. 

Naturally, such heuristics will tend to become much more refined 

and sophisticated through experience with particular grammars, 

lexicons, and corpora. Automated techniques for statistical 

information gathering and heuristic refinement are always a 

possibility. 

4. Refinements 

We make mention here of two useful refinements to the basic 

chart parsing algorithm. The first introduces a technique for 

making environments for unary rules more restrictive, thus 
**a** 

avoiding ultimately useless unary rule applications. Also we 

review a technique to partition the rules of the grammar that is 

used to optimize the generate successors step. The partitioning of 

the grammar in this way also allows for further heuristic control 

of the parser’s actions. 

4.1. Avoiding useless unary rule proposals 

Many chart parsing algorithms developed for context-free 

grammars make use of relations in the grammar which can prune 

the total search space. Kay (1980) mentions collecting this sort of 

reachability information into tables which help control parsing 

actions. Calls to unary rule productions are an obvious candidate 

to attempt to prune from the search space for Combinatory 

Categorial Grammars. It is a general fact about unary rules that 

*et 
Note that this scheme by itself will tend to favor binary rule applications over 

unary rule applications. 

**** 
Among 

ungrammatical 

***** 
This 

agenda items 

the rules may be some whose function is to 

input. These, in general, will receive a lower priority. 

recover from 

augmentation also helps to establish a heuristic scoring technique for 

involving unary rule calls. See Wittenburg (1986b) for details. 
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they tend to be overly promiscuous, i.e., typically, the right-hand- grammar by assigning different weights to partitions as a whole. 

side of the rule is a poor measure by itself of the ultimate Thus we can postpone the checking of subsets of rules that are less 

usefulness of a unary rule application. Even when a unary rule 

call can succeed in adding an additional edge to the chart, that 

edge often turns out to be unable to combine with edges on either 

side. Adding superfluous edges like this in chart parsing has the 

effect of making subsequent operations more expensive since this 

new edge must now be taken under consideration in all generate 

successors procedures involving any adjacent edges. What is 

called for then is the computation of some grammar relation that 

can be used to further restrict the conditions for applications of 

unary rules. A relation that has been found to be useful in this 

regard we call the e&ended sister relation. It is defined as 

follows: node A is an extended sister of node B if and only if there 

exists some node (Y that is a sister of node p where cr is a non- 

branching exhaustive dominator of A and @ is a non-branching 

exhaustive dominator of B. In the derivation tree below, extended 

sisters of A are shown as all B’s that can stand in the relation 

shown. 

likely or perhaps whose checking is more expensive than other 

subsets. Also, it is possible to define a single check for an entire 

grammar partition that in one fell swoop can eliminate the further 

consideration of any of those rules for the edge sets in question. 

5. Evaluation and further study 

Since the makeup of the heuristic function itself plays such a 

critical role in a parser based on heuristic graph search, it is 

difficult to evaluate the efficiency of the design in the general case 

when compared to other non-heuristically based designs. For 

chart parsing systems that use different representation languages 

and different grammars than the ones used in the Lingo project, 

some of the arguments advanced here in favor of a best-first 

enumeration order would lose force. However, given an NL 

interface application, a graph-unification-based representation 

language, Combinatory Categorial Grammars, and a many-to-one 

mapping from syntactic bracketings to semantic representations, it 

is hard to imagine that any radically different alternative could 

beat the parsing program we have outlined here on the grounds of 

efficiency, clarity, and flexibility. Experience in the Lingo project 

indicates an overwhelming performance improvement with a best- 

first parsing design when compared to a non-selective, bottom-up, 

/\/\ 

P Q P 

I I I 

= = = 

I I I 

B A B 

The extended sister relation is used in the following way. We 

precompute a grammar table that holds the extended sisters for 

the left-hand-sides of each unary rule. An additional condition for 

unary-rule-call successors of a new edge is now that some adjacent 

edge must match at least one of the extended sisters of the left- 

hand-side of that unary rule. As pointed out in Wittenburg 

(1986b), a consequence of this move is that the generate successors 

step now has to consider as successors of a given edge not just 

those unary rule calls which apply to the edge directly, but also 

those unary rule calls which involve the edge as an extended sister. 

4.2. Mets Agenda Items 

An additional augmentation that we have implemented involves 

adding a new type of agenda item. In the basic best-first 

algorithm, agenda items are made up of rule calls over a set of 

edges. These agenda items are generated by checking these edges 

against all the rules in in the grammar, weeding out all rules 

which fail the test. It is also possible to define a meta agenda item 

that generates these basic agenda items, i.e., that itself generates 

these rule calls. This augmentation is a way of breaking apart the 

iteration of checking the edges with respect to the whole grammar 

into n steps corresponding to a partitioning of the set of grammar 

rules into n cells. 

the edges in E’ with respect to the grammar rules of partition P 

Adding this sort of agenda item has the effect that in the 

only. Any rules which then pass these further tests will result in 

generate successors step, we produce agenda items of this new 

type at the first pass. These new agenda items will have the form 

[i, P, E’], where i is a heuristic score assignment, P is a partition 

cell of the grammar rules, and E’ is a triple that represents the 

new edge and its adjacent edges at the time the new edge was 

added. Exercising an agenda item of this form involves checking 

breadth-first 

operation. 

design that figured in our original bootstrapping 

Current research involves evaluation and refinement of heuristic 

scoring methods as well as a consideration of further design 

changes involving the agenda. We are using a set of tools for the 

tuning of grammars for particular corpora which take advantage 

of the inspectable control structure of the chart. Longer-term 

research includes the possibility of designing credit assignment 

schemes to automatically adapt to specific performance situations. 

We also count the possibility of incorporating some form of 

buffering within the agenda structure so that attention can be 

focused incrementally on local areas of the chart. Initial 

experience indicates that such a factor would improve the 

reliability of heuristics, which tends to be best when considered in 

a local fashion rather than globally. Also, left-to-right buffering 

could lead to a cascading design feeding into semantic and 

pragmatic components, an important step towards any future 

approximations of real-time parsing. 
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