
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 17 2005, pages 3475–3481
doi:10.1093/bioinformatics/bti572

Sequence analysis

A parsimonious tree-grow method for haplotype inference
Zhenping Li1,2, Wenfeng Zhou1, Xiang-Sun Zhang2 and Luonan Chen3,∗
1Beijing Materials Institute, Beijing 101149, China, 2Chinese Academy of Sciences, Beijing 100080, China and
3Osaka Sangyo University, Osaka 574-8530, Japan

Received on May 24, 2005; revised on June 30, 2005; accepted on July 4, 2005

Advance Access publication July 7, 2005

ABSTRACT
Motivation: Haplotype information has become increasingly import-
ant in analyzing fine-scale molecular genetics data, such as disease
genes mapping and drug design. Parsimony haplotyping is one of
haplotyping problems belonging to NP-hard class.
Results: In this paper, we aim to develop a novel algorithm for the
haplotype inference problem with the parsimony criterion, based on a
parsimonious tree-grow method (PTG). PTG is a heuristic algorithm
that can find the minimum number of distinct haplotypes based on the
criterion of keeping all genotypes resolved during tree-grow process.
In addition, a block-partitioning method is also proposed to improve
the computational efficiency. We show that the proposed approach
is not only effective with a high accuracy, but also very efficient with
the computational complexity in the order of O(m2n) time for n single
nucleotide polymorphism sites in m individual genotypes.
Availability: The software is available upon request from the authors,
or from http://zhangroup.aporc.org/bioinfo/ptg/
Contact: chen@elec.osaka-sandai.ac.jp
Supplementary information: Supporting materials is available from
http://zhangroup.aporc.org/bioinfo/ptg/bti572supplementary.pdf

1 INTRODUCTION
Single nucleotide polymorphisms (SNPs) characterize most of gen-
omic variation in human populations. A haplotype is a SNP sequence
from each of the two copies of a given chromosome in a diploid
genome. In contrast, a genotype is a description of the mixture
information of the two haplotypes in a given chromosome. Recently,
haplotype information has become increasingly important in ana-
lyzing fine-scale molecular genetics data for a variety of purposes,
such as disease genes mapping and drug design. However, cur-
rent sequencing technology typically determines genotypes rather
than haplotypes owing to the requirement of tedious and costly
experiments. Such restriction makes in silico haplotyping attractive.

So far, many inference and statistical method have been proposed
for haplotyping, such as Clark method (Clark, 1990), parsimony
approaches (Gusfield, 2001; Lancia et al., 2001; Wang et al.,
2005), maximum-likelihood methods (Excoffier and Slatkin, 1995;
Hawley and Kidd, 1995), phylogeny-based approaches (Gusfield,
2002; Chung and Gusfield, 2003; Halperin and Eskin, 2004)
and Bayesian methods (Stephens et al., 2001; Niu et al., 2002).
In particular, the parsimony criterion that seeks the minimum num-
ber of haplotypes to explain a given set of genotypes has been widely

∗To whom correspondence should be addressed.

investigated owing to its intuitive simplicity and biological implica-
tion. Recently both Wang and Xu (2003) and Brown and Harrower
(2004) developed an exact algorithm to solve the haplotype inference
problem based on the parsimony condition, by the branch-and-bound
method and by integer programming method respectively. How-
ever, the pure parsimony haplotype inference problem is NP-hard
(Gusfield, 2001). Any exact algorithm generally suffers from the
curse of dimensionality, which impedes the application for analyzing
large-scale genomic data.

In this paper, we aim to develop a novel algorithm for the hap-
lotype inference problem with the parsimony criterion, based on a
parsimonious tree-grow method (PTG). We show that the proposed
approach is not only effective with a high accuracy but also very
efficient with the computational complexity in the order of O(m2n)

time for n SNP sites in m individual genotypes. The rest of this
paper is organized as follows. Section 2 gives a formal definition
of the haplotype inference problem. In Section 3, we explore PTG
to develop a new algorithm for the haplotype inference problem and
further analyze its computational complexity and optimality. Several
numerical experiments are provided in Section 4 to demonstrate the
proposed algorithm. In Section 5, we provide an algorithm to reduce
the genotype matrix to a smaller block matrix so as to improve the
efficiency of PTG algorithm. Finally, we give several general remarks
to conclude the paper in Section 6.

2 NOTATION
In this paper, we restrict ourselves to biallelic SNPs. Without loss of
generality, assume that the values of the two involved alleles of each
SNP are always 0 and 1, which represent the common allele and the
rare alleles, respectively. Since the SNPs are located sequentially on
a chromosome, a haplotype with length n is a vector over {0, 1}n,
where each position i is also called a site or a locus. However, a
genotype vector, or simply a genotype, represents two haplotypes as
a sequence of unordered pairs over the set {0, 1}. Each pair represents
the nucleotides in a given site. Since the pairs are unordered, we are
not able to determine the two haplotypes from the genotype alone.
For example, two haplotypes with length 3 are (0, 1, 1) and (1, 0, 1)

that are combined into the genotype [(0, 1), (0, 1), (1, 1)].
Whenever a pair is made of two identical values, the SNP site is

homozygous, otherwise it is heterozygous. Clearly, by the assump-
tion on the values of the alleles, the pair for a homozygous site is
(0, 0) or (1, 1), whereas the pair for a heterozygous site is (0, 1). In
contrast to the unordered pairs, the genotype can also be represented
by a compact form, i.e. a compact representation of the genotype
consists of a vector over the alphabet {0, 1, 2}, where one of the first

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org 3475

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/17/3475/212882 by guest on 20 August 2022

http://zhangroup.aporc.org/bioinfo/ptg/
http://zhangroup.aporc.org/bioinfo/ptg/bti572supplementary.pdf

Z.Li et al.

two symbols is used if the site is homozygous, and a 2 encodes a
heterozygous site. For example, the compact representation of the
genotype [(0, 1), (0, 1), (1, 1)] is therefore (2, 2, 1). Next, we only
use the compact form of genotype in this paper. If a genotype has no
heterozygous site, then we call it homozygote; otherwise we call it
heterozygote.

Given a genotype g = (g1, . . . , gn) ∈ {0, 1, 2}n, then a resolution
of g is a pair 〈h, k〉 of haplotypes, where h = (h1, . . . , hn) and
k = (k1, . . . , kn) are defined in such a way that hi = ki = gi if
gi �= 2; and hi , ki ∈ {0, 1} with hi �= ki if gi = 2. When the above
conditions hold, we also say that 〈h, k〉 resolves g, which is denoted
by h ⊕ k = g. Next, we give several definitions as well as a basic
result which is used in the proposed algorithm.

Definition 1. Let G = {g1, . . . , gm} be a set of m genotypes
where gi = gi1 · · · gin is the expression of the i-th genotype, and
gij ∈ {0, 1, 2} is the j -th SNP value in the i-th genotype. Then

G =




g11 g12 · · · g1n

g21 g22 · · · g2n

...
... · · · ...

gm1 gm2 · · · gmn


 (1)

is called a genotype matrix with m genotypes in n SNP sites.

Let

G[i, j] =




g1i g1i+1 · · · g1j

g2i g2i+1 · · · g2j

...
... · · · ...

gmi gmi+1 · · · gmj


 (2)

denote a submatrix comprising the columns from the i-th to the j -th
in G. Then this submatrix is a genotype submatrix of m genotype
fragments with consecutive j − i + 1 SNP sites, i.e., from the i-th
SNP site to the j -th SNP site. Denote the k-th row of G[i, j] by
gk[i, j], i.e. gk[i, j] = gkigki+1 · · · gkj , which is called a genotype
fragment.

Pure parsimony haplotype inference problem for a given input set
of m genotype vectors is to find a set of m pairs of haplotypes, one for
each genotype vector, such that the number of distinct haplotypes is
minimum. For convenience, let H(G) be a solution set of a haplotype
inference problem for a given genotype matrix G, and H∗(G) be the
optimal haplotype solution set with the parsimony criterion. Then,
H∗(G) is the solution with the smallest number of distinct haplotypes
that can resolve the genotypes G. Clearly |H∗(G)| ≤ |H(G)|, where
| · | means the number of elements in the set.

Proposition 1. For any 1 ≤ j ≤ n − 1, we have

|H∗(G[1, j])| ≤ |H∗(G[1, j + 1])|.

3 PARSIMONIOUS TREE-GROW
METHOD (PTG)

In this section, we propose a novel algorithm, called parsimoni-
ous tree-grow method (PTG), to solve the pure parsimony haplotype
inference problem for a given genotype matrix G. It is a heuristic
algorithm to find the minimal number of distinct haplotypes based
on the criterion of keeping all genotypes (or genotype fragments)
resolved during a tree-grow process.

3.1 Main idea of PTG
If a genotype matrix G has only one column, we can easily resolve
all genotypes in G by no more than two distinct haplotypes of length
1. If a genotype matrix (or submatrix) has k columns and we have
resolved the genotype submatrix G[1, k−1] by a haplotype fragment
set H(G[1, k −1]) of length k −1, then we can resolve the genotype
matrix (or submatrix) G[1, k] by a haplotype set H(G[1, k]) of length
k with every haplotype obtained by adding one SNP value 0 or 1 to
one of the haplotype fragments in H(G[1, k − 1]). In other words,
we can resolve the genotype matrix columns one by one. The resolv-
ing process is executed by a growing tree with minimal branching
principle, which we called as PTG. In the growing tree, successive
layers of the tree correspond to the successive columns, from the left
to the right of G. We denote a submatrix of G as G[1, j], and call
the rows gk[1, j], or simply gk(j) of G[1, j] as genotype fragments
or row fragments.

Each column of G is resolved one by one in a consecutive way.
Suppose that G[1, j] has been resolved and the tree has grown to the
j -th layer. In the process of resolving G[1, j + 1], the tree grows or
extends to a new layer, i.e. the (j + 1)-th layer, where every node
in the (j + 1)-th layer corresponds to a distinct haplotype fragment
of length j + 1 that can be used to resolve some row fragments in
G[1, j +1]. All nodes in the (j +1)-th layer correspond to all distinct
haplotype fragments that resolve all row fragments in G[1, j + 1].
When all the columns of G are resolved, each node in the final
layer corresponds to a unique haplotype, and thereby we can obtain
the parsimony haplotype solution set corresponding to the genotype
matrix G.

Before we describe the algorithm of PTG in detail, we introduce
several definitions. Let the genotype matrix G in Equation (1) have
m rows and n columns, and v01 = {1, . . . , m} be the index set of
rows, which is also the index set of genotypes.

Definition 2. For a given genotype matrix G, if there is an l for
1 ≤ l ≤ j such that gil = 2, then i is called a divided index in
the j -th layer. Otherwise, i is called an undivided index in the j -th
layer. To distinguish them, we use a boolean variable f (i) to denote
whether the index i is divided at each iteration of PTG program.

3.2 Algorithm of PTG
We first give the detail procedure of PTG, and then use an illustrative
example to demonstrate the performance of the algorithm.

Algorithm 1. PTG. Initialization: Input an m × n genotype
matrix G. Set a root node denoted by v01, which represents the index
set {1, . . . , m}, i.e. v01 = {1, . . . , m}. Set f (i) = false, for every
i = 1, . . . , m. Let j = 0, and go to step 1.

Step 1 Resolve submatrix G[1, j + 1].
Suppose that there are p nodes vj1, . . . , vjk , . . . , vjp in the j -th

layer of the growing tree, which corresponds to p distinct haplotype
fragments resolving G[1, j]. The nodes vj1, . . . , vjp also represent
their corresponding index sets. Do substeps 1.1 and 1.2 depicted
below.

Substep 1.1 For each 1 ≤ k ≤ p, and each i, (1 ≤ i ≤ m), if
i ∈ vjk , resolve the i-th genotype fragment in G[1, j] when i satisfies
either of the following two conditions:

Condition 1: gi,j+1 �= 2;
Condition 2: gi,j+1 = 2, and f (i) = false.

3476

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/17/3475/212882 by guest on 20 August 2022

A tree-grow method for haplotype inference

Otherwise, record the i in a set I (j); and record vjk in a node set
Tij , where Tij is a set of the j -th layer nodes that include node i.

• If gi,j+1 = 0, then add a branch of type 0 to the node vjk when
there is no branch of type 0 growing from node vjk ; add i to the
index set of the node v(j+1.), which is connected to the node vjk

by the existing branch or the just added branch of type 0.

• If gi,j+1 = 1, then add a branch of type 1 to the node vjk when
there is no branch of type 1 growing from node vjk ; add i to the
index set of the node v(j+1.), which is connected to the node vjk

by the existing or just added branch of type 1.

• If gi,j+1 = 2 and f (i) = false, then add a branch of type
0 (a branch of type 1) or both branches (one of type 0 and
the other of type 1) or nothing to the node vjk according to the
following cases: only one type of branch exists, no branch exists
or two types of branches exist. Add i into both index sets of the
(j + 1)-th layer nodes, which are connected to node vjk , set
f (i) = true.

Substep 1.2 For i ∈ I (j), suppose Tij = {vjk1
, vjk2

}, i.e. i

belongs to vjk1
and vjk2

. Check whether there are two different types
of branches growing separately from node vjk1

and vjk2
.

(1) If there are no two such different types of branches, then add a
proper type of branch to node vjk1

or vjk2
, or add two different

types of branches, one to node vjk1
and the other to node vjk2

.

(2) Choose (or randomly choose) a pair of different type branches,
one growing from node vjk1

, the other growing from node vjk2
.

Add i into both node index sets of the (j + 1)-th layer which
are connected to vjk1

or vjk2
by one of the chosen branches.

Step 2 If j + 1 < n, set j := j + 1 and return to Step 1.
Otherwise, assemble haplotypes as follows.

Trace each path from node v01 to every node in the n-th layer of the
growing tree. The sequence of branch type indices (0 or 1) of the path
gives a haplotype, which can be used to resolve the genotypes whose
indices belong to the corresponding node in the n-th layer. All the
haplotypes corresponding to the n-th layer nodes consist of H(G).

3.3 An illustrative example
To demonstrate the algorithm, we resolve a genotype matrix G as
follows:

G =



2 2 0
2 0 2
0 2 2


 .

Let a root node of the tree be v01 with index set v01 = {1, 2, 3}.
3.3.1 Resolve submatrix G[1, 1] (or the first column of G) We
first resolve genotype fragment g1[1, 1]. Since g11 = 2, we must use
two distinct haplotype fragments (0 and 1) to resolve g1[1, 1], which
results in a branch of type 0 and a branch of type 1 growing from
node v01. Denote the two new nodes in the first layer by v11 and v12,
and set v11 = {1} and v12 = {1}. Because index 1 is now a divided
index, set f (1) = true; then we resolve g1[1, 1].

Next, resolve the second genotype fragment g2[1, 1]. Despite
g21 = 2, since both the branch of type 0 and the branch of type
1 have grown from node v01, we add index 2 into both v11 and v12,
i.e. v11 = {1, 2}, v12 = {1, 2}. Set f (2) = true. Then, we resolve
g2[1, 1].

Fig. 1. Growing tree for resolving all three columns of G.

Finally, resolve the third genotype fragment g3[1, 1]. Since g31 =
0, and there is already a branch of type 0 growing from node v01,
we add index 3 into v11. Therefore, v11 = {1, 2, 3} and v12 = {1, 2},
which resolve g3[1, 1]. The result is shown in the first layer of tree
in Figure 1.

3.3.2 Resolve submatrix G[1, 2] (or the second column of G) First
check all indices in v11. Since 1 ∈ v11 with f (1) = true and g12 = 2,
we record the node 1 in a list I (1) to be treated later, and record v11

in T11, i.e. T11 = {v11}. Because 2 ∈ v11 with g22 = 0 and there
is no branch of type 0 growing from node v11 as well, we add a
branch of type 0 to node v11 and denote the new node by v21 and let
v21 = {2}. Since 3 ∈ v11 with f (3) = false and g32 = 2 and there is
no branch of type 1 growing from node v11, we add a branch of type
1 to node v11, denote the corresponding node attached to it by v22,
and further add index 3 to v21 and v22, i.e. v21 = {2, 3}, v22 = {3}.
Set f (3) = true. Now g3[1, 2] is resolved.

In the same manner, we can check all indices in v12. Since 1 ∈ v12

with f (1) = true and g12 = 2, we record v12 in T11, i.e. T11 =
{v11, v12}. Since 2 ∈ v12 with g22 = 0 and there is no branch of type
0 growing from node v12 as well, we add a branch of type 0 to node
v12 and denote the corresponding node by v23 and let v23 = {2}.
Now, g2[1, 2] is resolved.

According to substep 1.2 of the algorithm, now we consider the
indices in I (1). Since 1 ∈ I (1) and T11 = {v11, v12}, there are three
branches growing from nodes v11 and v12. Hence, we choose the
branch of type 1 growing from v11 and the branch of type 0 growing
from v12 to resolve g12 = 2, add index 1 in v22 and v23. Now g1[1, 2]
is resolved, and

v21 = {2, 3}, v22 = {1, 3}, v23 = {1, 2}.
3.3.3 Resolve submatrix G[1, 3] (or the third column of G) In the
same manner as the above two iterations, we obtain the index sets
for the third layer nodes:

v31 = {1, 3}, v32 = {1, 2}, v33 = {2, 3},
which finally solve the haplotyping problem to the given G.

The final tree is depicted in Figure 1, which has three nodes in the
last layer corresponding to three distinct haplotypes. By tracing all
paths, we obtain three haplotypes for resolving all genotypes in G,

H∗(G) = {001, 010, 100},
which is actually the optimal solution of the haplotype inference
problem. Because of 1 ∈ v31 and 1 ∈ v32, the haplotypes 010

3477

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/17/3475/212882 by guest on 20 August 2022

Z.Li et al.

(corresponding to v31) and 100 (corresponding to v32) resolve the
first genotype g1 (220). Clearly, according to the index sets of
(v31, v32, v33), each haplotype can be used to resolve two genotypes
of G, e.g. the haplotype corresponding to v31 (i.e. 010) can be used
to resolve genotypes g1 and g3 (since 1 ∈ v31 and 3 ∈ v31).

3.4 Computational complexity
There is a bound for the number of haplotypes by PTG. As proven
in Proposition (4) in Appendix 1 of Supporting material, if the gen-
otype matrix G has m rows and n columns, then the resolution set of
haplotype inference problem obtained by Algorithm 1 must satisfy
the following inequality

|H(G)| ≤ min{2m, 2n}.

From Theorem (1) in Appendix 1 of Supporting material, we can
prove that PTG is a polynomial time algorithm. Specifically, the
computational complexity of PTG is O(m2n), where m denotes
the number of genotypes and n is the number of SNP sites in the
genotypes or haplotypes. Such a result implies that PTG may be
very efficient in terms of CPU cost even for a large amount of
genomic data.

4 EXPERIMENTAL RESULTS
In this section, we use both real data and simulation data to demon-
strate the performance of PTG. To improve the computational
efficiency, input data are preprocessed according to Algorithm 2,
which is described in detail in Section 5. CPU times in this section
are the total amount for Algorithms 1 and 2. The program is imple-
mented on a 1.8 GHz 512 MB RAM Pentium 4 Processor PC using
Borland Delphi 5.0 by Pascal, and is available upon request or from
the website. Throughout our experiment, to measure the performance
of PTG, we use error rate, a commonly used criterion in haplotype
inference problem (Stephens et al., 2001; Niu et al., 2002; Wang
and Xu, 2003). The error rate is the proportion of genotypes whose
original haplotype pairs are incorrectly inferred by the program.

4.1 Experiment on β2AR gene data
β2-Adrenergic Receptors (β2AR) are G protein-coupled receptors
that mediate the actions of catecholamines in multiple issues. There
are 13 variable sites within a span of 1.6 kb in the human β2AR gene.
Among 121 individuals, there are 18 distinct genotypes, but only 10
haplotypes resolve all the genotypes. Those 10 haplotypes and 18
genotypes are illustrated in Table 1 (Wang and Xu, 2003).

We ran PTG on β2AR gene data 100 times; within 80 times of
the run, we found 10 distinct haplotypes to resolve all 18 genotypes,
where 9 of the 10 haplotypes correctly resolve 17 genotypes. The
average error rate in 100 runs was 0.056. In particular, in 10 of 100
runs, we found all 10 correct haplotypes to resolve all 18 genotypes.
The average running time is ∼0.016 s, which is considered to be very
efficient in contrast to HAPER (>1 min) and PHASE (>10 min).
Detail computation process for PTG is described in Appendix 2 of
Supporting material.

4.2 Angiotensin converting enzyme gene data
Angiotensin converting enzyme (ACE) is encoded by the gene
DCP1. Complete data for the genomic sequencing of DCP1 from 11

Table 1. Ten haplotypes and 18 genotypes of β2AR genes

Haplotype Genotype

h1 100000010000 g8, g9

h2 100111101000 g1, g2, g3, g6, g10, g11, g12, g13

h3 011000010000 g11, g14

h4 001000010000 g1, g4, g5, g7, g8, g14, g15, g16, g17

h5 001000000000 g6, g15

h6 000000000101 g3, g5, g9, g18

h7 000000000111 g12, g16, g18

h8 001000010101 g13, g17

h9 000000000100 g7

h10 000000000000 g10

Table 2. Haplotypes for the maize data (Ching et al., 2002)

Haplotype Frequency

h1 011001001100100101 0.03
h2 000000000000000000 0.47
h3 000010001000000000 0.23
h4 101101110111011010 0.26

individuals in 22 chromosomes are available (Rieder et al., 1999).
There are 52 SNP sites and 11 genotypes, which are resolved by
13 distinct haplotypes (Rieder et al., 1999; Wang and Xu, 2003).
We obtained 13 haplotypes with 9 correct haplotypes that resolve 9
of the 11 genotypes correctly with an error rate of 2/11 = 0.182.
Such a performance is better than or at least equal to widely used
existing programs, i.e. HAPAR with an error rate of 0.273, Hap-
lotyper with an error rate of 0.182, HAPINFERX with an error
rate of 0.273 and PHASE with an error rate of 0.273 (Wang and
Xu, 2003). The relatively low accuracy is mainly because of the
small sample size. In these experiments, the average CPU time
is 0.320 s.

4.3 Maize dataset
The maize dataset is used as one of the benchmarks to evaluate
accuracy of haplotype programs (Wang and Xu, 2003). Acetyl-CoA
C-acyltransferase which is an enzyme and catalyses the final step of
fatty acid oxidation, has 18 SNP sites and 4 haplotypes with frequen-
cies of 0.03, 0.47, 0.23 and 0.26 in the maize dataset, as shown in
Table 2. We follow the same procedure as Wang and Xu (2003) to
generate a sample of n genotypes by randomly picking two haplo-
types according to their frequencies and conflating them. Table 3 is
the simulation results (Wang and Xu, 2003) for five programs. The
error rates are average values for 100 random samples. Clearly, PTG
correctly resolves all genotypes for sample sizes from 4 to 10, and
behaves best among five programs in terms of accuracy. We also
conducted simulations for Adh1 in the maize dataset for different
sample sizes, which has 6 haplotypes and 14 SNP sites with freq-
uencies of 0.031, 0.031, 0.125, 0.25, 0.25 and 0.312. The simulation
results are almost the same as those of Table 3, and PTG correctly
resolves all genotypes.

3478

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/17/3475/212882 by guest on 20 August 2022

A tree-grow method for haplotype inference

Table 3. Comparison of error rates for five programs on maize dataset

Sample size PTG HAPAR HAPLOTYPER HAPINFERX PHASE

3 0.02 0.51 0.47 0.86 0.53
4 0 0.10 0.14 0.64 0.15
7 0 0.05 0.05 0.43 0.07

10 0 0 0 0.28 0

Table 4. The simulation results of PTG with n = 10

m n CPU(s) Error rate

10 10 0.010 0.120
15 10 0.010 0.100
20 10 0.010 0.050
25 10 0.021 0.030
30 10 0.027 0.025
35 10 0.032 0.018
40 10 0.036 0.005

Table 5. The simulation results of PTG with n = 50

m n CPU(s) Error rate

50 50 0.211 0.190
100 50 0.283 0.280
150 50 0.292 0.075
200 50 0.316 0.062
250 50 0.371 0.036
300 50 0.431 0.037

4.4 Experiments on simulation data
The haplotype generator, ms, in Hudson (2002) is a well-known
standard program based on the coalescent model of SNP sequence
evolution. In this subsection, we use the software (ms) to generate
2m haplotypes, each with n SNP sites, and then randomly pair them
to obtain m genotypes, which are used as input for the PTG program.

4.4.1 Coalescence-based simulations without recombination In
this section, the number of SNPs is fixed as 10, 50, 200, and 100
replications were made for each sample size. When generating hap-
lotypes, we specify recombination parameter to be 0. The CPU times
and error rates of PTG are illustrated in Tables 4–7, where m denotes
the number of genotype matrix rows, and n is the number of genotype
matrix columns.

Comparing with Figure 4 of Wang and Xu (2003), the computation
in Tables 4–7 is fairly efficient in terms of both CPU time and accur-
acy (Halperin and Eskin, 2004), even for large size of genomic data,
in contrast to PHASE (Stephens et al., 2001), HAPLOTYPER (Niu
et al., 2002) and other methods. The results indicate the superiority
of our algorithm over the conventional approaches. Both the numbers
of genotypes and SNP sites affect the computational cost, which is
also proved in Section 3.4 or Appendix 1 of Supporting material.

Table 6. The simulation results of PTG with n = 200

m n CPU(s) Error rate

100 200 1.260 0.38
200 200 7.120 0.20
400 200 45.024 0.12
600 200 229.941 0.08

Table 7. The simulation results of PTG on large size of data

m n CPU(s) Error rate

1000 100 303.687 0.01
1000 150 412.052 0.06
1000 200 491.641 0.05

Table 8. The simulation results of PTG on data with recombination

m n CPU(s) Error rate

10 10 0.015 0.25
15 10 0.025 0.45
20 10 0.030 0.37
25 10 0.031 0.35
30 10 0.040 0.34
35 10 0.045 0.30
40 10 0.046 0.31

4.4.2 Coalescence-based simulations with recombination In this
section, we introduce recombination into the model when generating
simulated haplotypes. We set recombination parameter ρ to be 100.0
when generating haplotypes by the software ms. The simulation
results are illustrated in Table 8.

Comparing with figure 5 of Wang and Xu (2003), the error rate res-
ults in Table 8 are similar to those obtained by the existing haplotype
softwares. However, in contrast to the cases without recombination
shown in Table 4, the error rates are high. The reason resulting in
relatively high error rate is that in the simulation data with recom-
bination, the number of correct distinct haplotypes resolving all
genotypes is often not the minimum one. For example, in our simu-
lation of 30 genotypes with 10 SNP sites, the number of the correct
distinct haplotypes resolving all 30 genotypes is 24. However, by
PTG, we can find a solution of 19 distinct haplotypes resolving all
30 genotypes. Since PTG can almost always find the minimum num-
ber of haplotypes to resolve all genotypes, the error rate may not be
low when recombination rate is high. This is also the reason why
the error rate of other programs is also high. Such a fact implies that
parsimony approach may not be suitable for the data with a high
recombination rate, or needs to be modified to handle such problems
by further considering the characteristics of recombination.

3479

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/17/3475/212882 by guest on 20 August 2022

Z.Li et al.

To study the bottleneck effect, we do simulation on large scale
of data without recombination, as shown in Table 7. For a sample
of 1000 individuals, PTG can currently handle 200 SNPs in no
more than 10 min, which is better than HAPLOTYPER (handling
50 SNPs of 1000 individuals); For a sample of 300 individuals,
PTG can handle 400 SNPs, which is also efficient in contrast to
HAPLOTYPER (handling 256 SNPs of 100 individuals). PTG can
even resolve problems with a much large size of data if there is
sufficient capacity of computer RAM (>512 MB).

5 IMPROVING EFFICIENCY OF PTG
Usually in genotype matrix derived from human haplotypes, many
columns corresponding to SNP sites are identical. Indeed, as noted in
Patil et al. (2001), the number of identical columns in real data is con-
siderably large. It is common to keep only one column out of several
identical columns since they are assumed not to carry any additional
information (Patil et al., 2001). Thus we can improve the perform-
ance (in both CPU times and memory requirements) by reducing
the number of columns of genotype matrix. This can be executed
by dividing the genotype matrix into blocks, as a precomputation
process of Algorithm 1.

Definition 3. Given a genotype gk = gk1 · · · gkn and a fragment
gk[i, j] = gki · · · gkj, if gkt = 0 (or 1) for each i ≤ t ≤ j , then
the fragment gk[i, j] is called an identical homozygous genotype
fragment of type 0 (or 1) . If gkt = 2 for each i ≤ t ≤ j , then gk[i, j]
is called an identical heterozygous genotype fragment.

Definition 4. Given a genotype submatrix G[i, j], if every row
of G[i, j] is either an identical homozygous genotype fragment or an
identical heterozygous genotype fragment, i.e. every row of G[i, j]
is one of the following three types:

Type 0 : 0 · · · 0,

Type 1 : 1 · · · 1,

Type 2 : 2 · · · 2,

then G[i, j] is called a block. A block is called a homozygous block
of type 0 (or type 1) if every row is an identical homozygous genotype
fragment of type 0 (or type 1). Otherwise, it is called a heterozygous
block.

Clearly, a block is a submatrix of the genotype matrix with all the
columns identical.

Definition 5. Given a haplotype hk = hk1 · · · hkn where hkl ∈
{0, 1} for 1 ≤ l ≤ n, a haplotype fragment hk[i, j] = hki · · · hkj is
called an identical homozygous haplotype fragment of type 0 (or 1)
if hkt = 0 (or hkt = 1) holds for any i ≤ t ≤ j .

With the preparation above, we have a basic proposition below to
simplify the computation in PTG algorithm.

Proposition 2. All the genotype fragments in a homozygous block
of type 0 (type 1) can be resolved by one (or two identical) identical
homozygous haplotype fragment of type 0 (type 1). All the genotype
fragments in a heterozygous block can be resolved by two different
types of identical homozygous haplotype fragments in the spirit of
parsimony.

For example, all genotype fragments in the homozygous block




0 0 0
0 0 0
0 0 0




can be resolved by one identical homozygous haplotype 000, and all
genotype fragments in the heterozygous block




0 0 0
1 1 1
2 2 2




can be resolved by two identical homozygous haplotype fragments,
i.e. 000 and 111. Given a genotype matrix G, we can use the following
algorithm to divide G into blocks, which are further combined into
a block matrix B.

Algorithm 2. Dividing genotype matrix G into blocks.

• Initialization: input a genotype matrix G with m individual
genotypes and n SNP sites, and let k := 1, j := 1, ik := j .

• Step 1. If 


g1ik

g2ik

...
gmik


 −




g1j+1

g2j+1
...

gmj+1


 =




0
0
...
0


 ,

then j := j + 1, go to Step 2; otherwise go to Step 3.

• Step 2. If j = n, go to Step 3; otherwise go to Step 1.

• Step 3. Gk = G[ik , j], which is defined in Equation (2). If
j = n, stop and output all blocks Gk of G; otherwise, let
k := k + 1, j := j + 1, ik := j , and go to Step 1.

• Step 4. Combine all blocks into a block matrix B where each
column represents a block.

It can be easily shown that Algorithm 2 can divide the genotype
matrix G into blocks in no more than O(mn) arithmetic operations.
Since all columns in a block are identical, we can use one of them
to represent the block. After doing this to all blocks of G, we obtain
a matrix B, which is called a block matrix of G. Obviously, each
block comprises consecutive identical columns of a genotype matrix.
Clearly, the algorithm can be easily extended to find an extended
block matrix with the minimum number of ‘blocks’, where each
extended block is composed by all the identical columns in G.

Proposition 3. Given a genotype matrix G and its corresponding
block matrix B, let H∗(G) and H∗(B), respectively be the optimal
haplotype solution sets of the haplotype inference problem with G
and B. Then |H∗(G)| = |H∗(B)|, and the haplotypes in H∗(G)

can be obtained from those in H∗(B) by adding the corresponding
SNPs. However, the haplotypes in H∗(B) can be obtained from those
in H∗(G) by deleting the SNPs according to the rule of dividing G
into blocks.

Example 1. Given a genotype matrix

G =



2 2 2 0 0
2 2 0 2 2
0 0 2 2 2


 ,

3480

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/17/3475/212882 by guest on 20 August 2022

A tree-grow method for haplotype inference

the corresponding block matrix is

B =



2 2 0
2 0 2
0 2 2




according to Algorithm 2.
An optimal solution for the block matrix is H∗(B) =

{001, 010, 100} by PTG algorithm, which means H∗(G) = {00011,
00100, 11000} by Proposition (3). Clearly, every haplotype in H∗(B)

is a ‘compression’ of the haplotype in H∗(G), and every haplotype
in H∗(G) is an ‘extension’ of the haplotype in H∗(B).

Therefore, instead of the original genotype matrix G, we can use
the block matrix B = (b1 · · · bt) that has less columns, to improve
the computational efficiency in the initialization of Algorithm 1, in
particular, for large-scale data. Generally, such a compression not
only reduces the combination of possible haplotypes, but also loses
no information of genotype data. Hence, given a genotype matrix G,
we first use Algorithm 2 to reduce the number of columns in G and
obtain the block matrix B, then apply Algorithm 1 (PTG) to the block
matrix B. After resolving the block matrix B, we recover haplotypes
of full length to resolve the genotype matrix G. The program in this
paper is coded by both Algorithms 1 and 2.

Using this modified PTG algorithm, we obtained an optimal solu-
tion of β2AR gene data, the corresponding growing tree and the
index sets are depicted in Appendix 2 of Supporting material.

6 FURTHER DISCUSSION OF
PTG ALGORITHM

In this paper, we proposed a novel graphic algorithm—PTG, which
not only is very efficient with polynomial arithmetic operations, but
also has high accuracy for the haplotype inference problem. In partic-
ular, the computational cost is very low even for large scale genomic
data as indicated in Table 7 and proven in Theorem (1) in Appendix
of Supporting material. In contrast to Clark’s method, there is no
restriction for the given genotypes, i.e. PTG can resolve the case
that every genotype has more than one heterozygous site, such as the
illustrative example and in the simulation tests in Section 4.4.

Although PTG is very efficient, it is based on the parsimony cri-
terion, which generally does not directly take the count information
of genotypes into consideration, as indicated in Section 4. To alle-
viate such a disadvantage, instead of pure parsimony, a modified
parsimony criterion may be required, such as by adding weighting
parameters to approximately incorporate frequency information of
genotypes in the model. In addition, PTG algorithm currently has no
function to handle gaps in the genotype matrix. As a future topic,
we will improve the PTG algorithm to incorporate missing data in
optimization.

ACKNOWLEDGEMENTS
We are grateful to Wang and Xu for kindly giving us haplotype
datasets and related information. This work is partially supported

by the National Natural Science Foundation of China under grant
No.10471141, and the Stress Foundation of Beijing Materials Insti-
tute, Beijing, China. X.Z.’s is partly supported by Informatics
Research Center for Development of Knowledge Society Infrastruc-
ture, Graduate School of Informatics, Kyoto University, Japan.

Conflict of Interest: none declared.

REFERENCES
Bondy,J.A. and Murty,U.S.R. (1976) Graph Theory With Applications. Macmillan,

London.
Brown,D.G. and Harrower,I.M. (2004) A new integer programming formulation for

the pure parsimony problem in haplotype analysis. In Jonassen,I. and Kim,J.
(ed.), Algorithms in Bioinformatics, 4th International Workshop (WABI), 254–265,
Springer.

Ching,A. et al. (2002) SNP frequency, haplotype structure and linkage disequilibrium
in elite maize inbred lines. BMC Genet., 3, 19.

Chung,R.H. and Gusfield,D. (2003) Perfect phylogeny haplotyper: Haplotype inferral
using a tree model. Bioinformatics, 19, 780–781.

Clark,A.G. (1990) Inference of haplotypes from PCR-amplified samples of diploid
populations. Molecular Biology and Evolution, 7, 111–122.

Excoffier,L. and Slatkin,M. (1995) Maximum-likelihood estimation of molecular
haplotype frequencies in a diploid population. Mol. Biol. Evol., 12, 921–927.

Greenberg,H., Hart,W.E. and Lancia,G. (2002) Opportunities for combinatorial optim-
ization in computational biology. Technical report, University of Colorado at Denver,
Mathematics Department, Denver, CO.

Gusfield,D. (2001) Inference of haplotypes from samples of diploid populations:
Complexity and algorithms. J. Comput. Biol., 8, 305–324.

Gusfield,D. (2002) Haplotyping as perfect phylogeny: Conceptual framework and effi-
cient solutions. Proceedings of RECOMB 2002: The sixth Annual International
Conference on Computational Biology, 166–175.

Halperin,E. and Eskin,E. (2004) Haplotype reconstruction from genotype data using
imperfect phylogeny. Bioinformatics, 20, 1842–1849.

Hawley,M. and Kidd,K. (1995) Haplo: a program using the EM algorithm to estimate
the frequencies of multi-site haplotypes. J. Heredity, 86, 409–411.

Hudson,R. (2002) Generating samples under a Wright-Fisher neutral model of genetic
variation. Bioinformatics, 18, 337–338.

Lancia,G., Bafna,V., Istrail,S., Lippert,R. and Schwartz,R. (2001) SNPs problems,
complexity and algorithms. In Proceedings of Annual European Symposium on
Algorithms (ESA), 2161, Lecture Notes in Computer Science, 182–193, Springer.

Lin,S. et al. (2002) Haplotype inference in random population samples. American
Journal of Human Genetics, 71, 1129–1137.

Lincia,G. and Perlin,M. (1998) Genotyping of pooled microsatellite markers
by combinatorial optimization techniques. Discrete Applied Mathematics, 88,
291–314.

Niu,T. et al. (2002) Bayesian haplotype inference for multiple linked single-nucleotide
polymorphisms. American Journal of Human Genetics, 70, 157–169.

Patil,N. et al. (2001) Blocks of limited haplotype diversity revealed by high-resolution
scanning of human chromosome 21. Science, 294, 171923.

Qian,D. and Beckmann,L. (2002) Minimum-recombinant haplotyping in pedigrees.
American Journal of Human Genetics, 70, 1434–1445.

Rieder,M. et al. (1999) Sequence variation in the human angiotensin converting enzyme.
Nat. Genet., 22, 59–62.

Stephens,M. et al. (2001) A new statistical method for haplotype reconstruction from
population data. American Journal of Human Genetics, 68, 978–989.

Wang,L.S. and Xu,Y. (2003) Haplotype inference by maximum parsimony.
Bioinformatics, 19, 1773–1780.

Wang,R. et al. (2005) Haplotype Reconstruction from SNP Fragments by Minimum
Error Correction. Bioinformatics, 21, 2456–2462.

Xu,C.F. et al. (2002) Effectiveness of computational method in haplotype prediction.
Human Genetics, 110, 148–156.

Zhang,X. et al. (2006) Models and Algorithms for Haplotyping Problem. Current
Bioinformatics, In press.

3481

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/17/3475/212882 by guest on 20 August 2022

