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An inventory model for deteriorating item is considered in a random planning horizon under in
ation and time value money.
	e model is described in two di�erent environments: random and fuzzy random. 	e proposed model allows stock-dependent
consumption rate and shortages with partial backlogging. In the fuzzy stochastic model, possibility chance constraints are used
for defuzzi�cation of imprecise expected total pro�t. Finally, genetic algorithm (GA) and fuzzy simulation-based genetic algorithm
(FSGA) are used tomake decisions for the above inventorymodels.	emodels are illustrated with some numerical data. Sensitivity
analysis on expected pro�t function is also presented. Scope and Purpose. 	e traditional inventory model considers the ideal case
in which depletion of inventory is caused by a constant demand rate. However, to keep sales higher, the inventory level would need
to remain high. Of course, this would also result in higher holding or procurement cost. Also, in many real situations, during a
longer-shortage period some of the customers may refuse the management. For instance, for fashionable commodities and high-
tech products with short product life cycle, the willingness for a customer to wait for backlogging is diminishing with the length of
the waiting time. Most of the classical inventory models did not take into account the e�ects of in
ation and time value of money.
But in the past, the economic situation of most of the countries has changed to such an extent due to large-scale in
ation and
consequent sharp decline in the purchasing power of money. So, it has not been possible to ignore the e�ects of in
ation and time
value of money any more. 	e purpose of this paper is to maximize the expected pro�t in the random planning horizon.

1. Introduction

In the past few decades, many researches have studied an in-
ventory model with constant demand or dynamic demand
(cf. M. K. Maiti and M. Maiti [1], Taleizadeh et al. [2], Jana
et al. [3], and others). Moreover, in a competitive situation
attractive display of units in the showroom is an important
factor. Levin et al. [4] noted that at times the presence of
inventory has a motivational e�ect on the people around it.
It is a common belief that large piles of goods displayed in a
supermarket will lead the customer to buy more. 	us, many
business people use showrooms and the attractive display of
units in the showroom to in
uence the customers. Roy et al.

[5] and Maiti [6] have developed an inventory model with
stock-dependent demand.

Inmost of the earlier inventorymodels, lifetime of an item
is assumed to be in�nite while it is in storage. But in reality,
many physical goods deteriorate due to dryness, spoilage,
vaporization, and so forth and are damaged due to hoarding
longer than their normal storage period. 	e deterioration
also depends on preserving facilities and environmental
conditions in warehouses/storage. So, due to deterioration
e�ect, a certain fraction of the items either damaged or
decayed are not in perfect condition to satisfy the future
demand of customers for good items. Deterioration for such
items is continuous and constant or time-dependent and/or
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dependent on the on-hand inventory. A number of research
papers have already been published on the above type of items
by Roy et al. [5] and others.

Moreover, the e�ects of in
ation and time value ofmoney
are vital in practical situation, especially in the developing
countries with large-scale in
ation. 	erefore, the e�ect of
in
ation and time value of money cannot be ignored in real
situations. To relax the assumption of non in
ationary e�ects
on costs, Buzacott [7] and Misra [8] simultaneously devel-
oped an EOQmodel with a constant in
ation rate for all asso-
ciated costs. Bierman and	omas [9] then proposed an EOQ
model under in
ation that also incorporated the discount
rate. Misra [10] then extended the EOQmodel with di�erent
in
ation rates for various associated costs. Recently, Chern
et al. [11] proposed partial backlogging inventory lot-size
models for deteriorating items with 
uctuating demand
under in
ation. Maity andMaiti [12] have developed a multi-
objective optimal inventory control problem for deteriorating
multi-items under fuzzy in
ation and discounting. Yang et al.
[13] proposed an inventory model under in
ation for dete-
riorating items with stock-dependent consumption rate and
partial backlogging shortages.

Use of GA in complex decision making problem is well
establishedMichalewicz [14]. A simple GA starts with a set of
potential solutions (called initial population) of the decision
making problem under consideration. Individual solutions
are called chromosome. Crossover and mutation operations
happen among the potential solutions with some probability�� and �� respectively, to get a new set of solutions and
it continues until terminating conditions are encountered.
Behavior and performance of a GA is directly a�ected by the
interaction between the parameters, that is, selection process
of chromosomes for mating pool, (��, ��) and so forth.
Poor parameter settings usually lead to several problems
such as premature convergence. Extensive research work has
been made to improve the performance of GA for single/
multiobjective continuous/discrete optimization problems
during the last two decades. Michalewicz [14] proposed a
genetic algorithm, named contractive mapping genetic alg-
orithm (CMGA), where movement from old population to
new population takes place only when average �tness of new
population is better than the old one and proved the asymp-
totic convergence of the algorithmby Banach �xed-point the-
orem. Bessaou and Siarry [15] proposed a GA where initially
more than one population of solutions are generated. Genetic
operations are done on every population a �nite number
of times to �nd a promising zone of optimum solution.
Finally, a population of solutions is generated in this zone
and genetic operations are done on this population a �nite
number of times to get a �nal solution. Last and Eyal [16]
developed aGAwith varying population size, where chromo-
somes are classi�ed into young,middle-aged, and old accord-
ing to their age and lifetime. Genotype diversity and phe-
notype diversity of the �nal population are obtained to
measure the performance of the GA. Pezzella et al. [17]
developed aGA for the 
exible Job-shop scheduling problem,
which integrates di�erent strategies for generating the initial
population, selecting the individuals for reproduction and
reproducing new individuals. In this research paper, an EPQ

model of an item is developed in a random planning horizon;
that is, lifetime of the product is assumed as random in nature
and it follows an exponential distribution with known mean.
Unit production cost decreases in each production cycle due
to learning e�ects of the workers on production. Similarly
setup cost in each cycle is partly constant and partly decreases
in each cycle due to learning e�ects of the employees. Model
is formulated tomaximize the expected pro�t from the whole
planning horizon. Following Last and Eyal [16], a GA with
varying population size is implemented where chromosomes
are classi�ed into young, middle-aged and old according to
their age and lifetime. In this GA, crossover probability is a
function of parents’ age type (young, middle-aged, old, etc.)
and is obtained using a fuzzy rule base and fuzzy possibility
theory Dubois and Prade [18]. It is an improved GA where a
subset of better children is included with the parent popu-
lation for next generation, and size of this subset is a per-
centage of the size of its parent set. 	is GA is used to make
optimal decision for the above production inventory model.
Performance of the proposed GA for solving the model is
compared with that of basic GA and CMGA. 	e model is
illustrated with some numerical data. Sensitivity analysis on
expected pro�t function is also presented. Recently, many
papers have been developed in GA (cf. Narmatha Banu and
Devaraj [19], Kar et al. [20]).

Due to fuzzy in
ation rate, the objective function is fuzzy
in nature, and then following Liu and Iwamura [21], M.
K. Maiti and M. Maiti [1], the said objective function is
converted to a crisp objective function. Some research papers
have been already published considering imprecise planning
horizon (cf. M. K. Maiti and M. Maiti [1], Roy et al. [5, 22],
and others). Till now, none has developed inventory models
with both random planning horizon and imprecise e�ect due
to in
ation and discounting and stock-dependent demand. In
this paper, a partial backlogging inventory model with stock-
dependent demand for deterioration itemhas been developed
under imprecise in
ation rate over a random planning hori-
zon. Here, the planning horizon is stochastic in nature and
follows exponential distribution.	e expected pro�t is maxi-
mized using a FSGAwith roulette wheel selection, arithmetic
crossover, and random mutation (Michalewicz, [14]). 	e
models are illustrated with some numerical data. Sensitivity
analysis on expected pro�t is presented.

2. Assumptions and Notations

2.1. Assumptions. 	e mathematical model of the inventory
replenishment problem is based on the following assump-
tions.

(1) Demand rate is assumed to depend on the existing
stock level.

(2) 	e time horizon (a random variable) is �nite.

(3) 	e time horizon completely accommodates �rst �
cycles and ends during (� + 1)th cycle.

(4) Lead time is negligible.

(5) Replenishment rate is in�nite but replenishment size
is �nite.
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(6) Shortages are allowed. Unsatis�ed demand is partially
backlogged. 	e fraction of shortages backordered
is a di�erentiable and decreasing function of time �,
denoted by �(�), where � is the waiting time up to the
next replenishment, and 0 ≤ �(�) ≤ 1 with �(0) = 1.
Note that if �(�) = 1 (or 0) for all �, then shortages are
completely backlogged (or lost).

(7) For deteriorating items, a constant fraction of the
on-hand inventory deteriorates per unit of time and
there is no repair or replacement of the deteriorated
inventory during the planning period.

2.2. Notations. For convenience, the following notations are
used throughout the entire paper.

(1) �(�): on-hand inventory of a cycle at time �, (� − 1)	 ≤� ≤ �	 (� = 1, 2, . . . , �).
(2) 
(�): the demand rate, where


(�) = {� + ��, �, � ≥ 0, � (�) ≥ 0,�, � ≥ 0, 0 ≤ � (�) ≤ 0. (1)

(3) �: number of fully accommodated cycles to be made
during the prescribed time horizon.

(4) 	: duration of a complete cycle.

(5) ��: total ordered quantity in �th cycle.

(6) �: selling price per unit.
(7) ��3: �3 + ��3�−�� is setup cost in �th (� = 1, 2, . . . , �)

cycle, � > 0; �3 > 0; ��3 > 0. Here �, �3, and ��3 are so
chosen to best �t the setup cost function. It is also
noted that, set-up cost decreases with the number of
cycle due to the learning e�ect.

(8) ��: the external variable purchasing cost per unit.(9) �ℎ: the inventory holding cost per unit per unit time.

(10) �	: the backlogging cost per unit per unit time.

(11) �: the deterioration rate per unit per unit time.

(12) �: the discount rate.
(13) �: the in
ation rate, which is varied by the social

economical situations.

(14) � = � − � is the discount rate minus the in
ation rate.

(15) �(�): the backlogging rate which is a decreasing
function of the waiting time �, we here assume that�(�) = �−
�, where � > 0, and � is the waiting time.

(16) HC�: holding cost in the �th cycle.

(17) HC�: holding cost in the last cycle.

(18) SR�: sales revenue in the �th cycle.

(19) SR�: sales revenue in the last cycle.

(20) PC�: purchasing cost in the �th cycle.

(21) PC�: purchasing cost in the last cycle.

(22) TF(�, 	): total pro�t a�er completing� fully accom-
modated cycles.

(23) TF�(�, 	): total pro�t for the last cycles.
(24) �[TF(	)]: expected total pro�t a�er completing �

fully accommodated cycles.

(25) �[TF�(	)]: expected total pro�t from the last cycle.

(26) �[TP(	)]: expected total pro�t from the planning ho-
rizon.

(27) �: total time horizon (a random variable) and ℎ is
the �nite time horizon. Here, it is assumed that the
planning horizon� is a random variable and follows
exponential distributionwith probability density fun-
ction (p.d.f) as follows:

� (ℎ) = {��−ℎ, ℎ ≥ 0,0, otherwise. (2)

Here, �(> 0) is the parameter of the distribution.

(28) �(�): the amount of backorders at time �.
(29) ���: order quantity at time � = �	.

3. Mathematical Formulation

In the development of the model, we assume that there are�
full cycles during the random time horizon � and the plan-
ning horizon ends within (� + 1)th cycle, that is, within � =�	 and � = (�+ 1)	. 	e �th replenishment is made at time(� − 1)	. 	e quantity received at (� − 1)	 is used partly to
meet the accumulated backorders in the previous cycle. 	e
inventory at (� − 1)	 gradually reduces to zero at (� − 1)	 + 	�
(cf. Figure 1). For the last cycle, some amountmay be le� a�er
the end of planning horizon.	is amount is sold at a reduced
price in a lot.

3.1. Formulation for �th (1 ≤ � ≤ �) Cycle. 	e di�erential
equation describing the inventory level �(�) in the interval(� − 1)	 ≤ � ≤ (� − 1)	 + 	� (1 ≤ � ≤ �) is given by

 �(�) � = − (� + �� (�)) − ��(�) ,
(� − 1) 	 ≤ � ≤ (� − 1) 	 + 	�,

(3)

where �, �, � > 0 and 0 < 	� < 	.
Subject to the conditions that �(�) = 0 at � = (�−1)	+	�.
	e solution of the di�erential equation (3) is given by

�(�) = �� + � (�(�+�)((�−1)�+�
�−�) − 1) ,

(� − 1) 	 ≤ � ≤ (� − 1) 	 + 	�.
(4)

During the time interval [(� − 1)	 + 	�, �	), the demand rate
(�) = � and backlogged rate �(�	 − �) = �−
(��−�). Hence,
the amount of backorders �(�) is governed by the following
di�erential equation:

 �(�) � = −��−
(��−�), (� − 1) 	 + 	� ≤ � ≤ �	 (5)
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Figure 1: Graphical representation of inventory model.

subject to the conditions that �(�) = 0 at � = (�−1)	+	�.	e
solutions of the di�erential equation (5) is given by

�(�) = �� (�−
(��−�) − �−
(�−��)) , (� − 1) 	 + 	� ≤ � ≤ �	.
(6)

From (4) and (6), we have the order quantity at (�−1)	 in the�th replenishment cycle:

�(�−1)� = � ((� − 1) 	) + � ((� − 1) 	)
= �� + � (�(�+�)�

� − 1) + �� (1 − �−
(�−��)) . (7)

Present value of holding cost of the inventory for the �th (1 ≤� ≤ �) cycle is given by

HC� = �ℎ ∫(�−1)�+�
�

(�−1)� � (�) �−�� �
+ �	 ∫��

(�−1)�+��
� (�) �−�� �

= ��ℎ�−�(�−1)�� + � {�(�+�)�
� − �−���� + � + � − 1 − �−���� }

+ ��	�−�(�−1)�� {�(�−
)(�−��)� − � − 1 − �−
(�−��)� } .

(8)

Present value of ordering cost for the �th (1 ≤ � ≤ �) cycle is
given by

��3 = (�3 + ��3�−��) �−�(�−1)�, �3, ��3, � > 0
= �3 �−�(�−1)� + �3�−��−(�+��)(�−1).

(9)

Present value of purchasing cost for the �th (1 ≤ � ≤ �) cycle
is given by

PC� = ���−�(�−1)��(�−1)�
= ���−�(�−1)�

× [ �� + � (�(�+�)�
� − 1) + �� (1 − �−
(�−��))] .

(10)

Present value of sales revenue for the �th (1 ≤ � ≤ �) cycle is
given by

SR� = �[�−�(�−1)�� ((� − 1) 	)
+∫(�−1)�+�1
(�−1)�

{� + ��} �−�� �]

= �[��−�(�−1)�� + � (�(�+�)�� − 1)

+ ��−�(�−1)�� + � {�(�+�)�
� − �−���� + � + � − 1 − �−���� }] .

(11)

	en, the present value of the total pro�t from the� full cycle
is as follows:

TF(�, 	) = �∑
�=1

[SR� −HC� − ��3 − PC�]

= �∑
�=1

[���−�(�−1)�� + � (�(�+�)�� − 1)

+ � (� − �ℎ) �−�(�−1)�� + �
× {�(�+�)�� − �−���� + � + � − 1 − �−���� }

− ��	�−�(�−1)��
× {�(�−
)(�−�

�)

� − � − 1 − �−
(�−��)� }
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− [�3 + �� { �� + � (�(�+�)�
� − 1)

+ �� (1 − �−
(�−��)) }]
× �−�(�−1)�]

= [ ��� + � (�(�+�)�
� − 1) + � (� − �ℎ)� + �

× {�(�+�)�
� − �−���� + � + � − 1 − �−���� }

− ��	� {�(�−
)(�−�
�)

� − � − 1 − �−
(�−��)� }
− [�3 + �� { �� + � (�(�+�)�

� − 1)

+ �� (1 − �−
(�−��))}]]

× �∑
�=1
�−�(�−1)� + �3�−� �∑

�=1
�−(�+��)(�−1).

(12)

Now,

�∑
�=1
�−�(�−1)� = (1 − �−���1 − �−�� ) . (13)

So,

TF(�, 	)
= [ ��� + � (�(�+�)�

� − 1)

+ � (� − �ℎ)� + � {�(�+�)�� − �−���� + � + � − 1 − �−���� }

− ��	� {�(�−
)(�−��)� − � − 1 − �−
(�−��)� }
− [�3 + �� { �� + � (�(�+�)�

� − 1)

+ �� (1 − �−
(�−��)) }]]

× (1 − �−���1 − �−�� ) + ��3�−� (1 − �−�(�+��)1 − �−(�+��) ) .

(14)

Since the planning horizon � has a p.d.f �(ℎ), the present
value of expected total pro�t from� complete cycles is given
by

� [TF(	)] = ∞∑
�=0

∫(�+1)�
��

TF(�, 	) ⋅ �(ℎ)  ℎ

= {[ ��� + � (�(�+�)�
� − 1) + � (� − �ℎ)� + �

× {�(�+�)�
� − �−���� + � + � − 1 − �−���� }

− ��	� {�(�−
)(�−�
�)

� − � − 1 − �−
(�−��)� }
− [�3 + �� { �� + � (�(�+�)�

� − 1)

+ �� (1 − �−
(�−��))}]]

× (1 − �−���1 − �−�� )

+ ��3�−� (1 − �−�(�+��)1 − �−(�+��) )}
× (�−�� − �−(�+1)�) .

(15)

3.2. Formulation for Last Cycle. 	e di�erential equations
describing the inventory level �(�) in the interval �	 ≤ � ≤(� + 1)	 are given by

 �(�) � = −� − �� − �� (�) , �	 ≤ � ≤ �	 + 	�, (16)

 �(�) � = −��−
((�+1)�−�), �	 + 	� ≤ � ≤ (� + 1) 	, (17)

where �, �, � > 0, subject to the conditions that
� (�	 + 	�) = 0, � (�) = 0 at � = �	 + 	�. (18)

	e solutions of the di�erential equations (15) and (16) are
given by

� (�) =
{{{{{{{{{{{{{{{{{

�� + � (�(�+�)(��+�
�−�) − 1) ,

�	 ≤ � ≤ �	 + 	�,�� (�−
((�+1)�−�) − �−
(�−��)) ,
�	 + �1 ≤ � ≤ (� + 1) 	 + 	�.

(19)
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Figure 2: Graphical representation of inventory model for Case 1.

From (17), we have the order quantity at �	 in the �th
replenishment cycle:

��� = �(�	) + �(�	)
= �� + � (�(�+�)�

� − 1) + �� (�−
� − �−
(�−��)) . (20)

Present value of ordering cost is given by

��3 = (�3 + ��3�−�(�+1)) �−���, �3, ��3, � > 0. (21)

Present value of purchasing cost is given by

PC� = N��� ⋅ �−���
= N�−��� [ �� + � (�(�+�)�

�−1)+ �� (�−
�−�−
(�−��))] .
(22)

In last cycle, for simplicity we consider two cases only
depending upon the cycle length. Let ℎ be the real value
corresponding to the random variable�.

Case 1 (�	 < ℎ ≤ �	+	�). Present value of holding cost of
the inventory for the last cycle (cf. Figure 2) is given by

HC�1 = �ℎ ∫ℎ
��

� (�) �−�� �
= ��ℎ� + � {�

(�+�)��−��� − �(�+�)(��+���)−(�+�+�)ℎ� + � + �
− �−��� − �−�ℎ� } .

(23)

Present value of sales revenue is given by

SR�1 = �∫ℎ
��

{� + ��} �−�� �
= �[�� (�−��� − �−�ℎ)

+ ��� + � {�
(�+�)��−��� − �(�+�)(��+��)−(�+�+�)ℎ� + � + �
− (�−��� − �−�ℎ)

� }] .
(24)

Case 2 (�	 + 	� < ℎ ≤ (� + 1)	). Present value of holding
cost of the inventory for the last cycle (Figure 3) is given by

HC�2 = �ℎ ∫��+�
�

��
� (�) �−�� � + �	 ∫ℎ

��+��
� (�) �−�� �

= ��ℎ� + � {�
(�+�)��−��� − �−�(��+��)� + � + �
− �−��� − �−�(��+��)� }

+ ��	� {�−
(�+�
�)−�(��+��) − �−
(�+1)−(
+�)ℎ� + �

− �−
(�−��)� (�−��� − �−�ℎ)} .
(25)

Present value of sales revenue is given by

SR�2 = �∫��+��
��

{� + ��} �−�� �
+ �∫ℎ
��+��

{��−
((�+1)�−�)} �−�� �
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Figure 3: Graphical representation of inventory model for Case 2.

= �[�	� + ��� + � {�(�+�)(�
�+���) − �−�(��+��)� + � + � + 	�}

+ �� {�−
(�−�
�) − �−
(�+1)�−(
+�)ℎ� + � }] .

(26)

So, expected holding cost for the last cycle is given by

� [HC�] = ∞∑
�=0

∫(�+1)�
��

HC� ⋅ � (ℎ)  ℎ

= ∞∑
�=0

∫��+�1
��

HC�1 ⋅ � (ℎ)  ℎ

+ ∞∑
�=0

∫(�+1)�
��+�1

HC�2 ⋅ � (ℎ)  ℎ

= [ ��ℎ� + � {�
(�+�)� − �−���� + � + � − 1 − �−��� }

+ S�	�−(�+��+��)� (� + �) − �−
(�+��)� ]

× (�−�� − �−�1 − �−(+�)�)

− [ ��−
�(� + �) (� + � + �)
× (�−(+
+�)�� − �−(+
+�)�1 − �−(+
+�)� )

+ �−
(�+��)� (� + �) (�−(�+)�� − �−(�+)�1 − �−(�+)� )] .
(27)

Expected sales revenue from the last cycle is given by

� [SR�] = ∞∑
�=0

∫(�+1)�
��

SR� ⋅ � (ℎ)  ℎ

= ∞∑
�=0

∫��+�1
��

SR�1 ⋅ � (ℎ)  ℎ

+ ∞∑
�=0

∫(�+1)�
��+�1

SR�2 ⋅ � (ℎ)  ℎ

= �[{�� + �� (��(�+�)� − 1)
� (� + �) }( 1 − ���1 − �−(+�)�)

− {�� (�� + 1)� (� + �) (1 − �−(+�)��1 − �−(+�)� )

+ ����(�+���)
(� + �) (� + � + �)

× (1 − �−(�+�++�)��1 − �−(�+�++�)� )}

+ {(� + 1) 	�1 − �−� + ��� + � (�(�+�)�� − �−���1 − �−(+�)� )

+ ��−
(�+��)� (� + �) (1 − �−��1 − �−� )

− ��−
�(� + � + �) (1 − �−(+�+
)��1 − �−(+�)� )}] .
(28)
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Expected reduced selling price from the last cycle is given by

�[PC�] = ∞∑
�=0

∫(�+1)�
��

PC� ⋅ � (ℎ)  ℎ
= [N { �� + � (�(�+�)�

� − 1)
+ �� (�−
� − �−
(�−��))}]

× ( 1 − �−�1 − �−(+�)�) .

(29)

Expected setup cost from the last cycle is given by

� [��3] =
∞∑
�=0

∫(�+1)�
��

��3 ⋅ � (ℎ)  ℎ

= [�3 ( 1 − �−�1 − �−(+�)�) + ��3�−� ( 1 − �−�1 − �−(�+�+��))] .
(30)

So, expected total pro�t from last cycle is given by

� [TF�(	)]
= � [SR�(	)] − � [PC�(	)] − � [��3 (	)] − � [HC�(	)]
= �[{�� + �� (��(�+�)� − 1)

� (� + �) }( 1 − ���1 − �−(+�)�)

− {�� (�� + 1)� (� + �) (1 − �−(+�)��1 − �−(+�)� )

+ ����(�+���)
(� + �) (� + � + �) (1 − �−(�+�++�)��1 − �−(�+�++�)� )}

+ {(� + 1) 	�1 − �−� + ��� + � (�(�+�)�� − �−���1 − �−(+�)� )

+ ��−
(�+��)� (� + �) (1 − �−��1 − �−� )

− ��−
�(� + � + �) (1 − �−(+�+
)��1 − �−(+�)� )}]
− [N { �� + � (�(�+�)�

� − 1)
+ �� (�−
� − �−
(�−��)) } + �3]

× ( 1 − �−�1 − �−(+�)�)

− [ ��ℎ� + � {�
(�+�)� − �−���� + � + � − 1 − �−��� }

+ S�	�−(�+��+��)� (� + �) − �−
(�+��)� ]

× (�−�� − �−�1 − �−(+�)�)

− [ ��−
�(� + �) (� + � + �) (�−(+
+�)�� − �−(+
+�)�1 − �−(+
+�)� )

+ �−
(�+��)� (� + �) (�−(�+)�� − �−(�+)�1 − �−(�+)� )]

− ��3�−� ( 1 − �−�1 − �−(�+�+��)) .
(31)

3.3. Total Pro	t from the System. Now, total expected pro�t
from the complete time horizon is given by

�(TP) = � [TF(	)] + � [TF�(	)]
= [ ��� + � (�(�+�)�

� − 1)

+ � (� − �ℎ)� + � {�(�+�)�� − �−���� + � + � − 1 − �−���� }

− ��	� {�(�−
)(�−��)� − � − 1 − �−
(�−��)� }
− [�3 + �� { �� + � (�(�+�)�

� − 1)
+ �� (1 − �−
(�−��)) }]]

× ( �−� − �−(�+)�(1 − �−�) (1 − �−(�+)�))

+ �[{�� + �� (��(�+�)� − 1)
� (� + �) }( 1 − ���1 − �−(+�)�)

− {�� (�� + 1)� (� + �) (1 − �−(+�)��1 − �−(+�)� )

+ ����(�+���)
(� + �) (� + � + �)

× (1 − �−(�+�++�)��1 − �−(�+�++�)� )}
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+ {(� + 1) 	�1 − �−� + ��� + � (�(�+�)�� − �−���1 − �−(+�)� )

+ ��−
(�+��)� (� + �) (1 − �−��1 − �−� )

− ��−
�(� + � + �) (1 − �−(+�+
)��1 − �−(+�)� )}]
− [N { �� + � (�(�+�)�

� − 1)
+ �� (�−
� − �−
(�−��)) } + �3]

× ( 1 − �−�1 − �−(+�)�)

− [ ��ℎ� + � {�
(�+�)� − �−���� + � + � − 1 − �−��� }

+ S�	�−(�+��+��)� (� + �) − �−
(�+��)� ]

× (�−�� − �−�1 − �−(+�)�)

− [ ��−
�(� + �) (� + � + �)
× (�−(+
+�)�� − �−(+
+�)�1 − �−(+
+�)� )

+ �−
(�+��)� (� + �) (�−(�+)�� − �−(�+)�1 − �−(�+)� )]

− ��3�−� ( 1 − �−�1 − �−(�+�+��)) .
(32)

4. Models in Different Environments

4.1. Stochastic Model (Model 1). When the resultant e�ect of
in
ation and discounting is crisp in nature, then the present
problem is to determine 	 and 	� so as to

max�(TP) . (33)

4.1.1. Fuzzy Stochastic Model (Model 2). In the real world,
deterioration (�) and rate of in
ation (�) are imprecise in
nature, that is, vaguely de�ned in some situations. So we take�, � as fuzzy number, that is, as �̃ and �̃. 	en, due to this

assumption, our objective function �(TP) becomes �(T̃P).
Since optimization of a fuzzy objective is not well de�ned, so

instead of�(T̃P) one can optimize its equivalent optimistic or

(1) Set X = X0.(2) Generate �0 uniformly from the �1 cut set of fuzzy
number �̃.(3) Set X0 = value of �{(TP)} for � = �0.(4) If X < X0 then set X = X0.(5) Repeat steps 2, 3 and 4,� times, where� is
a su�ciently large positive integer.(6) Return X.(7) End algorithm.

Algorithm 1: Algorithm to determine 	, 	� and feasible variables
for Model 1.

pessimistic return of the objective function. When decision

maker likes to optimize the optimistic equivalent of �(T̃P),
then the problem reduces to the determination of 	, 	� so as
to

maximize X
subject to pos {� (T̃P) ≥ X} ≥ �1. (34)

Following Liu and Iwamura [21] and others, it can be
defuzzi�ed and rewritten as

maximize X
subject to

X − �(TP1)�(TP2) − �(TP1) ≥ �1 (35)

(for details see Das et al. [23]).

5. Solution Procedure

To solve the stochastic model 1, GA is used. 	e basic tech-
nique to deal with problems (35) is to convert the possibility
constraint to its deterministic equivalent. However, the pro-
cedure is usually very hard and successful in some particular
cases. Following Liu and Iwamura [21], M. K. Maiti and M.
Maiti [1], here two simulation algorithms are proposed to
determine X in (35), for a feasible 	.

To determine 	, 	� for feasible variables, roughly �nd a

point �0 from fuzzy number �̃, which approximately mini-
mizes X. Let this value be X0 and set X = X0. (For simplicity
one can take X0 = 0.) 	en, �0 is randomly generated in �1-
cut set of �̃ and let X0 = value of �(̃TP) for � = �0 and if X <X0 replace X with X0. 	is step is repeated a �nite number
of times and �nal value is taken as value of X. 	is phe-
nomenon is used to develop Algorithm 1.

Now roughly �nd a point � from fuzzy number �̃, which
approximately minimizes �{(TP)}. Let this value be X0 (for
simplicity one can take X0 = 0 also) and Z a positive number.

SetX = X0−Z and if pos{�(T̃P) < X} ≤ 1−�2, then increaseX
with Z. Again check pos{�(T̃P) < X} ≤ 1−�2 and it continues
until pos{�(T̃P) < X} > 1 − �2. At this stage, decrease the
value of Z and again try to improve X. When Z becomes suf-
�ciently, small, then we stop, and the �nal value of X is taken
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(1) Set X = X0 − Z, \ = X0 − Z, \0 = X0 − Z, �^_ = 0.0001.(2) Generate �0 uniformly from the 1 − �2 cut set of fuzzy
number �̃.(3) Set X0 = value of �{�(`, a, �) for � = �0.(4) If X0 < X.(5) then go to step 11.(6) End If(7) Repeat step-2 to step-6� times.(8) Set \ = X.(9) Set X = X + Z.(10) Go to step-2.(11) If (X = \) // In this case optimum value of X < X0 − Z(12) Set X = \0 − Z, \ = \ − Z, \0 = \0 − Z.(13) Go to step-2(14) End If(15) If (Z < �^_)(16) go to step-21(17) End If(18) Z = Z/�(19) X = \ + Z(20) Go to step-2.(21) Output \.

Algorithm 2: An algorithm to determine X, for Model 2.

(1)	 ← 0.(2) Initialize ��, ��.(3) Initialize (d(	)) and let� be its size.(4) Evaluate (d(	)).(5)While (Not termination condition)(6) Select� solutions from d(	) for mating pool using
roulette-wheel selection process (one solution may
be selected more than once). Let this set be d1(	).(7) Select solutions from d1(	) for crossover depending
on ��.(8) Perform crossover on selected solutions to obtain
population d1(	).(9) Select solutions from d1(	) for mutation depending
on ��.(10) Perform mutation on selected solutions to obtain
new population d(	 + 1).(11) Evaluate (d(	 + 1)).(12) If average �tness of d(	 + 1) > average �tness
of d(	) then(13) 	 ← 	 + 1.(14) End If.(15) EndWhile.(16) Output: Best solution of d(	).(17) End algorithm.

Algorithm 3: FSGA algorithm.

as value ofX. Using this criterion, required algorithm is devel-
oped as shown in Algorithm 2. In this algorithm, the variable\0 is used to store initial assumed value of X and \ is used
to store the value of X in each iteration.

	erefore for feasible value of the variables, we determineX using the above algorithms and to optimize X we use GA.

Since fuzzy simulation algorithm is used to determine X in
the algorithm, this GA is named a fuzzy simulation based
genetic algorithm (FSGA). 	is algorithm is named FSGA
when fuzzy simulation process is used to determine objective
function value.

5.1. Fuzzy Simulation Based Single Objective Genetic Algo-
rithm (FSGA). In natural genesis, we know that chromo-
somes are the main carriers of the hereditary information
from parents to o�springs and that genes, which present
hereditary factors, are lined up in chromosomes. At the time
of reproduction, crossover and mutation take place among
the chromosomes of parents. In this way, hereditary factors
of parents are mixed up and carried over to their o�springs.
Darwinian principle states that only the �ttest animals can
survive in nature. So a pair of �ttest parents normally re-
produce better o�spring.

	e above-mentioned phenomenon is followed to create
a genetic algorithm for an optimization problem.Here poten-
tial solutions of the problem are analogous with the chrom-
osomes and chromosome of better o�spring with the better
solution of the problem. Crossover and mutation occur
among a set of potential solutions and obtained a new set
of solutions and it continues until terminating conditions are
encountered. Michalewicz [14] proposed a genetic algorithm
named the contractive mapping genetic algorithm (CMGA)
and proved the asymptotic convergence of the algorithm by
the Banach �xed-point theorem. In CMGA, movement from
an old population to a new population takes place only when
the average �tness of a new population is better than the
old one. 	is algorithm is modi�ed with the help of a fuzzy
simulation process to solve themodel in some cases.	e algo-
rithm is named FSGA and this is presented below. In this alg-
orithm,��,�� are probabilities of the crossover and the prob-
ability of mutation, respectively, 	 is the iteration counter,
and d(	) is the population of potential solutions for iteration	. 	e initialize (d(	)) function initializes the populationd(	) at the time of initialization.	e evaluate (d(	)) function
evaluates the �tness of eachmember of d(	), and at this stage
an objective function value due to each solution is evaluated
via the fuzzy simulation process (using Algorithm 1).

5.1.1. FSGA Algorithm. See Algorithm 3.

5.1.2. FSGA Procedures

(a) Representation: An “e-dimensional real vector” f =(`1, `2, . . . , `�) is used to represent a solution, where`1, `2, . . . , `� represent e decision variables of the
problem.

(b) Initialization: � such solutions f1, f2, f3, . . . , f�
are randomly generated by randomnumber generator
such that eachf� satis�es the constraints of the prob-
lem. Constraints of the problem are satis�ed using
Algorithm 1. 	is solution set is taken as initial pop-
ulation d(1). Also set �� = 0.3, �� = 0.2, and 	 = 1.

(c) Fitness value: value of the objective function due to
the solutionf is taken as �tness off. Let it be �(f).
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Table 1: Results for stochastic Model 1.

� � 	 	� � �(TP)
50

0.75 1.686 1.208 50.005 12993.57

0.70 1.692 1.214 46.894 11846.67

0.65 1.703 1.229 44.564 11268.40

45

0.75 1.693 1.228 46.700 12473.83

0.70 1.712 1.247 45.830 11372.80

0.65 1.743 1.290 44.689 10817.66

40

0.75 1.746 1.287 46.306 11694.21

0.70 1.792 1.298 43.755 10662.00

0.65 1.804 1.302 40.558 10141.56

Table 2: Value of �(	d) for di�erent optimistic level for Model 2.

�1 0.0 0.2 0.4 0.6 0.8 1.0

�(TP) 11748.45 11993.73 12102.19 12404.38 12884.38 12902.58

Table 3: Results for fuzzy stochastic model.

� � Optimistic return �(TP)(�1 = 0.9)
0.00 0.100 11748.43

0.50 0.100 11859.25

0.75 0.100 11993.25

0.00 0.125 11895.29

0.50 0.125 12007.49

0.75 0.125 12143.60

0.00 0.150 12638.74

0.50 0.150 12757.96

0.75 0.150 12902.58

Objective function is evaluated via fuzzy simulation
process (using Algorithm 1 or Algorithm 2).

(d) Selection process for mating pool: the following steps
are followed for this purpose.

(i) Find total �tness of the population \ =∑��=1 �(f�).(ii) Calculate the probability of selection �� of each
solutionf� by the formula �� = �(f�)/\.(iii) Calculate the cumulative probability �� for each
solutionf� by the formula �� = ∑��=1 ��.(iv) Generate a random number “�” from the range[0, 1].

(v) If � < �1, then selectf1 otherwise selectf� (2 ≤h ≤ �) where �� − 1 ≤ � ≤ ��.(vi) Repeat step, (iv) and (v) � times to select� solutions from old population. Clearly, one
solution may be selected more than once.

(vii) Selected solution set is denoted by d1(	) in the
proposed FSGA algorithm.

(e) Crossover
(i) Selection for crossover: for each solution of d(	)

generate a random number � from the range[0, 1]. If � < ��, then the solution is taken for
crossover, where �� is the probability of cross-
over.(ii) Crossover process: crossover took place on the
selected solutions. For each pair of coupled solu-
tions i1, i2, a random number N is generated
from the range [0, 1], and their o�springs i11
and i21 are obtained by the formula:

i11 = Ni1 + (1 − N) i2,
i21 = Ni2 + (1 − N) i1. (36)

(f) Mutation

(i) Selection for mutation: for each solution of d(	)
generate a random number � from the range[0, 1]. If � < ��, then the solution is taken for
mutation, where �� is the probability of muta-
tion.(ii) Mutation process: to mutate a solution f =(`1, `2, . . . , `�) select a random integer � in
the range [1, e]. 	en, replace `� by randomly
generated value within the boundary of �th
component off.

6. Numerical Illustration

To solve the stochastic model (Model 1), genetic algorithm
(GA) (Section 5.1) is used and fuzzy stochastic model (Model
2) is solved by fuzzy simulation based genetic algorithm
(FSGA) (Section 6). 	e corresponding parameters in GA
and FSGA are POPSIZE = 50, PCROS = 0.2, PMUTE = 0.2,
andMAXGEN=50. A real-number presentation is used here.
In this representation, each chromosome X is a string of j
(here,j = 1) number of genes, these represent decision vari-
ables. For each chromosome X, every gene, which represents
the independent variables (here, 	), is randomly generated
between its boundaries until it is feasible. In this problem,
arithmetic crossover and random mutation are applied to
generate new o�springs.

To illustrate the models, we consider the following
numerical data: � = 100, �3 = 50, ��3 = 40, �ℎ = 15, �� = 3,�	 = 5, � = 0.05, � = 0.1, 80, � = 0.08, � = 0.01, � = 0.25,
and h = 0.05; that is, � = 0.2 in appropriate units.

6.1. Stochastic Model 1. 	e optimal values of 	 along with
maximum expected total pro�t have been calculated for
di�erent values of � and �; results are displayed in Table 1.

It is observed that as � and � increase, expected pro�t
increases due to the increase of demand henceforth selling
amount. Moreover for increasing values of � and �, as
length of business periods decreases, average expected pro�t
increases. All these observations agree with reality.
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Table 4: Sensitivity analysis with respect to present in
ation rate for stochastic model.

� Percentage change in � Percentage change in
expected total pro�t(� = 0.1 and� = 3.5)

Percentage change in
expected total pro�t(� = 0.15 and� = 3.5)

Percentage change in
expected total pro�t(� = 0.1 and� = 4.0)

Percentage change in
expected total pro�t(� = 0.15 and� = 4.0)

0.06 −40 +75.80 +75.80 +65.05 +65.86

0.07 −30 +42.75 +42.63 +42.67 +42.54

0.08 −20 +26.14 +26.07 +25.09 +26.01

0.09 −10 +12.41 +12.59 +11.22 +09.96

0.10 00 0.0
(∗12993.57)

0.0
(∗12884.38)

0.0
(∗12102.19)

0.0
(∗11993.73)

0.11 +10 −09.27 −08.26 −09.25 −07.52
0.12 +20 −17.07 −17.03 −15.57 −16.98
0.13 +30 −23.69 −23.64 −23.63 −23.58
0.14 +40 −30.52 −30.563 −30.56 −30.20
∗Indicate original value, others show the values in percentage.

Table 5: Sensitivity analysis with respect to the parameter � for stochastic model.

� Percentage change in � Percentage change in
expected total pro�t(� = 0.1 and� = 3.5)

Percentage change in
expected total pro�t(� = 0.15 and� = 3.5)

Percentage change in
expected total pro�t(� = 0.1 and� = 4.0)

Percentage change in
expected total pro�t(� = 0.15 and� = 4.0)

0.030 −40 +21.56 +21.53 +21.52 +21.24

0.035 −30 +14.44 +14.60 +14.52 +14.63

0.040 −20 +09.62 +10.03 +09.63 +09.71

0.045 −10 +04.83 +04.82 +04.79 +04.83

0.050 00 0.0
(∗12933.69)

0.0
(∗12884.23)

0.0
(∗12102.29)

0.0
(∗11992.96)

0.055 +10 −04.72 −04.78 −04.74 −4.78
0.059 +20 −09.58 −09.51 −09.45 −09.52
0.065 +30 −14.06 −14.20 −14.10 −14.22
0.070 +40 −19.23 −19.23 −19.25 −19.25
∗Indicate original value, others show the values in percentage.

6.2. Fuzzy StochasticModel 2. Here, the resultant in
ationary
e�ect and deterioration rate are considered as a triangular

fuzzy number; that is, �̃ = �̃ − �̃ = (0.19, 0.25, 0.31) − (0.04,0.05, 0.06) = (0.15, 0.2, 0.25) and �̃ = (0.08, 0.1, 0.12) for � =50, � = 0.75, and all other data remain the same as in stochas-
tic model.	emaximum optimistic returns have been calcu-
lated for di�erent levels of optimistic.

From Table 2, it is revealed that as the possibility level
increases, total expected pro�t increases as expected. And it
is also shown that expected total pro�t for � = 1.0 is the same
in Table 3.

6.3. Sensitivity Analysis. A sensitivity analysis is performed
for stochastic model with respect to di�erent resultant in
a-
tionary e�ect (�) for crisp in
ation, and results are presented
in Table 4. It is observed that as � increases pro�t decreases
which agrees with reality.

A sensitivity analysis is performed for the maximum
expected total pro�t with respect to the di�erent values of
parameter � for stochastic model and is presented in Table 5.

It is observed that as � decreases pro�t increases. 	is hap-
pens because as � decreases expected time horizon increases
which increases the total expected pro�t.

Results due to di�erent values of con�dence levels �1 for
Model 2 is calculated and depicted in Figure 2. In both cases,
as expected, pro�t decreases with the increase of con�dence
levels. 	e graphical representation of possibility threshold
versus expected pro�t is depicted in Figure 4.

7. Concluding Remarks

In this paper, a realistic stock-dependent inventory model
with shortages and partial backlogging has been formulated
with fuzzy deterioration, in
ation rate, and setup cost with
learning e�ect in random planning horizon. Until now, no
inventory model has been formulated in such consideration,
that is, stock-dependent demand, shortageswith partial back-
logging, e�ect of in
ation, learning e�ect, deterioration, ran-
dom planning horizon, and so forth, in both stochastic and
fuzzy stochastic environments. 	e proposed models are
optimized via so� computing methods: GA and FSGA. 	e
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Figure 4: Possibility threshold versus expected pro�t.

present concept can be extended to production planning
model, multi-item production planning model, optimal con-
trol problem for multiproduct manufacturing also, and so
forth, which may be areas of future research.
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