A PARTIAL CAYLEY TRANSFORM OF SIEGEL-JACOBI DISK

Jae-Hyun Yang

Reprinted from the
Journal of the Korean Mathematical Society
Vol. 45, No. 3, May 2008
(c) 2008 The Korean Mathematical Society

A PARTIAL CAYLEY TRANSFORM OF SIEGEL-JACOBI DISK

Jae-Hyun Yang

Abstract

Let \mathbb{H}_{g} and \mathbb{D}_{g} be the Siegel upper half plane and the generalized unit disk of degree g respectively. Let $\mathbb{C}^{(h, g)}$ be the Euclidean space of all $h \times g$ complex matrices. We present a partial Cayley transform of the Siegel-Jacobi disk $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ onto the Siegel-Jacobi space $\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$ which gives a partial bounded realization of $\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$ by $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$. We prove that the natural actions of the Jacobi group on $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ and $\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$ are compatible via a partial Cayley transform. A partial Cayley transform plays an important role in computing differential operators on the Siegel-Jacobi disk $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ invariant under the natural action of the Jacobi group on $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ explicitly.

1. Introduction

For a given fixed positive integer g, we let

$$
\mathbb{H}_{g}=\left\{\Omega \in \mathbb{C}^{(g, g)} \mid \Omega={ }^{t} \Omega, \quad \operatorname{Im} \Omega>0\right\}
$$

be the Siegel upper half plane of degree g and let

$$
S p(g, \mathbb{R})=\left\{\left.M \in \mathbb{R}^{(2 g, 2 g)}\right|^{t} M J_{g} M=J_{g}\right\}
$$

be the symplectic group of degree g, where $F^{(k, l)}$ denotes the set of all $k \times l$ matrices with entries in a commutative ring F for two positive integers k and $l,{ }^{t} M$ denotes the transpose matrix of a matrix M and

$$
J_{g}=\left(\begin{array}{cc}
0 & I_{g} \\
-I_{g} & 0
\end{array}\right) .
$$

We see that $S p(g, \mathbb{R})$ acts on \mathbb{H}_{g} transitively by

$$
\begin{equation*}
M \cdot \Omega=(A \Omega+B)(C \Omega+D)^{-1} \tag{1.1}
\end{equation*}
$$

where $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p(g, \mathbb{R})$ and $\Omega \in \mathbb{H}_{g}$.

Received October 12, 2006; Revised December 14, 2006.
2000 Mathematics Subject Classification. Primary 32Hxx, 32M10; Secondary 11F50.
Key words and phrases. partial Cayley transform, Siegel-Jacobi space, Siegel-Jacobi disk, Harish-Chandra decomposition, automorphic factors, Jacobi forms.

This work was supported by INHA UNIVERSITY Research Grant.

Let

$$
\mathbb{D}_{g}=\left\{W \in \mathbb{C}^{(g, g)} \mid W={ }^{t} W, I_{g}-W \bar{W}>0\right\}
$$

be the generalized unit disk of degree g. The Cayley transform $\Phi: \mathbb{D}_{g} \longrightarrow \mathbb{H}_{g}$ defined by

$$
\begin{equation*}
\Phi(W)=i\left(I_{g}+W\right)\left(I_{g}-W\right)^{-1}, \quad W \in \mathbb{D}_{g} \tag{1.2}
\end{equation*}
$$

is a biholomorphic mapping of \mathbb{D}_{g} onto \mathbb{H}_{g} which gives the bounded realization of \mathbb{H}_{g} by \mathbb{D}_{g} (cf. [8, pp. 281-283]). And the action (2.8) of the symplectic group on \mathbb{D}_{g} is compatible with the action (1.1) via the Cayley transform Φ. A. Korányi and J. Wolf [4] gave a realization of a bounded symmetric domain as a Siegel domain of the third kind investigating a generalized Cayley transform of a bounded symmetric domain that generalizes the Cayley transform Φ of \mathbb{D}_{g}.

For two positive integers g and h, we consider the Heisenberg group

$$
H_{\mathbb{R}}^{(g, h)}=\left\{(\lambda, \mu ; \kappa) \mid \lambda, \mu \in \mathbb{R}^{(h, g)}, \kappa \in \mathbb{R}^{(h, h)}, \kappa+\mu^{t} \lambda \text { symmetric }\right\}
$$

endowed with the following multiplication law

$$
(\lambda, \mu ; \kappa) \circ\left(\lambda^{\prime}, \mu^{\prime} ; \kappa^{\prime}\right)=\left(\lambda+\lambda^{\prime}, \mu+\mu^{\prime} ; \kappa+\kappa^{\prime}+\lambda^{t} \mu^{\prime}-\mu^{t} \lambda^{\prime}\right) .
$$

The Jacobi group G^{J} is defined as the semidirect product of $S p(g, \mathbb{R})$ and $H_{\mathbb{R}}^{(g, h)}$

$$
G^{J}=S p(g, \mathbb{R}) \ltimes H_{\mathbb{R}}^{(g, h)}
$$

endowed with the following multiplication law

$$
\begin{aligned}
& (M,(\lambda, \mu ; \kappa)) \cdot\left(M^{\prime},\left(\lambda^{\prime}, \mu^{\prime} ; \kappa^{\prime}\right)\right) \\
= & \left(M M^{\prime},\left(\tilde{\lambda}+\lambda^{\prime}, \tilde{\mu}+\mu^{\prime} ; \kappa+\kappa^{\prime}+\tilde{\lambda}^{t} \mu^{\prime}-\tilde{\mu}^{t} \lambda^{\prime}\right)\right)
\end{aligned}
$$

with $M, M^{\prime} \in S p(g, \mathbb{R}),(\lambda, \mu ; \kappa),\left(\lambda^{\prime}, \mu^{\prime} ; \kappa^{\prime}\right) \in H_{\mathbb{R}}^{(g, h)}$, and $(\tilde{\lambda}, \tilde{\mu})=(\lambda, \mu) M^{\prime}$. Then G^{J} acts on $\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$ transitively by

$$
\begin{equation*}
(M,(\lambda, \mu ; \kappa)) \cdot(\Omega, Z)=\left(M \cdot \Omega,(Z+\lambda \Omega+\mu)(C \Omega+D)^{-1}\right) \tag{1.3}
\end{equation*}
$$

where $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p(g, \mathbb{R}),(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(g, h)}$, and $(\Omega, Z) \in \mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$. In [11, p. 1331], the author presented the natural construction of the action (1.3).

We mention that studying the Siegel-Jacobi space or the Siegel-Jacobi disk associated with the Jacobi group is useful to the study of the universal family of polarized abelian varieties (cf. [12], [14]). The aim of this paper is to present a partial Cayley transform of the Siegel-Jacobi disk $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ onto the SiegelJacobi space $\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$ which gives a partially bounded realization of $\mathbb{H}_{g} \times$ $\mathbb{C}^{(h, g)}$ by $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ and to prove that the natural action of the Jacobi group on $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ and $\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$ is compatible via a partial Cayley transform. The main reason that we study a partial Cayley transform is that this transform is
usefully applied to computing differential operators on the Siegel-Jacobi disk $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ invariant under the action (3.5) of the Jacobi group $G_{*}^{J}(c f .(3.2))$ explicitly.

This paper is organized as follows. In Section 2, we review the Cayley transform of the generalized unit disk \mathbb{D}_{g} onto the Siegel upper half plane \mathbb{H}_{g} which gives a bounded realization of \mathbb{H}_{g} by \mathbb{D}_{g}. In Section 3, we construct a partial Cayley transform of the Siegel-Jacobi disk $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ onto the SiegelJacobi space $\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$ which gives a partially bounded realization of $\mathbb{H}_{g} \times$ $\mathbb{C}^{(h, g)}$ by $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ (cf. (3.6)). We prove that the action (1.3) of the Jacobi group G^{J} is compatible with the action (3.5) of the Jacobi group G_{*}^{J} through a partial Cayley transform (cf. Theorem 3.1). In the final section, we present the canonical automorphic factors of the Jacobi group G_{*}^{J}.
Notations: We denote by \mathbb{R} and \mathbb{C} the field of real numbers, and the field of complex numbers respectively. For a square matrix $A \in F^{(k, k)}$ of degree k, $\sigma(A)$ denotes the trace of A. For $\Omega \in \mathbb{H}_{g}, \operatorname{Re} \Omega($ resp. $\operatorname{Im} \Omega)$ denotes the real (resp. imaginary) part of Ω. For a matrix $A \in F^{(k, k)}$ and $B \in F^{(k, l)}$, we write $A[B]={ }^{t} B A B . I_{n}$ denotes the identity matrix of degree n.

2. The Cayley transform

Let

$$
T=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I_{g} & I_{g} \tag{2.1}\\
i I_{g} & -i I_{g}
\end{array}\right)
$$

be the $2 g \times 2 g$ matrix represented by Φ. Then

$$
T^{-1} S p(g, \mathbb{R}) T=\left\{\left(\begin{array}{cc}
\frac{P}{\bar{Q}} & \left.\left.\frac{Q}{P}\right) \mid{ }^{t} P \bar{P}-{ }^{t} \bar{Q} Q=I_{g},{ }^{t} P \bar{Q}={ }^{t} \bar{Q} P\right\} . . . ~ \tag{2.2}
\end{array}\right.\right.
$$

Indeed, if $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p(g, \mathbb{R})$, then

$$
T^{-1} M T=\left(\begin{array}{cc}
\frac{P}{Q} & \frac{Q}{P} \tag{2.3}
\end{array}\right)
$$

where

$$
\begin{equation*}
P=\frac{1}{2}\{(A+D)+i(B-C)\} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{1}{2}\{(A-D)-i(B+C)\} . \tag{2.5}
\end{equation*}
$$

For brevity, we set

$$
G_{*}=T^{-1} S p(g, \mathbb{R}) T
$$

Then G_{*} is a subgroup of $S U(g, g)$, where

$$
S U(g, g)=\left\{h \in \mathbb{C}^{(g, g)} \mid{ }^{t} h I_{g, g} \bar{h}=I_{g, g}\right\}, \quad I_{g, g}=\left(\begin{array}{cc}
I_{g} & 0 \\
0 & -I_{g}
\end{array}\right)
$$

In the case $g=1$, we observe that

$$
T^{-1} S p(1, \mathbb{R}) T=T^{-1} S L_{2}(\mathbb{R}) T=S U(1,1)
$$

If $g>1$, then G_{*} is a proper subgroup of $S U(g, g)$. In fact, since ${ }^{t} T J_{g} T=-i J_{g}$, we get

$$
\begin{equation*}
G_{*}=\left\{\left.h \in S U(g, g)\right|^{t} h J_{g} h=J_{g}\right\}=S U(g, g) \cap S p(g, \mathbb{C}), \tag{2.6}
\end{equation*}
$$

where

$$
S p(g, \mathbb{C})=\left\{\left.\alpha \in \mathbb{C}^{(2 g, 2 g)}\right|^{t} \alpha J_{g} \alpha=J_{g}\right\} .
$$

Let

$$
P^{+}=\left\{\left.\left(\begin{array}{cc}
I_{g} & Z \\
0 & I_{g}
\end{array}\right) \right\rvert\, Z={ }^{t} Z \in \mathbb{C}^{(g, g)}\right\}
$$

be the P^{+}-part of the complexification of $G_{*} \subset S U(g, g)$. We note that the Harish-Chandra decomposition of an element $\left(\begin{array}{cc}\frac{P}{Q} & \frac{Q}{P}\end{array}\right)$ in G_{*} is

$$
\left(\begin{array}{cc}
P & Q \\
\bar{Q} & \bar{P}
\end{array}\right)=\left(\begin{array}{cc}
I_{g} & Q \bar{P}^{-1} \\
0 & I_{g}
\end{array}\right)\left(\begin{array}{cc}
P-Q \bar{P}^{-1} \bar{Q} & 0 \\
0 & \bar{P}
\end{array}\right)\left(\begin{array}{cc}
I_{g} & 0 \\
\bar{P}^{-1} \bar{Q} & I_{g}
\end{array}\right) .
$$

For more detail, we refer to [3, p. 155]. Thus the P^{+}-component of the following element

$$
\left(\begin{array}{cc}
\frac{P}{Q} & \frac{Q}{P}
\end{array}\right) \cdot\left(\begin{array}{cc}
I_{g} & W \\
0 & I_{g}
\end{array}\right), \quad W \in \mathbb{D}_{g}
$$

of the complexification of G_{*}^{J} is given by

$$
\left(\begin{array}{cc}
I_{g} & (P W+Q)(\bar{Q} W+\bar{P})^{-1} \tag{2.7}\\
0 & I_{g}
\end{array}\right) .
$$

We note that $Q \bar{P}^{-1} \in \mathbb{D}_{g}$. We get the Harish-Chandra embedding of \mathbb{D}_{g} into $P^{+}\left(\right.$cf. [3, p. 155] or $\left[7\right.$, pp. 58-59]). Therefore we see that G_{*} acts on \mathbb{D}_{g} transitively by

$$
\left(\begin{array}{cc}
\frac{P}{Q} & \frac{Q}{P}
\end{array}\right) \cdot W=(P W+Q)(\bar{Q} W+\bar{P})^{-1}, \quad\left(\begin{array}{cc}
\frac{P}{Q} & \frac{Q}{P} \tag{2.8}
\end{array}\right) \in G_{*}, W \in \mathbb{D}_{g}
$$

The isotropy subgroup at the origin o is given by

$$
K=\left\{\left.\left(\begin{array}{cc}
P & 0 \\
0 & \bar{P}
\end{array}\right) \right\rvert\, P \in U(g)\right\} .
$$

Thus G_{*} / K is biholomorphic to \mathbb{D}_{g}. It is known that the action (1.1) is compatible with the action (2.8) via the Cayley transform Φ (cf. (1.2)). In other words, if $M \in S p(g, \mathbb{R})$ and $W \in \mathbb{D}_{g}$, then

$$
\begin{equation*}
M \cdot \Phi(W)=\Phi\left(M_{*} \cdot W\right) \tag{2.9}
\end{equation*}
$$

where $M_{*}=T^{-1} M T \in G_{*}$. For a proof of Formula (2.9), we refer to the proof of Theorem 3.1.

For $\Omega=\left(\omega_{i j}\right) \in \mathbb{H}_{g}$, we write $\Omega=X+i Y$ with $X=\left(x_{i j}\right), Y=\left(y_{i j}\right)$ real and $d \Omega=\left(d \omega_{i j}\right)$. We also put

$$
\frac{\partial}{\partial \Omega}=\left(\frac{1+\delta_{i j}}{2} \frac{\partial}{\partial \omega_{i j}}\right) \quad \text { and } \quad \frac{\partial}{\partial \bar{\Omega}}=\left(\frac{1+\delta_{i j}}{2} \frac{\partial}{\partial \bar{\omega}_{i j}}\right)
$$

Then

$$
\begin{equation*}
d s^{2}=\sigma\left(Y^{-1} d \Omega Y^{-1} d \bar{\Omega}\right) \tag{2.10}
\end{equation*}
$$

is a $S p(g, \mathbb{R})$-invariant metric on $\mathbb{H}_{g}(c f .[8])$. H. Maass [5] proved that its Laplacian is given by

$$
\begin{equation*}
\Delta=4 \sigma\left(Y^{t}\left(Y \frac{\partial}{\partial \bar{\Omega}}\right) \frac{\partial}{\partial \Omega}\right) \tag{2.11}
\end{equation*}
$$

For $W=\left(w_{i j}\right) \in \mathbb{D}_{g}$, we write $d W=\left(d w_{i j}\right)$ and $d \bar{W}=\left(d \bar{w}_{i j}\right)$. We put

$$
\frac{\partial}{\partial W}=\left(\frac{1+\delta_{i j}}{2} \frac{\partial}{\partial w_{i j}}\right) \quad \text { and } \quad \frac{\partial}{\partial \bar{W}}=\left(\frac{1+\delta_{i j}}{2} \frac{\partial}{\partial \bar{w}_{i j}}\right) .
$$

Using the Cayley transform $\Phi: \mathbb{D}_{g} \longrightarrow \mathbb{H}_{g}, \mathrm{H}$. Maass proved (cf. [5]) that

$$
\begin{equation*}
d s_{*}^{2}=4 \sigma\left(\left(I_{g}-W \bar{W}\right)^{-1} d W\left(I_{g}-\bar{W} W\right)^{-1} d \bar{W}\right) \tag{2.12}
\end{equation*}
$$

is a G_{*}-invariant Riemannian metric on \mathbb{D}_{g} and its Laplacian is given by

$$
\begin{equation*}
\Delta_{*}=\sigma\left(\left(I_{g}-W \bar{W}\right)^{t}\left(\left(I_{g}-W \bar{W}\right) \frac{\partial}{\partial \bar{W}}\right) \frac{\partial}{\partial W}\right) \tag{2.13}
\end{equation*}
$$

3. A partial Cayley transform

In this section, we present a partial Cayley transform of $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ onto $\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$ and prove that the action (1.3) of G^{J} on $\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$ is compatible with the natural action (cf. (3.5)) of the Jacobi group G_{*}^{J} on $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ via a partial Cayley transform.

From now on, for brevity we write $\mathbb{H}_{g, h}=\mathbb{H}_{g} \times \mathbb{C}^{(h, g)}$. We can identify an element $g=(M,(\lambda, \mu ; \kappa))$ of $G^{J}, M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p(g, \mathbb{R})$ with the element

$$
\left(\begin{array}{cccc}
A & 0 & B & A^{t} \mu-B^{t} \lambda \\
\lambda & I_{h} & \mu & \kappa \\
C & 0 & D & C^{t} \mu-D^{t} \lambda \\
0 & 0 & 0 & I_{h}
\end{array}\right)
$$

of $S p(g+h, \mathbb{R})$. This subgroup plays an important role in investigating the Fourier-Jacobi expansion of a Siegel modular form for $S p(g+h, \mathbb{R})(c f .[6])$ and studying the theory of Jacobi forms (cf. [1], [2], [9], [10], [11], [17]).

We set

$$
T_{*}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I_{g+h} & I_{g+h} \\
i I_{g+h} & -i I_{g+h}
\end{array}\right) .
$$

We now consider the group G_{*}^{J} defined by

$$
G_{*}^{J}=T_{*}^{-1} G^{J} T_{*} .
$$

If $g=(M,(\lambda, \mu ; \kappa)) \in G^{J}$ with $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in S p(g, \mathbb{R})$, then $T_{*}^{-1} g T_{*}$ is given by

$$
T_{*}^{-1} g T_{*}=\left(\begin{array}{cc}
P_{*} & \frac{Q_{*}}{\bar{Q}_{*}} \tag{3.1}
\end{array} \bar{P}_{*}\right)
$$

where

$$
\begin{aligned}
& P_{*}=\left(\begin{array}{cc}
P & \frac{1}{2}\left\{Q^{t}(\lambda+i \mu)-P^{t}(\lambda-i \mu)\right\} \\
\frac{1}{2}(\lambda+i \mu) & I_{h}+i \frac{\kappa}{2}
\end{array}\right) \\
& Q_{*}=\left(\begin{array}{cc}
Q & \frac{1}{2}\left\{P^{t}(\lambda-i \mu)-Q^{t}(\lambda+i \mu)\right\} \\
\frac{1}{2}(\lambda-i \mu) & -i \frac{\kappa}{2}
\end{array}\right)
\end{aligned}
$$

and P, Q are given by Formulas (2.4) and (2.5). From now on, we write

$$
\left(\left(\begin{array}{cc}
\frac{P}{Q} & \frac{Q}{P}
\end{array}\right),\left(\frac{1}{2}(\lambda+i \mu), \frac{1}{2}(\lambda-i \mu) ;-i \frac{\kappa}{2}\right)\right)=\left(\begin{array}{cc}
P_{*} & \frac{Q_{*}}{\bar{Q}_{*}}
\end{array}\right) .
$$

In other words, we have the relation
$T_{*}^{-1}\left(\left(\begin{array}{cc}A & B \\ C & D\end{array}\right),(\lambda, \mu ; \kappa)\right) T_{*}=\left(\left(\begin{array}{cc}\frac{P}{Q} & \frac{Q}{P}\end{array}\right),\left(\frac{1}{2}(\lambda+i \mu), \frac{1}{2}(\lambda-i \mu) ;-i \frac{\kappa}{2}\right)\right)$.
Let

$$
H_{\mathbb{C}}^{(g, h)}=\left\{(\xi, \eta ; \zeta) \mid \xi, \eta \in \mathbb{C}^{(h, g)}, \zeta \in \mathbb{C}^{(h, h)}, \zeta+\eta^{t} \xi \text { symmetric }\right\}
$$

be the Heisenberg group endowed with the following multiplication

$$
\left.(\xi, \eta ; \zeta) \circ\left(\xi^{\prime}, \eta^{\prime} ; \zeta^{\prime}\right)=\left(\xi+\xi^{\prime}, \eta+\eta^{\prime} ; \zeta+\zeta^{\prime}+\xi^{t} \eta^{\prime}-\eta^{t} \xi^{\prime}\right)\right)
$$

We define the semidirect product

$$
S L(2 g, \mathbb{C}) \ltimes H_{\mathbb{C}}^{(g, h)}
$$

endowed with the following multiplication

$$
\begin{aligned}
& \left(\left(\begin{array}{cc}
P & Q \\
R & S
\end{array}\right),(\xi, \eta ; \zeta)\right) \cdot\left(\left(\begin{array}{cc}
P^{\prime} & Q^{\prime} \\
R^{\prime} & S^{\prime}
\end{array}\right),\left(\xi^{\prime}, \eta^{\prime} ; \zeta^{\prime}\right)\right) \\
= & \left(\left(\begin{array}{ll}
P & Q \\
R & S
\end{array}\right)\left(\begin{array}{cc}
P^{\prime} & Q^{\prime} \\
R^{\prime} & S^{\prime}
\end{array}\right),\left(\tilde{\xi}+\xi^{\prime}, \tilde{\eta}+\eta^{\prime} ; \zeta+\zeta^{\prime}+\tilde{\xi}^{t} \eta^{\prime}-\tilde{\eta}^{t} \xi^{\prime}\right)\right),
\end{aligned}
$$

where $\tilde{\xi}=\xi P^{\prime}+\eta R^{\prime}$ and $\tilde{\eta}=\xi Q^{\prime}+\eta S^{\prime}$.
If we identify $H_{\mathbb{R}}^{(g, h)}$ with the subgroup

$$
\left\{(\xi, \bar{\xi} ; i \kappa) \mid \xi \in \mathbb{C}^{(h, g)}, \kappa \in \mathbb{R}^{(h, h)}\right\}
$$

of $H_{\mathbb{C}}^{(g, h)}$, we have the following inclusion

$$
G_{*}^{J} \subset S U(g, g) \ltimes H_{\mathbb{R}}^{(g, h)} \subset S L(2 g, \mathbb{C}) \ltimes H_{\mathbb{C}}^{(g, h)}
$$

More precisely, if we recall $G_{*}=S U(g, g) \cap S p(g, \mathbb{C})$ (cf. (2.6)), we see that the Jacobi group G_{*}^{J} is given by

$$
G_{*}^{J}=\left\{\left.\left(\left(\begin{array}{cc}
\frac{P}{Q} & \frac{Q}{P}
\end{array}\right),(\xi, \bar{\xi} ; i \kappa)\right) \right\rvert\,\left(\begin{array}{cc}
\bar{Q} & \frac{Q}{P} \tag{3.2}
\end{array}\right) \in G_{*}, \xi \in \mathbb{C}^{(m, n)}, \kappa \in \mathbb{R}^{(m, m)}\right\}
$$

We define the mapping $\Theta: G^{J} \longrightarrow G_{*}^{J}$ by

$$
\Theta\left(\left(\begin{array}{ll}
A & B \tag{3.3}\\
C & D
\end{array}\right),(\lambda, \mu ; \kappa)\right)=\left(\left(\begin{array}{ll}
\frac{P}{\bar{Q}} & \frac{Q}{P}
\end{array}\right),\left(\frac{1}{2}(\lambda+i \mu), \frac{1}{2}(\lambda-i \mu) ;-i \frac{\kappa}{2}\right)\right)
$$

where P and Q are given by Formulas (2.4) and (2.5). We can see that if $g_{1}, g_{2} \in G^{J}$, then $\Theta\left(g_{1} g_{2}\right)=\Theta\left(g_{1}\right) \Theta\left(g_{2}\right)$.

According to [13, p. 250], G_{*}^{J} is of the Harish-Chandra type (cf. [7, p. 118]). Let

$$
g_{*}=\left(\left(\begin{array}{cc}
\frac{P}{Q} & \frac{Q}{P}
\end{array}\right),(\lambda, \mu ; \kappa)\right)
$$

be an element of G_{*}^{J}. Since the Harish-Chandra decomposition of an element $\left(\begin{array}{ll}P & Q \\ R & S\end{array}\right)$ in $S U(g, g)$ is given by

$$
\left(\begin{array}{cc}
P & Q \\
R & S
\end{array}\right)=\left(\begin{array}{cc}
I_{g} & Q S^{-1} \\
0 & I_{g}
\end{array}\right)\left(\begin{array}{cc}
P-Q S^{-1} R & 0 \\
0 & S
\end{array}\right)\left(\begin{array}{cc}
I_{g} & 0 \\
S^{-1} R & I_{g}
\end{array}\right),
$$

the P_{*}^{+}-component of the following element

$$
g_{*} \cdot\left(\left(\begin{array}{cc}
I_{g} & W \\
0 & I_{g}
\end{array}\right),(0, \eta ; 0)\right), \quad W \in \mathbb{D}_{g}
$$

of $S L(2 g, \mathbb{C}) \ltimes H_{\mathbb{C}}^{(g, h)}$ is given by

$$
\left(\left(\begin{array}{cc}
I_{g} & (P W+Q)(\bar{Q} W+\bar{P})^{-1} \tag{3.4}\\
0 & I_{g}
\end{array}\right),\left(0,(\eta+\lambda W+\mu)(\bar{Q} W+\bar{P})^{-1} ; 0\right)\right) .
$$

We can identify $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ with the subset

$$
\left\{\left.\left(\left(\begin{array}{cc}
I_{g} & W \\
0 & I_{g}
\end{array}\right),(0, \eta ; 0)\right) \right\rvert\, W \in \mathbb{D}_{g}, \eta \in \mathbb{C}^{(h, g)}\right\}
$$

of the complexification of G_{*}^{J}. Indeed, $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ is embedded into P_{*}^{+}given by

$$
P_{*}^{+}=\left\{\left.\left(\left(\begin{array}{cc}
I_{g} & W \\
0 & I_{g}
\end{array}\right),(0, \eta ; 0)\right) \right\rvert\, W={ }^{t} W \in \mathbb{C}^{(g, g)}, \eta \in \mathbb{C}^{(h, g)}\right\} .
$$

This is a generalization of the Harish-Chandra embedding (cf. [7, p.119]). Hence G_{*}^{J} acts on $\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$ transitively by

$$
\begin{align*}
& \left(\left(\begin{array}{cc}
\frac{P}{\bar{Q}} & \frac{Q}{P}
\end{array}\right),(\lambda, \mu ; \kappa)\right) \cdot(W, \eta) \tag{3.5}\\
= & \left((P W+Q)(\bar{Q} W+\bar{P})^{-1},(\eta+\lambda W+\mu)(\bar{Q} W+\bar{P})^{-1}\right) .
\end{align*}
$$

From now on, for brevity we write $\mathbb{D}_{g, h}=\mathbb{D}_{g} \times \mathbb{C}^{(h, g)}$. We define the map Φ_{*} of $\mathbb{D}_{g, h}$ into $\mathbb{H}_{g, h}$ by
(3.6) $\Phi_{*}(W, \eta)=\left(i\left(I_{g}+W\right)\left(I_{g}-W\right)^{-1}, 2 i \eta\left(I_{g}-W\right)^{-1}\right), \quad(W, \eta) \in \mathbb{D}_{g, h}$.

We can show that Φ_{*} is a biholomorphic map of $\mathbb{D}_{g, h}$ onto $\mathbb{H}_{g, h}$ which gives a partial bounded realization of $\mathbb{H}_{g, h}$ by the Siegel-Jacobi disk $\mathbb{D}_{g, h}$. We call this map Φ_{*} the partial Cayley transform of the Siegel-Jacobi disk $\mathbb{D}_{g, h}$.

Theorem 3.1. The action (1.3) of G^{J} on $\mathbb{H}_{g, h}$ is compatible with the action (3.5) of G_{*}^{J} on $\mathbb{D}_{g, h}$ through the partial Cayley transform Φ_{*}. In other words, if $g_{0} \in G^{J}$ and $(W, \eta) \in \mathbb{D}_{g, h}$,

$$
\begin{equation*}
g_{0} \cdot \Phi_{*}(W, \eta)=\Phi_{*}\left(g_{*} \cdot(W, \eta)\right) \tag{3.7}
\end{equation*}
$$

where $g_{*}=T_{*}^{-1} g_{0} T_{*}$. We observe that Formula (3.7) generalizes Formula (2.9). The inverse of Φ_{*} is

$$
\begin{equation*}
\Phi_{*}^{-1}(\Omega, Z)=\left(\left(\Omega-i I_{g}\right)\left(\Omega+i I_{g}\right)^{-1}, Z\left(\Omega+i I_{g}\right)^{-1}\right) \tag{3.8}
\end{equation*}
$$

Proof. Let

$$
g_{0}=\left(\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right),(\lambda, \mu ; \kappa)\right)
$$

be an element of G^{J} and let $g_{*}=T_{*}^{-1} g_{0} T_{*}$. Then

$$
g_{*}=\left(\left(\begin{array}{cc}
\bar{Q} & \frac{Q}{P}
\end{array}\right),\left(\frac{1}{2}(\lambda+i \mu), \frac{1}{2}(\lambda-i \mu) ;-i \frac{\kappa}{2}\right)\right),
$$

where P and Q are given by Formulas (2.4) and (2.5).
For brevity, we write

$$
(\Omega, Z)=\Phi_{*}(W, \eta) \quad \text { and } \quad\left(\Omega_{*}, Z_{*}\right)=g_{0} \cdot(\Omega, Z)
$$

That is,

$$
\Omega=i\left(I_{g}+W\right)\left(I_{g}-W\right)^{-1} \quad \text { and } \quad Z=2 i \eta\left(I_{g}-W\right)^{-1}
$$

Then we get

$$
\begin{aligned}
\Omega_{*}= & (A \Omega+B)(C \Omega+D)^{-1} \\
= & \left\{i A\left(I_{g}+W\right)\left(I_{g}-W\right)^{-1}+B\right\}\left\{i C\left(I_{g}+W\right)\left(I_{g}-W\right)^{-1}+D\right\}^{-1} \\
= & \left\{i A\left(I_{g}+W\right)+B\left(I_{g}-W\right)\right\}\left(I_{g}-W\right)^{-1} \\
& \times\left[\left\{i C\left(I_{g}+W\right)+D\left(I_{g}-W\right)\right\}\left(I_{g}-W\right)^{-1}\right]^{-1} \\
= & \{(i A-B) W+(i A+B)\}\{(i C-D) W+(i C+D)\}^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
Z_{*}= & (Z+\lambda \Omega+\mu)(C \Omega+D)^{-1} \\
= & \left\{2 i \eta\left(I_{g}-W\right)^{-1}+i \lambda\left(I_{g}+W\right)\left(I_{g}-W\right)^{-1}+\mu\right\} \\
& \times\left\{i C\left(I_{g}+W\right)\left(I_{g}-W\right)^{-1}+D\right\}^{-1} \\
= & \left\{2 i \eta+i \lambda\left(I_{g}+W\right)+\mu\left(I_{g}-W\right)\right\}\left(I_{g}-W\right)^{-1} \\
& \times\left[\left\{i C\left(I_{g}+W\right)+D\left(I_{g}-W\right)\right\}\left(I_{g}-W\right)^{-1}\right]^{-1} \\
= & \{2 i \eta+(\lambda i-\mu) W+\lambda i+\mu\}\{(i C-D) W+(i C+D)\}^{-1} .
\end{aligned}
$$

On the other hand, we set

$$
\left(W_{*}, \eta_{*}\right)=g_{*} \cdot(W, \eta) \quad \text { and } \quad(\widehat{\Omega}, \widehat{Z})=\Phi_{*}\left(W_{*}, \eta_{*}\right) .
$$

Then

$$
W_{*}=(P W+Q)(\bar{Q} W+\bar{P})^{-1} \quad \text { and } \quad \eta_{*}=\left(\eta+\lambda_{*} W+\mu_{*}\right)(\bar{Q} W+\bar{P})^{-1}
$$

where $\lambda_{*}=\frac{1}{2}(\lambda+i \mu)$ and $\mu_{*}=\frac{1}{2}(\lambda-i \mu)$.
According to Formulas (2.4) and (2.5), we get

$$
\begin{aligned}
\widehat{\Omega}= & i\left(I_{g}+W_{*}\right)\left(I_{g}-W_{*}\right)^{-1} \\
= & i\left\{I_{g}+(P W+Q)(\bar{Q} W+\bar{P})^{-1}\right\}\left\{I_{g}-(P W+Q)(\bar{Q} W+\bar{P})^{-1}\right\}^{-1} \\
= & i(\bar{Q} W+\bar{P}+P W+Q)(\bar{Q} W+\bar{P})^{-1} \\
& \times\left\{(\bar{Q} W+\bar{P}-P W-Q)(\bar{Q} W+\bar{P})^{-1}\right\}^{-1} \\
= & i\{(P+\bar{Q}) W+\bar{P}+Q\}\{(\bar{Q}-P) W+\bar{P}-Q\}^{-1} \\
= & \{(i A-B) W+(i A+B)\}\{(i C-D) W+(i C+D)\}^{-1} .
\end{aligned}
$$

Therefore $\widehat{\Omega}=\Omega_{*}$. In fact, this result is the known fact (cf. Formula (2.9)) that the action (1.1) is compatible with the action (2.8) via the Cayley transform
Φ.

$$
\begin{aligned}
\widehat{Z}= & 2 i \eta_{*}\left(I_{g}-W_{*}\right)^{-1} \\
= & 2 i\left(\eta+\lambda_{*} W+\mu_{*}\right)(\bar{Q} W+\bar{P})^{-1} \\
& \times\left\{I_{g}-(P W+Q)(\bar{Q} W+\bar{P})^{-1}\right\}^{-1} \\
= & 2 i\left(\eta+\lambda_{*} W+\mu_{*}\right)(\bar{Q} W+\bar{P})^{-1} \\
& \times\left\{(\bar{Q} W+\bar{P}-P W-Q)(\bar{Q} W+\bar{P})^{-1}\right\}^{-1} \\
= & 2 i\left(\eta+\lambda_{*} W+\mu_{*}\right)\{(\bar{Q}-P) W+\bar{P}-Q\}^{-1}
\end{aligned}
$$

Using Formulas (2.4) and (2.5), we obtain

$$
\widehat{Z}=\{2 i \eta+(\lambda i-\mu) W+\lambda i+\mu\}\{(i C-D) W+i C+D\}^{-1}
$$

Hence $\widehat{Z}=Z_{*}$. Consequently we get Formula (3.7). Formula (3.8) follows immediately from a direct computation.
Remark 3.1. R. Berndt and R. Schmidts (cf. [1, pp. 52-53]) investigated a partial Cayley transform in the case $g=h=1$.

For a coordinate $(\Omega, Z) \in \mathbb{H}_{g, h}$ with $\Omega=\left(\omega_{\mu \nu}\right) \in \mathbb{H}_{g}$ and $Z=\left(z_{k l}\right) \in \mathbb{C}^{(h, g)}$, we put

$$
\begin{gathered}
\Omega=X+i Y, \quad X=\left(x_{\mu \nu}\right), \quad Y=\left(y_{\mu \nu}\right) \text { real, } \\
Z=U+i V, \quad U=\left(u_{k l}\right), \quad V=\left(v_{k l}\right) \text { real, } \\
d \Omega=\left(d \omega_{\mu \nu}\right), \quad d X=\left(d x_{\mu \nu}\right), \quad d Y=\left(d y_{\mu \nu}\right), \\
d Z=\left(d z_{k l}\right), \quad d U=\left(d u_{k l}\right), \quad d V=\left(d v_{k l}\right), \\
d \bar{\Omega}=\left(d \bar{\omega}_{\mu \nu}\right), \quad d \bar{Z}=\left(d \bar{z}_{k l}\right), \\
\frac{\partial}{\partial \Omega}=\left(\begin{array}{ccc}
\frac{1+\delta_{\mu \nu}}{2} & \frac{\partial}{\partial \omega_{\mu \nu}}
\end{array}\right), \quad \frac{\partial}{\partial \bar{\Omega}}=\left(\begin{array}{ccc}
\frac{1+\delta_{\mu \nu}}{2} & \frac{\partial}{\partial \bar{\omega}_{\mu \nu}}
\end{array}\right), \\
\frac{\partial}{\partial Z}=\left(\begin{array}{ccc}
\frac{\partial}{\partial z_{11}} & \cdots & \frac{\partial}{\partial z_{h 1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial}{\partial z_{1 g}} & \cdots & \frac{\partial}{\partial z_{h g}}
\end{array}\right), \quad \frac{\partial}{\partial \bar{Z}}=\left(\begin{array}{ccc}
\frac{\partial}{\partial \bar{z}_{11}} & \cdots & \frac{\partial}{\partial \overline{z_{h 1}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial}{\partial \bar{z}_{1 g}} & \cdots & \frac{\partial}{\partial \overline{z_{h g}}}
\end{array}\right) .
\end{gathered}
$$

Remark 3.2. The author proved in [15] that for any two positive real numbers A and B, the following metric

$$
\begin{align*}
& d s_{g, h ; A, B}^{2}=\quad A \sigma\left(Y^{-1} d \Omega Y^{-1} d \bar{\Omega}\right) \\
& + \tag{3.9}\\
& \quad B\left\{\sigma\left(Y^{-1 t} V V Y^{-1} d \Omega Y^{-1} d \bar{\Omega}\right)+\sigma\left(Y^{-1 t}(d Z) d \bar{Z}\right)\right. \\
&
\end{align*}
$$

is a Riemannian metric on $\mathbb{H}_{g, h}$ which is invariant under the action (1.3) of the Jacobi group G^{J} and its Laplacian is given by

$$
\begin{align*}
\Delta_{n, m ; A, B}= & \frac{4}{A}\left\{\sigma\left(Y^{t}\left(Y \frac{\partial}{\partial \bar{\Omega}}\right) \frac{\partial}{\partial \Omega}\right)+\sigma\left(V Y^{-1 t} V^{t}\left(Y \frac{\partial}{\partial \bar{Z}}\right) \frac{\partial}{\partial Z}\right)\right. \\
& \left.+\sigma\left(V^{t}\left(Y \frac{\partial}{\partial \bar{\Omega}}\right) \frac{\partial}{\partial Z}\right)+\sigma\left({ }^{t} V^{t}\left(Y \frac{\partial}{\partial \bar{Z}}\right) \frac{\partial}{\partial \Omega}\right)\right\} \tag{3.10}\\
& +\frac{4}{B} \sigma\left(Y \frac{\partial}{\partial Z}^{t}\left(\frac{\partial}{\partial \bar{Z}}\right)\right) .
\end{align*}
$$

We observe that Formulas (3.9) and (3.10) generalize Formulas (2.10) and (2.11). The following differential form

$$
d v_{g, h}=(\operatorname{det} Y)^{-(g+h+1)}[d X] \wedge[d Y] \wedge[d U] \wedge[d V]
$$

is a G^{J}-invariant volume element on $\mathbb{H}_{g, h}$, where

$$
[d X]=\wedge_{\mu \leq \nu} d x_{\mu \nu},[d Y]=\wedge_{\mu \leq \nu} d y_{\mu \nu},[d U]=\wedge_{k, l} d u_{k l} \quad \text { and } \quad[d V]=\wedge_{k, l} d v_{k l}
$$

Using the partial Cayley transform Φ_{*} and Theorem 3.1, we can find a $G_{*}^{J}-$ invariant Riemannian metric on the Siegel-Jacobi disk $\mathbb{D}_{g, h}$ and its Laplacian explicitly which generalize Formulas (2.12) and (2.13). For more detail, we refer to [16].

4. The canonical automorphic factors

The isotropy subgroup K_{*}^{J} at $(0,0)$ under the action (3.5) is

$$
K_{*}^{J}=\left\{\left.\left(\left(\begin{array}{cc}
P & 0 \tag{4.1}\\
0 & \bar{P}
\end{array}\right),(0,0 ; \kappa)\right) \right\rvert\, P \in U(g), \kappa \in \mathbb{R}^{(h, h)}\right\} .
$$

The complexification of K_{*}^{J} is given by

$$
K_{*, \mathbb{C}}^{J}=\left\{\left.\left(\left(\begin{array}{cc}
P & 0 \tag{4.2}\\
0 & { }^{t} P^{-1}
\end{array}\right),(0,0 ; \zeta)\right) \right\rvert\, P \in G L(g, \mathbb{C}), \zeta \in \mathbb{C}^{(h, h)}\right\}
$$

By a complicated computation, we can show that if

$$
g_{*}=\left(\left(\begin{array}{cc}
\frac{P}{Q} & \frac{Q}{P} \tag{4.3}
\end{array}\right),(\lambda, \mu ; \kappa)\right)
$$

is an element of G_{*}^{J}, then the $K_{*, \mathbb{C}^{-}}^{J}$ component of

$$
g_{*} \cdot\left(\left(\begin{array}{cc}
I_{g} & W \\
0 & I_{g}
\end{array}\right),(0, \eta ; 0)\right)
$$

is given by

$$
\left.\left(\begin{array}{cc}
P-(P W+Q)(\bar{Q} W+\bar{P})^{-1} \bar{Q} & 0 \tag{4.4}\\
0 & \bar{Q} W+\bar{P}
\end{array}\right),\left(0,0 ; \kappa_{*}\right)\right),
$$

where

$$
\begin{aligned}
\kappa_{*}= & \kappa+\lambda^{t} \eta+(\eta+\lambda W+\mu)^{t} \lambda \\
& -(\eta+\lambda W+\mu)^{t} \bar{Q}^{t}(\bar{Q} W+\bar{P})^{-1}{ }^{t}(\eta+\lambda W+\mu) \\
= & \kappa+\lambda^{t} \eta+(\eta+\lambda W+\mu)^{t} \lambda \\
& -(\eta+\lambda W+\mu)(\bar{Q} W+\bar{P})^{-1} \bar{Q}^{t}(\eta+\lambda W+\mu) .
\end{aligned}
$$

Here we used the fact that $(\bar{Q} W+\bar{P})^{-1} \bar{Q}$ is symmetric.
For $g_{*} \in G_{*}^{J}$ given by (4.3) with $g_{0}=\left(\begin{array}{cc}\frac{P}{Q} & \frac{Q}{P}\end{array}\right) \in G_{*}$ and $(W, \eta) \in \mathbb{D}_{g, h}$, we write

$$
\begin{equation*}
J\left(g_{*},(W, \eta)\right)=a\left(g_{*},(W, \eta)\right) b\left(g_{0}, W\right) \tag{4.5}
\end{equation*}
$$

where

$$
a\left(g_{*},(W, \eta)\right)=\left(I_{2 g},\left(0,0 ; \kappa_{*}\right)\right), \quad \text { where } \kappa_{*} \text { is given in (4.4) }
$$

and

$$
b\left(g_{0}, W\right)=\left(\begin{array}{cc}
P-(P W+Q)(\bar{Q} W+\bar{P})^{-1} \bar{Q} & 0 \\
0 & \bar{Q} W+\bar{P}
\end{array}\right),(0,0 ; 0) .
$$

Lemma 4.1. Let

$$
\rho: G L(g, \mathbb{C}) \longrightarrow G L\left(V_{\rho}\right)
$$

be a holomorphic representation of $G L(g, \mathbb{C})$ on a finite dimensional complex vector space V_{ρ} and $\chi: \mathbb{C}^{(h, h)} \longrightarrow \mathbb{C}^{\times}$be a character of the additive group $\mathbb{C}^{(h, h)}$. Then the mapping

$$
J_{\chi, \rho}: G_{*}^{J} \times \mathbb{D}_{g, h} \longrightarrow G L\left(V_{\rho}\right)
$$

defined by

$$
J_{\chi, \rho}\left(g_{*},(W, \eta)\right)=\chi\left(a\left(g_{*},(W, \eta)\right)\right) \rho\left(b\left(g_{0}, W\right)\right)
$$

is an automorphic factor of G_{*}^{J} with respect to χ and ρ.
Proof. We observe that $a\left(g_{*},(W, \eta)\right)$ is a summand of automorphy, i.e.,

$$
a\left(g_{1} g_{2},(W, \eta)\right)=a\left(g_{1}, g_{2} \cdot(W, \eta)\right)+a\left(g_{2},(W, \eta)\right)
$$

where $g_{1}, g_{2} \in G_{*}^{J}$ and $(W, \eta) \in \mathbb{D}_{g, h}$. Together with this fact, the proof follows from the fact that the mapping

$$
J_{\rho}: G_{*} \times \mathbb{D}_{g} \longrightarrow G L\left(V_{\rho}\right)
$$

defined by

$$
J_{\rho}\left(g_{0}, W\right):=\rho\left(b\left(g_{0}, W\right)\right), \quad g_{0} \in G_{*}, W \in \mathbb{D}_{g}
$$

is an automorphic factor of G_{*}.

Example 4.1. Let \mathcal{M} be a symmetric half-integral semi-positive definite matrix of degree h and let $\rho: G L(g, \mathbb{C}) \longrightarrow G L\left(V_{\rho}\right)$ be a holomorphic representation of $G L(g, \mathbb{C})$ on a finite dimensional complex vector space V_{ρ}. Then the character

$$
\chi_{\mathcal{M}}: \mathbb{C}^{(h, h)} \longrightarrow \mathbb{C}^{\times}
$$

defined by

$$
\chi_{\mathcal{M}}(c)=e^{-2 \pi i \sigma(\mathcal{M} c)}, \quad c \in \mathbb{C}^{(h, h)}
$$

provides the automorphic factor

$$
J_{\mathcal{M}, \rho}: G_{*}^{J} \times \mathbb{D}_{g, h} \longrightarrow G L\left(V_{\rho}\right)
$$

defined by

$$
J_{\mathcal{M}, \rho}\left(g_{*},(W, \eta)\right)=e^{-2 \pi i \sigma\left(\mathcal{M} \kappa_{*}\right)} \rho(\bar{Q} W+\bar{P}),
$$

where g_{*} is an element in G_{*}^{J} given by (4.3) and κ_{*} is given in (4.4). Using $J_{\mathcal{M}, \rho}$, we can define the notion of Jacobi forms on $\mathbb{D}_{g, h}$ of index \mathcal{M} with respect to the Siegel modular group $T^{-1} S p(g, \mathbb{Z}) T$ (cf. [9], [10], [11]).
Remark 4.1. The P_{*}^{-}-component of

$$
g_{*} \cdot\left(\left(\begin{array}{cc}
I_{g} & W \\
0 & I_{g}
\end{array}\right),(0, \eta ; 0)\right)
$$

is given by

$$
\left(\left(\begin{array}{cc}
I_{g} & 0 \tag{4.6}\\
(\bar{Q} W+\bar{P})^{-1} \bar{Q} & I_{g}
\end{array}\right),\left(\lambda-(\eta+\lambda W+\mu)(\bar{Q} W+\bar{P})^{-1} \bar{Q}, 0 ; 0\right)\right)
$$

where

$$
P_{*}^{-}=\left\{\left.\left(\left(\begin{array}{cc}
I_{g} & 0 \\
W & I_{g}
\end{array}\right),(\xi, 0 ; 0)\right) \right\rvert\, W={ }^{t} W \in \mathbb{C}^{(g, g)}, \xi \in \mathbb{C}^{(h, g)}\right\}
$$

References

[1] R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163. Birkhäuser Verlag, Basel, 1998.
[2] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55, Birkhäuser, Boston, Basel and Stuttgart, 1985.
[3] A. W. Knapp, Representation Theory of Semisimple Groups, Princeton University Press, Princeton, New Jersey, 1986.
[4] A. Koranyi and J. A. Wolf, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939.
[5] H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953), 44-68.
[6] I. Piateski-Sharpiro, Automorphic Functions and the Geometry of Classical Domains, Translated from the Russian. Mathematics and Its Applications, Vol. 8 Gordon and Breach Science Publishers, New York-London-Paris 1969.
[7] I. Satake, Algebraic structures of symmetric domains, Kano Memorial Lectures, 4. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N. J., 1980.
[8] C. L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1-86.
[9] J.-H. Yang, The Siegel-Jacobi operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146.
[10] , Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049.
[11] , Construction of vector valued modular forms from Jacobi forms, Canad. J. Math. 47 (1995), no. 6, 1329-1339.
[12] , A geometrical theory of Jacobi forms of higher degree, Kyungpook Math. J. 40 (2000), no. 2, 209-237.
[13] , The method of orbits for real Lie groups, Kyungpook Math. J. 42 (2002), no. 2, 199-272.
[14] , A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712.
[15] , Invariant metrics and Laplacians on Siegel-Jacobi space, Journal of Number Theory 127 (2007), 83-102.
[16] , Invariant metrics and Laplacians on Siegel-Jacobi disk, arXiv:math.NT/ 0507217 v1 or revised version (2006).
[17] C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224.

Department of Mathematics
Inha University
Incheon 402-751, Korea
E-mail address: jhyang@inha.ac.kr

