
10th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization

CTW 2011

Villa Mondragone, Frascati, June 14-16, 2011

Proceedings of the Conference

Ludovica Adacher, Marta Flamini, Gianmaria Leo,

Gaia Nicosia, Andrea Pacifici, Veronica Piccialli (Eds.)

10th Cologne-Twente Workshop on

Graphs and Combinatorial Optimization (CTW 2011)

Villa Mondragone,

Frascati, June 14-16, 2011

The Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimiza-

tion started off as a series of workshops on theory and applications of discrete algo-

rithms, graphs and combinatorial structures in the wide sense, organized by either

Köln University or Twente University.

The first nine editions of CTW have been held in Cologne (2001, 2005, and 2010);

Enschede (2003 and 2007); Menaggio (2004); Lambrecht (2006); Gargnano (2008)

and Paris (2009). The 10th edition of the workshop will be hosted by Università di

Roma “Tor Vergata”, in Villa Mondragone, an historical villa located in Frascati

(Rome), Italy, from June 14 to 16, 2011.

As in previous editions, a special issue of Discrete Applied Mathematics (DAM)

will be devoted to CTW 2011, containing full-length versions of selected presen-

tations given at the workshop and possibly other contributions related to the work-

shop topics.

CTW 2011 will honor the memory of Prof. Bruno Simeone (Università degli Studi

di Roma “La Sapienza”) who recently passed away. We are grateful to Bruno’s

friends and colleagues who are commemorating his fundamental contributions in

the field of combinatorial optimization and graph theory of the last four decades.

We wish to thank the members of the Program Committee: U. Faigle (Universität zu

Köln), J. Hurink (Universiteit Twente), L. Liberti (École Polytechnique), F. Maffioli

(Politecnico di Milano), G. Righini (Università degli Studi di Milano), R. Schrader

(Universität zu Köln), R. Schultz (Universität Duisburg-Essen), for setting up such

an attractive program. Special thanks also go to some volunteering referees.

LUDOVICA ADACHER, MARTA FLAMINI, GIANMARIA LEO, GAIA NICOSIA,

ANDREA PACIFICI, VERONICA PICCIALLI

Università di Roma “Tor Vergata” e “Roma Tre”,

Roma, Italy, June 6, 2011

Organization

The CTW 2011 conference is co-organized by the Università di Roma “Tor Ver-

gata” and Università “Roma Tre”. The conference is hosted by Villa Mondragone

in Frascati, thanks to a sponsorship of Università di Roma “Tor Vergata”. We are

also grateful to Microsoft for their partial support the workshop.

Scientific Committee

• Ulrich Faigle (U. Cologne),

• Johann L. Hurink (U. Twente),

• Leo Liberti (École Polytechnique, Paris)

• Francesco Maffioli (Politecnico, Milano),

• Gaia Nicosia (U. Roma Tre),

• Andrea Pacifici (U. Roma Tor Vergata),

• Giovanni Righini (U. Milano),

• Rainer Schrader (U. Cologne),

• Rudiger Schultz (U. Duisburg-Essen)

Organizing Committee

• Ludovica Adacher (U. Roma Tre),

• Marta Flamini (U. Uninettuno),

• Gianmaria Leo (U. Roma Tor Vergata),

• Gaia Nicosia (U. Roma Tre),

• Andrea Pacifici (U. Roma Tor Vergata),

• Veronica Piccialli (U. Roma Tor Vergata)

Table of contents

Memorial Session Talks

Becker R.
Research work with Bruno Simeone 1

Crama Y.
Control and voting power in complex shareholding networks 4

Hansen P.
Bruno Simeone’s Work in Clustering 8

Golumbic M.
Graph sandwich problems 10

Boros E.
Incompatibility graphs and data mining 11

Serafini P.
Separating negative and positive points
with the minimum number of boxes 12

Contributed Abstracts

Abrardo A, M. Belleschi and P. Detti
Resources and transmission formats allocation in OFDMA networks 19

Adacher L. and M. Flamini
Modeling and solving aircrafts scheduling problem in ground control 23

Addis B., G. Carello and F. Malucelli
Network design with SRG based protection 27

Agnetis A., P. Detti, M. Pranzo and P. Martineau
Scheduling problems with unreliable jobs and machines 32

Alba M., F. Clautiaux, M. Dell’Amico and M. Iori
Models and Algorithms for the Bin Packing Problem with Fragile Objects 36

Albano A. and A. Do Lago
New upper bound for the number of maximal bicliques of a bipartite graph 40

Albrecht K. and U. Faigle
Binary Betting Strategies with Optimal Logarithmic Growth 44

Amaldi E., S. Coniglio and L. Taccari
Formulations and heuristics for the k-Piecewise Affine Model Fitting problem 48

Amaldi E., C. Iuliano and R. Rizzi
On cycle bases with limited edge overlap 52

Arbib C., G. Felici and M. Servilio
Sorting Common Operations to Minimize Tardy Jobs 56

Argiroffo G. and A. Wagler
Generalized row family inequalities for the set covering polyhedron 60

Bauer J.
One Minimum-Cost Network Flow Problem to Identify
a Graph’s Connected Components 64

Bermudo S. and H. Fernau
Computing the differential of a graph 68

Bı́na W.
Enumeration of Labeled Split Graphs and Counts of Important Superclasses 72

Boehme T. and J. Schreyer
Local Computation of Vertex Colorings 76

Bonomo F., G. Oriolo and C. Snels
A primal algorithm for the minimum weight clique cover problem
on a class of claw-free perfect graphs 80

Bonomo F. and J. L. Szwarcfiter
Characterization of classical graph classes by weighted clique graphs 84

Bruglieri M., P. Cappanera and M. Nonato
The gateway location problem for hazardous material transportation 88

Calamoneri T. and B. Sinaimeri
Labeling of Oriented Planar Graphs 93

Cano R. G., G. Kunigami, C.C. De Souza and P. J. De Rezende
Effective drawing of proportional symbol maps using GRASP 97

Carli M. and F. Pascucci
Sensor Network Localization Using Compressed Extended Kalman Filter 101

Cello M., G. Gnecco, M. Marchese and M. Sanguineti
A Generalized Stochastic Knapsack Problem with Application
in Call Admission Control 105

Cerioli M.R., H. Nobrega and P. Viana
A partial characterization by forbidden subgraphs of edge path graphs 109

Ceselli A., G. Righini and E. Tresoldi
Combined Location and Routing Problems in Drug Distribution 113

Coniglio S.
The impact of the norm on the k-Hyperplane Clustering problem:
relaxations, restrictions, approximation factors, and exact formulations 118

Cordone R. and G. Lulli
A Lagrangian Relaxation Approach for Gene Regulatory Networks 122

Costa A., P. Hansen and L. Liberti
Bound constraints for Point Packing in a Square 126

Couturier J. F. and D. Kratsch
Bicolored independent sets and bicliques 130

Cullenbine C. , K. Wood and A. Newman
New Results for the Directed Network Diversion Problem 134

De Santis M., S. Lucidi and F. Rinaldi
A New Feasibility Pump-Like Heuristic for Mixed Integer Problems 138

De Santis M., S. Lucidi and F. Rinaldi
Continuous Reformulations for Zero-one Programming Problems 142

Dell’Olmo P., R. Cerulli and F. Carrabs
The maximum labeled clique problem 146

Factorovich P., I. Méndez-Dı́az and P. Zabala
The Pickup and Delivery Problem with Incompatibility Constraints 150

Faigle U. and A. Schoenhuth
Representations of Power Series over Word Algebras 154

Gamst M. and N. Kjeldsen N.
The Boat and Barge Problem 158

Gaudilliere A., A. Iovanella, B. Scoppola, E. Scoppola and M. Viale
A Probabilistic Cellular Automata algorithm for the clique problem 162

Golovach P., M. Kaminski and D. Thilikos
Odd cyclic surface separators in planar graphs 165

Hossain S.
Computing Derivatives via Compression : An Exact Scheme 168

Kern W. and X. Qiu
Improved Taxation Rate for Bin Packing Games 173

Kochol M.
Decomposition of Tutte Polynomial 177

Kosuch S.
Approximability of the Two-Stage Knapsack problem
with discretely distributed weights 180

Laurent M. and A. Varvitsiotis
Computing the Grothendieck constant of some graph classes 184

Liberti L., B. Masson, C. Lavor and A. Mucherino
Branch-and-Prune trees with bounded width 189

Lozovanu D. and S. Pickl
Discounted Markov Decision Processes and Algorithms for
Solving Stochastic Control Problem on Networks 194

Méndez-Dı́az I., J. J. Miranda Bront, P. Toth and P. Zabala
Infeasible path formulations for the time-dependent TSP with time windows 198

Milanic M.
A hereditary view on efficient domination 203

Monaci M. and U. Pferschy
On the Robust Knapsack Problem 207

Mucherino A., I. Wohlers, G. Klau and R. Andonov
Sparsifying Distance Matrices for Protein-Protein Structure Alignments 211

Narayanan N.
Minimally 2-connected graphs and colouring problems 215

Nicoloso S. and U. Pietropaoli
Bipartite finite Toeplitz graphs 219

Nobili P. and A. Sassano
A reduction algorithm for the weighted stable set problem in claw-free graphs 223

Petrosyan P. and R. Kamalian
Edge-chromatic sums of regular and bipartite graphs 227

Puerto J., F. Ricca and A. Scozzari
Range minimization problems in path-facility location on trees 231

Roda F., P. Hansen and L. Liberti
The price of equity in the Hazmat 235

Saputro S.W., R. Simanjuntak , S. Uttunggadewa,
H. Assiyatun, E. Tri Baskoro, A.N.M Salman
On graph of order-n with the metric dimension n − 3 239

Scheidweiler R. and E. Triesch
Matchings in balanced hypergraphs 244

Sevastyanov S. and B. Lin
Efficient enumeration of optimal and approximate solutions of a scheduling problem 248

Skupień Z.
Majorization and the minimum number of dominating sets 252

Stephan R.
Reducing the minimum T-cut problem to polynomial size linear programming 255

Torres L. and A. Wagler
The dynamics of deterministic systems from a hypergraph theoretical point of view 259

Touati-Moungla N. and D. Brockhoff
An Evolutionary Algorithm for the Multiobjective
Risk-Equity Constrained Routing Problem 263

Van Zuylen A., F. Schalekamp and D. P. Williamson
Popular Ranking 267

Vanhove S. and V. Fack
Locally optimal dissimilar paths in road networks 271

Yasar Diner O. and D. Dyer
Searching Circulant Graphs 275

Detailed Conference Program 279

Index of authors 289

Memorial Session Talks

Research Work with Bruno Simeone

Ronald I. Becker

AIMS (African Institute for Mathematical Sciences),6-8 Melrose Road, Muizenberg 7945,

South Africa

Department of Mathematics and Applied Mathematics

University of Cape Town, Rondebosch 7701, South Africa

Ronald.Becker@uct.ac.za

Key words: Graph Partitioning, Continuous Partitioning, Tree Partitioning, Grid Graph

partitioning, Optimization, Graph Colouring, Gerrymandering

1 Introductory Remarks

I collaborated with Bruno Simeone and his research group for a period of more than

20 years. It was one of the best and most fruitful enterprises of my professional

life. The continued striving for scientific excellence, the wonderfully pleasant at-

mosphere that Bruno generated and the continued friendship once the day’s work

was over are things that I will always hold dear.

I was a visitor to ”La Sapienza” in most years during the period, for varying lengths

of time. Bruno and his family also visited me in Cape Town on one occasion for

an extended period, and I would have liked them to come again but this never

happened.

I will reserve further comments for the talk.

The lecture will describe briefly three pieces of joint work with Bruno and other

colleagues, the first near the beginning of our collaboration, the second around

the middle and the third at the end. The problems are stated below and graphical

illustrations will be given in the talk. The problems all involve graph partitioning,

which was a topic very close to Bruno’s heart.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

2 Max-min Partitioning of Grid Graphs and Ladders

We consider an undirected M × N grid graph G which we think of as embedded

in R2 with vertices a set of integer pairs with each vertex joined by an edge to all

its nearest neighbours. Each vertex v has a weight w(v) ∈ R. A p-partition is a

decomposition of G into p (connected) non-empty components.

Max-min p-Partition of G
To find a p-partition π∗ which maximizes

min
1≤i≤p

w(Ci ∈ π)

over all p-partitions π.

This is a natural generalisation to a fairly minimal set of graphs with cycles of

a much-studied problem for trees to which members of the group have made a

number of contributions. In particular, shifting algorithms have been investigated.

These start with one component (the whole graph) and progressively add bound-

aries separating the graph into additional components, one at a time, until there are

p components, and then the partitions are improved until an optimum is reached.

Generally changes are made by a form of steepest descent principle. The two papers

[2],[3] give additional references.

These papers show that for grid graphs with 3 or more rows the problem is NP-

complete. For graphs with 2 rows (ladders) there is a dynamic programming al-

gorithm which solves the problem in polynomial time. Further, there are shifting

algorithms which give a good approximation to the optimum.

3 A Shifting Algorithm for Continuous Tree Partitioning

Shifting Algorithms for Tree Partition have been extensively studied (see [1] for

references). These give elegant algorithms for max-min p-partitioning a tree with

weighted vertices, or weighted edges or both. Consider the case of edge-weighted

trees. The algorithms only allow components which contain complete edges. One

might want to consider partitions which contain only connected portions of edges,

thus cutting off edges at some point in the middle. This problem is referred to as

Continuous Partitioning. For practical problems we may consider only edges with

rational lengths and this leads equivalently to considering only problems with inte-

ger lengths. We then place additional vertices along the edges so that all new edges

have length 1. We can then use a shifting algorithm to find an optimal partition.

However, the complexity would depend on the sizes of the edges. This is clearly

undesirable.

The paper [1] uses the shifting algorithm framework but modifies it to allow sev-

eral moves along an edge at a time in such a way that the optimum is reached in

polynomial time.

2

4 Bicoloured Graph Partitioning

Consider once more a rectangular grid graph. Minimal sub-squares are considered

as the units of our problem. A (connected) component is a collection of units each of

which has an edge in common with another unit in the component. A unit is thought

of as a district all of whose voters vote for a single one of two possible parties (blue

and red). We suppose that it is possible to find a partition all of whose components

have the same (odd) number s > 0 of units. We think of each component as a seat

and the party that wins the most units in the component takes the seat.

The question arises in the context of gerrymandering of constituencies of how badly

can one gerrymander. In other words, can we find a colouring of the units so that

one partition has blue winning as many seats as is possible with its total number of

units, while another partition has the reverse property that blue wins as many seats

as is possible with its total number of units - further, blue takes the election in the

first case and red takes the election in the second case. We will suppose further that

the number of blue units is equal to the number of red units + 1 since this will make

gerrymandering a more grievous problem.

For graphs with an even number of units, the grid graph is Hamiltonian. This al-

lows us to reduce the problem of finding two partitions with diametrically opposite

properties to colouring the vertices of a circle graph in two extreme ways. It can

be shown that there are colourings which transform from one extreme to the other

by a rotation of all the partition boundaries, so this is always possible. The case for

graphs with an odd number of units can then be reduced to graphs with an even

number and an additional single boundary shift. See reference [4] for details.

References

[1] R. Becker, B. Simeone, Yen-I Chang, A shifting algorithm for continuous tree

partitioning,Theoretical Computer Science 282 (2002) 353-380.

[2] Ronald Becker, Isabella Lari, Mario Lucertini, Bruno Simeone. Max-min Par-

titioning of Grid Graphs into Connected Components. Networks 32 (1998)

115-125.

[3] R. Becker, I. Lari, M. Lucertini, B. Simeone, A Polynomial-Time Algorithm

for Max-min Partition of Ladders. Theory Comput. Systems 34 (2001) 353-

374.

[4] N. Apollonio, R.I. Becker, I. Lari, F. Ricca, B. Simeone, Bicoloured graph

partitioning, or: gerrymandering at its worst. Discrete Applied Mathematics

157 (2009) 3601-3614.

3

Incompatibility Graphs and Data Mining

In Memory of Bruno Simeone (1945-2010)

E. Boros, a V. Spinelli, b F. Ricca b

aRutgers Center for Operations Research, RUTCOR, 640 Bartholomew Road, Piscataway,

NJ 08854-8003.

boros@rutcor.rutgers.edu

bISTAT - Istituto Nazionale di Statistica, Via Tuscolana, 1788, 00173, Rome, Italy.

vispinel@istat.it

cDipartimento di Statistica, Probabilità e Statistiche Applicate, Università ‘La Sapienza’,

Piazzale Aldo Moro 5, 00185, Rome, Italy.

federica.ricca@uniroma1.it

Key words: Box clustering, incompatibility graphs, embeddings.

1 Introduction

In this paper 1 , we introduce Incompatibility Graphs (IGs), a class of graphs that

arises in the Box Clustering (BC) approach to the supervised classification of data.

These graphs turn out to have an autonomous interest from a theoretical viewpoint.

Box Clustering was introduced in [9] and it can be viewed as an offspring of a

more general methodology, called Logical Analysis of Data (LAD) (see, for exam-

ple, [8,5,3]). Unlike LAD, BC has the ability to deal directly, not only with binary

data, but also with numerical and ordinal ones. The input of a BC problem is a

training data set, consisting of a finite set of points in a d-dimensional space, which

are classified either as positive or negative. A box (i.e., a d-dimensional closed in-

terval) is called positive (or negative) if it includes some positive (resp. negative)

observations, but does not include any negative (resp. positive) one. Positive and

negative boxes will also be called homogeneous. The output of a BC model is a

set of homogeneous boxes, which are used to predict the class of an unclassified

observation belonging to a “testing” data set. In this paper we address two key BC

problems, namely, the Maximum Box (MB) and the Minimum Covering by Boxes

(MCB), see [13,14].

In order to solve these problems, we introduce Incompatibility Graphs that, for a

given set of observations in the d-dimensional space, represent the structural rela-

1 This is a joint work we started with Bruno and we intend to publish the full version with

him as a co-author.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

tions of homogeneity between pairs of points. These graphs have shown to be of

help in the solution of both the two above mentioned BC problems.

We shall regard an observation, w.l.o.g., as a point in the real d-dimensional space

Rd. For two vectors l, u ∈ Rd, such that li ≤ ui, i = 1, . . . , d, we denote by

I(l, u) = {x ∈ Rd : li ≤ xi ≤ ui, i = 1, . . . , d} the spanned box (or a hyper-

rectangle). For a finite set S ⊂ Rd the box-closure of S is the smallest box contain-

ing all points in S. Let Li = minx∈S{xi} and Ui = maxx∈S{xi}. The box-closure

of S is given by [S] = I(L, U). Notice that L and U are two bounding points in

Rd that determine the box-closure [S], though themselves may not belong to S.

Note that for any finite set S of points, the box-closure of S can be also seen as the

intersection of all boxes containing S, see e.g., [9].

Suppose that S ⊂ Rd is the set of the n points in Rd representing a BC data set. Let

P and N denote the two finite non empty subsets of S corresponding to the positive

and negative examples, respectively, so that one has P ∩N = ∅ and S = P ∪N . We

say that a box B ⊆ Rd is homogenous for P if N ∩B = ∅ and P ∩B *= ∅. Finally

a set of boxes Bm = {B1, . . . , Bm} is a homogenous cover of P if each box in Bm

is a homogenous box for P , and they cover all points in P . Similar definitions hold

for the set of negative points N .

On the basis of the above definitions, different BC models were provided in the

literature in order to study different data analysis problems [11,12]. One of the

main BC problems is Minimum Covering by Boxes, that is finding a homogenous

box cover Bm for a given data set (P, N). with the minimum number of boxes.

Another basic BC problem is the Maximum Box problem, that is finding a box B,

which is homogenous for P , and |B ∩ P | is as large as possible.

2 Incompatibility Graphs

Given two finite and disjoint sets of points P, N ⊆ Rd, we associate to them a graph

G = GP,N on vertex set V (G) = P such that two vertices u, v ∈ P are connected

in G by an edge if [u, v]∩N *= ∅. We call GP,N the d-incompatibility graph (d-IG)

of P and N . We say that a graph is a d-IG, if there are subsets P, N ⊆ Rd such that

G = GP,N . The pair (P, N) will be called a d-embedding of G.

In this paper we show some few interesting properties of d-IG-s, provide a partial

characterization of 2-IG-s, and demonstrate how to use these properties for solving

the above problems arising in BC. We also pose some open conjectures.

The following properties follow by the definitions.

Property 1 (IG hereditary property) G is a d-IG, then an induced subgraph of

G is also a d-IG.

Property 2 (IG monotonic dimension property) If G is d-IG, then G is h-IG for

every h ≥ d.

Theorem 2.1 (Universality of IGs) If G = (V, E) is an arbitrary graph then there

always exist d ≥ 1 and P, N ⊆ Rd such that GP,N is isomorphic to G.

5

Theorem 2.2 (Embeddings and general position) If G is a d-IG, then it is iso-

morphic to some GP,N , such that P ∩N = ∅ and the points of P ∪N are in general

position.

Theorem 2.3 A 2-IG cannot have 3K2 as an induced subgraph.

Conjecture 1 A d-IG cannot have an mK2 as an induced subgraph for m > 2d−1.

Theorem 2.4 A 2-IGcannot have Cm, m ≥ 7 and Pn, n ≥ 8 as induced subgraphs.

Let us note that in a planar embedding of a 2-IGG all edges are tilting either (north-

west, south-east), or (north-east, south-west) directions. We call G polarized, if it

has an embedding with only one type of edge tilting.

Theorem 2.5 Any polarized 2-IG is a comparability graph.

Theorem 2.6 Let G be a connected 2-IG that is not polarized. Then G has radius

at most 3.

Theorem 2.7 If a 2-IG is nontrivially disconnected, then it has exactly two non

trivial connected components and they are both weakly chordal.

Due to space limitations we cannot list here more results. Let us however add that

the problem of realizing a given graph as a d-IG, or in particular as a 2-IG is far

from trivial. For instance, 2-IG-s seem to have an infinite set of minimal forbidden

subgraphs.

3 IG-s and Box Clustering

To conclude this short abstract, let us point out that a maximum-box for a data

set (P, N) corresponds to a maximum stable set in G = GP,N , and a minimum

box-covering corresponds to a coloring of G with the minimum number of colors.

Due to a result of [1], we know that graphs with no mK2 as an induced subgraph

have at most O(2poly(m)) maximal stable sets, all of which can be generated by

a results of [7] in O(2poly(m)) time. Thus, by Theorem 2.3 the maximum stable

set problem can be solved in a 2-IG in linear time, and hence the maximum box

problem can also be solved in linear time. We hope to be able to extend this result

to any constant dimension d. In general these problems are well-known to be NP-

hard. Let us finally note that due to Theorem 2.7, the optimal coloring problem, and

hence the minimum box-cover problem can also be solved in polynomial time for

some special 2-IG-s.

References

[1] E. Balas and C. S. Yu, On graphs with polynomially solvable maximal-weight

clique problem, Networks 19 (1989) 247–253.

[2] T.BONATES, P.L. HAMMER. Logical Analysis of Data: from combinatorial

optimization to medical applications. Annals of Operations Research, 148:

203-225, 2006.

6

[3] E. BOROS, T. IBARAKI, K. MAKINO. Boolean Analysis of Incomplete Ex-

amples. RRR 7-1996.

[4] A. BRANDSTÄDT, V.B. LE, J.P. SPINRAD. Graph Classes: A Survey. SIAM

Monographs on Discrete Mathematics and Applications, ISBN 978-0-89871-

432-6, 1999.

[5] Y. CRAMA, P.L. HAMMER, T. IBARAKI. Cause-effect relationship and par-

tially defined Boolean functions. Annals of Operational Research, 16: 299-

325, 1988.

[6] G. FELICI, K. TRUEMPER. A Minsat Approach for Learning in Logic Do-

mains. INFORMS Journal on Computing, 13 (3), 2001, 1-17.

[7] M.C. GOLUMBIC. Algorithmic Graph Theory and Perfect Graphs. Academic

Press, New York, 1980.

[8] P.L. HAMMER. Partially defined Boolean functions and cause-effect rela-

tionship. Lecture at the International Conference on Multi-Attribute Decision

Making Via Or-Based Expert Systems, University of Passau Germany, April

1986.

[9] P.L. HAMMER, Y. LIU, S. SZEDMÁK, B. SIMEONE. Saturated systems of

homogeneous boxes and the logical analysis of numerical data. Discrete Ap-

plied Mathematics, Volume 144, 1-2: 103-109, 2004.

[10] D. S. Johnson, M. Yannakakis and C. H. Papadimitriou (1988). On generating

all maximal independent sets. Information Processing Letters, 27, 119–123.

[11] B. SIMEONE, M. MARAVALLE, F. RICCA, V. SPINELLI. Logic Mining of

non-logic data: some extensions of box clustering. Euro XXI, 21st European

Conference on Operational Research. Reykjavik, Iceland, July 2-5, 2006.

[12] B. SIMEONE, V. SPINELLI. The optimization problem framework for box

clustering approach in logic mining. Euro XXII - 22nd European Conference

on Operational Research, Prague, page 193. The Association of European Op-

erational Research Societies, July 2007.

[13] Maximum Box Problem. http://www.xxxx.it/ig.

[14] Minimum Covering by Boxes. http://www.xxxx.it/ig.

7

Control and voting power

in complex shareholding networks

Y. Crama

HEC – Management School of the University of Lìege

Boulevard du Rectorat 7 (B31), 4000 Liège, Belgium

Yves.Crama@ulg.ac.be

In this talk, we discuss how game-theoretic power indices can be used to model the

amount of control held by individual shareholders in complex financial networks.

In its simplest form, when the shares of a firm are held by a number of independent

players, the mechanism by which shareholders form a decision can be modeled

as a majority voting game. Hence, game-theoretical measures of power, like the

Banzhaf index [1] or the Shapley-Shubik index [4], can be used to define the “con-

trol” of shareholders. The resulting distribution of control is usually different from

the nominal distribution of voting weights, mainly because the voting function is, in

essence, nonlinear. A trivial example arises when there is a dominant voter whose

voting weight exceeds the half of the total weight: This voter has absolute control,

although he might only possess 51% of the shares.

Earlier researchers have proposed many methods for the computation of power in-

dices for the weighted majority game played by the shareholders of a single firm

[2]. The model can be rather easily generalized in the presence of “pyramidal”,

or multilayered levels of ownership: Here, the value of the power indices is deter-

mined by a compound voting game viewed as the composition of several weighted

majority games.

However, little has been done regarding more complex situations, where the graph

defined by shareholding relations may be incomplete, in the sense that some firms

have many small, unidentified shareholders (so-called float), as well as cyclic, re-

flecting the intricacies of real-world financial networks.

In this talk, we describe an integrated algorithmic approach that allows us to deal

efficiently with the complexity of computing power indices in large intricate net-

works. This approach has been successfully applied to the analysis of real–world

financial networks [3].

We also discuss more recent attempts to provide a rigorous framework for the

above model in the presence of float and of cyclic shareholding relationships. In

this framework, we identify conditions under which Banzhaf power indices can be

naturally generalized.

The presentation is based on joint work with Luc Leruth and Su Wang.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

References

[1] J.F. Banzhaf III, Weighted voting doesn’t work: A mathematical analysis, Rut-

gers Law Review 19 (1965) 317-343.

[2] Y. Crama and P.L. Hammer, Boolean Functions: Theory, Algorithms, and

Applications, Cambridge University Press, New York, N.Y., 2011.

[3] Y. Crama and L. Leruth, Control and voting power in corporate networks:

Concepts and computational aspects, European Journal of Operational Re-

search 178 (2007) 879-893.

[4] L.S. Shapley and M. Shubik, A method for evaluating the distribution of

power in a committee system, American Political Science Review 48 (1954)

787-792.

9

Graph Sandwich Problems

M. C. Golumbic

Caesarea Rothschild Institute and Department of Computer Science,

University of Haifa, Israel.

golumbic@cs.haifa.ac.il

Key words: graph sandwich problems, chain graphs, probe graph problems

1 Abstract

A sandwich problem for a graph with respect to a graph property Π is a partially

specified graph, i.e., only some of the edges and non-edges are given, and the ques-

tion to be answered is, can this graph be completed to a graph which has the prop-

erty Π? The graph sandwich problem was investigated for a large number of fam-

ilies of graphs in a 1995 paper by Golumbic, Kaplan and Shamir [1], and much

subsequent work has taken place since. In some cases, the problem is NP-complete

such as for interval graphs, comparability graphs, chordal graphs and others. In

other cases, the sandwich problem can be solved in polynomial time such as for

threshold graphs, cographs, and split graphs, an important graph class studied by

Stephan Foldes, Peter Hammer and Bruno Simeone.

There are also interesting special cases of the sandwich problem, most notably the

probe graph problem where the unspecified edges are confined to be within a subset

of the vertices. Similar sandwich problems can also be defined for hypergraphs,

matrices and Boolean functions, namely, completing partially specified structures

such that the result satisfies a desirable property.

In this talk, we will present a survey of results that we and others have obtained in

this area during the past several years.

References

[1] M.C. Golumbic, H. Kaplan, R. Shamir. Graph sandwich problems. J. Algo-

rithms 19 (1995) 449–473.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Bruno Simeone’s Work in Clustering

P. Hansen

GERAD, HEC Montreal and LIX, Ecole Polytechnique, Palaiseau

1 Introduction

Given a set of entities, Cluster analysis, or Clustering, aims at finding subsets, called

clusters, which are homogeneous and/ or well separated. Homogeneity means that

entities in the same cluster shoud be similar and separation that entities in differ-

rent clusters should be dissimilar.Often the clusters are requested to form a parti-

tion; sometimes they must satisfy additional constraints on connectivity, minimal

separation or maximum weight.

Clustering interested Bruno Simeone all along his career, and he made a large num-

ber of diverse and innovative contributions: new concepts such as the espalier, many

complexity results and polynomial algorihms for connectivity-constrained cluster-

ing, development of heuristics and exact algorithms, applications to image process-

ing and political districting. We will review this work, stressing its influence and

open problems.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Separating negative and positive points

with the minimum number of boxes

Paolo Serafini

Dipartimento di Matematica e Informatica, Universit̀a di Udine, Italy

paolo.serafini@uniud.it

http://users.dimi.uniud.it/˜paolo.serafini/

Key words: Data analysis, boxes, patterns

Identifying new data as either positive or negative on the basis of quantitative fea-

ture information is fundamental in data analysis. If a linear separation between

positive and negative points is not possible, then a simple way to carry out this

task is via boxes. Boxes can be easily described in mathematical terms and their

properties allow to design good algorithms for the separation task.

In this paper we build upon the ideas developed in [1], where the problem of finding

a single homogeneous box of maximum weight is fully investigated. It turns out that

this problem can be used in pricing the column generation model we propose in this

paper for computing the minimum number of boxes covering the positive points.

There are given p positive points X i ∈ Rn (i = 1 . . . , p) and q negative points

Y i ∈ Rn, (i = 1 . . . , q). A box B(ℓ, u) is the set

{X ∈ Rn : ℓi ≤ Xi ≤ ui, i = 1 . . . , n} .

If X i ∈ B(ℓ, u) we say that the box B(ℓ, u) covers X i, and similarly for Y i. A

box is said positive (negative) if it covers only positive (negative) points. A box

which is either positive or negative is also called homogeneous. A family of boxes

B(ℓj , uj), j = 1 . . . , s, is positive if

X i ∈
s

⋃

j=1

B(ℓj, uj), i = 1 . . . , p, Y i /∈
s

⋃

j=1

B(ℓj , uj), i = 1 . . . , q

In other words all boxes of a positive family are positive and in addition they jointly

cover all positive points. Similarly a family of boxes B(ℓj, uj), j = 1 . . . , t, is

negative if

X i /∈
t

⋃

j=1

B(ℓj, uj), i = 1 . . . , p, Y i ∈
t

⋃

j=1

B(ℓj , uj), i = 1 . . . , q

Positive and negative families are called homogeneous.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

The problem we want to solve consists in finding a positive family of minimum

cardinality. We model the problem as the following set covering problem. Let J be

the set of all positive boxes. Then let

xj =







1 if thej-th box is in the family

0 otherwise

and

ai
j =







1 if the j-th box covers X i

0 otherwise

Then the minimum cardinality problem can be formulated as

min
∑

j∈J

xj

∑

j∈J

ai
j xj ≥ 1, i = 1, . . . , p

xj ∈ {0, 1}

(1)

The relaxation of (1) can be solved via column generation. The dual pricing con-

straints are
p

∑

i=1

ai
j yi ≤ 1 j ∈ J

So columns can be generated by solving a max weighted box problem. Though the

pricing problem is NP-hard, it can be solved quickly via a specialized combinatorial

algorithm described in [1]. However, we rely in this paper to the the ILP model also

presented in [1]. We briefly recall this ILP model for the max weighted problem:

let

V k :=
p

⋃

i=1

{Xk} , k = 1, . . . , n

The k-th coordinate of a positive box can be assumed to take values in V k. So in

order to define a box we need assigning ℓk to exactly one value in V k and similarly

for uk. Therefore let

ζkv =







1 if ℓk = v, v ∈ V k

0 otherwise,
ξkv =







1 if uk = v, v ∈ V k

0 otherwise

and the assignment is realized through the constraints

∑

v∈V k

ζkv = 1,
∑

v∈V k

ξkv = 1, k = 1, . . . , n (2)

We need counting the points covered by the box. To this aim let

ηi =







1 if X i is covered

0 otherwise

13

Fig. 1. An optimal family of boxes

and define the constraints

ηi ≤
∑

v≤Xi
k

ζkv, ηi ≤
∑

v≥Xi
k

ξkv, k = 1 . . . , n, i = 1 . . . , p (3)

For a box not to cover negative points the following constraints must be introduced

n
∑

k=1

(

∑

v>Y i
k

ζkv +
∑

v<Y i
k

ξkv

)

> 1, i = 1, . . . , q (4)

Then the pricing problem consists in maximizing

p
∑

i=1

yi ηi

subject to (2), (3) and (4).

Since we want to solve (1) via branch-and-bound, we need a branching scheme

which does not conflict with the pricing procedure. Suppose there is a fractional

variable xj corresponding to the box B(ℓj , uj). As usual, we branch by imposing

either xj = 0 or xj = 1. These choices can be implemented as follows. Imposing

xj = 1 is equivalent to cover all positive points in B(ℓj , uj). Therefore the master

problem can be reformulated by dropping these points. Imposing xj = 0 means

that in the pricing problem we don’t want the box B(ℓj, uj) as a possible solution.

To this aim it is enough that at least one of the 2 n assignment variables ζkℓ
j

k

and

ξkuj

k
identifying the box be different from 1, which can be accomplished by

n
∑

k=1

(

ζkℓ
j

k

+ ξkuj

k

)

≤ 2 n − 1

In Figure 1 we show an instance with two features. There are 200 positive points

14

and as many negative ones. An optimal solution covering the positive points is dis-

played in the figure. The number of generated columns to reach optimality is 284.

The initial solution consisted of 200 boxes (i.e., one for each point). The optimal

boxes are the ones generated at iterations 1, 2, 4, 5, 6, 10, 45, 49 and 216. The over-

all CPU time has been 62 minutes, which is a rather large amount of time. This has

to be ascribed to the fact that the max weighted box problems have been solved via

the ILP model and not the special combinatorial algorithm developed in [1] which,

according to the authors, exhibits a much higher computing performance. However,

an integral solution with 11 boxes emerged already at the 7-th box generation and

another one with 10 boxes at the 10-th generation. An optimal solution with 9 boxes

appeared at the 102-nd iteration consisting of the boxes numbered 1, 2, 4, 5, 6, 10,

50, 86 and 102, after 20 minutes CPU time. Apparently the rest of the iterations

and computing time is spent just to prove optimality.

References

[1] J. Eckstein, P.L. Hammer, Y. Liu, M. Nediak, and B. Simeone: The maximum

box problem and its application to data analysis, Computational Optimization

and Applications, 23, 285-298 (2002).

15

Contributed Abstracts

Resources and transmission formats allocation in

OFDMA networks

A. Abrardo, M. Belleschi, P. Detti

Dipartimento di Ingegneria dell’Informazione Universit̀a di Siena, via Roma 56 - 53100

Siena, Italy

abrardo@ing.unisi.it, {belleschi, detti}@dii.unisi.it

Key words: resource allocation, graph based models, approximation and heuristic

algorithms

1 Introduction

In this paper, we address an optimization problem arising in the management of

wireless network systems using the Orthogonal Frequency-Division Multiple Ac-

cess (OFDMA) scheme. Such a radio technology has been proposed for the imple-

mentation of WiMax networks in [1], and is one of the most promising techniques

for next generation of wireless systems. The OFDMA technique provides a sub-

channelization structure in which the overall frequency bandwidth of a block of

transmission, i.e., a radio frame, is divided into a given set of orthogonal radio re-

sources (each resource defined by a pair frequency/ time), called subcarriers, the

basic units of resource allocation. Assigning the available subcarriers to the active

users, with suitable transmission formats, in an adaptive manner is a viable method

to achieve multi-user diversity: the propagation channels are independent for each

user and thus the subcarriers that are in a deep fade for one user may be good

ones for another. Many resource allocation algorithms in wireless communication

systems have been designed for taking advantage of both the frequency selective

nature of the channel and the multi-user diversity, but all of them exhibit a trade-

off between complexity and performance: low complexity algorithms, as the one

presented in [2,5], tend to be outperformed by those requiring high computational

loads, e.g. see [4,6].

In this work, a complexity and an approximation analysis is presented for the ad-

dressed allocation problem. Moreover, a simple approximation algorithm based on

finding a minimum weighted b-matching on a suitable graph and two heuristic ap-

proaches are proposed. The heuristics are tested on random instances simulating a

real world scenario.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

2 System model and problem definition

The multi-format radio resource allocation problem (MF-RAP) that we address is

a constrained minimization problem in which subcarriers and transmission formats

must be assigned to users, in such a way that a given bit-rate is provided to each

user and that the total transmission power is minimized. Let N = {1, . . . , n} be the

set of the users. Given a user i ∈ N , we denote by Ri the transmission rate of user

i. The frequency bandwidth of a radio frame is divided into orthogonal (i.e., not

interfering) subcarriers: Let M = {1, . . . , m} be the set of the available subcarri-

ers (i.e., resources). Let Q = {a1, . . . , ap} be the set of the possible transmission

formats that can be used on a subcarrier, where a1, . . . , ap are positive integers with

a1 < a2 . . . < ap. The selection of transmission format aq ∈ Q corresponds to

the usage of a certain error correction code and symbol modulation that involves

a spectral efficiency η(q) expressed in bit/s/Hz. In other words, a user employing

the format aq ∈ Q on a subcarrier of bandwidth B transmits with rate R = Bη(q).
In practical transmission schemes, the spectral efficiency on the q-th format, η(q),
is an integer multiple of a given η̃, i.e, η(q) = aqη̃. In the same way, the required

transmission rate of user i, Ri, is expressed as an integer multiple of a certain fixed

rate, i.e., Ri = riBη̃, with ri an integer number. In this context, due to intra-cell

interference, each subcarrier can be used by at most one user, and any given user

can employ only a single format q to transmit on a subcarrier. Hence, by adopting

the Shannon capacity as a measure of the achievable spectral efficiency on a given

subcarrier, we obtain η = log2 (1 + γ) where γ is the signal to noise ratio (SNR).

We assume that each link offers a spectral efficiency η(q) that determines a fixed

SNR target, i.e. γtgt(q) = 2η(q) −1. The power Pi,j(q) required to user i to transmit

on subcarrier j using format q is computed as

Pi,j(q) = γtgt(q)
BN0

Gi,j
=

BN0

Gi,j
(2η(q) − 1) (1)

where Gi,j is the squared module of the channel gain between user i and the BS

when using subcarrier j (this quantity includes the effects of distance-based atten-

uation, fading, beamforming etc.), and N0 is the noise spectral density of the zero-

mean thermal noise. A feasible radio resource allocation for MF-RAP consists in

assigning resources (i.e., subcarriers) to users and, for each subcarrier-user pair, in

choosing a transmission format, in such a way that (a) a bit-rate Ri = riBη̃ is

provided to each user i, (b) at most one user is assigned to the same radio resource.

MF-RAP consists in finding a feasible radio resource allocation minimizing the

overall transmission power.

Let xijq be a binary variable equal to 1 if user i is assigned to radio resource j
with format q (and 0 otherwise). An Integer Linear Programming formulation for

MF-RAP is as follows.

20

min
∑

i∈N,j∈M,q∈Q

Pi,j(q)xijq (2)

∑

i∈N,q∈Q

xijq ≤ 1 ∀j ∈ M (3)

∑

j∈M,aq∈Q

Bη̃aqxijq ≥ Bη̃ri ∀i ∈ N (4)

xijq ∈ {0, 1} ∀i ∈ N, j ∈ M, aq ∈ Q (5)

3 Approximation results and heuristic algorithms

We prove that MF-RAP is strongly NP -hard even when only two transmission

formats exists, i.e., Q = {a1, a2}, and a1 = 1. Moreover, for this case, we show

that the problem does not admit a polynomial-time approximation algorithm with

approximation ratio bounded by a constant. An approximation tight ratio for a sim-

ple heuristic working on a particular graph is also established. Given an instance

I of MF-RAP, the heuristic, that we call b-MATCH, basically consists in finding

a perfect weighted b-matching on a complete bipartite graph G = (V1, V2, E). In

V1 (in V2) a node exists for each user in N (each resource in M). An extra dummy

node, say z, exists in V1. For each pair i, j, with i ∈ V1 and j ∈ V2, an arc (i, j)

exists in E with weight Pi,j(1) if i *= z, and 0 otherwise. A value bi =
⌈

ri

ap

⌉

is

assigned to each node i in V1 \ {z}, a value bj = 1 to each node j in V2, and a value

bz = m−∑

i∈N

⌈

ri

ap

⌉

to the extra node z. Note that, since ap ≥ aq, for q = 1, . . . , p,
⌈

ri

ap

⌉

is the minimum number of resources that have to allocate to user i, in any

feasible solution of MF-RAP. Moreover, it must be m− ∑

i∈N

⌈

ri

ap

⌉

≥ 0, otherwise

no feasible solution exists, too. Algorithm b-MATCH has two steps and works as

follows. In the first step, a perfect b-matching with minimum weight is found on G,

defining the set S(i) of the resources to assign to each user. In the second step, the

transmission formats are assigned as follows: For each user i, the resources in S(i)
are ordered in not decreasing order of powers Pi,j(1); according to this order, the

maximum transmission format ap is assigned to the first
⌈

ri

ap

⌉

− 1 resources, and a

transmission format of a = min{aq, aq ∈ Q : aq ≥ ri−(
⌈

ri

ap

⌉

−1)ap} is assigned to

the last resource in S(i). In words, the minimum transmission format to achieve the

required transmission rate is assigned to the last resource in S(i). The first step of

b-MATCH can be solved as a transportation problem, where nodes in V1 are supply

nodes and nodes in V2 are demand nodes in O(m logm(mn + n log n)) (see [3]),

the second step requires O(m) steps in total.

For b-MATCH, we prove that (i) the following approximation ratio holds, and (ii)
that the ratio is tight:

ZH

Z∗ ≤ 2η̃ap − 1

2η̃a1 − 1

a1 max
i∈N,j∈M

{Pi,j(1)}

ap min
i∈N,j∈M

{Pi,j(1)}
(6)

21

where ZH is the value of solution produced by b-MATCH and Z ∗ is the value of an

optimal solution.

For MF-RAP, we also propose and test two heuristic algorithms. Both algorithms

leverage the information of the LP relaxation of the ILP formulation (2)–(5).

Specifically, the first algorithm, called LP-ROUND, is based on rounding the op-

timal solution of the Linear Programming relaxation solution of (2)–(5). The sec-

ond algorithm, denoted as b-MATCH-MOD, is an improvement of algorithm b-

MATCH presented above. Both algorithms have two phases: In Phase 1, radio re-

sources are allocated to users; in Phase 2, transmission formats are assigned to the

allocated resources, in such a way that the rate required by the users are satisfied.

In both the algorithms, Phase 2 consists in suitably applying an optimal dynamic

programming procedure.

Computational experiences on random instances simulating a real world scenario

are performed. They show that, in a comparison with a commercial state-of-the-

art optimization solver, the proposed algorithms are effective in terms of solution

quality and CPU times. Moreover, comparisons with alternatives proposed in the

literature definitely assess the validity of the proposed approaches.

References

[1] Long Term Evolution of the 3GPP radio technology.

http://www.3gpp.org/Highlights/LTE/LTE.htm.

[2] D. Kivanc, G. Li, and H. Liu, ”Computationally efficient bandwidth allocation

and power control for OFDMA,” IEEE Trans. Wireless Commun., vol. 2, no.

6, pp. 1150-1158, November 2003.

[3] Kleinschmidt, P., Schannath, H., A strongly polynomial algorithm for the

transportation problem, Mathematical Programming 68 (1-3), pp. 1-13, 1995.

[4] I. Kim, I. Park, and Y. Lee, ”Use of Linear Programming for Dynamic Sub-

carrier and Bit Allocation in MultiUser OFDM,” IEEE Trans. Vehic. Technol.,

Vol. 55, 1195-1207, 2006.

[5] W. Rhee and J. Cioffi, ”Increase in capacity of multiuser OFDM system using

dynamic subchannel allocation,” Proc. IEEE VTC 2000 Spring, Tokio, Japan,

pp. 1085-1089, May 2000.

[6] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, ”Multiuser OFDM

with adaptive subcarrier, bit, and power allocation,” IEEE J. Select. Areas

Commun., Vol. 17, No. 10, pp. 1747-1758, Oct. 1999.

22

Modeling and solving Aircrafts Scheduling Problem

in Ground Control

Ludovica Adacher, a Marta Flamini, a,b

aDip. di Informatica e Automazione, Università degli studi Roma Tre, Italy.

bUniversità Telematica Internazionale UNINETTUNO, Roma, Italy.

Key words: Aircraft scheduling problem, job-shop scheduling, alternative graph

Abstract

In this paper we consider a real time aircraft scheduling problem in ground control,

with fixed routes and the objectives of minimizing the number of tardy aircrafts or

maximizing the number of on time aircrafts. Constraints of the problem are given

by the safety rules. We propose an alternative graph model for the problem and

heuristic solution procedures.

1 Introduction

Air Traffic Control tasks concern with (i) routing decisions, assigning a route to

each aircraft from its current position to its destination and (ii) scheduling deci-

sions, determining feasible aircrafts schedules with fixed routes, such that safety

rules are satisfied. The increase of air traffic asks for the optimization of the usage

of the existing resources at different levels. Moreover, the development of deci-

sion support systems could help human dispatchers, currently performing control

operations, in optimizing real time traffic operations especially in case of conges-

tion. In this paper we deal with a real time Ground control Aircraft Scheduling

Problem with fixed routes (GASP , from now on). Ground control is, in particular,

responsible for directing all ground traffic. This problem is hard to perform in terms

of both designing adequate models and projecting efficient and effective solution

techniques. Studies on the GASP ([2], [3], [4]) usually suffer for a substantial lack

of information due to the usage of very simplified models. Recent models ([1]) in-

troduce an increased level of realism and incorporate a larger variety of constraints

and possibilities, such as no-wait constraints, and earliness/tardiness penalty costs.

We consider the objectives of minimizing the number of tardy aircrafts and of max-

imizing the number of on time aircrafts. The second objective function is moti-

vated by the real nature of the problem in which also early departures or arrivals

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

could cause coordination discomforts in the Terminal Manoeuvering Area (TMA)

management. We propose an alternative graph model [5] of the problem and some

heuristic procedures producing fast solutions able to face the real time nature of the

problem.

2 Problem Description

The layout of a TMA is composed by one or more runways, a taxiway network,

parking bays and yards. Yards host aircrafts queue before the take-off. Parking

bays are areas in which aircrafts are parked once landed. Runways are divided in

segments (each between two consecutive intersections with the taxiway). When

necessary, a stop bar regulates the transit from a taxiway to another. We consider

both arriving and departing aircrafts, in a given time interval. We are given a nomi-

nal landing time and an arrival time for the arriving aircrafts. The nominal landing

time is the minimum time instant in which the aircraft could be able to land and

is considered as a problem variable since the landing instant could be postponed

for optimization scopes. The arrival time represents the time instant in which the

aircraft should reach the parking bay. For each departing aircraft we are given a

departing time that is the time instant in which the aircrafts should take-off. The

arrival times and departing times are considered as due dates for the aircrafts. The

ground routes are fixed a priori for all the aircrafts. GASP consists in scheduling

aircrafts movings in the TMA. Problem constraints are given by the safety rules

regulating the movings of the aircrafts in the TMA. Among the most important we

can mention: the runway (all the segments) can be occupied only by one aircraft

a time; each taxiway can be can be occupied only by one aircraft a time; a park-

ing bay can host only one aircraft; when an aircraft waits at a stop bar, no other

aircrafts can occupy the taxiway the stop bar lays on. We refer to two objective

functions which are actually representative of the criteria driving human dispatch-

ers decisions, namely the minimization of the number of tardy aircrafts and the

maximization of the number of on time aircrafts, with respect to their due dates.

3 The job shop scheduling model with additional constraints

We model the GASP as a job-shop scheduling problem with additional constraints,

in which jobs are represented by aircrafts and resources by parts of the TMA. Re-

sources we consider are runway segments, taxiway, parking bays, stop bars, yards.

All such resources, but the yards, have unitary capacity and can not be occupied

by two or more aircrafts at the same time. Yards are assumed to have infinitive

capacity. An operation is the occupation of a resource by an aircraft. Operation

processing time represents the time an aircraft need to run/occupy a resource. Stan-

dard job-shop constraints hold: precedence constraints between two consecutive

operations, resources capacity constraints, no-preemption constraints. Additional

constraints are due to the safety rules regulating spatial or temporal security dis-

24

tance between each pair of aircrafts moving in the TMA. For instance no-wait

constraints regulate the usage of runway segments. Blocking constraints regulate

the occupation of the taxiway preceding a stop bar. Two resources are incompatible

if they can not be occupied at the same time. A conflict arises when two aircrafts

have to occupy the same resource or two incompatible resources at the same time.

A conflict resolution consists in fixing the precedence of an aircraft over the other in

the usage of the requested resources. In a feasible solution all conflicts are resolved

so that deadlocks are avoided and safety rules are respected.

4 The Alternative Graph model

We model the GASP with the Alternative Graph formulation ([5]). The alterna-

tive graph is an effective model for representing and studying conflicts arising in

the competitive request of a set of resources by several users. In the alternative

graph model, the route of an aircraft is represented by a chain of nodes, each one

representing an operation, that is the occupation of a resource. Fix arcs model the

precedence constraints between two consecutive nodes of the same chain. All arcs

are weighted with the processing time of the operation represented by the arc start-

ing node. Capacity constraints are modeled by disjunctive arcs while conflicts on

pairs of incompatible resources are modeled by pairs of alternative arcs. Disjunc-

tive and alternative arcs model the two possible precedences between the aircrafts.

In our problem we have several pairs of incompatible resources, each requiring a

specific incompatibility model. A feasible solution for GASP is represented by an

acyclic graph in which for each alternative pair exactly one arc has been selected.

A simple forward visit of the graph allows to compute nodes heads. The head of

a node is the minimum time in which the operation represented by the node can

start. The number of tardy (on time) aircrafts can be deduced by comparing the due

dates with the heads of nodes representing (i) the arrival to the parking bays for the

arriving aircrafts, and (ii) the arrival to the first segment of the runway for departing

aircrafts.

5 Solution approach

Due to the real time nature of the problem we first compute different fast initial so-

lutions, then we model them with the alternative graph to improve their quality by

applying local search heuristics based on the alternative graph representation. Some

of the initial solutions we consider, implement the following dispatching rules: (i)

the precedence between two consecutive landing (departing) airplanes follows the

FIFO rule respect to the landing (departing) time; (ii) a landing aircraft always

precedes a departing aircraft if a conflict occurs on the runway; (iii) a departing

aircraft precedes a landing one in taxiway, stop bars, parking bays. Such solutions

represent a good estimation of the solutions currently produced by controllers in

terms of both decisions and quality. We use them as reference values. Once an

25

initial solution has been constructed, it is modeled by the alternative graph and lo-

cal search procedures are applied. The alternative graph, in fact, allows to rapidly

estimate the effect produced by modifying the structure of a solution. The basic

idea is to try and iteratively invert precedences between two aircrafts. After each

inversion a forward visit of the graph detects the acyclicity of the graph and up-

dates the nodes heads. An inversion is accepted only if the new solution is feasible

and improves. Local search procedures differ in the criteria for choosing pairs of

aircrafts at each iteration. We develop two heuristic procedures. mML heuristic

inverts precedence between the aircraft with the minimum lateness preceding the

aircraft with the maximum lateness, to reduce the number of tardy aircrafts. ET
heuristic inverts precedence between the aircraft with minimum earliness preced-

ing the aircraft with minimum tardiness, to improve the number of on time air-

crafts. Very preliminary results show that the two heuristics produce an effective

improvement with respect to the initial solutions. For those instances in which the

initial solution does not improve in terms of objective function, that is the number

of tardy aircrafts or the number of on time aircrafts, heuristics always produce a

performance improvement in terms of mean tardiness or mean lateness.

References

[1] Adacher L., Pacciarelli D., Paluzzi D., Pranzo M., 2004. Scheduling arrivals

and departures in a busy airport. Preprints of the 5th Triennial Symposium

on Transportation Analysis, Le Gosier, Guadaloupe.

[2] Anagmostakis I., Clarke J., Bohme D., Volckers U., 2001. Runway Operations

Planning and control: Sequencing and Scheduling. Journal of Aircraft, 38(6),

988–996.

[3] Beasley J.E., M. Krishnamoorthy, Y.M. Sharaiha, D. Abramson, 2000,

Scheduling aircraft landings - the static case, Transportation Science, 34,

180–197.

[4] Bianco L., P. Dell’Olmo, S. Giordani, 1997. Scheduling models and algo-

rithms for TMA traffic management, Modelling and simulation in air traffic

management, eds. Bianco L. et al., Springer Verlag, 139–168.

[5] Mascis A., D. Pacciarelli, 2002. Job shop scheduling with blocking and no-

wait constraints European Journal of Operational Research, 143 (3), 498–517.

26

Network design with SRG based protection

B. Addis, a G. Carello, b F. Malucelli c

aDipartimento di Informatica Università degli Studi di Torino

C.So Svizzera, 185 10149 Torino

addis@di.unito.it

bDipartimento di Elettronica ed Informazione Politecnico di Milano

Via Ponzio 34 - 20133 Milano

carello@elet.polimi.it

cDipartimento di Elettronica ed Informazione Politecnico di Milano

Via Ponzio 34 - 20133 Milano

malucell@elet.polimi.it

Key words: Shared Risk Group, network design, shared protection, ILP, greedy

1 Introduction and problem statement

The design of resilient networks is a crucial problem in telecommunications and

has obtained much attention by the optimization community. The most traditional

setting considers link failures. The link capacity must be allocated at minimum cost

so that in case of single or multiple link failures the demands can still be routed.

When a single failure is accounted for, for each demand the capacity on a pair of

disjoint paths (primary and spare) from the origin to the destination nodes must

be allocated. If the protection is of dedicated type, the capacity allocated on each

link must consider the sum of flows on the primary and spare paths using that link.

While in the shared protection context , the capacity to be allocated on each link is

given by the sum of the flows of the primary paths using that link plus the maximum

of the flows on the spare paths using that link provided that the corresponding

primary paths are disjoint., thus allowing a remarkable saving in comparison with

the dedicated protection.

Multilayer networks require that protection considers more complex features than

single link failures. The links of the logical layer network correspond to complex

objects in lower layers, thus in case of a failure in the lower layers more than one

link is affected in the upper one. This complexity is captured by the so called Shared

Risk Groups (SRG). We can define a Shared Risk Group as the set of links of the

logical layer that simultaneously fail in the case of a failure of one link of the

lower layer. One link of the logical layer may belong to more than one SRG. This

additional complexity usually spoils the network structure of the problem as one

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

SRG can include apparently uncorrelated links, just looking at the logical layer

network.

Problems arising in the SRG network design context have been considered in recent

works as for example [1] and [2] where some path and cut problems on colored

graphs are analyzed from the computational complexity and approximability point

of view. In [3] a network design of resilient networks with SRG is considered and a

very involved mathematical model is proposed that cannot be solved by commercial

optimization software.

We consider the network design problem in the presence of SRG. We propose

mathematical models for the dedicated and shared protection. and also a simple

constructive heuristic reporting some comparative computational results.

The network is represented by a directed graph G = (N, A). The set of arcs corre-

sponds to the set of links where capacity must be allocated. A set of traffic demands

K is given, each defined by a triple (ok, tk, dk) where ok and tk are the origin and

the destination of dk units of flow. The set S of shared risk groups is also given.

Each SRG s ∈ S is a subset of A. To guarantee resilience to single arc failure,

each arc represents a SRG, as well. We assume that the arc capacity is provided by

installing transportation channels, each providing a capacity of λ flow units. The

channel installation on arc (i, j) is cij.

The reliable network design problem consists in finding, for each demand k, two

paths from the origin ok to the destination dk disjoint on the SRGs and allocate

the capacity on the arcs at minimum cost. The capacity allocation depends on the

type of applied protection. In the case of dedicated protection, the capacity to be

allocated on a link (i, j) amounts to the sum of flows (primary or spare) traversing

the link. In the case of shared protection, the capacity allocated on link (i, j) is given

by the sum of flows of the primary paths traversing the link plus the maximum of

the spare paths flows of demands that do not share SRG on their primary paths.

2 Mathematical models

The dedicated protection problem can be modeled using two sets of binary vari-

ables, describing the nominal and backup paths of each demand k, namely xk
ij and

yk
ij that equal 1 if and only if the nominal or the back up paths, respectively, are

routed on arc (i, j). Beside, integer variables zij give the number of channels in-

stalled on each arc (i, j). The model is the following:

28

min
∑

(i,j)∈A

cijzij (1)

∑

(j,i)∈A

xk
ji −

∑

(i,j)∈A

xk
ij = bk

i ∀i ∈ N, k ∈ K (2)

∑

(j,i)∈A

yk
ji −

∑

(i,j)∈A

yk
ij = bk

i ∀i ∈ N, k ∈ K (3)

∑

k∈K

dk

(

xk
ij + yk

ij

)

≤ λzij ∀(i, j) ∈ A (4)

xk
ij + yk

hl ≤ 1 ∀k ∈ K, s ∈ S, (i, j), (h, l) ∈ s (5)

xk
ij , y

k
ij ∈ {0, 1}, zij ∈ Z+ ∀(i, j) ∈ A (6)

where bk
i = −1 if i = ok, bk

i = 1 if i = tk and is equal to 0 otherwise. Objective

function (1) guarantees the minimum installation costs. Constraints (2) (and (3))

guarantee that there exists one and only one primary (and backup, respectively)

path for each traffic demand. Constraints (5) force the two paths to be SRG disjoint

for each demand. Equations (4) are arc dimensioning constraints.

In the shared protection model we use xk
ij and yk

ij binary variables, and integer

variables zij with the same meaning of the dedicated case. In addition we consider

binary variables vks which is equal to 1 if demand k is affected by SRG s, and

continuous variables rij
ks, representing the amount of traffic of demand k which

must be rerouted on arc (i, j) if SRG s occurs. The objective function (1) is kept,

as well as constraints (2), (3) and (5). The following constraints are added to the

basic model

∑

(i,j)∈s

xk
ij ≤ |s|vks ∀s ∈ S, k ∈ K (7)

rij
ks ≥ dk

(

vks + yk
ij − 1

)

∀s ∈ S, k ∈ K, (i, j) ∈ A (8)
∑

k∈K

rij
ks +

∑

k∈K

dkx
k
ij ≤ λzij ∀(i, j) ∈ A, s ∈ S. (9)

We propose a greedy algorithm integrated in a Multistart framework. The greedy

approach sequentially routes one demand at a time and dimensions the network,

following a certain ordered which is randomly changed to provide in the iterations

of the multistart approach. The key issue of the algorithm is the evaluation of the

incremental costs, i.e. the increase in the capacity installation cost which the de-

mand will cause if routed on the arc: for each arc the capacity installation cost is

computed assuming that the considered demand is routed on the arc. The incre-

mental cost are given by the difference between such cost and the current one. For

each demand the algorithm finds the minimum incremental cost pair of primary

and backup paths solving suitable ILP models. and routes the demand on graph and

dimensioning the link capacity.

29

Table 1. Results on instances with dedicated protection
CPLEX Heuristic

Instance LB UB gap CPU time UB gap UB gap LB CPU time

i 17 5 7506 7506 0.00% 0.33 7700 2.58% 2.58% 3.74

i 17 40 25350.47 25353 0.01% 263.23 28332 11.75% 11.76% 21.59

i 45-0 5 3348 3348 0.00% 8.19 3693 10.30% 10.30% 5.67

i 45-0 40 9342.85 10265 9.87% t.l. 12569 22.45% 34.53% 45.16

i 45-1 5 3975 3975 0.00% 2.02 4435 11.57% 11.57% 5.63

i 45-1 40 12815.21 14102 10.04% t.l. 17223 22.13% 34.39% 45.17

i 45-2 5 4311 4311 0.00% 4.73 4941 14.61% 14.61% 5.62

i 45-2 40 13931.12 15514 11.36% t.l. 19013 22.55% 36.48% 47.90

i 45-3 5 2939 2939 0.00% 1.35 2940 0.03% 0.03% 5.67

i 45-3 40 9928.96 10765 8.42% t.l. 12836 19.24% 29.28% 44.91

i 45-4 5 4238 4238 0.00% 1.94 4843 14.28% 14.28% 5.64

i 45-4 40 14474.29 15827 9.35% t.l. 18966 19.83% 31.03% 44.89

average 4.09% 40.26 14.28% 19.24% 23.47

maximum 11.36% 263.23 22.55% 36.48% 47.90

Table 2. Results on instances with shared protection

CPLEX first model CPLEX second model Heuristic

LB 1 hour LB 1 hour LB First model Second model

instance impr gap impr gap gap UB gap UB gap CPU time

i 17-4 5 82.34% 0.00% 82.58% 0.00% 0.00% 12.50% 12.50% 8.90

i 17-4 40 39.53% 22.42% 39.66% 22.79% 2.44% 7.86% 10.22% 57.26

i 45-0 5 75.53% 67.76% 73.59% 60.69% 7.35% 2.56% 15.56% 25.55

i 45-0 40 17.45% 421.21% 12.72% 169.00% 5.60% -36.99% 29.32% 295.47

i 45-1 5 67.12% 75.24% 66.30% 73.13% 2.43% 13.81% 18.06% 26.48

i 45-1 40 21.57% 318.82% 17.20% 135.75% 5.29% -27.51% 35.96% 305.48

i 45-2 5 66.46% 93.08% 65.82% 81.20% 1.87% 4.78% 13.77% 31.47

i 45-2 40 15.29% 269.14% 11.99% 144.03% 3.79% -20.47% 25.04% 291.01

i 45-3 5 75.54% 57.30% 71.65% 83.10% 13.71% 61.93% 61.21% 25.97

i 45-3 40 20.68% 345.47% 17.63% 171.94% 3.70% -28.02% 22.44% 285.00

i 45-4 5 63.84% 94.90% 62.73% 94.99% 2.98% 11.16% 14.52% 31.06

i 45-4 40 - - 14.83% 131.16% - 36.39% 284.08

average 49.58% 160.49% 44.73% 97.31% 0.14% 24.58% 138.98

maximum 82.34% 421.21% 73.59% 171.94% 61.93% 61.21% 305.48

3 Computational results

The models and the proposed heuristic have been tested on a set of a randomly

generated instances with 10 nodes and 4 SRGs. Models have been solved with

CPLEX 11.0.1 with a time limit of 3600 seconds. Both CPLEX and heuristic, with

30 multistart iterations, have been run on a Xeon (2.0GHz, 4Gb RAM).

Table 1 reports the results of the dedicated protection case. CPLEX solves to op-

timality 7 instances, those with five demands over 12, in reasonable CPU time.

The gap is limited for the five instances for which optimality is not proved. The

heuristic algorithm provides gaps with respect to the integer solution of about 14%

inaverage. Although the computational time increases on the 40 demands instances.

The shared protection case is reported in Table 2. The exact approach proves opti-

mality in only one instance. The number of demands affects significantly the final

gap. The continuous relaxation is quite poor. The heuristic computational time are

30

reasonable, never rising above 6 minutes. Computational experiments show that

our models cannot solve the instances of both problems even with a small number

of nodes. The multistart approach, although fast, is affected by sensible gaps.

References

[1] D. Coudert, P. Datta, H. Rivano, M.-E. Voge, “Minimum color problems and

shared risk resource group in multilayer networks”, Rapport de Recherche

ISRN I3S/RR-2005-37-FR.

[2] P. Datta, A. K. Somani “Diverse routing for shared risk resource groups

(SRRG) failures in WDM Optical networks”, BROADNETS’04.

[3] L. Shen, X. Yang, B. Ramamurthy, “Shared risk link group (SRLG)-diverse

path provisioning under hybrid service level agreements in wavelength-routed

optical mesh networks”, IEEE/ACM Trans. on Networking 13(4), 2005, 918-

931

31

Scheduling Problems with Unreliable Jobs and

Machines

A. Agnetis, a P. Detti, a P. Martineau, b M. Pranzo, a

aUniversità di Siena

via Roma 56 - 53100 Siena (ITALY) , Italy

{agnetis, detti, pranzo}@dii.unisi.it
bEcole Polytechnique de l’Universit́e de Tours, France

patrick.martineau@univ-tours.fr

Key words: Scheduling, Approximation, Parallel Machines

1 Introduction

A set of jobs J = {J1, . . . , Jn} must be performed on a system consisting of m
parallel, identical machines. Each job must be assigned to a single machine and a

machine can process one job at a time. Jobs and/or machines are unreliable, i.e.,

while a job is being processed by a machine, a failure can occur, which implies

losing all the work which was scheduled but not yet executed by the machine. Here

we investigate the case in which failures depend on job or machine characteristics,

but not both.

When failures are job-related, each job Ji is characterized by a certain success

probability πi (independent from other jobs) and a reward ri, which is obtained if

the job is successfully completed. The problem is to find a schedule of jobs on the

m machines that maximizes total expected reward. In the following, we refer to this

problem as Unreliable Job Scheduling Problem, denoted by UJP(m).

A different scenario is when the failure process depends on the machines. In this

case, jobs are characterized by a certain length (duration) Li, and a reward ri. Ma-

chines are characterized by a function P (t) that represents the probability of the

machine still being on at time t. The problem is again to maximize expected re-

ward, and we call this problem Unreliable Machine Scheduling Problem, denoted

by UMP(m).

2 Job-related failures

Let σk be a sequence of jobs assigned to machine k, and let σk(j) be the job in

j-th position in σk. A feasible solution ζ = {σ1, σ2, . . . , σm} for UJP(m) is an

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

assignment and sequencing of the n jobs on the m machines. Considering that a

job can be processed only if no failure occurred on the machine till then, if h jobs

are sequenced on machine Mk by σk, the expected reward ER[σk] is given by

ER[σk] = πσk(1)rσk(1) +πσi(1)πσi(2)rσk(2)+ . . .+πσk(1) . . .πσi(h−1)πσk(h)rσk(h) (1)

and ER[ζ] = ER[σ1] + ER[σ2] + . . . + ER[σm].UJP(m) consists in finding a

solution ζ∗ that maximizes the total expected reward. We will denote by z∗ the

value of the optimal solution.

It is easy to show that the single-machine case UJP (1) can be efficiently solved by

sequencing the jobs in nonincreasing order of the following Z-ratio:

Zi =
πiri

1 − πi

(2)

In [1], a reduction from PRODUCT PARTITION to UJP (2) is presented. A recent

complexity result on PRODUCT PARTITION by Ng et al. [3] implies that UJP (m)
is strongly NP-hard for any fixed m ≥ 2. Note that UJP(m) consists in deciding

how to partition the n jobs among the m machines, since on each machine the

sequencing is then dictated by the Z-ordering.

A simple heuristic list-scheduling algorithm (LSA) for UJP(m) is the following.

Sort all jobs by nonincreasing Z-ratios, and then assign them to the machines, al-

ways assigning the next job in the list to the machine having the current largest

cumulative probability. Let zH be the value of the solution produced by LSA.

In this paper we analyze the worst-case behavior of LSA when m = 2. In par-

ticular, we first address the special case in which all jobs have the same Z-ratio,

and then extend the result to general values of Zi. This is the same approach

used by Kawaguchi and Kyan [2] to prove that any list scheduling algorithm is
1+

√
2

2
= 1.207-approximate for Pm||

∑

wiCi, when the jobs are ordered by nonin-

creasing ratios pi/wi. However, our argument is actually simpler than the one used

by Kawaguchi and Kyan.

First observe that if all Zi are equal, with no loss of generality we can assume

Zi = 1, so that ri = (1 − πi)/πi for all jobs Ji. The contribution of machine Mk to

total expected revenue simplifies to

ER[σk] = (1−πσk(1))+(1−πσk(2))πσk(1)+. . .+(1−πσk(h))πσk(1) . . .πσk(h−1) (3)

= 1 − πσk(1)πσk(2) . . .πσk(h−1)πσk(h) (4)

Notice that (4) does not depend on the actual sequencing, but only on the set of

jobs assigned to Mk. Hence, there being only two machines, M1 and M2, we can

rewrite the objective function as:

ER = 2 −
∏

i∈M1

πi −
∏

i∈M2

πi (5)

33

Now, (5) is largest when the two product terms are as balanced as possible. In order

to derive a lower bound for zH , we must therefore consider the most unbalanced

solution which can be produced by LSA.

Denote by P be the product of all jobs probabilities, i.e., P =
∏

i∈J πi, and by

π1 the smallest probability. Note that since all jobs have the same Z-ratio, they

are randomly sequenced by LSA. Since LSA always selects the machine with the

current largest cumulative probability, it can never happen that the ratio between

the two current cumulative probabilities is smaller than π1. So, the most unbalanced

situation that may occur is when the last job being scheduled is J1, and before that

the two machines were perfectly balanced. In this case one machine’s expected

revenue is 1 − π1

√

P/π1 and the other is 1 −
√

P/π1, so that:

Theorem 2.1 When Zi = 1 for all i, zH ≥ 2 −√
Pπ1 −

√

P/π1.

Now let us turn to upper bounds. For sure, an upper bound is obtained assuming

that the two machines are perfectly balanced, i.e. the final cumulative probability is√
P for both machines.

Theorem 2.2 When Zi = 1 for all i, z∗ ≤ 2 − 2
√

P

A stronger (tighter) upper bound can be obtained if π1 is indeed very small. If π1 is

smaller than the product of all the other probabilities, the best solution would be to

put J1 on M1 and all the other jobs on M2:

Theorem 2.3 When Zi = 1 for all i, if π2
1 ≤ P , then z∗ = 2 − π1 − P/π1.

From these results, it is possible to prove the following theorem.

Theorem 2.4 When Zi = 1 for all i, the value zH of the solution produced by LSA

is such that zH

z∗
≥ 2+

√
2

4
. 0.8535.

Since the result can be extended to the general case, Theorem 2.4 indeed holds for

any instance of UJP (2). Moreover, the bound can be shown to be tight.

3 Machine-related failures

Turning to problem UMP (m), we investigate the case in which machine failures

are exponentially distributed, i.e., the probability of the machine being up at time t
is given by P (t) = e−λt, where λ is the average number of failures per time unit.

For the well-known properties of the exponential, this means that if a machine is up

when job i is started, the probability of being successfully carried out is πi = e−λLi .

In this scenario, we can think of two sensible performance measures: (i) the ex-

pected number of jobs, and (ii) the expected total work (time) done. In the former

case, we can simply set the reward ri = 1 for each i. In the latter case, ri = Li for

each i.

Let us order all jobs in SPT order, i.e., in nondecreasing order of job length, and

let us consider again a list scheduling algorithm, which assigns the next job in the

list to the machine that has currently received the smallest workload. The following

result can be proved:

Theorem 3.1 If either

34

• ri = 1 for all i
• ri = Li, and Li ≥ 1/λ for all i

then LSA finds an optimal solution to UMP (m)

Note that the quantity 1/λ represents the mean time between failures. If the job

lengths can be smaller than 1/λ, the problem is indeed difficult:

Theorem 3.2 If ri = Li, UMP (2) is NP-hard.

References

[1] Agnetis, A., Detti, P., Pranzo, M. and Sodhi M.S., Sequencing unreliable jobs

on parallel machines, Journal of Scheduling, 2009, 12, 45–54.

[2] Kawaguchi, T., Kyan, S., Worst case bound of an LRF schedule for the mean

weighted flow-time problem, SIAM J. Computing, vol. 15, 4, 1986.

[3] Ng, C.T., Barketau, M.S., Cheng, T.C.E., Kovalyov, M.Y., ”Product partition”

and related problems of scheduling and systems reliability: Computational

complexity and approximation, European Journal of Operational Research,

207, 601–604, 2010.

35

Models and Algorithms for the Bin Packing Problem

with Fragile Objects

M.A. Alba Martinez, a F. Clautiaux, b M. Dell’Amico, a M. Iori, a

aUniversity of Modena and Reggio Emilia,

Via Amendola 2, 42122 Reggio Emilia, Italy

{manuel.alba, mauro.dellamico, manuel.iori}@unimore.it
bUniversité des Sciences et Technologies de Lille,

INRIA Lille Nord Europe, Parc de la Haute Borne, 59655 Villeneuve d’Ascq, France

francois.clautiaux@univ-lille1.fr

Key words: Bin Packing Problem, Fragile Objects, Column Generation, Mathematical

Models

1 Introduction

In the Bin Packing Problem with Fragile Objects (BPPFO), we are given n objects,

each having weight wj and fragility fj (j = 1, . . . , n), and a large number of un-

capacitated bins. The aim is to pack all objects in the minimum number of bins, in

such a way that in each bin the sum of the object weights is less than or equal to

the smallest fragility of an object. More formally, let J(i) denote the set of objects

assigned to a bin i in a given solution. The solution is feasible if for any bin i:

∑

j∈J(i)

wj ≤ min
j∈J(i)

{fj}. (1)

The BPPFO is clearly NP-complete, because it generalizes the classical Bin Pack-

ing Problem (BPP). In the BPP we are given n objects of weight wj (j = 1, . . . , n)

and a large number of bins of capacity C, with the aim of packing the objects in

the minimum number of bins without exceeding the bin capacity. The BPP is a

particular BPPFO where all object fragilities are set to C.

The BPPFO is important in telecommunications, because it models the allocation

of cellular calls to frequency channels (see Chan et al. [2] and Bansal et al. [1]). In

Code Division Multiple Access (CDMA) systems, a limited number of frequency

channels is given. It is possible to assign many calls to the same channel, because

each channel has a capacity much larger than the bandwidth requirement of a sin-

gle call. Such assignment may, however, produce interferences among the calls and

may result in a loss of quality of the communication. Indeed each call is character-

ized by a certain noise that it produces, and by a certain tolerance with respect to

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

the total noise in the channel. It is required that the total noise in a frequency chan-

nel does not exceed the tolerance of any call assigned to the channel. To model this

telecommunication problem as a BPPFO, it is enough to associate each frequency

channel to a bin, and each call to an object having weight equal to the call noise and

fragility equal to the call tolerance. The solution of the BPPFO gives the minimum

number of frequency channels required to allocate all calls.

The literature on the BPPFO is still small. Chan et al. [2] presented approximation

schemes for the on-line version of the problem. Bansal et al. [1] proposed approx-

imation schemes and a so-called fractional lower bound, which runs in O(n) and

is quite effective in practice. Clautiaux et al. [3] developed a large number of lower

and upper bounds, built a benchmark set of challenging instances and presented the

first computational results for the problem.

This contribution extends the results by Clautiaux et al. [3], and is devoted to the

presentation of mathematical models (see Section 2), exact algorithms and related

computational performances (see Section 3).

2 Mathematical Models for the BPPFO

We suppose that wj and fj are positive integers (j = 1, . . . , n), and that objects

are sorted according to non-decreasing values of fragility, breaking ties by non-

increasing values of weight. The first model that we propose is made by a compact

number of variables and constraints, and is obtained as follows. We define yi as a

binary variable taking value 1 if object i is the object with smallest fragility in the

bin in which it is packed, 0 otherwise (i = 1, . . . , n). We also define xji as a binary

variable taking value 1 if object j is assigned to the bin having object i as object

with smallest fragility, 0 otherwise (i = 1, . . . , n, j = i + 1, . . . , n). The BPPFO

can be modeled as:

min
n

∑

i=1

yi (2)

yj +
j−1
∑

i=1

xji = 1 j = 1, . . . , n (3)

n
∑

j=i+1

wjxji ≤ (fi − wi)yi i = 1, . . . , n (4)

xji ≤ yi i = 1, . . . , n, j = i + 1, . . . , n (5)

yi ∈ {0, 1} i = 1, . . . , n (6)

xji ∈ {0, 1} i = 1, . . . , n, j = i + 1, . . . , n. (7)

Constraints (3) require that either an object is the one of smallest fragility in its bin,

or it is assigned to a bin containing an object with smaller fragility. Constraints (4)

impose that the sum of the weights of the objects packed in a bin does not exceed

the smallest fragility in the bin. Constraints (5) are used to tighten the model linear

relaxation.

37

The second model we propose builds upon the classical set covering formulation.

We define a pattern as a feasible combination of objects. We describe the pattern,

say p, by a column (a1p, . . . , ajp, . . . , anp)
T , where ajp takes value 1 if object j is in

pattern p, 0 otherwise. Let P be the set of all valid patterns, i.e., the set of patterns

p for which:
n

∑

j=1

wjajp ≤ min
j=1,...,n

{fjajp}. (8)

Let zp be a binary variable taking value 1 if pattern p is used, 0 otherwise (p ∈ P).

The BPPFO can be modeled as:

min
∑

p∈P

zp (9)

∑

p∈P

ajpzp ≥ 1 j = 1, . . . , n (10)

zp ∈ {0, 1} ∀p ∈ P. (11)

Constraints (10) impose that each object j is packed in at least one bin. As the

number of possible patterns may be very large, even solving the linear relaxation

of model (9)–(11) is difficult. We approach this problem by means of a column

generation method. We initialize the model with a subset of patterns and associate

dual variables πj (j = 1, . . . , n) to constraints (10). In an iterative way, we look for

a feasible pattern with negative reduced cost. If we find it, we add it to the model

and reiterate, otherwise we terminate.

The existence of a pattern that is feasible, with respect to (8), and has negative

reduced cost can be determined by solving a particular 0–1 Knapsack Problem

with Fragile Objects (KP01FO). In the KP01FO, we are given n objects with profit

πj , weight wj and fragility fj (j = 1, . . . , n) and a single uncapacitated bin, with

the aim of determining a subset of objects whose total weight does not exceed the

fragility of any object in the bin, according to (1), and whose total profit is largest.

3 Algorithms and Preliminary Computational Considerations

We made use of the above models to build exact algorithms for the BPPFO. We

also implemented polynomial lower and upper bounds (whose explanation is not

included in this extended abstract for sake of conciseness) to speed up the perfor-

mance of the exact algorithms. We tested the algorithms on the benchmark set pro-

posed by Clautiaux et al. [3], that consists of 675 instances with 50, 100 and 200 ob-

jects and is available at http://www.or.unimore.it/resources.htm.

Only preliminary computational results are available.

We first solved the compact model (2)–(7) by using Cplex 12. This proved to be

very effective on instances with 50 objects, but very poor on larger instances.

Then, we implemented a classical branch-and-bound in which an enumeration

scheme attempts at each level the assignment of an object to an open bin. At each

node we invoke an implementation of the fractional lower bound by Bansal et al. [1]

38

that we modified so as to take into consideration the branching decisions adopted

by the enumeration scheme. This algorithm improved the results obtained by the

compact model, but still was unable to solve all instances with just 50 objects, and

left unsolved many larger instances.

We finally implemented a branch-and-price based on the formulation (9)–(11). We

solved the KP01FO by means of an integer linear mathematical model and a dy-

namic programming algorithm, and used a classical branching scheme to try to

produce an integer solution whenever the outcome of the column generation was

fractional. This algorithm turned out to be quite slow, compared to the combina-

torial branch-and-bound, on the small instances, but allowed to close to optimality

many larger instances that were left open by the two previous algorithms.

As future work we intend to improve the compact model by making use of cutting

planes, in a branch-and-cut fashion. We also intend to improve the performance of

the branch-and-price by attempting more enhanced strategies to branch, to fathom

nodes and to find negative reduced cost patterns.

References

[1] N. Bansal, Z. Liu, and A. Sankar. Bin-packing with fragile objects and fre-

quency allocation in cellular networks. Wireless Networks, 15:821–830, 2009.

[2] W.T. Chan, F.Y.-L. Chin, D. Ye, G. Zhang, and Y. Zhang. Online bin packing

of fragile objects with application in cellular networks. Journal of Combina-

torial Optimization, 14:427–435, 2007.

[3] F. Clautiaux, M. Dell’Amico, M. Iori, and A. Khanafer. Lower and upper

bounds for the bin packing problem with fragile objects. Technical report,

DISMI, University of Modena and Reggio Emilia, Italy, 2010.

39

New upper bound for the number of maximal

bicliques of a bipartite graph

A. Albano, 1 Do Lago A.P.

DCC - Instituto de Matemática e Estat́ıstica, Universidade de São Paulo

{albano,alair}@ime.usp.br

Abstract

Given a bipartite graph, we present an upper bound for its number of maximal bicliques

as the product of the numbers of maximal bicliques of two appropriate subgraphs. We

show an infinite family of graphs for which our bound is sharper than the only non-trivial

known bound for general bipartite graphs. In an infinite subfamily, the previous bound is

exponential while ours is polynomial. We also discuss complexity aspects.

Key words: maximal bicliques, convex bipartite graph, consecutive ones property

1 Introduction

Let G = (U, W, E) be a undirected bipartite graph with vertex set U ∪ W . A

biclique is a pair (A, B) with A ⊆ U and B ⊆ W such that uw ∈ E for every

u ∈ A, w ∈ B. The sets A and B are called, respectively, left and right biclique

coordinates. We call (A, B) maximal if for every biclique (A′, B′) the following

holds: A′ ⊇ A and B′ ⊇ B ⇒ A′ = A and B′ = B. If S ⊆ U ∪ W , we

denote by G[S] the subgraph of G induced by S. Let W = {w1, . . . , wr} and π be

a permutation of {1, 2, . . . , r} acting on W . We say that a vertex u ∈ U has the

convex neighborhood property (CNP) with respect to π if for every wπ(i) and wπ(j)

adjacent to u with i < j, u is adjacent to every wπ(k) such that i ≤ k ≤ j. The

convexity of G (over W) with respect to π is the number of vertices u ∈ U that

have the CNP with respect to π, and is denoted conv(G, π). The convexity (over

W) of G is defined to be conv(G) = max
π∈Sr

{conv(G, π)}, where Sr is the set of all

permutations of {1, 2, . . . , r}. This definition of convexity generalizes the convex

property: a bipartite graph (U, W, E) is convex (over W) if conv(G) = |U |. For any

vertex v, we denote by N(v) the set of its neighbors. We denote by & : P(U) →
P(W) and ' : P(W) → P(U) the consensus functions: &(A) = ∩u∈AN(u), for

1 Financial support by CNPq (Proc. number 132590/2009-3)

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

A ⊆ U , and '(B) = ∩w∈BN(w) for B ⊆ W . Instead of writing &(A) and '(B), we

write A& and B'.

Classes of bipartite graphs with a polynomial number of maximal bicliques admit

a polynomial-time solution to the NP-hard maximum-edge biclique problem. An-

other application of this work is in association rule discovery, which is a main topic

in data mining. Sets T, I of transactions and items, and a relation R ⊆ T × I are

given, and the determination of frequent itemsets and their support plays a vital

role in rule discovery. The so-called frequent closed itemsets, which are maximal

biclique coordinates satisfying a size constraint, can be used to derive the support

of all frequent itemsets [7].

The following proposition first appeared in [8], was also mentioned in [3] and has

been more recently presented in [5], which is a very clear presentation of a few

known definitions and results of [4] in terms of graph theory.

Proposition 1 Let (U, W, E) be a bipartite graph. Then, (A, B) is a maximal bi-

clique if and only if A& = B and B' = A. Furthermore, the set of left coordinates

of maximal bicliques is precisely the image set of '. Dually, the set of right coordi-

nates of maximal bicliques is precisely the image set of &.

One consequence of the above proposition is the following.

Corollary 1 Every maximal biclique of a bipartite graph (U, W, E) is uniquely de-

termined by one of its coordinates, and therefore the number of maximal bicliques

of a bipartite graph is at most 2min{|U |,|W |}, in general, and at most
|W |(|W |+1)

2
+1 =

O(|W |2) if (U, W, E) is convex over W .

The graph obtained by removing a perfect matching from the complete bipartite

graph Kn,n is called crown graph. For n ≥ 3, such graphs are not convex over W ,

nor U , and the bound 2min{|U |,|W |} is tight.

2 Decomposition result, new upper bound and comparisons

The following theorem is an application of a stronger result by Ganter and Wille [4,

p.77] to the particular case we are interested here.

Theorem 1 Let G = (U, W, E) be a bipartite graph and let U = U1 ∪ U2. The

number of maximal bicliques of G is at most the product of the number of maximal

bicliques of G1 = G[U1 ∪ W] and G2 = G[U2 ∪ W]. Furthermore, this bound is

tight.

Proof: Let B be the set of all maximal bicliques of G and let B1 (B2) be the set

of maximal bicliques of G1 (G2). Denote by & and ' the consensus functions of

G and by &
i and '

i the consensus functions of Gi for i ∈ {1, 2}. Define ϕ : B →
B1 × B2 by ϕ((A, B)) = ((A ∩ U1, (A ∩ U1)

&), (A ∩ U2, (A ∩ U2)
&)). Indeed, ϕ

is well defined. Suppose (A, B) ∈ B. Then, A ∩ U1 is the set of vertices in G1

adjacent to each b ∈ B. Therefore, A∩U1 is a G1 maximal biclique left coordinate.

By Proposition 1, it follows that (A ∩ U1, (A ∩ U1)
&) is a maximal biclique of G1.

Analogously, (A ∩ U2, (A ∩ U2)
&) is a maximal biclique of G2. To show that ϕ

41

is injective, suppose (A1, B1), (A2, B2) are such that ϕ((A1, B1)) = ϕ((A2, B2)).
Then A1 ∩ U1 = A2 ∩ U1 and A1 ∩ U2 = A2 ∩ U2. Since U1 ∪ U2 = U , it follows

that A1 = A2. Proposition 1 implies that B1 = B2. For graphs attaining this upper

bound, consider crown graphs. !

Choosing π that maximizes conv(G, π), and defining U1 = {u ∈ U | u has the

CNP with respect to π}, and U2 = U \ U1, a straight application of Theorem 1

generalizes the final statement in Corollary 1 to the following:

Corollary 2 Let G = (U, W, E) be a bipartite graph of convexity C over W . Then,

the number of maximal bicliques of G does not exceed

2|U |−C(|W |(|W |+1)
2

+ 1) = O(2|U |−C · |W |2).

Notice that the bound presented above can be improved, since 2|U |−C bounds the

number of maximal bicliques of a subgraph that can have low arboricity (see be-

low), and therefore a better bound could be used with our decomposition argument.

Also, |W | could be replaced by | ∪u∈U1 N(u)|.

Now, we exhibit a quite known upper bound for the number of maximal bicliques.

Before, we need the following definitions. A graph G = (V, E) is said to be

k−forest-decomposable if there exists E1, . . . , Ek ⊆ E such that each subgraph

induced by Ei is acyclic and
⋃k

i=1 Ei = E. The arboricity of G is the least integer

k such that G is k-forest-decomposable. The arboricity of a graph can be given

by Nash-Williams [6] formula: a(G) = maxH⌈ m(H)
n(H)−1

⌉, where H ranges over all

subgraphs and m(H) and n(H) denote the number of edges and vertices of H ,

respectively. The following theorem is directly implied by work of Eppstein [2].

Theorem 2 The number of maximal bicliques of an n-vertex bipartite graph of

arboricity a is at most 22a · n.

We now construct a bipartite graph G = (U, W, E) of convexity > 2|U |
3

such that the

bound given in Corollary 2 is sharper than the bound above. Let U = {u1, . . . , uk}
and W = {w1, . . . , wk} be vertex sets, let n = 2k be the number of vertices, and let

0 ≤ c ≤ 1 be a parameter (to be determined later). For 1 ≤ i ≤ ck, ui is adjacent to

every vertex in {w1, . . . , wi} (these vertices ui correspond to a convex subgraph).

For ck < i ≤ k, ui is adjacent to {wck+1, . . . , wr} \ {wi}. No other adjacencies

exist. Let C be the convexity of this graph. Clearly, C ≥ ck. Let a be its arboric-

ity. By Nash-Williams formula, setting U1 = {u1, . . . , uck}, W1 = {w1, . . . , wck}

and choosing H = G[U1 ∪ W1], one has a ≥ ⌈ (1+ cn
2

) cn
4

cn−1
⌉ >

1+ cn
2

4
⇒ 2a > cn

4
. Now,

|U |− C ≤ k − ck = n
2
(1 − c). Setting c = 2

3
+ ε (ε > 0), we have

|U |− C ≤ n

2
(1 − c) = (

2

3
− 2ε)

n

4
< (

2

3
+ ε)

n

4
< 2a.

Next table shows the upper bounds by [2] and by Corollary 2, for some values of c.

Our bound is cubic for c = 1 − log2 |U |
|U |

, but previous bound is exponential.

42

|U2| = |U \ U1| c Upper bound by [2] Upper bound by Corollary 2

k(1/3 − ε) 2/3 + ε Ω(2(2/3+ε)n
4 n) O(2(2/3−2ε)n

4 n2)

k/6 5/6 Ω(32n/24n) O(4n/24n2)

log2 k 1 − log2 k
k

Ω(2(1−log2 k/k)n
4 n) O(n3)

3 Complexity and open problem

Deciding if a bipartite graph is convex can be solved in polynomial time [1]. How-

ever, determining the convexity of a bipartite graph is hard, since we obtained a

polynomial-time reduction from a variant of the TSP.

Theorem 3 The problem of determining whether a bipartite graph has convexity

at least c is NP-complete.

This naturally leads to the following problem.

Problem 1 To obtain approximation results for determining convexity.

References

[1] K. S. Booth and G S. Lueker. Linear algorithms to recognize interval graphs

and test for the consecutive ones property. In Proc. of 7th annual ACM sym-

posium on Theory of computing, STOC ’75, pages 255-265, NY, USA, 1975.

ACM.

[2] D. Eppstein. Arboricity and bipartite subgraph listing algorithms. Inf. Process.

Lett., 51(4):207-211, 1994.

[3] M. Farach-Colton and Y. Huang. A linear delay algorithm for building con-

cept lattices. In Proceedings of the 19th annual symposium on Combinato-

rial Pattern Matching, CPM ’08, pages 204-216, Berlin, Heidelberg, 2008.

Springer-Verlag.

[4] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Founda-

tions. Springer, Berlin/Heidelberg, 1999.

[5] E. Kayaaslan. On enumerating all maximal bicliques of bipartite graphs. In U.

Faigle, R. Schrader, and D. Herrmann, editors, CTW, pages 105-108, 2010.

[6] C. S. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Jour-

nal of London Mathemathical Society, 36, 1961.

[7] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Closed set based discov-

ery of small covers for association rules. In Proc. 15èmes Journées Bases de

Données Avanceés, BDA, pages 361-381, 1999.

[8] B.Schmidt. Ein Zusammenhang zwischen Graphentheorie und Verbandsthe-

orie. Diplomarbeit, TH Darmstadt, 1982.

43

Binary Betting Strategies

with Optimal Logarithmic Growth

K. Albrecht, U. Faigle

Mathematisches Institut der Universität zu Köln

50931 Köln, Germany

{albrecht,faigle}@zpr.uni-koeln.de

Key words: binary betting, Bernoulli criterion, logarithmic growth, strategy

1 Introduction

We consider a bettor who has a capital of size C > 0 and is to bet on the outcome

of a random source X with values in B = {0, 1}. In order to assess the quality of

a strategy, we assume that the source X gives rise to a (discrete) stochastic process

(Xt), where Xt is the outcome of X at time t. Letting Ct be the capital accrued at

time t, the Bernoulli criterion is its logarithm log Ct.

This criterion was introduced by Daniel Bernoulli [2] in order to resolve the St.

Petersburg paradox that had been noted by his cousin Nikolaus Bernoulli. This

criterion is commensurate with Fechner’s law [4], which postulates that subjective

intensities are generally perceived on a logarithmic scale. Interestingly, it is highly

disputed by economists in the betting/investment context. The theorists (and nobel

prize laureates) Merton and Samuelson [6,8], for example, argue that strategies

based on this criterion are too rigid to take the economic reality of dynamics in

time into account. The practitioner Thorp [7,9], on the other hand, reports very

good practical success with it. 1

In this presentation, we will investigate binary bets and identify optimal strategies

with respect to the (Bernoulli) criterion of maximizing the expected value of the

stochastic variable γt = log Ct. This investigation generalizes the seminal work

of Kelly [5] and its extensions by Belmann and Kalaba [1]. In contrast to their

models, we do not make any assumption on the nature of the stochastic process

(Xt). In particular, no independence or Markov chain assumptions are made.

1 Merton’s own investment fund LTCM (= Long Term Capital Management) failed in the

year 2000 after 6 years of operation

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

2 The betting model

A (binary) betting instance is a triple X = (X, α0, α1), where X is a discrete

binary source and the αb are sequences of positive real numbers α
(t)
b > 0 with the

following interpretation:

• At any time t− 1 = 0, 1, . . ., the bettor may place bets on the possible outcomes

(Xt = 0) and/or (Xt = 1).

• If (Xt = b) occurs, the bettor receives the payoff α
(t)
b for each unit wagered on

this event. Otherwise, he looses his investment.

Our bettor does not have to invest all of his available capital at time t. However,

for the evaluation of a strategy, we assume that the betting is self-financing (i.e., the

bettor does not replenish his financial means from outside sources).

Let Ct be the bettor’s capital at time t and set γt := log Ct. Then γt is a random

variable that the bettor would like to be as large as possible by choosing an ap-

propriate strategy. We say that a strategy is (Bernoulli) optimal if it maximizes the

expected value

γ̂t := E(γt) = E(log Ct) (assuming C0 = 1.)

2.1 Strategies

Denote by B∗ the collection of all finite (0, 1)-strings v and write |v| = t if v ∈ B t.

A strategy is a function a : B × B∗ → R+ (denoted (v, b) → a(b|v)) such that

a(0|v) + a(1|v) ≤ 1. (1)

We interpret a(b|v1 . . . vt−1) as the fraction of the current capital Ct−1 the investor

is betting on (Xt = b) having observed (X1, . . . , Xt−1) = (v1, . . . , vt−1).

2.2 Expected logarithmic growth

For any v = v1 . . . vk ∈ B∗, define the indicator variable

I(v) :=











1 if (X1, . . . , Xk) = (v1, . . . , vk)

0 otherwise.

Set Bt := {v ∈ B∗ | |v| ≤ t}. After t bets, the initial capital C0 = 1 has grown to

Ct =
∏

v∈Bt−1

∏

b∈B

(αba(b|v) + rv)
I(vb)C0, (2)

45

where rv := 1 − a(0|v) − a(1|v) is the portion of the capital not invested upon

having observed v. We thus obtain the logarithmic growth as

γt = log(Ct) =
∑

v∈Bt−1

∑

b∈B

I(vb) log(αba(b|v) + rv) (3)

In view of E(I(v1 . . . vk)) = p(v1 . . . vk) := Pr(X1 = v1, . . . , Xk = vk), we find

γ̂t := E(γt) =
∑

v∈Bt−1

p(v)
∑

b∈B

p(b|v) log(αba(b|v) + rv), (4)

where p(b|v) := Pr(Xk = b | X1 . . .Xk−1 = v) denotes the associated conditional

probability.

2.3 Optimal expected logarithmic growth

Observing that the expected logarithmic growth is optimized if each summand in

(4) is optimized individually, a detailed analysis reveals optimal strategies. We dis-

tinguish two cases.

Theorem 2.1 Assume 1/α
(t)
0 +1/α

(t)
1 ≤ 1. Then an optimal strategy a∗ is given by

the choice

a∗(b|v) = p(b|v) for all v ∈ Bt−1.

4

Theorem 2.2 Assume 1/α
(t)
0 + 1/α

(t)
1 > 1. Then an optimal strategy a∗ is given as

follows:

(1) If α
(t)
0 p(0|v) ≤ 1 and α

(t)
1 p(1|v) ≤ 1, then

a∗(0|v) = 0 and a∗(1|v) = 0.

(2) If α
(t)
0 p(0|v) > 1 and α

(t)
1 p(1|v) ≤ 1, then

a∗(0|v) =
p(0|v)α

(t)
0 − 1

α
(t)
0 − 1

and a∗(1|v) = 0.

(3) If α
(t)
0 p(0|v) ≤ 1 and α

(t)
1 p(1|v) > 1, then

a∗(0|v) = 0 and a∗(1|v) =
p(1|v)α

(t)
1 − 1

α
(t)
1 − 1

.

No further cases need to be considered.

4

2.4 Remarks

The practical implementation of an optimal betting strategy obviously depends on

the statistical estimates for the relevant betting parameters p(b|v). The presentation

will address this issue and provide furthermore a discussion of limiting cases under

the assumption that the stochastic process (Xt) has a finite evolution dimension

in the sense of Faigle and Schönhuth [3] (which properly includes all (hidden)

46

Markov processes). Moreover, connections with the notion of entropy in the sense

of Shannon’s information theory as well as physics will be outlined.

References

[1] R. Bellman and R. Kalaba: On the role of dynamic programming in statistical

communication theory. IEEE Transactions on Information Theory 3 (1957),

197-203.

[2] D. Bernoulli: Specimen theoriae novae de mensura sortis. Comentarii

Academiae Scientiarum Imperialis Petropolitanae, 5 (1738), 175-192.

[3] U. Faigle and A. Schoenhuth: Asymptotic mean stationarity of sources with fi-

nite evolution dimesion. IEEE Transactions on Information Theory 53 (2007),

2342-2348.

[4] G. Th. Fechner, Elemente der Psychophysik. Breitkopf und Härtel, Leipzig,

1860.

[5] J. L. Kelly: A new interpretation of information rate. Bell System Technical

J. 35 (1956), 917-926.

[6] R. C. Merton and P.A. Samuelson: Fallacy of the log-normal approximation

to optimal portfolio decision-making over many periods. Journal of Financial

Economics 1 (1974), 67-94.

[7] L. M. Rotando and E. O. Thorp: The Kelly criterion and the stock market. The

American Math. Monthly 99 (1992), 992-931.

[8] P. A. Samuelson: Why we should not make mean log of wealth big though

years to act are long. Journal of Banking and Finance 3 (1979), 305-307.

[9] E .O. Thorp: The Kelly criterion in blackjack, sports betting and the stock

market. Presentation at 10th International Conference on Gambling and Risk

Taking, Montreal, 1997.

47

Formulations and heuristics for the k-Piecewise

Affine Model Fitting problem

E. Amaldi, S. Coniglio, L. Taccari

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza L. da Vinci 32,

22133, Milano

{amaldi,coniglio}@elet.polimi.it
leonardo.taccari@mail.polimi.it

Key words: piecewise affine models, data fitting, mixed-integer linear programming,

symmetry breaking, metaheuristics

1 Introduction

We consider the problem of fitting a piecewise affine model to a set of observations

sampled from an unknown function f : Rn → R. Formally, given a set of m
points {a1, . . . , am} in Rn, with indices in I = {1, . . . , m}, and the corresponding

observations {b1, . . . , bm} in R, where bi = f(ai) for i ∈ 1, . . . , m, the problem

of k-Piecewise Affine Model Fitting (k-PAMF) amounts to linearly partitioning Rn

into k domains D1, . . . , Dk, with indices in J = {1, . . . , k}, (see the figure on the

left) and to finding k corresponding affine functions f̂j : Dj → R, for j = 1, . . . , k,

of type f̂j(p) = yT
j
p + wj (see the figure on the right) so as to minimize an overall

fitting error.

In this work, we consider as the error the sum over all the points ai of the absolute

value of the difference between the corresponding observation bi and the value

taken in ai by the affine function f̂j(i) : Dj → R, where ai ∈ Dj . More precisely,

we minimize
∑m

i=1 |bi − yT
j(i)

ai − wj(i)|.

Previous approaches usually tackle k-PAMF in a heuristic way, by splitting it in

three subproblems which are solved in sequence: 1) a clustering problem (where

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

similar points are grouped into k subsets), 2) a fitting problem (where an affine

submodel is found for each subset), and 3) a multi-category linear classification

problem (where Rn is subdivided into D1, . . . , Dk according to the clustering so-

lution). See, for instance, [4]. Since the points belonging to a domain may be used

to fit an affine function defined over another domain, such an approach is likely to

produce solutions of very poor quality. As a simple example, consider the follow-

ing figure where with a solution exhibiting this drawback (left) is compared to a

correct fitting (right).

In this work, we propose exact methods to solve the k-PAMF problem that look

for a partition of the points which, at the same time, allows for a good fitting and

induces a coherent partition of the domain.

2 Mixed-Integer Linear Programming formulation

We propose the following Mixed-Integer Linear Programming formulation:

min
m

∑

i=1

zi (1)

s.t.

n
∑

j=1

xij = 1 i ∈ I (2)

zi ≥ bj − aT
j ai − wj − M(1 − xij) i ∈ I, j ∈ J (3)

zi ≥ −bj + yT
j
ai + wj − M(1 − xij) i ∈ I, j ∈ J (4)

−(y′
j
− y′

h
)T ai + w′

j − w′
h + 1 − M(1 − xij) ≤ 0 i ∈ I, j, h ∈ J : j *= h(5)

xij ∈ {0, 1} i ∈ I, j ∈ J (6)

zi ≥ 0 i ∈ I (7)

y
j
, y′

j
∈ Rn j ∈ J (8)

wj, w
′
j ∈ R j ∈ J. (9)

The variables (y
j
, wj) denote the parameters of each affine function. The binary

variable xij , involved in the assignment Constraints (1), takes value 1 if the domain

Dj contains the point ai, and 0 otherwise. If xij = 1, ai contributes to the fitting

error related to the affine function f̂j, which is accounted for by the variable zi due

to Constraints (2)–(3). The big-M value is chosen so as to guarantee that the con-

straints are not active if xij = 0. Constraints (4) and the variables (y′
j
, w′

j) guarantee

that, if xij = 1, then the domain Dj must contain the point ai. These constraints

are derived from those of the multi-category linear classification problem, see [2]

for more detail, and are adapted to the case where the partition of the points to be

49

classified is itself a part of the problem.

Let X ∈ Rm×k be the assignment matrix with entries xij for i ∈ I, j ∈ J . Given

any feasible solution of our formulation, another equivalent solution can be ob-

tained by permuting the columns of X , that is by permuting the labels 1, . . . , k
with which the sets in the partition are indexed. Therefore there is a symmetric

group acting on the columns of X . We remove the symmetry by restricting the fea-

sible set to that of matrices X whose columns are sorted in lexicographic order.

This is achieved by introducing a class of symmetry-breaking constraints called

Shifted Column Inequalities (SCI) [5]. In our Branch-and-Cut algorithm, valid in-

equalities of this family which are violated by the current relaxation are generated,

at each node of the enumeration tree, by means of the polynomial-time dynamic

programming separation algorithm proposed in [5].

Since, due to the presence of the big-M , Constraints (2)-(3) do not allow for tight

continuous relaxations, we propose an alternative formulation which is based on a

decomposition method that uses Combinatorial Benders’ Cuts [3]. The approach

seems promising, since it removes some of the numerical instability that is intro-

duced by the big-Ms and yields tighter bounds, although in its current version it is

still not computationally competitive with the original formulation.

3 A combinatorial metaheuristic

To tackle large-size instances, we propose a metaheuristic which combines an

adapted version of the algorithm for k-Hyperplane Clustering proposed in [AC09],

called Adaptive Point-Reassignment (APR), with a multi-category linear classifi-

cation method.

At each iteration, given a point-to-affine function assignment, our modified APR

method identifies a set of candidate points which are likely to yield a better solution

if reassigned to other affine functions, performs the reassignment, and recomputes

the affine functions parameters by solving a linear program. Then, a multi-category

classification problem is solved to find a linear partition of Rn into D1, . . . , Dk

such that each domain contains as many points as possible among those that were

assigned to the corresponding affine function. The points that belong to a domain

Dj but are assigned to an affine function f̂j′ with j *= j ′ are then reassigned to f̂j

and the corresponding parameters are updated. The two operations are iteratively

applied until a stopping criterion is met, also adopting Tabu Search-inspired tech-

niques to avoid loops.

4 Computational results

Computational experiments are carried out for a set of realistic, randomly gener-

ated instances. Each instance is obtained by first generating a random piecewise

affine function, either continuous (sr) or noncontinuous (ncr), with an additive

Gaussian noise, which is then randomly sampled. An extra set (wave), obtained

50

by randomly sampling noiseless wave functions, is also used. Our Branch-and-Cut

method is implemented in and solved with CPLEX/Concert, whereas the meta-

heuristic is implemented in C++.

The following table reports the average CPU time and number of Branch-and-

Bound nodes needed to solve k-PAMF to optimality, with or without applying the

SCI inequalities. The results are averaged on instances of the same type. The sym-

metry breaking techniques turn out to be pivotal in reducing the solution times,

allowing to achieve optimal solutions for instances with up to 150 points in R3

within an hour of CPU time.

The second table shows the optimality gap, on average, of the solutions found via

our metaheuristic as well as the CPU time taken by the algorithm, reported as a

percentage of the CPU time which is required to solve the enhanced formulation.

The results show that our metaheuristic provides good solutions, on average within

less than 7% of the optimal value, in a very short computing time.

References

[1] E. Amaldi and S. Coniglio. An adaptive point-reassignment metaheuristic for

the k-hyperplane clustering problem. In Proc. of Metaherustic International

Conference, pages 1–10, 2009.

[2] K.P. Bennet and O.L. Mangasarian. Multicategory discrimination via linear

programming. Optim. Method. Softw., 3:27–39, 1994.

[3] G. Codato and M. Fischetti. Combinatorial Benders’ cuts for mixed-integer

linear programming. Oper. Res., 54:756–766, 2006.

[4] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering tech-

nique for the identification of piecewise affine and hybrid systems. Automatica,

39:205–217, 2003.

[5] V. Kaibel and M.E. Pfetsch. Packing and partitioning orbitopes. Math. Pro-

gram. A, 114:1–36, 2008.

51

On cycle bases with limited edge overlap

E. Amaldi, a C. Iuliano, a R. Rizzi b

aDipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

{amaldi,iuliano}@elet.polimi.it
bDipartimento di Matematica e Informatica, Universit̀a di Udine, Udine, Italy

romeo.rizzi@uniud.it

Key words: undirected graphs, cycle basis, edge overlap

1 Introduction

Consider connected undirected graph G = (V, E) that is simple, i.e., without loops

and multiple edges. Let n = |V | and m = |E| be respectively the number of nodes

and edges. A cycle C is a subgraph in which every node has even degree (number of

incident edges). It can be represented by an edge incidence vector χ(C) in {0, 1}m,

where the component χe(C) corresponding to the edge e ∈ E is 1 if e ∈ C, and 0
otherwise. The composition of two cycles C1 and C2 is a cycle C3 where χ(C3) is

equal to the sum modulo 2 of χ(C1) and χ(C2). All the cycles of G form a vector

space over GF (2), the so-called cycle space. A cycle basis C is a maximal set of

independent cycles. Every cycle can thus be obtained by the composition of some

cycles of C. For a connected graph, the dimension of C is equal to ν := m− n + 1.

Cycle bases have been attracting growing attention in combinatorial optimization.

In particular, assigned a nonnegative weight to each edge, the problem of finding

a cycle basis of minimum total weight in undirected graphs and several variants

arising from applications have been extensively studied (e.g. [1]). See survey [3]

and the references therein.

In this work, we investigate a natural related problem, that we refer to as the Cycle

basis with limited edge overlap (CBEO). Given an undirected graph G with a non-

negative integer bound be on each edge e ∈ E, find a cycle basis C such that each

edge e ∈ E belongs to at most be cycles of C, i.e., the overlap
∑

Ci∈C χe(Ci) of e is

at most be for each edge e ∈ E. In the uniform case all the edge bounds are equal.

Such a cycle basis is relevant for example in the analysis of electrical networks.

When one wishes to check that Kirchhoff’s law is satisfied along all the loops, it is

possible to focus only on those corresponding to the cycles of a basis [3]. In order

to reduce the probability of damaging the links, it may be desirable to limit the

number of times each link is tested.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

2 Computational complexity

The problem of, given an undirected graph with a nonnegative bound be for each

edge e, determining whether there exists a cycle basis with limited edge overlap can

be solved in polynomial time when be ≤ 2 for each e. Indeed, a cycle basis such that

each edge belongs to at most 2 cycles exists if and only if the graph is planar (see

e.g. [4]). Such a basis consists of all faces but one of the planar embedding of the

graph and it can be checked in polynomial time whether the edges with be = 1
belong to that face [4].

Proposition 1 The above problem is NP-complete when be ≤ 3 for each e.

Proof (sketch) For the case be ≤ 3, we proceed by polynomial-time reduction

from the following problem. Given a balanced tripartite graph G = (V, E), where

V = A ∪ B ∪ C and k = |A| = |B| = |C|, determine if there exists a packing

of node-disjoint triangles (3-edges cycles) covering all nodes. This problem can

be easily shown NP-complete by polynomial-time reduction from 3-dimensional

matching problem [2]). In the following when we use the indices i or j we mean

in fact all the values of i, j such that 1 ≤ i, j ≤ k. We assume that A = {ai},

B = {bi}, and C = {ci}. The set of edges E can be partitioned into EAB, EBC ,

and ECA, containing respectively the edges {ai, bj}, {bi, cj} and {ci, aj}. For each

instance of the original problem in such a tripartite graph we construct a special

instance of the CBEO problem such that the answer to the former is yes if and only

if the answer to the latter is yes.

We proceed in two steps. First, we construct a graph G′ = (V ′, E ′), where V ′ =
R′ ∪H ′, with R′ containing two copies of each node in G and H ′ containing 6 new

nodes, namely R′ = {a′
i, a

′′
i , b

′
i, b

′′
i , c

′
i, c

′′
i }, and H ′ = {x′, x′′, y′, y′′, z′, z′′}. The set

of edges E ′ consists of 4 classes of edges: {a′′
i , b

′
j}, {b′′i , c

′
j}, {c

′′
i , a

′
j} corresponding

respectively to {ai, bj}, {bi, cj}, {ci, aj} ∈ E; {a′
i, a

′′
i }, {b′i, b

′′
i }, {c′i, c

′′
i } linking the

two copies of each node of G; {a′
i, x

′}, {a′′
i , x

′′}, {b′i, y
′}, {b′′i , y

′′}, {c′i, z
′}, {c′′i , z

′′},

where one endpoint is in R′ and the other one is in H ′; |EAB| − k parallel edges

{x′′, y′}, |EBC | − k parallel edges {y′′, z′}, and |ECA| − k parallel edges {z′′, x′}.

Note that we introduce parallel edges only for sake of simplicity. Each one of them

can be simply substituted by two edge in series in order to obtain a cycle-equivalent

graph which is simple. We denote by d′(u) the degree of each node u ∈ V ′. The

edge bounds are set equal to d′(u) − 3 for edges {u, v} with u ∈ R′ and v ∈ H ′,
and to 1 for all the other edges. Finally, each edge {a′′

i , b
′
j}, {b′′i , c

′
j}, and {c′′i , a

′
j}

is subdivided as to become 2 edges in series with the same edge bound and each

edge {u, v} with u ∈ R′ and v ∈ H ′ is subdivided as to become 3 edges in series

always with the same edge bound. Let F ′ denote the set of the following |E|− 2k
edges: all edges {a′

i, a
′′
i } and the parallel edges {x′′, y′}, {y′′, z′}, and {z′′, x′}. A

cycle that contains at most one edge in F ′ is called F ′-cycle. Note that due to edge

subdivision, each F ′-cycle has length (number of edges) at least 12.

The graph G admits a packing of node-disjoint triangles covering all nodes if and

only if there exists a packing of |F ′| cycles in G′ consisting only of F ′-cycles

and such that the prescribed edge bounds are satisfied. The packing in G′ consists

53

only of F ′-cycles of length 12, one for each edge of F ′ (since all the edges in F ′

have edge bounds of 1), with all the edge bounds satisfied at equality. The |E| −
3k cycles associated to parallel edges {x′′, y′}, {y′′, z′}, and {z′′, x′} are forced to

contain |EAB| − k edges {a′′
i , b

′
j}, |EBC | − k edges {b′′i , c

′
j}, and |ECA| − k edges

{c′′i , a
′
j}. The remaining ones belong to the cycles associated to edges {a′

i, a
′′
i }, that

correspond to the packing of triangles in G.

Then, we extend the graph G′ to G′′ = (V ′′, E ′′) by adding a node w linked to all

other nodes, i.e., V ′′ = V ′ ∪ {w} and E ′′ = E ′ ∪ {{u, w} : u ∈ V ′}. The edge

bound remains 1 for the edges of F ′, whereas it is incremented by 1 w.r.t. the value

in G′ for the edges of E ′\F ′. For the new edges {u, w} with u ∈ V ′ the edge bound

is set equal to d′(u) if u is not an endpoint of an edge of F ′, d′(u) − 1 otherwise.

The graph G admits a packing of node-disjoint triangles covering all nodes if and

only if in G′′ there is a cycle basis with limited edge overlap. The cycle basis con-

sists of the triangles given by w and edges in E ′\F ′ and the |F ′| cycles of the

above-mentioned packing in G′. The cycle basis is weakly fundamental [4], i.e.,

there exists an ordering of the cycles in the basis (first the triangles and then the

|F ′| cycles) such that each cycle in the basis contains an edge that does not belong

to any previous cycle. Note that, since all the edges in F ′ have edge bounds of 1,

only F ′-cycles can belong to a cycle basis. Due to the values of the edges bounds,

every cycle basis must consist of |E ′\F ′| triangles containing w and |F ′| cycles of

length 12 not containing w, such that all the edge bounds are satisfied at equality.

The triangles are forced, since each edge in E ′\F ′ has at least one endpoint u not

incident to an edge of F ′ and {u, w} has an edge bound of d′(u). After selecting

the triangles, the resulting graph is equivalent to G′ and the remaining |F ′| cycles

must correspond to the above-mentioned packing in G′.

Finally, it is possible to prove that each edge e in G′ with bound equal to be > 3
can be substituted by be − 3 parallel edges with bound equal to 3 and the result is

still valid. 4

3 A constructive heuristic à la de Pina

To tackle the CBEO problem we propose a constructive heuristic based on de

Pina’s method to compute a minimum cycle basis in an undirected graph. De Pina’s

method determines sequentially the ν cycles C1, . . . , Cν of a minimum basis main-

taining at each step i = 1 . . . ν a basis Si, . . . , Sν of the linear space orthogonal to

the subspace spanned by the cycles C1, . . . , Ci−1 selected so far. At each step, given

the current vector Si of the orthogonal basis, Ci is the minimum weight cycle or-

thogonal to Si. See [1,3] for a description of the method. Our heuristic proceeds ac-

cording to de Pina’s scheme with the difference that at each step i = 1 . . . ν a special

weighting of the edges is used to compute the minimum weight cycle C i. We denote

by bmax the maximum edge bound over all edges, i.e., bmax = max{be : e ∈ E}
and by oei the overlap of each edge e ∈ E at the beginning of the i-th step,

i.e., oei =
∑

Cj :j<i χe(Cj). At the beginning of the i-th step we have a so-called

54

residual edge bound of be − oei on each edge e ∈ E. Hence, we set a weight of

(n + 1)bmax−(be−oei) for each edge e ∈ E so as to penalize the choice of edges

with a low residual edge bound. Note that using this special type of weighting is

equivalent to determining a set of edges with maximum bottleneck value, where the

bottleneck is given by the minimum residual edge bound over all edges. In case of

ties, a set where fewer edges have the bottleneck value is preferred.

In the following table we report the results of the computational experiments for

the uniform case on random graphs with n from 50 to 200 and edge density equal

to 0.3, 0.5, and 0.9.

random 0.3 random 0.5 random 0.9

n ν omax Time ν omax Time ν omax Time

50 320 4.00 0.06 555 3.83 0.21 932 3.00 0.69

100 1392 4.00 2.45 2368 4.00 11.81 3865 4.00 60.44

150 3205 4.00 35.21 5425 4.00 183.93 8802 4.00 777.61

200 5773 4.00 229.74 9754 4.00 1130.19 15719 4.00 5488.34

Since bmax = be for each e ∈ E, our approach amounts to minimizing the maxi-

mum overlap over all edges. The heuristic is implemented in C and the experiments

are carried out on a UNIX Xeon 64 bit with 2.0 GHz processor and 4 GB RAM.

The information in the table includes: the number of cycles of the basis ν, the max-

imum overlap omax and the computing time in seconds. The results, averaged on 30
different random instances, show that our heuristic always finds a cycle basis with

a very low edge overlap (at most 4). Since the computing time of de Pina’s scheme

rapidly increases with the dimension of the graphs, we are developing an adaptive

version of our heuristic along the line described in [1] for finding minimum cycle

bases.

References

[1] E. Amaldi, C. Iuliano, and R. Rizzi. Efficient deterministic algorithms for

finding a minimum cycle basis in undirected graphs. In F. Eisenbrand and

F. B. Shepherd, eds., IPCO, vol. 6080 of LNCS, 397–410. Springer, 2010.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, USA, 1979.

[3] T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi, T. Ueckerdt, and

K. A. Zweig. Cycle bases in graphs characterization, algorithms, complexity,

and applications. Computer Science Review, 3(4):199–243, 2009.

[4] C. Liebchen and R. Rizzi. Classes of cycle bases. Discrete Applied Mathemat-

ics, 155(3):337–355, 2007.

55

Sorting Common Operations to Minimize Tardy Jobs

Claudio Arbib, a Giovanni Felici, b Mara Servilio c

aUniversità degli Studi dell’Aquila, Dipartimento di Informatica,

via Vetoio, Coppito — 67010 L’Aquila, Italy

claudio.arbib@univaq.it

bConsiglio Nazionale delle Ricerche,

Istituto di Analisi dei Sistemi e Informatica ”Antonio Ruberti”

viale Manzoni, 30 — 00185 Roma, Italy

felici@iasi.cnr.it

cUniversità degli Studi dell’Aquila, Dipartimento di Informatica,

via Vetoio, Coppito — 67010 L’Aquila, Italy

mara.servilio@univaq.it

Key words: Linear arrangement, Scheduling, Stable set problem, Integer linear

programming

1 Extended Abstract

We consider the following problem (P): given a discrete finite set N with n ele-

ments, a finite collection S = {S1, . . . , Sm} of (possibly duplicated) subsets of N
and a positive integer dj for each Sj ∈ S, assign every i ∈ N to a distinct positive

integer k(i) so that the number of sets in S with maxi∈Sj
{k(i)} > dj is minimized.

A motivation for (P) can be found in an operation scheduling problem, where a set

J of m jobs with specific due dates d1, . . . , dm must be completed by a machine:

job j is completed as soon as a subset Sj of operations is done. Jobs share common

operations: this means that once operation i is completed, it is completed for all the

jobs j that require i. A practical application of this problem is pattern sequencing in

stock cutting [2]. The case with |Sj | = 2 (j ∈ J), mentioned in [1], is a graph order-

ing problem and was shown to be NP-hard (reduction from CLIQUE). In this paper

we formulate the general case as a STABLE SET on a special graph. We investigate

the structure of the graph, and discuss facet-defining and valid inequalities (the for-

mer include some Chvátal-Gomory lifted odd holes). A preliminary computational

experience provides difficult instances to be tested in future research.

Problem Fomulation. The following ILP formulation of (P) uses:

binary variables xik that get value 1 if operation i is assigned to the k-th position,

and 0 otherwise (i ∈ N , k = 1, . . . , n);

binary variables yj that get value 1 when job j is on time (i.e., the last of its opera-

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

tion is scheduled before dj), and 0 otherwise (j ∈ J);

weights cik > m associated with each pair ik (i ∈ N , k = 1, . . . , n).

max
∑

j∈J

yj +
∑

i∈N

n
∑

k=1

cikxik (1)

n
∑

k=1

xik ≤ 1 i ∈ N (2)

∑

i∈N

xik ≤ 1 k = 1, . . . , n (3)

yj +
∑

k>dj

xik ≤ 1 j ∈ J, i ∈ Sj (4)

yj +
∑

i∈Sj

xik ≤ 1 j ∈ J, k > dj (5)

xik ≥ 0, yj ≥ 0 and integer (6)

Note that xik does not need to be constrained to integrality; also, due to the choice

of cik, any optimal solution fulfils (2) and (3) with equality.

Call GI = (VI , EI) the intersection graph of the constraint matrix of (1)-(6):

VI contains a node ik for each variable xik (x-node) and a node j for each variable

yj (y-node);

EI contains an edge between any two nodes associated with variables that appear

in the same constraint.

Similarly to [4,6], formulation (1)-(6) describes a STABLE SET on GI .

Observe that (ik, hl) ∈ EI if and only if either i = h (horizontal edges) or k = l
(vertical edges); secondly, (ik, j) ∈ EI if and only if i ∈ Sj and k > dj: finally,

(j, h) /∈ EI for all j, h ∈ J .

Let Q be the convex hull of all the (x,y) ∈ {0, 1}n2×m that are feasible solutions

of (1)-(6). From the above observations,

i) any set of horizontally (vertically) adjacent x-nodes is a clique;

ii) the horizontal (vertical) neighborhood of a y-node, plus the y-node itself, is a

clique.

As (i) describes all the connections of the subgraph induced by the x-nodes, any

x-subgraph of GI is perfect. Moreover, any set of y-nodes is stable, so we conclude

that constraints (2)-(5) are all the maximal-clique inequalities of GI , and hence

define facets of Q.

Odd holes and wheels. Besides maximal cliques, several classes of inequalities

are known to be valid for the STABLE SET polytope: we considered odd holes,

odd anti-holes and wheels. Odd anti-holes are promptly ruled out by the following

theorem, whose proof is omitted for brevity:

Theorem 1.1 GI does not contain any odd anti-hole as an induced subgraph.

Let us focus on odd-hole inequalities. From the perfectness of any x-subgraph of

GI we know that every odd hole of GI must contain at least one y-node. We start

our analysis from odd holes with a single y-node.

57

Let W denote the vertex set of an odd-hole formed by

(1) A y-node j ∈ J , corresponding to variable yj.

(2) Four x-nodes associated with operations i1, i2 ∈ Sj , and with positions

d1, d2 > dj and k1, k2 ≤ dj, and corresponding to variables xi1k1 , xi1d1 , xi2k2 ,
xi2d2 .

(3) (|W | − 5) x-nodes associated associated with operations i3, . . . , i |W |−1
2

∈ N

and with positions k3, . . . , k |W |−3
2

≤ dj , and corresponding to variables

{xi3,k1, xi3,k3, xi4,k3, xi4,k4, . . . , xi |W |−1
2

,k |W |−3
2

.

Then inequality yj +
∑

ik∈W xik ≤
⌊

|W |
2

⌋

, with yj ∈ W , is valid for (1)-(6).

Moreover, it is easy to see that the above inequality can be enforced to a Chvátal-

Gomory lifted odd hole (CGH inequalities, see [3] and [4] for details). This is done

via a Chvátal-Gomory derivation that combines with coefficient 1
2

the constraints

(2), (3), and just one out of (4), (5), where the hole variables occur. Additional

considerations, here omitted for brevity, lead to conclude that:

Theorem 1.2 The inequality yj +
∑

xik∈XW xik +
∑

xik∈W xik ≤
⌊

|W |
2

⌋

correspond-

ing to an odd hole induced by W ⊆ VI and containing just one y-node yj ∈ W is

a CGH inequality and is facet defining for Q.

Let us now consider the wheel inequalities obtained by lifting an x-variable that

plays the role of hub node in an odd hole inequality. It is easy to see that the only

induced wheels of GI derive from 5-hole lifting. Moreover, the form of GI is such

that no 5-hole with a single y-node can be extended to a wheel. Thus all the wheels

of GI are obtained by 5-holes containing two y-nodes. We can now detail the gen-

eral form of a wheel-inequality of GI . Let W ⊆ VI induce a 5-hole of GI such that

j1, j2 ∈ W , for some j1, j2 ∈ J ; let also xirkc
∈ VI \ W be the hub of a wheel

obtained by lifting the hole inequality associated with W . Then the following holds

true:

Theorem 1.3 The wheel inequality yj1 + yj2 + 2xirkc
+

∑

ik∈W xik ≤ 2 is facet

defining for Q.

Cover Inequalities. We next consider a class of optimality cuts, called cover, and

their separation. Call (P̄) a version of (1)-(6) — equivalent in terms of optimality

— where constraints (2), (3) hold with equality. Let J̄ ⊆ J and L =
⋃

j∈J̄ Sj ⊆ N .

Then

Theorem 1.4 If |L| > maxj∈J̄{dj}, then inequality
∑

j∈J̄ xj ≤ |J̄ |− 1 is valid for

(P̄).

Proof. The completion time of the operations in L (and hence of the jobs in J̄)

cannot be squeezed below |L|; thus, if |L| > maxj∈J̄{dj} at least one job in J̄ is

late. 4
In order to separate exactly this class of inequalities we need to solve a potentially

difficult problem. Given a fractional solution x̄ of the linear relaxation of (P̄), let

ȳ = (ȳj)
m
j=1 ∈ {0, 1}m be the incidence vector of J̄ and z = (zi)

n
i=1 ∈ {0, 1}m

be the incidence vector of L. Finding a maximally violated inequality in the above

class amounts then to solving the following separation problem:

58

min{
∑

j∈J

(1 − x̄j)ȳj :
∑

i∈N

zi > dj ȳj , j ∈ J ;
∑

Sj)i

ȳj ≥ zi, i ∈ N}

Note that in the above problem at least one zi must be > 0 in order to fulfil the first

set of constraints, and that the second constraint set requires ȳj ≥ 0 in at least one

case. For dj = n − 1 the problem is a general SET COVERING problem. However,

in the simpler case studied by [1], separation is a special EDGE COVERING [5] and

can be done in polynomial time by matching.

Preliminary computational experience. We tested formulation (1)-(6) on in-

stances elaborated from solutions of the Cutting Stock Problem given in the form

of sets of cutting patterns [2]. We observed small gaps (in the range of 3%) when

the density of patterns (number of part types per pattern) is relatively low; but the

gap increases (up to 97% in some cases) as the pattern density increases from 10%

to 50%. Additionally, we observed that wheel inequalities do not provide any con-

tribution at the root node, while slight improvements are obtained by cover inequal-

ities. Work is in progress to evaluate the contribution of CGH inequalities, and to

set up a more elaborated test of the described inequalities within a branch-and-cut

code.

References

[1] C. Arbib, M. Flammini, F. Marinelli, Minimum flow time graph ordering, in

H.L. Bodlaender (Ed.): WG 2003, Lecture Notes in Comp. Sci. 2880 (2003)

23-33

[2] G. Belov, G. Scheithauer, Setup and open-stacks minimization in one-

dimensional stock cutting. INFORMS Journal on Computing 19(1) 27-35

[3] A. Caprara, M. Fischetti, 0-1
2

Chvátal-Gomory cuts, Mathematical Program-

ming 74 (1996) 221-235

[4] A. Caprara, J.J. Salazar, Separating lifted odd-hole inequalities to solve the

index selection problem. Discrete Applied Mathematics, 92 (1999) 11-134

[5] J. Plesnı́k, Constrained weighted matchings and edge coverings in graphs,

Discrete Applied Math. 92 (1999) 229-241

[6] F. Rossi, S. Smriglio, A set packing model for the ground holding problem

in congested networks, European J. of Operational Research 131 (2001) 400-

416

59

Generalized row family inequalities

for the set covering polyhedron

G. Argiroffo, a Wagler A.K. b

aDept. de Matemática, Universidad Nacional de Rosario, Rosario, Argentina,

garua@fceia.unr.edu.ar

b Laboratoire d’Informatique, de Modélisation et d’Optimisation des Syst̀emes, Université

Blaise Pascal and CNRS, Clermont-Ferrand, France,

wagler@isima.fr

Key words: set covering polyhedron, valid inequality, row family inequality

1 Introduction

Let M be a clutter matrix, i.e., a 0, 1-matrix without dominating rows and zero

columns. The set covering polyhedron (SCP), denoted by Q∗(M), is the convex

hull of integer points in Q(M) = {x ≥ 0 : Mx ≥ 1}. The set packing polyhedron

(SPP), denoted by P ∗(M), is the convex hull of integer points in P (M) = {x ≥
0 : Mx ≤ 1}. Note that P ∗(M) equals the stable set polytope STAB(G) of a

graph G, if M is the matrix having the incidence vectors of maximal cliques of G
as rows.

From the polyhedral point of view, the set covering polyhedron SCP and the set

packing polyhedron SPP have strong similarities. In particular, many key concepts

have been transferred from SPP to SCP, see for example the works of Balas and Ng

[2], Cornuéjols and Sassano [3], Nobili and Sassano [4] and Sassano [7].

A canonical question is to which extend this also applies to classes of valid in-

equalities. Recently, a new class of inequalities for the SCP, called row family in-

equalities, has been introduced by Argiroffo and Bianchi [1] as the counterpart of

so-called clique family inequalities for SPP, see Oriolo [5] for their definition.

Consider a clutter matrix M and a row submatrix F of M . Let p be an integer with

1 ≤ p ≤ |F |, where |F | denotes the number of rows of F , and define the following

two column sets

Cp = {i ∈ {1, . . . , |M |} : 1 ≤ |Fj ∈ F : Fji = 1| ≤ p},

Cp+1 = {i ∈ {1, . . . , |M |} : |Fj ∈ F : Fji = 1| = p + 1}.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

The row family inequality (F, p) is defined as

(p + r)
∑

i∈Cp

xi + (p + r + 1)
∑

i∈Cp+1

xi ≥ (p + r)

⌈

|F |

p

⌉

(1)

with r = |F |− p⌈ |F |
p
⌉.

While clique family inequalities are valid for the stable set polytope of every graph

[5], the above row family inequalities are not valid for Q∗(M) in general, but only

under some conditions [1]. According to Argiroffo and Bianchi [1] a row family

inequality (F, p) is valid for Q∗(M) if

p|B ∩ Cp| + (p + 1)|B ∩ Cp+1| ≥ |F |

holds for every cover B of M , i.e., for every 0, 1-solution of Mx ≥ 1. This is

particularly satisfied for F = M and p = β(M), where β(F) = max{1T F i :
F i column of F}.

In other words, a row family inequality (F, p) is valid for Q∗(M), provided that p
is sufficiently large. Our aim is to extend the concept of row family inequalities in

such a way that we obtain a new class of inequalities being valid for the SCP in

general, and involving more than two non-zero coefficients. For that, we adapt the

concept of general clique family inequalities, introduced by Pêcher and Wagler [6]

for the SPP, to the set covering case. Finally, we discuss the potential of general

row family inequalities for describing the SCP.

2 General row family inequalities

Consider a clutter matrix M and a row submatrix F of M . Let β(F) = max{1T F i :

F i column of F} and integers p with 1 ≤ p ≤ β(F), r with 0 ≥ r ≥ |F |− p⌈ |F |
p
⌉

and J with 0 ≤ J ≤ β(F)−p. For j = 1, . . . , J , we consider the following column

sets

Cp = {i ∈ {1, . . . , n} : 1 ≤ |Fk ∈ F : Fki = 1| ≤ p},

Cp+j = {i ∈ {1, . . . , n} : |Fk ∈ F : Fki = 1| = p + j}.

We define the general row family inequality (F, p, r, J, b) by

∑

j∈{0,...,J}

(p + r + j) x(Cp+j) ≥ b. (2)

Note that a row family inequality (F, p) is clearly a general row family inequality

(F, p, r, J, b) with r = |F |− p⌈ |F |
p
⌉, J = 1, and b = (p + r)⌈ |F |

p
⌉, but valid only if

p is sufficiently large [1].

Our main result is that choosing the minimal value for r, the maximal value for J ,

and an appropriate right hand side b yields in general valid inequalities:

61

Theorem 2.1 Let F be a row submatrix of a clutter matrix M and p be an integer

with 1 ≤ p ≤ β(F). The general row family inequality (F, p, r, J, b) is valid for

Q∗(M) if r = |F |− p⌈ |F |
p
⌉, J = β(F) − p, and b = (p + r)⌈ |F |

p
⌉.

Thus, with the above choice of parameters, the general row family inequality

(F, p, r, J, b) is valid for Q∗(M). Such inequalities do not always define facets, but

have the potential to cut off fractional extreme points from Q(M), as the following

example shows. Consider the clutter matrix

M =



































1 1 1 1 0 0 0

1 1 1 0 0 0 1

1 1 0 1 0 1 0

1 0 1 1 1 0 0

1 1 0 0 1 1 0

1 1 0 0 1 0 1



































and let F be its submatrix defined by the first 4 rows. Taking p = 2 and

r, J, b as defined in Theorem 2.1 yields the valid general row family inequality

4x1 + 3(x2 + x3 + x4) ≥ 4. It is not a facet of Q∗(M), but it cuts off the fractional

extreme point (0, 0, 1
2
, 1

2
, 1

2
, 1

2
, 1

2
) of Q(M).

Moreover, in [1] it is reported that several (0,1)-, (1,2)-, and (0,1,2)-valued

facet-defining inequalities of the covering polyhedra of special matrices are row

family inequalities. Hence, a canonical question is when the general row family

inequalities (F, p, r, J, b) suffice to describe all non-trivial facets of Q∗(M).

This motivates the following lines of future research:

• Consider general row family inequalities (F, p, r, J, b) with other parameter

choices (e.g. based on structural properties of the selected rows in F).

• Investigate how general row family inequalities (F, p, r, J, b) with different pa-

rameter choices can be generated with the help of the Chvátal-Gomory procedure

or other methods to strengthen valid inequalities.

• Evaluate the corresponding ranks of the resulting inequalities and linear relax-

ations to determine their strength.

• Interprete known valid or facet-defining inequalities (with more than two differ-

ent non-zero coefficients) in this context.

• Investigate for which matrices M and which parameter choices the general

row family inequalities (F, p, r, J, b) suffice to describe all non-trivial facets of

Q∗(M).

62

References

[1] G. Argiroffo and S. Bianchi, Row family inequalities for the set covering poly-

hedron, Electronic Notes in Discrete Mathematics 36 (2010), 1169–1176.

[2] E. Balas and S. M. Ng, On the set covering polytope: I. All the facets with

coefficients in {0,1,2}, Mathematical Programming 43, 57–69, 1989.

[3] G. Cornuéjols and A. Sassano, On the 0, 1 facets of the set covering polytope,

Mathematical Programming 43 (1989), 45–55.

[4] P. Nobile and A. Sassano, Facets and lifting procedures for the set covering

polytope, Mathematical Programming 45 (1989), 111–137.

[5] G. Oriolo, Clique family inequalities for the stable set polytope of quasi-line

graphs, Discrete Applied Mathematics 132 (2004), 185–201.

[6] A. Pêcher and A. Wagler, Generalized clique family inequalities for claw-free

graphs, Electronic Notes in Discrete Mathematics 25 (2006), 117–121.

[7] A. Sassano, On the facial structure of the set covering polytope, Mathematical

Programming 44 (1989), 181–202.

63

Identifying a Graph’s Connected Components by

Solving Only One Network Flow Problem

Joanna Bauer

Department of Informatics, University of Bergen, PB. 7800, 5020 Bergen, Norway

jba081@uib.no

Abstract

This article shows how by solving only one minimum-cost network flow problem, all

(strongly) connected components of a (directed) graph can be identified. Thus, the sep-

aration problem for generating constraints for linear programming formulations seeking

optimal trees within a graph can be solved conveniently and efficiently.

Key words: Linear Programming, Connected Components, Separation Problem,

Constraint Generation

1 Introduction

Identifying a graph’s connected components is a well know problem. For a graph

with node set V and edge set E, it can readily be solved by depth-first-search (DFS)

in time O(|V |+|E|) [1]. Nevertheless, it is for several reasons interesting to identify

them by linear programming (LP):

It is generally interesting to study LP formulations for graph problems, even if there

exist polynomial time exact algorithms. For example, a network flow (NF) formula-

tion for the minimum spanning tree in planar graphs is presented in [4] “for reasons

of convenience, flexibility, and adaptability to related and difficult problems.”

Convenience is the most prominent factor in the context of the separation problem:

Often, the solution to a problem must be a connected graph, and the LP formula-

tion has exponentially many constraints, for example, when using subtour elimina-

tion or cutset LP formulations for many NP-hard network design problems, such

as telecommunication routing problems or VLSI design [3]. Then, identifying a

graph’s connected components is useful for solving problem instances by constraint

generation. When using an LP solver in connection with a modelling language like

AMPL [2], it is most convenient to generate constraints by solving an LP instance

instead of DFS. In this context, two NF formulations to generate constraints for a

subtour elimination formulation were proposed in [3].

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

It is especially useful to identify the connected components by solving an NF in-

stance, as they are significantly faster to solve than other LP instances. The methods

in [3] solve |V | − 1 NF instances when applied to a graph with |V | nodes. They

yield at least one violated cut, or show that none exists.

This article shows how by solving only one minimum-cost NF instance, all

(strongly) connected components of a (directed) graph can be identified. Thus, one

violated constraint for every connected component can be generated.

2 Preliminaries

For an undirected graph G = (V = {v1, . . . , vn}, E), a node subset C ⊆ V is a

connected component if every pair of nodes in C is connected by a path in G, and

there is no node in V \ C for which G contains a path to every node in C (i.e. C is

maximal).

For a digraph G = (V, A), a node subset C ⊆ V is a strongly connected component

if G contains a directed path from v to w and a directed path from w to v for every

pair v, w ∈ C, and there is no node in u ∈ V \ C for which G contains paths to

every node in C and paths from every node in C to u.

Let κ be the number of (strongly) connected components of a graph, and let γk =
min{i : vi ∈ Ck} be the least identifier of the nodes in Ck, k = 1, . . . , κ.

For an edge set E, let AE =
⋃

{v,w}∈E{(v, w)} ∪ {(w, v)} be the set of the corre-

sponding directed arcs. For a node s, let As =
⋃

v∈V {(s, v)}.

Let Gs(V, A) = (V ∪ {s}, A ∪ As) be the extension of G by one node s and arcs

from s to all nodes in V (see Fig. 1 – 2).

1

2 5

4

3

Fig. 1. G

1

2 5

4

3

s

Fig. 2. Gs

1

2 5

4

3

Fig. 3. G = (V,E)

1

2 5

4

3

s

ξ12 = 1

ξ45 = 1

ξ34 = 2

ξs1 = 2

ξs3 = 3

Fig. 4. (V ∪{s}, AE∪As)
with positive ξvw

3 The Minimum-Cost Network Flow Problem for Identifying the Connected

Components of a Graph

For G = (V, A), let the min-cost NF problem P(V, A) be defined over Gs as

minimize cT x (1)

subject to Ax = b , (2)

x≥ 0 , where

65

xvw is the decision variable on the amount of flow on arc (v, w) ∈ A ∪ As,

cvw =







iw if (v, w) ∈ As

0 if (v, w) ∈ A
is the unit transportation cost on (v, w) ∈ A ∪ As,

A ∈ {−1, 0, 1}|V ∪{s}|×|A∪As| is the node-arc incidence matrix of Gs, that is

au,vw =















1 if u = v

−1 if u = w

0 otherwise,

and bv =







|V | if v = s

−1 otherwise
is the demand at v ∈ V ∪ {s}.

The dual problem D(V, A) of P(V, A) is to maximize bT y

subject to AT y≤ c . (3)

The connected components of an undirected graph G = (V, E) are identified by

solving D(V, AE), where P(V, AE) is defined over the digraph Gs(V, AE) = (V ∪
{s}, AE ∪ As) (see Fig. 3 – 4).

Proposition 1 For G = (V, E) with connected components Ck, k = 1, . . . , κ, the

optimal solution ξ of P(V, AE) is ξsv =







|Ck| if v = γk ,

0 otherwise ,
and there is an optimal

solution η of D(V, AE) of the form ηv =







0 if v = s ,

γk if v ∈ Ck .

proof 1 In (1), only the arcs leaving s have positive cost, while all other arcs have

zero cost. Since there are no upper bounds on the flow variables x in P(V, AE), all

optimal solutions send all flow destined to the nodes in Ck along the cheapest arc

entering Ck, which is (s, γk). From there, the flow is distributed within Ck according

to the flow balance constraints (2).

By complementary slackness, η fulfils to equality those constraints in (3) which

correspond to those xvw for which ξvw > 0.

For ξsγk
, this constraint is yγk

− ys = γk. These constraints form a system of κ

equations on κ + 1 variables, where κ is the number of connected components of

G. Setting ηs = 0 results in ηγk
= γk.

For ξvw > 0 with v *= s, this constraint is ηv − ηw = 0. Since for every v ∈ Ck,

there is a path γk = w0, w1, . . . , wi = v in Ck from γk to v with positive flows

xj,j+1, it follows that ηv = ηγk
= γk∀v ∈ Ck.

Corollary 1 Let η be the optimal solution of D(V, AE). Then, every maximal sub-

set C ⊆ V where v, w ∈ C ⇔ ηv = ηw is a connected component of G.

3.1 Identifying the strongly connected components of a digraph

Let η and η̄ be the optimal solutions of D(V, A) and D(V,
⋃

(v,w)∈A{(w, v)}), re-

spectively. Then, every maximal subset C ⊆ V where v, w ∈ C ⇔ ηv =

66

ηw and η̄v = η̄w is a strongly connected component of G.

3.2 Identifying the directed subtrees of a directed forest

For constraint generation, the following case is especially interesting: Many ap-

plications require the solution to be a directed tree rooted at one node in V . In a

directed rooted tree, every node except the root node has exactly one incoming arc.

Therefore, LP formulations for these problems often contain a constraint restrict-

ing the indegree δ−v of every node v to at most 1. Thus, if for F = (V, A) we have

δ−v ≤ 1∀v ∈ V , then the directed subtrees of F correspond to the connected com-

ponents of the undirected graph (V,
⋃

(v,w)∈A{{v, w}}), and can thus be identified

by solving D(V,
⋃

(v,w)∈A{{v, w}}).

3.3 Most violated subtour elimination constraint as presented in [3]

For the subtour elimination constraints ζ(S) =
∑

(v,w)∈E
v,w∈S

xvw − (|S|−1) ≤ 0 ∀S ⊂
V , the second method in [3] finds a most violated constraint, that is, a subset S ⊂ V
maximizing ζ(S). Since one of these subsets equals a connected component, a most

violated subtour elimination constraint can be identified by solving D(V, AE).

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. The MIT Press, 2001.

[2] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A modeling language for

mathematical programming. Duxbury Press, 2002.

[3] T.L. Magnanti and L.A. Wolsey. Optimal trees. Handbooks in operations

research and management science, 7:503–615, 1995.

[4] J.C. Williams. A linear-size zero-one programming model for the minimum

spanning tree problem in planar graphs. Networks, 39(1):53–60, 2002.

67

Computing the differential of a graph

S. Bermudo, a 1 H. Fernau b

aDepartment of Economy, Quantitative Methods and Economic History,

Pablo de Olavide University 41013-Sevilla, Spain

sbernav@upo.es

bFachbereich 4—Abteilung Informatik, Universiẗat Trier, D-54286 Trier, Germany

fernau@uni-trier.de

Key words: Differential (of a graph), computational complexity

1 Introduction

Let Γ = (V, E) be a graph of order n and let B(S) be the set of vertices in

V \ S that have a neighbor in the vertex set S. The differential of S is defined

as ∂(S) = |B(S)| − |S| and the differential of a graph Γ, written ∂(Γ), is equal

to max{∂(S) : S ⊆ V }. A set S satisfying ∂(S) = ∂(Γ) is also called a ∂-set.

If S has minimum cardinality among all ∂-sets, S is called a minimum ∂-set. The

size of a minimum ∂-set S can model the cheapest way of influencing the whole

graph, assuming that the vertices in S serve as multiplicators by influencing their

neighbors. The graph parameter ∂ was introduced in [3]. There, also several basic

properties were derived.

Notice that for a graph Γ of order n, 0 ≤ ∂(Γ) ≤ n − 2.

Proposition 1.1 [3] For paths Pn, n ≥ 1 and cycles Cn, n ≥ 3, ∂(Cn) = ∂(Pn) =
⌊

n
3

⌋

.

Hence (and not surprisingly), it is easy to compute the differential of a graph with

a maximum degree of two. However, as we will show in this paper, this picture

changes if we ask the same question for (sub)cubic graphs or for split graphs. This

is interesting, as several graph parameters are computable in polynomial time on

(sub)cubic or split graphs, although they are NP-hard on general graphs, see [4,5].

2 Complexity of the differential of a graph

Given a graph Γ = (V, E) and an integer k, we consider the following decision

problem: Is ∂(Γ) ≥ k? We refer to this problem as Maximum Differential Set

1 Partially supported by Ministerio de Ciencia y Tecnologı́a, (MTM 2009-09501) and by

the Junta de Andalucı́a (FQM-260) and (P06-FQM-02225).

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

(MDS). A derived problem, called Minimum Maximum Differential Set (MMDS),

is to determine if there is a set S with ∂(S) = ∂(Γ), |S| ≤ l and ∂(S) ≥ k, where

k, l are two given parameters.

We will prove that the problems (MDS) and (MMDS) are NP-complete in two well

known graph classes, split graphs and cubic graphs.

2.1 Complexity of the differential of split graphs.

In our reduction, we consider the 3-Dimensional Perfect Matching with Maximum

Degree Three (3DPM3) problem that is known to be NP-hard: given three sets

X, Y, Z that comprise the ground set G, with |X| = |Y | = |Z| = q, and a relation

R ⊆ X × Y × Z, such that, for each v ∈ G = X ∪ Y ∪ Z, there are at most three

triples in R that contain v. Are there q triples r1, . . . , rq in R such that each element

of G occurs exactly once in one of the triples?

As mentioned in the classical reference of Garey and Johnson [2], 3DPM3 is NP-

complete. We can transform a 3DPM3 instance into an instance of MDS as follows:

Consider Γ = (V, E) with V = G∪R and E = E1 ∪E2, where E1 = {v(x, y, z) :
v ∈ G, (x, y, z) ∈ R, v ∈ {x, y, z}} and E2 = {(x, y, z)(x′, y′, z′) : (x, y, z) ∈
R, (x′, y′, z′) ∈ R\{(x, y, z)}}. Let us note that, given G and R, this transformation

can be computed in polynomial time.

Lemma 2.1 If ∂(S) = ∂(Γ), then G ∩ S = ∅.

Let us observe that, if ∂(S) = ∂(Γ) and x is not a private neighbor of r =
(x, y, z) ∈ S ∩ R, we can take S ′ = S \ {r} to obtain

∂(S ′) = |B(S ′)|− |S ′| ≥ |(B(S)∪{r})\{y, z}|− |S|+1 = |B(S)|− |S| = ∂(S).

Therefore, we can assume that any r ∈ R∩S has three private neighbors in G. It is

also clear that r cannot have more than three private neighbors in G. Moreover, Any

S ⊆ R that, as a vertex set of Γ, obeys that any r ∈ S has three private neighbors

in G corresponds to a three-dimensional matching in the instance (X, Y, Z, R) of

3DPM3.

Lemma 2.2 If ∂(S) = ∂(Γ), then |S| ≤ q and ∂(S) ≤ q + |R|.

Proof (sketch) On the one hand, it is clear that |S| ≤ q. On the other hand,

|B(S)| = |(R \ S) ∪ (B(S) ∩ G)| = |R|− |S| + 3|S| = 2|S| + |R|,

so ∂(S) = |B(S)| − |S| = |S| + |R| ≤ q + |R|.
4
If ∂(Γ) ≥ q + |R|, then the original 3DPM3 instance (X, Y, Z, R) has a solution.

This solution is given by the set S with ∂(S) = ∂(Γ) of minimum cardinality.

If the original 3DPM3 instance (X, Y, Z, R) has a solution, then ∂(Γ) ≥ q + |R|.
To see this, it is enough to consider the solution S ⊆ R, which satisfies |S| = q
and, interpreting this as a vertex set of Γ, we obtain that

∂(S) = |B(S)|− |S| = ((|R|− |S|) + 3|S|) − |S| = q + |R|.

69

Hence, ∂(Γ) ≥ q + |R|.

Taking k = q + |R| and by the results above we have the following results.

Theorem 2.3 MDS in split graphs is NP-complete.

The previous reasoning also yields the following result, where we have to choose

l = q as our parameter in the otherwise identical transformation.

Theorem 2.4 MMDS in split graphs is NP-complete.

2.2 Complexity of the differential of cubic graphs.

The following might be of independent interest:

Lemma 2.5 If S is a minimum ∂-set in a subcubic graph, then S is an independent

set.

Now, in our reduction, we consider the 3-Dimensional Perfect Matching with De-

gree Three (3DPM3’): given three sets X, Y, Z that comprise the ground set G,

with |X| = |Y | = |Z| = q, and a relation R ⊆ X × Y × Z, such that, for each

v ∈ G = X ∪ Y ∪ Z, there are three triples in R that contain v. Are there q
triples r1, . . . , rq in R such that each element of G occurs exactly once in one of

the triples?

Theorem 2.6 3DPM3’ is NP-complete.

To see the complexity of MDS in a cubic graph, let us transform a 3DPM3’ instance

into an instance of MDS as follows: For every r(i) = (x, y, z) ∈ R we consider the

following graph Γi = (Vi, Ei)

and we join the vertex x with v(i, x), y with v(i, y) and z with v(i, z). With this

construction we obtain a graph Γ = (V, E) such that

|V | = 3q + 13|R| = 3q + 13(3q) = 42q.

Surpressing details, we can show with the help of this gadget:

Corollary 2.7 MDS and MMDS in cubic graphs are NP-complete.

Further refined work allows to sharpen this assertion towards MAXSNP complete-

ness for the maximization problem corresponding to MDS on subcubic graphs.

70

3 Algorithmic Aspects

Having established NP-hardness of some graph parameters, it is natural to ask ques-

tions about approximation, parameterized and exact algorithms. In another paper,

we obtained the following result:

Theorem 3.1 (B&F 2011) In a connected graph Γ of order n, n ≥ 3, ∂(Γ) ≥
⌈

n
5

⌉

.

Since isolated vertices can be deleted by preprocessing, we obtain:

Corollary 3.2 MDS admits a problem kernel with at most 5k vertices and is hence

fixed-parameter tractable on general graphs.

This result trivially transfers to the two-parameter problem MMDS.

Since any ∂-set S of Γ also gives a packing of Γ with paths of length two, known

algorithmic approximability results for P3-packings also yield approximability re-

sults for computing ∂(Γ), losing an additional factor of (∆− 1) on graphs of max-

imum degree ∆ compared to the P3-packing approximation factor.

Finally, we obtained the following result, using a Measure & Conquer analysis

of a simple branching algorithm very similar to one discussed in [1] for solving

MINIMUM DOMINATING SET:

Theorem 3.3 MDS can be solved in time O(1.755n) on arbitrary graphs of order

n.

In view of the motivation from influencing networks, it would be also interesting to

study edge-weighted problem variants.

References

[1] Fernau, H. and D. Raible, Searching trees: an essay, in: J. Chen and S. B.

Cooper, editors, Theory and Applications of Models of Computation TAMC,

LNCS 5532 (2009), pp. 59–70.

[2] Garey, M. R. and D. S. Johnson, “Computers and Intractability,” New York:

Freeman, 1979.

[3] Mashburn, J. L., T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and P. J.

Slater, Differentials in graphs, Utilitas Mathematica 69 (2006), pp. 43–54.

[4] Speckenmeyer, E., On feedback vertex sets and nonseparating independent sets

in cubic graphs, Journal of Graph Theory 3 (1988), pp. 405–412.

[5] Woeginger, G. J., The toughness of split graphs, Discrete Mathematics 190

(1998), pp. 295–297.

71

Enumeration of Labeled Split Graphs and Counts of

Important Superclasses

Vladislav Bı́na

Department of Information Management, Faculty of Management in Jindrichuv Hradec,

University of Economics in Prague

Jarosovská 1117/II, 37701 Jindrichuv Hradec, Czech Republic

bina@fm.vse.cz

Key words: Labeled Graphs, Graph Enumeration, Split Graphs, Decomposable Graphs,

Undirected Graphs

1 Introduction

The contribution concerns counts of the labeled graphs in three well known and

interesting graphical classes, namely split graphs and in the superclasses of decom-

posable (chordal) graphs and all undirected graphs.

The choice of labeled graphs is motivated by author’s efforts in representation

of multidimensional probability distributions and learning of probabilistic models

where the labeled graphs can represent the structure of conditional independence

relations among (labeled) variables (see e.g. [1]). The enumeration of unlabeled

split graphs can be found in [2] but these figures are not interesting for our purpose.

This paper derives an exact formula for number of all different labeled split graphs

on n vertices. The number of all labeled undirected graphs is very straightforward

to derive; for graph on n vertices there are 2(n

2) possible labeled undirected graphs.

As far as we know, there is no theoretical formula for counts of labeled decompos-

able graphs; the enumeration was performed for graphs on up to 12 vertices in [3].

Results for these three graph classes are compared. Besides this the exact formula

for counts of labeled split graphs is compared with the asymptotic approximation

(published in [4]).

""The research was partially supported by Ministry of Education, Youth and Sports of

the Czech Republic under project No. 2C06019: “Knowledge Mining and Modelling (ZI-

MOLEZ)” and University of Economics in Prague under project IG632021: “Algorithms

for learning of compositional models and related graph classes”.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

2 4 6 8 10 12

0
5

1
0

1
5

2
0

Enumerating graph classes

Number of vertices

D
e

c
a

d
ic

 l
o

g
a

ri
th

m
 o

f
g

ra
p

h
 c

o
u

n
t

undirected

decomposable

split

2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

On ratios of graph counts

Number of vertices

R
a

ti
o

s
 o

f
g

ra
p

h
 c

o
u

n
ts

decomp. to UG

split to UG

split to decomp.

Fig. 1. The left part shows decadic logarithms of counts of decomposable, split and all

undirected graphs. In the right part the proportion of decomposable and split graphs among

all undirected graphs (dashed and full lines) can be seen. The dotted line denotes a ratio of

split among decomposable graphs.

2 Properties and Enumeration of Split Graphs

Split graph is an undirected graph with vertex set which can be partitioned into two

subsets such that one of them is clique and the other independent set. Split graphs

can be easily recognized by means of degree sequence using the following assertion

(see [5] or [6]).

Theorem 2.1 (Hammer and Simeone) Let G be an undirected graph with degree

sequence d1 ≥ d2 ≥ · · · ≥ dn and k = max{i | di ≥ i − 1}. Then G is split if and

only if
k

∑

i=1

di = k(k − 1) +
n

∑

i=k+1

di.

Furthermore, its clique number is ω(G) = k .

The class of split graphs is a subclass of both above mentioned classes. They are

nested in the following way

split graphs ⊆ decomposable graphs ⊆ undirected graphs.

The contribution concerns a careful derivation of the exact formula (Theorem 2.2)

which is verified for graphs up to eight vertices. This check is done by exhaustive

testing of all undirected graphs whether they are split using Theorem 2.1.

Theorem 2.2 (Number of Split Graphs on n Vertices) Number of all labeled

split graphs on n vertices can be computed using the formula

NS
n = 1 +

n
∑

k=2

(

n

k

)





(

2k − 1
)n−k −

n−k
∑

j=1

jk

j + 1

(

n − k

j

)

(

2k−1 − 1
)n−k−j



 .

This result, implementation of formula in R language and exact numbers of labeled

split graphs up to twenty vertices can be found in Online Encyclopedia of Integer

73

Table 3. Comparison of counts in particular graph classes.

Number of Number of Number of

n split graphs decomposable graphs undirected graphs

1 1 1 1

2 2 2 2

3 8 8 8

4 58 61 64

5 632 822 1024

6 9654 18154 32768

7 202484 617675 2097152

8 5843954 30888596 268435456

9 233064944 2192816760 68719476736

10 12916716526 215488096587 35184372088832

11 998745087980 28791414081916 36028797018963968

12 108135391731689 5165908492061926 73786976294838206464

Sequences [7].

3 Comparisons of Graph Counts

Counts of labeled split graphs are compared with counts of important superclasses

of decomposable and all undirected graphs for graphs up to 12 vertices (see Figure 1

and Table 3). For numbers of vertices up to twenty the exact counts of split graphs

are compared to the asymptotic formula (see [4])

NS
n ∼

∑

k

(

n

k

)

2k·(n−k) (1)

which is quite precise particularly for higher numbers of vertices (see Table 4,

especially focus on the trend of percentage error). For large graphs the asymptotic

estimate appears to be sufficiently accurate for the vast majority of purposes, for

instance the error for split graph on fifty vertices is smaller than one millionth. But

the above cited article [4] claims that the Formula 1 also asymptotically estimates

the number of decomposable graphs. In this case it seems that this asymptotics

provides much less reasonable approximation. Moreover, the results in Table 3 and

on Figure 1 seem to contradict to the assertion from the title of contribution [4],

namely we claim that: “Almost all chordal graphs do not split”. But deeper analysis

of this assertion lays already beyond the scope of this paper.

74

Table 4. Comparison of asymptotic counts and exact expression, percentage error for split

graphs on 1 to 20 vertices.

n 1 2 3 4 5

Exact 1 2 8 58 632

Asymptotic 1 5 25 161 1441

Error 0.0 % 150.0 % 212.5 % 177.6 % 128.0 %

n 6 7 8 9 10

Exact 9654 202484 5843954 2.33 · 108 1.29 · 1010

Asymptotic 18305 330625 8488961 3.09 · 108 1.60 · 1010

Error 89.6 % 63.3 % 45.3 % 32.8 % 24.0 %

n 11 12 13 14 15

Exact 9.99 · 1011 1.08 · 1014 1.64 · 1016 3.51 · 1018 1.06 · 1021

Asymptotic 1.17 · 1012 1.22 · 1014 1.80 · 1016 3.77 · 1018 1.11 · 1021

Error 17.6 % 13.0 % 9.7 % 7.2 % 5.3 %

n 16 17 18 19 20

Exact 4.49 · 1023 2.69 · 1026 2.28 · 1029 2.73 · 1032 4.62 · 1035

Asymptotic 4.67 · 1023 2.77 · 1026 2.33 · 1029 2.77 · 1032 4.67 · 1035

Error 4.0 % 2.9 % 2.2 % 1.6 % 1.2 %

References

[1] Edwards, D., Havránek, T.: A fast procedure for model search in multidimen-

sional contingency tables. Biometrika 72(2), 339–351 (1985)

[2] Royle, G.F.: Counting Set Covers and Split Graphs. J. Integer Sequences 3,

1–5 (2000)

[3] Castelo Valdueza, J.R.: The Discrete Acyclic Digraph Markov Model in Data

Mining. PHD Thesis. Fac. Wiskunde en Informatica, Universiteit Utrecht

(2002)

[4] Bender, E.A., Richmond, L.B., Wormald, N.C.: Almost All Chordal Graphs

Split. J. Austral. Math. Soc., Series A 38(2), 214–221 (1985)

[5] Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3),

275–284 (1981)

[6] Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Ann. Dis-

crete Math., Vol. 57). North–Holland Publishing Co., Amsterdam (2004)

[7] Bı́na, V.: Sequence A179534 in The On-Line Encyclopedia of Integer Se-

quences, http://oeis.org/A179534 (2010)

75

Local Computation of Vertex Colorings

Thomas Böhme, Jens Schreyer

TU-Ilmenau, Fakultät für Mathematik und Naturwissenschaften, Postfach 100565, 98684

Ilmenau

{thomas.boehme,jens.schreyer}@tu-ilmenau.de

Key words: vertex coloring, distributed computing

Abstract

We investigate algorithms for local vertex colorings in the following sense. Given a

graph G the vertices are colored in rounds by agents corresponding to the vertices

of the graph. In each round, each agent decides for a color out of the set {1, ..., k}
for the corresponding vertex in G and observes the colors of its neighbors. Kearns

et. al [3] proposed to embed the problem into a game by giving each vertex a re-

ward if there is no conflict between its color and the colors of its neighbors. Later

Chaudhuri et. al. [2] presented a random local algorithm based on that game. The

algorithm colors a given graph G of order n properly with probability 1 − δ in

O(log n
δ
) rounds using ∆(G) + 2 colors, where ∆(G) is the maximum degree of

G. Moreover, in [1] it is shown, that a simple local algorithm for the coloring of G
with χ(G) colors exists, but may take a lot of rounds to converge.

In this paper we present a random local algorithm which colors G properly in

O(n log n
δ
) rounds with probability 1 − δ using k colors, where k is any upper

bound on col(G) + 1 and col(G) is the coloring number of G.

1 Introduction

Starting with the pioneering work of Linial [4] a rich literature of what can be

done and what cannot be done using only local information emerged in the field

of distributed computing. Lineal proposed a computational model characterized by

the following assumptions:

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

• Every vertex of the graph is endowed with a unique identifier.

• The computation happens synchronously in rounds.

• In every round every vertex of the graph may send a message of arbitrary size to

some or all of its neighbors.

• Every vertex may execute an arbitrarily difficult computation in one time step.

The complexity measure for this model is the number of communication rounds.

This is because the communication usually takes more time than the computation.

Using this model it is clear, that a local algorithm should take no more rounds than

the diameter diam(G) of the graph, since each vertex can explore the complete

structure of the graph G in diam(G) communication rounds. Lineal [4] showed that

graph colorings are hard to compute in this setting by proving that every algorithm,

that fits the model and has the property to compute a proper coloring of a d-ary tree

of depth r within at most 2
3
r communication rounds, will need at least

√
d different

colors.

Here we propose a different approach inspired by the paper of Kearns et al[3] on

an experimental study of social network behavior. Their idea is, that the agents

corresponding to the vertices of the network graph have no common goal but own

incentives, and the solution of the graph problem corresponds to a Nash equilibrium

or another suitable solution of a game that reflects these incentives. In contrast

to Linial’s model described above there is no direct communication between the

agents but only some observation of the other agents behavior. Later Chaudhuri et

al. [2] theoretically investigated this game. They show, that if the number of colors

available to the agents is at least ∆(G) + 2, then with arbitrarily high probability

1 − δ the graph is colored properly within O(log n
δ
) rounds, where n denotes the

number of vertices. Moreover, in [1] it has been shown, that even if the behavior of

other agents is not observable and each agent only knows its reward in each round,

a coloring with χ(G) colors is possible, where χ(G) is the chromatic number of the

graph, but it may take very long to achieve that aim.

2 Preliminaries

A graph G is a k-degenerate graph if every subgraph H of G contains a vertex of

degree at most k. Let [k] denote the set {1, ..., k}. For every k-degenerate graph G
there exists an enumeration x1, ..., xn of its vertices such that for each i ∈ [n] the

vertex xi has at most k neighbors in the set {x1, ..., xi}. Now the vertices can be

colored successively with k+1 colors using a greedy coloring. The coloring number

col(G) of a graph G is the smallest integer k such that G is (k − 1)-degenerate.

Hence, for every graph G

χ(G) ≤ col(G) ≤ ∆(G) + 1.

The gaps between the numbers χ(G), col(G), and ∆(G) + 1 may be arbitrarily

large.

77

3 Results

We consider the following setup for a k-degenerate graph G = (V, E) on n vertices

which is to be colored. Every vertex x ∈ V knows its neighborhood N(x) and can

see the color of each neighbor. The graph is colored in rounds. Each vertex x stores

2 sets P (x) and S(x), which are initially empty. In every step of the algorithm

P (x) contains at most k vertices. Moreover, after at most |V | rounds these sets

do not change anymore, and for every edge {x, y} of G it holds that x ∈ P (y) or

y ∈ P (x). Hence, it will be sufficient if every vertex x is colored differently from

the vertices of P (x). The following distributed algorithm works in discrete time

steps t = 1, 2... In each time step, each vertex executes the following pseudocode,

where c(x) denotes the color of x, which is initially set to 1.

Algorithm

1 if P (x) = ∅
2 then

3 S(x) ← S(x) ∪ {y ∈ N(x) | c(y) *= 1}
4 if |(N(x) \ S(x)| ≤ k
5 then P (x) ← N(x) \ S(x)
6 elseif ∃y ∈ P (x) c(y) = c(x)
7 then choose c(x) uniformly at random from the set [k + 2] \ {c(y) | y ∈ P (x)}

Now it can be shown, that if all agents apply the algorithm, the graph will

eventually be colored properly:

Theorem 3.1 Let δ be any positive number. If all vertices of a k-degenerate graph

G on n vertices apply the algorithm then:

Prob(G is colored properly after t rounds) ≥ 1 − δ,

where t =
⌈

n + (log 2k

2k−1
)−1 · n log n

δ

⌉

.

Moreover, if the degeneracy of the graph is unknown, but there is an upper bound

on the total number of vertices known by all agents, a modification of the algorithm

leads to a similar result. Furthermore, it turns out, that the result still holds, if the

synchrony assumption of the model is dropped.

References

[1] Böhme,T., Schreyer,J. A game theoretic approach to graph problems,9th In-

ternational Conference on Innovative Internet Community Systems, 2009

[2] Chaudhuri, K., Chung, F., and Jamall M.S., A network coloring game, WINE

2008: 522-530

78

[3] Kearns, M., Suri, S., and Montfort, N., An experimental study of the coloring

problem on human subject networks, Science Vol 313 (2006), 824-827

[4] Linial, N., Locality in distributed graph algorithms, SIAM J. Comput 21(1):

193-201 (1992)

79

A primal algorithm for the minimum weight clique

cover problem on a class of claw-free perfect graphs

Flavia Bonomo, a 1 Gianpaolo Oriolo, b Claudia Snels, b

aCONICET and Departamento de Computación, FCEyN, Universidad de Buenos Aires,

Argentina.

fbonomo@dc.uba.ar

bDipartimento di Informatica, Sistemi e Produzione, Universit̀a di Roma Tor Vergata,

Italia

{snels, oriolo}@disp.uniroma2.it

Key words: claw-free graphs, perfect graphs, minimum weight clique cover

On a perfect graph G(V, E) with a strictly positive integer weight function on the

vertices w(v), v ∈ V , the minimum weight clique cover problem (MWCC for short)

is the dual problem of the maximum weight stable set (MWSS for short) and it

consists of building a collection of cliques C, each one with a non negative weight

yC , such that, for each v ∈ V ,
∑

C∈C:v∈C yC ≥ w(v), and
∑

C∈C yC is minimum.

The MWCC can be solved in polynomial time on perfect graphs with the ellipsoid

method, however, for particular classes of perfect graphs, there also exist poly-time

combinatorial algorithms.

This is the case, for instance, for claw-free perfect graphs, where a combinatorial

algorithm has been proposed by Hsu and Nemhauser [3]. (A graph is claw-free if

none of its vertices has a stable set of size three in its neighborhood.) To the best

of our knowledge, this is so far the only available combinatorial algorithm to solve

the problem in claw-free perfect graphs. The algorithm by Hsu and Nemhauser

relies on a crucial property of the MWCC in (general) perfect graphs, namely, there

always exists a clique which intersects all the maximum weight stable sets: we will

call such a clique crucial. In fact, it is shown in [3] that a crucial clique can be

found in polynomial time in claw-free perfect graphs, provided that we are able to

find a maximum weight stable set in polynomial time: for the latter problem, we

have, nowadays, several algorithms (e.g. [4,1]).

The algorithm in [3] is then heavily based on the solution of the MWSS, so, in a

way, the algorithm it is essentially a dual algorithm. In this paper, we propose an

algorithm for the MWCC for a relevant subclass of claw-free perfect graphs which

1 Partially supported by ANPCyT PICT-2007-00518 and PICT-2007-00533, and UBACyT

Grants X069 and 20020090300094.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

is essentially primal, in the sense that it builds an optimal clique cover, without

solving any MWSS. The algorithm exploits the following algorithmic decomposi-

tion theorem by Faenza et al. [1] for quasi-line graphs. A graph is quasi-line if the

neighborhood of each vertex can be covered by two cliques. Quasi-line graphs are

a generalization of line graphs and a subclass of claw-free graphs, and it is well

known that a graph is claw-free perfect if and only if it is quasi-line perfect.

Theorem 4 [1] Let G(V, E) be a connected quasi-line graph with n vertices. In

time O(|V |3) we can:

(i) either recognize that G is net-free;

(ii) or provide a decomposition into k ≤ n strips (G1,A1), . . . , (Gk,Ak), with re-

spect to a partitionP , such that each graph Gj is distance simplicial with respect

to each clique A ∈ Aj.

Our new algorithm is designed for case (ii), i.e. when the claw-free perfect graph

G is the composition of strips.

For a set S ⊆ V , let N(S) :=
⋃

v∈S N(v)\S, Nj(S) := {v ∈ V \S : the minimum

distance between v and s ∈ S is j}, j ≥ 1, where N(v) := {u : uv ∈ E}. A clique

K is distance simplicial in a graph D if, for every j, α(Nj(K)) ≤ 1. A connected

graph D is distance simplicial w.r.t. a clique K if K is distance simplicial in D.

A strip (G,A) is a graph G (not necessarily connected) with a multi-family A
of either one or two designated non-empty cliques of G. Let G = (G1,A1), . . . ,
(Gk,Ak) be a family of k vertex disjoint strips, and let P be a partition of the

multi-set of the cliques in A1 ∪ . . . ∪ Ak. The composition of the k strips w.r.t.

P is the graph G such that is obtained from the union of G1, . . . , Gk, by making

adjacent vertices of A ∈ Ai and B ∈ Aj (i, j not necessarily different) if and only

if A and B are in the same class of the partition P .

We follow the methodology proposed in [5] for the MWSS. We replace each strip

with a suitable simple graph, a gadget, and we assign to the vertices of the gadget

the value of some special minimum weight clique cover computed on the strip.

Each gadget is designed in order to produce a graph G′, that is the composition of

the gadgets, which is line and perfect. We show that a minimum weight clique cover

of G can be easily built as soon as we know: 1) a minimum weight clique cover of

G′ ; 2) a minimum weight clique cover of a graph that is distance simplicial w.r.t.

some clique.

1) can be easily managed in the following way. Let us denote with H the root graph

of G′; by construction H is a line perfect graph (i.e the root graph of a perfect line

graph). Every clique of G′ corresponds in H to a set of edges δ(v) := {uv ∈ E :
u ∈ N(v)}, that we call a star or to a set of edges inducing a triangle. It is then

straightforward that finding a MWCC of G′ is equivalent to assigning a non negative

value z to each star S and triangle T of H such that
∑

S:uv∈S zS +
∑

T :uv∈T zT ≥ we

∀e ∈ E(H) and
∑

S∈S zS +
∑

T∈T zT is minimum, where S and T are respectively

the collection of stars and triangles of H . From a theorem of Trotter ([6]) we have

that this problem in a line perfect graph is exactly the dual of the maximum weight

matching. Therefore we can apply to H one of the many available primal dual algo-

rithms for the maximum weight matching and obtain a half integer solution for the

81

problem (more precisely, only variables associated to the stars of H can have an half

integer value). The half integer solution can be easily adjusted to an integer solution

using an algorithm proposed again by Trotter [6] which solves the unweighted ver-

sion of the edge cover problem with stars and triangles in line perfect graphs. The

resulting complexity of computing a minimum weight clique cover of G ′ is then

O(|V (H)|2log|V (H)|) = O(|V (G′)|2log|V (G′)|) = O(|V (G)|2log|V (G)|) (using

the primal dual algorithm for maximum weight matching by Gabow [2]).

In order to solve 2) we have designed a primal algorithm for the MWCC in graphs

which are distance simplicial w.r.t. some clique. First we observe that in every

graph, given a clique K s.t. N(K) is a clique, then K ∪{v ∈ N(K) : v is complete

to K} is a crucial clique. Using this observation and the structure of graphs which

are distance simplicial w.r.t. a clique K, we have developed Algorithm 3.

Require: A graph D(V, E, w) that is distance simplicial graph w.r.t. a clique K1.

(Assume Kj+1 := Nj(K1) *= ∅, for every 1 ≤ j ≤ t, Nt+1(K1) = ∅).

Ensure: A MWCC for D(V, E, w).

1: Let i ← 1; Q ← V ; y = 0;

2: While Q *= ∅ let D ← D[Q] and do:

2.1 Let j ∈ [t] be such that K1 ∩Q = . . . = Kj−1 ∩ Q = ∅ and Kj ∩ Q *= ∅.

2.2 Let K ← Kj ∪ {v /∈ Kj : v is complete to Kj in the graph D[Q]}.

2.3 Let v̄ be the vertex of K with minimum (current) weight w.

2.4 Let Q ← Q \ {v ∈ K : w(v) = w(v̄)}.

2.5 For each v ∈ K, let w(v) ← w(v) − w(v̄).
2.6 Let yK ← w(v̄).

3: Return y.

We briefly describe Algorithm 3. In step 2.2, we build a crucial clique K following

our previous observation and exploiting the “levels structure” of D. Then we have

to assign a value to this clique (step 2.6), and we update the weight function of

D, deleting the vertices with weight 0 (steps 2.4 and 2.5). After one iteration the

resulting graph may not be distance simplicial w.r.t. K1, but we can prove that

still maintains all the nice structural properties we need to let the algorithm run

correctly. Beside the selection of the crucial clique, the “levels structure” of D is

used to show that at each iteration the value of the MWSS of D is dropping exactly

by yK , or in other words we are building pieces of an optimal clique cover. It is

trivial to observe that steps 2.1 to 2.6 can be implemented as to run in O(|V (D)|)-
time, and we can easily observe that they will be repeated at most |V (D)| because

each time we perform step 2.4 cardinality of the set Q strictly decreases, therefore

Algorithm 3 runs in time O(|V (D)|2).

In order to build each gadget, Algorithm 3 is run a constant number of times for

every strip, so we can conclude that we can build G′ in time O(|V (G)|2).

We can conclude that our resulting algorithm solves the MWCC for claw-free per-

fect graphs from case (ii) in Theorem 4 in time O(|V (G)|2log|V (G)|), which sub-

stantially improves upon the complexity of the algorithm by Hsu and Nemhauser,

running in time O(|V (G)|6). We are now dealing with case (i), and we believe we

82

can manage this case also, but with a slightly different technique.

References

[1] Faenza, Y., G. Oriolo and G. Stauffer, An algorithmic decomposition of claw-

free graphs leading to an O(n3)-algorithm for the weighted stable set problem,

in: D. Randall, editor, Proceedings of the 22nd Annual ACM-SIAM Symposium

on Discrete Algorithms, San Francisco, CA, 2011, pp. 630–646.

[2] Gabow, H., Data structures for weighted matching and nearest common ances-

tors with linking, in: Proceedings of the 1st Annual ACM-SIAM Symposium on

Discrete Algorithms, San Francisco, CA, 1990, pp. 434–443.

[3] Hsu, W. and G. Nemhauser, Algorithms for maximum weight cliques, minimum

weighted clique covers and cardinality colorings of claw-free perfect graphs,

Annals of Discrete Mathematics 21 (1984), pp. 317–329.

[4] Minty, G., On maximal independent sets of vertices in claw-free graphs, Jour-

nal of Combinatorial Theory. Series B 28 (1980), pp. 284–304.

[5] Oriolo, G., U. Pietropaoli and G. Stauffer, A new algorithm for the maximum

weighted stable set problem in claw-free graphs, in: A. Lodi, A. Panconesi and

G. Rinaldi, editors, Proceedings of the 13th Integer Programming and Com-

binatorial Optimization International Conference, Lecture Notes in Computer

Science 5035, Bertinoro, Italy, 2008, pp. 77–96.

[6] Trotter, L., Line perfect graphs, Mathematical Programming 12 (1977),

pp. 255–259.

83

Characterization of classical graph classes by

weighted clique graphs

F. Bonomo, a 1 J. L. Szwarcfiter b

aCONICET and Departamento de Computación, FCEyN,

Universidad de Buenos Aires, Argentina.

fbonomo@dc.uba.ar

bCOPPE and NCE, Universidade Federal do Rio de Janeiro, Brazil.

jayme@nce.ufrj.br

Key words: weighted clique graphs, graph classes structural characterization.

1 Introduction

A complete set is a set of pairwise adjacent vertices. A clique is a complete set that

is maximal under inclusion. We will denote by M1, . . . , Mp the cliques of G, and

by CG(v) the set of cliques containing the vertex v in G.

Consider a finite family of non-empty sets. The intersection graph of this family is

obtained by representing each set by a vertex, two vertices being connected by an

edge if and only if the corresponding sets intersect. The clique graph K(G) of G is

the intersection graph of the cliques of G.

Clique graphs have been characterized by Roberts and Spencer in [13], but the

problem of deciding if a graph is a clique graph is NP-complete [1].

Let F be a family of subsets of a set S. F is separating when, for each x in S,

the intersection of all the subsets in F containing x is {x}; F satisfies the Helly

property when every subfamily of it consisting of pairwise intersecting subsets has

a common element. A graph is clique-Helly when its cliques satisfy the Helly prop-

erty. Clique-Helly graphs are clique graphs [7].

Given a graph H , a weighting of H of size m, or m-weighting of H , consists on

giving a weight w to every complete set of H of size m.

A weighting of K(G) of size m, consists on defining the weight w for a subset of

its vertices {Mi1 , . . . , Mim} as w(Mi1, . . . , Mim) = |Mi1 ∩ . . . ∩ Mim |. (In the

right-hand side, we consider Mi1 , . . . , Mim as cliques of G.) We will denote by

Kw
m1,...,m!

(G) the clique graph of G with weightings of sizes m1, . . . , mℓ.

1 Partially supported by ANPCyT PICT-2007-00518 and PICT-2007-00533, and UBACyT

Grants X069 and 20020090300094 (Argentina), CAPES/SPU Project CAPG-BA 008/02

(Brazil-Argentina), and Math-AmSud Project 10MATH-04 (France-Argentina-Brazil).

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Weighted clique graphs with weightings restricted to size 2 were considered in

[9,10], and in [3,4,5,6,8,11,12,14], in the context of chordal graphs.

In this work, we give a characterization of weighted clique graphs similar to Roberts

and Spencer’s characterization for clique graphs, and we characterize several clas-

sical and well known graph classes by means of their weighted clique graph. We

prove a characterization of hereditary clique-Helly graphs in terms of Kw
3 and show

that Kw
1,2 is not sufficient to characterize neither hereditary clique-Helly graphs nor

clique-Helly graphs. For chordal graphs and their subclass UV graphs, we obtain a

characterization by means of Kw
2,3. We show furthermore that Kw

1,2 is not sufficient

to characterize UV graphs. We describe also a characterization of interval graphs in

terms of Kw
2,3 and of proper interval graphs in terms of Kw

1,2. Besides, we prove that

{Kw
1 , Kw

2 } is not sufficient to characterize proper interval graphs. For split graphs,

we give a characterization by means of Kw
1,2, and prove that {Kw

1 , Kw
2 } is not suf-

ficient to characterize split graphs. Due to a lack of space, for definitions of graph

classes we refer the reader to [2].

2 Main results

The characterization of clique graphs is as follows.

Theorem 5 (Roberts and Spencer, 1971 [13]) A graph H is a clique graph if and

only if there is a collection F of complete sets of H such that every edge of H is

contained in some complete set of F , and F satisfies the Helly property.

A similar characterization for 2-weighted clique graphs was presented in [9,13].

We can extend this characterization to weighted graphs.

Theorem 6 Let H be a graph, provided with weightings w of sizes m1, . . . , mℓ.

Then there exists a graph G such that H = Kw
m1,...,m!

(G) if and only if there is

a collection F of complete sets of H , not necessarily pairwise distinct, such that

F satisfies the Helly property and is separating, every edge of H is contained in

some set of F , and for every 1 ≤ j ≤ ℓ, each complete set Mi1 , . . . , Mimj
of H is

contained in exactly w(Mi1 , . . . , Mimj
) sets of F .

It would be interesting to analyze the computational complexity of deciding if a

weighted graph is a weighted clique graph. For 1-weightings, we show that the

problem is NP-complete. It remains as an open question to analyze the problem for

other weighting sizes.

Some graph classes can be naturally defined in terms of their weighted clique

graphs, for example, a graph G is clique-Helly if and only if Kw
3,...,ω(K(G))(G) satis-

fies w(Mi1 , . . . , Mi!) > 0 for every complete set Mi1 , . . . , Mi! of K(G).

The examples in Figure 1 show that Kw
1,2 is not sufficient to characterize neither

hereditary clique-Helly graphs nor clique-Helly graphs. Nevertheless, we can ob-

tain a characterization of hereditary clique-Helly graphs in terms of Kw
3 .

Theorem 7 Let G be a graph. Then G is hereditary clique-Helly if and only if

Kw
3 (G) satisfies w(Mi, Mj, Mk) ≥ min{w(Mi, Mj, Mℓ), w(Mj, Mk, Mℓ), w(Mi,

Mk, Mℓ)}, for every complete set Mi, Mj , Mk, Mℓ of size four in K(G).

85

Fig. 1. Graphs G1 and G2 satisfy Kw
1,2(G1) = Kw

1,2(G2), but G2 is hereditary clique-Helly

and G1 is not even clique-Helly. Besides, G1 is UV and G2 is not. Graphs G3, G4 satisfy

Kw
1 (G3) = Kw

1 (G4) and Kw
2 (G3) = Kw

2 (G4), but G3 is split and G4 is not, while G4 is

proper interval and G3 is not.

The examples in Figure 1 show that Kw
1 and Kw

2 do not characterize split graphs.

A characterization of split graphs in terms of Kw
1,2 is the following.

Theorem 8 A graph G is split and connected if and only if Kw
1,2(G) is a star with

center M1, and w(M1, Mj) = w(Mj) − 1, 2 ≤ j ≤ |K(G)|.

For interval and proper interval graphs, the following characterizations hold.

Theorem 9 A graph G is an interval graph if and only if Kw
2,3(G) admits a linear

ordering M1, . . . , Mp of its vertices such that for every 1 ≤ i < j < k ≤ p,

w(Mi, Mj , Mk) = w(Mi, Mk).

Theorem 10 A graph G is a proper interval graph if and only if Kw
1,2(G) admits a

linear ordering M1, . . . , Mp of its vertices such that for every triangle Mi, Mj , Mk,

1 ≤ i < j < k ≤ p, w(Mj) = w(Mi, Mj) + w(Mj, Mk) − w(Mi, Mk).

The examples in Figure 1 show that Kw
1 and Kw

2 are not sufficient to characterize

proper interval graphs.

It is a known result that clique graphs of chordal graphs are dually chordal graphs.

Moreover, it holds that, for a chordal graph G, there is some canonical tree T of

K(G) such that, for every vertex v of G, the subgraph of T induced by CG(v) is a

subtree. Such a tree is called a clique tree of G. McKee proved [12] that those trees

are exactly the maximum weight spanning trees of Kw
2 (G).

Theorem 11 A connected graph G is chordal if and only if Kw
2,3(G) admits a span-

ning tree T such that for every three different vertices Mi, Mj, Mk of T , if Mj be-

longs to the path Mi—Mk in T , then w(Mi, Mj , Mk) = w(Mi, Mk).

A graph is a UV graph if it is the intersection graph of paths of a tree. So, UV

graphs are a subclass of chordal graphs.

Theorem 12 A connected graph G is UV if and only if Kw
2,3(G) admits a spanning

tree T such that for every three different vertices Mi, Mj , Mk of T , if Mj belongs

to the path Mi—Mk in T , then w(Mi, Mj , Mk) = w(Mi, Mk), and for every M in

T and Mi, Mj, Mk in NT (M), it holds w(Mi, Mj, Mk) = 0.

The examples in Figure 1 show that Kw
1,2 does not characterize UV graphs.

86

References

[1] L. Alcón, L. Faria, C. de Figueiredo, and M. Gutierrez, The complexity of

clique graph recognition, Theor. Comput. Sci. 410 (2009), 2072–2083.

[2] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM

Monographs on Discrete Mathematics, vol. 3, SIAM, Philadelphia, 1999.

[3] F. Gavril, Generating the maximum spanning trees of a weighted graph, J.

Algorithms 8 (1987), 592–597.

[4] M. Gutierrez, J. Szwarcfiter, and S. Tondato, Clique trees of chordal graphs:

leafage and 3-asteroidals, Electron. Notes Discrete Math. 30 (2008), 237–242.

[5] M. Habib and J. Stacho, A decomposition theorem for chordal graphs and its

applications, Electron. Notes Discrete Math. 34 (2009), 561–565.

[6] M. Habib and J. Stacho, Reduced clique graphs of chordal graphs,

manuscript, 2010.

[7] R. Hamelink, A partial characterization of clique graphs, J. Combin. Theory,

Ser. B 5 (1968), 192–197.

[8] I.J. Lin, T.A. McKee, and D.B. West, The leafage of a chordal graph, Discuss.

Math., Graph Theory 18 (1998), 23–48.

[9] T.A. McKee, Clique multigraphs, In: Graph Theory, Combinatorics, Algo-

rithms and Applications (Y. Alavi, F.R.K. Chung, R.L. Graham, and D.S. Hsu,

eds.), SIAM, Philadelphia, 1991, pp. 371–379.

[10] T.A. McKee, Clique pseudographs and pseudo duals, Ars Combin. 38 (1994),

161–173.

[11] T.A. McKee, Restricted circular-arc graphs and clique cycles, Discrete Math.

263 (2003), 221–231.

[12] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, SIAM,

Philadelphia, 1999.

[13] F. Roberts and J. Spencer, A characterization of clique graphs, J. Combin.

Theory, Ser. B 10 (1971), 102–108.

[14] Y. Shibata, On the tree representation of chordal graphs, J. Graph Theory

12(2–3) (1998), 421–428.

87

The gateway location problem for hazardous material

transportation

M. Bruglieri, a P. Cappanera, b M. Nonato c

aINDACO, Via Durando 38/a, 20158 Milano (Italy)

maurizio.bruglieri@polimi.it

bDSI, Via Santa Marta 3, 50139 Firenze (Italy)

paola.cappanera@unifi.it

cENDIF, Via Saragat 1, 44100 Ferrara (Italy)

nntmdl@unife.it

Key words: gateway location, multicommodity flow, hazmat transport

1 Introduction

Everyday in our cities the shipments of hazardous materials such as explosives,

gases, flammable liquids, toxic substances, and radioactive materials are demanded.

These shipments are indispensable to our modern way of life (to fuel vehicles, to

heat buildings, to carry out hospital therapies, etc.), although they can be harmful

to the people and the environment in case of an accident. While there are many

possible interventions for risk mitigation [4], here we focus on the policies of gov-

ernment agencies to regulate the itineraries of the hazmat shipments. Two main

research lines can be identified in the literature: i) enforce specific itineraries to

vehicles; ii) prescribe a set of rules that vehicles itineraries have to respect. The

first research line tackles determining, for a single origin-destination pair, the set of

routes of minimum total risk which spread risk the most evenly over the territory,

leading to the search for spatially dissimilar paths e.g. by means of the Iterative

Penalty Method, by mean of the Gateway Shortest Path [1], or by exploiting the k-

shortest paths [6]. However, often (e.g. in Europe and North America) government

agencies do not have the authority to dictate routes to hazmat carriers. Therefore,

a second research line has focused on the indirect control of hazmat shipments by

way of rules that carriers have to respect: the closure of certain road segments to

hazmat vehicles solved either exactly [2] or heuristically [3]; the toll-setting pol-

icy [7] where tolls are used to deter hazmat carriers from using certain roads and

to channel the shipments on less-populated roads. In the present work we propose

an alternative policy tool for indirectly regulating the hazmat transport. It consists

of imposing check points along the routes, so called gateways, and stating the rule

that each carrier, on its route from origin to destination, must pass through a specific

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

gateway. Each carrier will select the minimum cost detour by the assigned check

point. In turn, the administrator will select the location of a given number of check

points on the network, and which check point has to be assigned to which carrier, so

that carrier responses will minimize total risk. We call such problem the Gateway

Location Problem for multicommodity flow (GLP). To the best of our knowledge,

this is the first work that formalizes GLP and proposes it as an effective means

to mitigate hazmat transport risk. While we are unaware of the use of this policy

tool by regulators around the world, the road infrastructure of several cities is suf-

ficiently technologically advanced to implement the gateway policy. For instance

[5] describes a tracking technology, used by the Municipality of Milan, based on

automated plate number recognition at some gates. The same technology could be

employed to implement the risk mitigation method here proposed, where gateways

are used not for tracking vehicles but for rerouting.

2 A bilevel multicommodity flow formulation

We model the GLP by way of an arc based formulation which captures the hierar-

chical relationship between the location-assignment decisions and the routing ones.

Indeed, the network administrator locates gateways at selected candidate sites and

assigns them to carriers in order to optimize its own objective function r over the

shortest gateway paths, that is, over the rational users reaction set. This interaction

is captured by a bilevel multicommodity uncapacitated minimun cost flow problem.

Let us introduce some mathematical notation. Let V = {1 . . . , n} be the set of car-

riers, each associated with its origin-destination pair, (ov, dv) and shipment request

ϕv, ∀v ∈ V . Let N g be the set of the m available candidate sites for hosting one of

the k gateways, with k < n and k << m. G = (N, A) is a weighted directed graph,

with N g∪{ov : v ∈ V }∪{dv : v ∈ V } ⊆ N , and A ⊆ N×N ; ∀(i, j) ∈ A two non-

negative coefficients cij and rij are defined, being the coefficients of the network

users (cost) and the administrator (risk) objective functions. Let ρc
v (ρr

v) denote the

c-optimal (r-optimal) path from ov to dv for each v ∈ V . yh, ∀h ∈ Ng are binary

variables to select open gateways, zv
h, ∀ h ∈ Ng, ∀v ∈ V are binary variables that

assign a gateway to a carrier, while variables γv, ∀v ∈ V model the possibility of

letting carrier v flow along ρc
v (if its risk cannot be decreased by way of a gateway

path deviation). Each carrier, if assigned to gateway h, will route its flow along

the shortest path from ov to h and the one from h to dv, i.e., the shortest gateway

path. Each subpath is modeled by a separate family of flow variables, namely: flow

variables xv
ij , ∀v ∈ V, ∀(i, j) ∈ A for the path from ov to the assigned gateway or

along ρc
v, while xv

ij , ∀v ∈ V, ∀(i, j) ∈ A : i *= ov for the path from the assigned

gateway to destination dv. As usual, δ+
i (x) stands for

∑

(i,j)∈FS(i) xij and δ−i (x) for
∑

(j,i)∈BS(i) xji; the same notation holds for flow variables xij. Now we can provide

a mathematical formulation for GLP.

P BL.MCF : min
∑

v=1...n

ϕv

∑

(i,j)∈A

rij(ξ
v

ij + ξv
ij
) subject to:

89

∑

h=1,...,m

zv
h = 1 − γv ∀v ∈ V (1)

yh ≥ zv
h ∀h ∈ Ng, ∀v ∈ V (2)

∑

h=1,...,m

yh = k (3)

zv
h ∈ {0, 1}∀h ∈ Ng, ∀v ∈ V (4)

γv ∈ {0, 1} ∀v ∈ V (5)

yh ∈ {0, 1} ∀h ∈ Ng (6)

where ξ
v

ij , ξv
ij

∈ argmin P SP : min
∑

v∈V

∑

(i,j)∈A

cij(x
v
ij + xv

ij) subject to:

δ+
ov

(xv) = 1 ∀v ∈ V (7)

δ−h (xv) − δ+
h (xv) = zv

h ∀h ∈ Ng, ∀v ∈ V (8)

δ−i (xv) − δ+
i (xv) = 0 ∀i *= ov, dv, i /∈ Ng, ∀v ∈ V (9)

xv
ij ≥ 0 ∀(i, j) ∈ A, ∀v ∈ V (10)

δ−dv
(xv) = γv ∀v ∈ V (11)

δ−dv
(xv) = 1 − γv ∀v ∈ V (12)

δ+
h (xv) − δ−h (xv) = zv

h ∀h ∈ Ng, ∀v ∈ V (13)

δ+
i (xv) − δ−i (xv) = 0 ∀i *= ov, dv, i /∈ Ng, ∀v ∈ V (14)

xv
ij ≥ 0 ∀(i, j) ∈ A, ∀v ∈ V (15)

Variables zh
v and γv are decision variables at the outer level and right hand side

coefficients of the flow balance constraints at the inner level. Cardinality constraints

(3) impose that exactly k gateways are installed at that many locations, while (1)

assign to each carrier either one open gateway or ρc
v. Indeed, when γv = 1 the flow

goes from ov to dv along ρc
v and no gateway is assigned to carrier v. Constraints (2)

ensure that a gateway must be open in order to be assigned.

Due to the lack of capacity constraints in the inner flow problem, this one is sepa-

rable into 2n shortest path problems, namely, SP v
h (x) (7–11) and SP v

h (x) (12–15).

While bilevel programming is usually hard to tackle, we will show how to get rid of

the inner level and reformulate the problem as a Mixed Integer Linear Programming

problem. The unimodularity of the constraint matrix of each subproblem SP v
h (x)

and SP v
h (x) allows the exploitation of linear duality and the explicit statement of

the optimality conditions of the inner objective function by linear constraints.

3 Computational results

We solved the proposed model using Cplex 12.1 and performed all testing on a

AMD Athlon (tm) 64x2 Dual Core Processor 4200+ (CPU MHz 2211.186). Ba-

sically, we built our instances on the same data set described in [3], i.e.: an undi-

90

rected graph with |N | = 105 nodes and |A| = 134 arcs, abstraction of the road

network of Ravenna (Italy), and the same cost function and risk functions (on-arc,

around-arc and aggregate); |V | = 35 carriers. On this network, for each kind of

risk measure, we generated 130 instances of the GLP considering five sizes of set

Ng (10%, 20%, 30%, 50%, and 100% of N) and for each size below 100%, three

independent random samples of N g have been generated with uniform distribution:

for each one of these thirteen combinations, k varies in 1, . . . , 10, thus yielding

130 instances. Considering the risk reduction of the GLP solution with respect to

the unregulated scenario, thanks to variables γv, we can guarantee that it is never

negative and it increases with k. The value of k beyond which the risk reduction

can be considered negligible is said stable. We will present results showing that in

our testbed stability occurs within k = 4 for all the three risk measures. For this

reason we analyze more in depth the case k = 4. Let G-, R- and C- denote re-

spectively the optimal solution of GLP (i.e. the gateway path set), the min risk path

set (over-regulated scenario) and the min cost path set (unregulated scenario); let

then c(P) and r(P) denote the total cost and the total risk of path set P . The quan-

tity (r(G-) − r(R-))/(r(C-) − r(R-)) · 100 yields a solution quality index since

it measures the increase in risk with respect to the over-regulated scenario. For a

percentage of candidate gateways fixed to 30% and for k = 4, the average of such

index is 34.85 for the on-arc risk, 4.64 for the around-arc risk and 14.30 for the ag-

gregate risk. These values are very close to those obtained when N g = N . We can

conclude that the use of gateways is an effective strategy for mitigating transport

risk, especially for the around-arc and aggregate risk measures; good levels of risk

reduction are already obtained with a low percentage of candidate gateways (30%),

provided that they are chosen appropriately, and opening few gateways (k = 4).

References

[1] Lombard K, Church RL (1993) The Gateway Shortest Path Problem: Gener-

ating Alternative Routes for a Corridor Routing Problem. Geographical Sys-

tems 1:25–45.

[2] Kara BY, Verter V (2004) Designing a Road Network for Hazardous Materials

Transportation. Transportation Science 38(2):188–196.

[3] Erkut E, Gzara F (2008) Solving the hazmat transport network design prob-

lem. Computers and Operations Research 35:2234–2247.

[4] Bruglieri M, Maja R, Marchionni G, Rainoldi G (2008) Safety in hazardous

material road transportation: state of the art and emerging problems. In: C.

Bersani et al. (Eds), Adv. techn. and method. for risk management, IOS

Press:88-129.

[5] Ciccarelli D, Colorni A, Lué A (2007) A GIS-Based Multi-Objective Travel

Planner for Hazardous Material Transport in the Urban Area of Milan. In:

C. Bersani et als (Eds), Adv. techn. and method. for risk management, IOS

Press:217-236.

91

[6] Carotenuto P, Giordani S, Ricciardelli S (2007) Finding minimum and equi-

table risk routes for hazmat shipments. Computers and Operations Research

34(5):1304–1327.

[7] Marcotte P, Mercier A, Savard G, Verter V (2009) Toll policies for mitigating

hazardous materials transport risk. Transportation Science 43(2):228–243.

92

Oriented L(2,1)-Labeling of Planar Graphs

(Extended Abstract)

T. Calamoneri,, B. Sinaimeri

Department of Computer Science, “Sapienza” University of Rome, Via Salaria 113,

00198 Roma, Italy

{calamo,sinaimeri}@di.uniroma1.it

Abstract

In this paper we study the L(2, 1)-labeling problem on oriented planar graphs with partic-

ular attention to the subclasses of oriented prisms, Halin and cacti.

Key words: L(2, 1)-labeling, oriented graph coloring, digraphs, prisms, Halin graphs,

cacti.

1 Introduction and preliminaries

The L(2, 1)-labeling of a graph G is a function l from the vertex set V (G) to the

set of all nonnegative integers such that :

– |l(x) − l(y)| ≥ 2 if x and y are adjacent in G, and

– |l(x) − l(y)| ≥ 1 if x and y are at distance 2 in G and the aim is to minimize

the maximum used color over all the labellings. Such minimum value is called

λ(G). This problem has been introduced first by Griggs and Yeh [5] as a variation

of the frequency assignment problem of wireless networks. A natural extension,

introduced in [2], is the L(2, 1)-labeling on directed graphs. The definition is the

same as in the non directed case but the distance between vertices x and y is defined

as the length of the shortest directed path from x to y. In agreement with the non

directed case, the L(2, 1)-labeling number λ(D) of a digraph D, is the minimum

over all the L(2, 1)-labellings l of D of max{l(v) : v ∈ V (D)}. By extension, for a

class C of digraphs, we denote by λ(C) the maximum λ(D) over all D ∈ C. Here we

will consider the L(2, 1)-labeling problem only on digraphs that are orientations of

finite simple graphs (i.e. graphs without loops or multiple edges). A related concept

to the L(2, 1)-labeling of oriented graphs is the oriented chromatic number. Given

an oriented graph G, its oriented chromatic number, χ(G), is the smallest integer κ

such that there is a coloring f : V → {1, . . . , κ} such that f(u) *= f(v) if (u, v) ∈
A and for any two arcs (u, v) and (x, y), if u and y have the same color then the

colors assigned to v and x cannot be the same. The following is proved in [4]:

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Proposition 1.1 If G is an orientation of a graph G, then

2
(

χ(G) − 1
)

≤ λ(G) ≤ 2
(

χ(G) − 1
)

.

Note that the oriented chromatic number of a digraph and the chromatic number

of its underlying graph can be far from each other. However in the case of oriented

planar graphs this result turns out to be quite useful. Indeed, combining Proposition

1.1 with the results in [6,7] bounding the oriented chromatic number of a planar

graph, we obtain the following:

Proposition 1.2 Given an oriented planar graph G with girth (i.e. the length of a

shortest cycle in G) g, it holds:

• If g ≥ 16 then λ(G) ≤ 8.

• If g ≥ 11 then λ(G) ≤ 12.

• If g ≥ 7 then λ(G) ≤ 22.

• If g ≥ 6 then λ(G) ≤ 62.

• otherwise λ(G) ≤ 158.

2 Subclasses of oriented planar graphs

Here we list some results concerning λ for some particular subclasses of planar

graphs. Due to space limitations almost all the proofs are omitted.

A planar prism graph Prn is a graph isomorphic to Cn×P2, where Cn is a cycle on

n vertices and P2 a path of length 2. The L(2, 1)-labeling number of an unoriented

prisms is well-known. The following theorem proves that the same result holds in

the oriented case.

Theorem 2.1 Let Pn be the set of all the orientations of the planar prism graph

Prn, λ(Pn) = 5 if n ≡ 0 mod 3 and λ(Pn) = 6 otherwise.

A Halin graph H is a planar graph resulting from the union of a tree T with at

least four vertices and with no vertex of degree 2, and a cycle C connecting all the

leaves of T cyclic order defined by a plane embedding of T .

Theorem 2.2 Let H be the set of all the oriented Halin graphs, 8 ≤ λ(H) ≤ 11.

Proof. We sketch the proof of the upper bound. Let H be an oriented Halin graph

constituted by the oriented tree T and the oriented cycle C. For a vertex v let N+(v)
(N−(v)) be the set of out (in-) neighbors of v and let L+(v) (L−(v)) be the sets of

labels used in N+(v) (N−(v)). Following the algorithm in [2], we label the inner

vertices of T , ignoring the arcs of the cycle C, and using labels 0, 4, 8. We will label

the vertices on C using labels in {0, . . . , 11} \ {0, 4, 8}. Thus, there is no conflict

between the label of any vertex on the cycle and the label of a vertex of the tree

being at distance two from it. We define an Out-segment (In-segment) of a vertex v
as a maximal consecutive sequence of vertices in the cycle such that all its vertices

belong to the set N+(v) (N−(v)). Let us now consider the following six sets of

labels:

I0 = {2, 5, 9}, I4 = {1, 6, 9}, I8 = {1, 5, 10}, O0 = {3, 6, 10}, O4 = {2, 7, 10}

94

Fig. 1. An oriented Halin graph for which λ = 8.

and O8 = {2, 6, 11}. We will use labels from set Ix (respectively Ox) to label the

In-segments (respectively Out-segments) of a vertex labeled with x according to

the labeling of the tree. The following properties hold:

Property 3 For every x ∈ {0, 4, 8} it holds Ix ∩ Ox = ∅.

Note that this property is necessary as in order to guarantee a feasible labeling it

must be L+(v) ∩ L−(v) = ∅ for any vertex v.

Property 4 The intersection of any pair of label sets not corresponding to the same

label consists of exactly one label.

Property 5 For any label x ∈ A the intersection of the set {x − 1, x, x + 1} with

any of the label sets consists of exactly one label.

Let S, be a segment of maximum length. It is not restrictive to assume that S is an

In-segment of a vertex labeled 0. Let P1, . . . , Pr = S be the sequence of segments

in clockwise order starting from the segment that follows S and ending with S.

From Properties 4 and 5, once the segments P1, . . . , Pi−1 have been labeled, it is

always possible to label the segment Pi corresponding to a vertex labeled x, using

labels from Ix or Ox. Finally, we label S using labels from B = I0 ∪ {7, 11}. (Ob-

serve that B ∩ O0 = ∅ so Property 3 still holds). Suppose |S| ≥ 3 (the other cases

can be handled easily) and consider the following sequence of vertices in a clock-

wise order: . . . , w, u, s1, s2 . . . , sm, v, k . . ., where s1, s2 . . . , sm is the sequence of

vertices of S. Note that in order to label S there are no other vertex interferences to

be considered. Using the Properties 4 and 5 it can be proved that once the vertices

v, k, w and u are labeled, it is always possible to conclude the labeling.

Concerning the lower bound, we proved that the oriented Halin graph in Fig. 1 has

λ = 8.

The next theorem shows that this lower bound is tight for oriented wheels, i.e.

Halin graphs whose tree is a star.

Theorem 2.3 Let W be the set of all oriented wheels. It holds λ(W) = 8.

A cactus is a connected graph in which any two simple cycles have at most one

vertex in common.

Theorem 2.4 Let Y be the set of all the oriented cacti then 6 ≤ λ(Y) ≤ 8.

The proof follows by showing that there is a homomorphism from any cactus Y to

a tournament (i.e. an orientation of a complete graph) on 5 vertices.

95

3 Concluding remarks and open problems

In this extended abstract we approached the problem of determining λ for oriented

planar graphs and for some particular subclasses we provided nearly tight bounds

for λ. It is worth to note that in the unoriented case there is a strong relationship

between λ and the graph’s maximum degree ∆, and thus it efficiently expresses

the value of λ. However the L(2, 1)-labeling problem on oriented graphs presents

different issues with respect to the unoriented case and ∆ is not an appropriate

parameter anymore. Due to the fact that very few classes of oriented graphs have

been investigated, it is not possible yet to identify the most natural graph parameter

that efficiently expresses the value of λ for arbitrary oriented graphs. However, for

the class of oriented planar graphs it seems reasonable to suggest that the girth of

the underlying graph is in some relation with λ. This is suggested by Proposition

1.2 and the following Conjecture in [1]:

Conjecture 2 Every oriented planar graph D whose underlying graph has girth

g ≥ 5 has λ(D) ≤ 5.

This relation cannot be as strong as in the unoriented case between λ and ∆. Thus,

investigating in this direction is an interesting open problem.

References

[1] T. Calamoneri. The L(2, 1)-Labeling Problem on Oriented Regular Grids, The Com-

puter Journal , (to appear), 2011.

[2] G. J. Chang and S.-C. Liaw. The L(2, 1)-labeling problem on ditrees. Ars Combina-

toria, 66: 23–31, 2003.

[3] G.J. Chang, J.-J. Chen, D. Kuo and S.-C. Liaw. Distance-two labelings of digraphs.

Discrete Applied Mathematics, 155: 1007–1013, 2007.

[4] Y.-T. Chen, M.-L. Chia and D. Kuo. L(p, q)-labelings of digraphs. Discrete Applied

Mathematics,157: 1750–1759, 2009.

[5] J.R. Griggs and R.K. Yeh. Labeling graphs with a Condition at Distance 2. SIAM J.

Disc. Math, 5:586–595, 1992.

[6] J. Nesetril, A. Raspaud and E.Sopena. Colorings and Girth of Oriented Planar Graphs

Discrete Math., 165-166: 519–530, 1997.

[7] A. Raspaud and E. Sopena. Good and semi-strong colorings of oriented planar

graphs. Inform. Process. Lett., 51: 171–174, 1994.

96

Effective drawing of proportional symbol maps using

GRASP

Rafael G. Cano, Guilherme Kunigami, Cid C. de Souza,

Pedro J. de Rezende

Institute of Computing, State University of Campinas,

Campinas, SP, Brazil 13084-852

Key words: GRASP, computational geometry, cartography, symbol maps

1 Introduction

Proportional symbol maps are a cartographic tool that employs symbols to rep-

resent data associated with specific locations, e.g., the magnitudes of earthquakes

and the population of cities. Each symbol is drawn at a location and its size is pro-

portional to the numerical data collected at that point on the map. The symbols

considered here are opaque disks, although other geometric shapes are also com-

mon, such as triangles and squares. When two or more disks overlap, part of their

boundaries may not be visible. When a disk has little or no visible boundary, it is

difficult to gauge its size. Therefore, the order in which the disks are drawn affects

the visual quality of a map.

Let S be a set of n disks and A be the arrangement formed by the boundaries of the

disks in S. An intersection of the boundaries of two or more disks defines a vertex

of A. We say that an arc is a portion of the boundary of a disk that connects two

vertices and contains no other vertices. A drawing of S is a subset of the arcs and

vertices of A that is drawn on top of the filled interiors of the disks in S. We focus

on stacking drawings, i.e., a drawing that corresponds to the disks being stacked

up, in sequence, starting from the one at the bottom of the stack. To measure the

quality of a drawing, two values can be considered: the minimum visible boundary

length of any disk and the total visible boundary length over all disks. The Max-Min

and the Max-Total problems consist in maximizing the former and the latter values,

respectively.

" Supported by FAPESP – Fundação de Amparo à Pesquisa do Estado de São Paulo

– Grants #2009/17044-5, #2007/52015-0, CNPq – Conselho Nacional de Desenvolvi-

mento Cientı́fico e Tecnológico – Grants #830510/1999-0, #301732/2007-8, 472504/2007-

0, 473867/2010-9, 483177/2009-1 and a Grant from FAEPEX/UNICAMP.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Cabello et al. [1] present a greedy algorithm to solve the Max-Min problem in

O(n2 log n) time. Kunigami et al. [2] propose an integer linear programming for-

mulation for the Max-Total problem, as well as several families of facet-defining in-

equalities. In addition, they introduce decomposition techniques that split the disks

into smaller components which can be solved independently. The computational

complexity of the Max-Total problem for stacking drawings remains open.

Our contribution. In this work, we propose a sophisticated heuristic based on

GRASP [3] with path-relinking for the Max-Total problem for stacking drawings.

Our heuristic includes most of the advanced techniques described in the litera-

ture for this procedure. We tested both sequential and parallel implementations on

benchmark instances and the comparison against optimal solutions confirms the

high quality of the heuristic. To the best of our knowledge, this is the first time a

metaheuristic is presented for this problem. The heuristic is described in Section 2

and some computational results are shown in Section 3.

2 GRASP heuristic

Initial solutions are generated using a randomized version of the algorithm pre-

sented in [1] for the Max-Min problem. The experimental results reported in that

work show that this algorithm performs well for the Max-Total problem and, for

this reason, it was chosen for the GRASP construction phase. Initially, the stack of

disks is empty. Given a disk i, denote by bi the length of its visible boundary if it

were placed above the disks that have already been stacked and below the others.

Each iteration computes bi for each disk i not yet on the stack. The disk with maxi-

mum such value is placed on top of the current stack and this procedure is repeated

until all disks have been stacked.

For the randomized version, instead of choosing the disk i with maximum bi, we

create a restricted candidate list (RCL) based on a parameter α ∈ [0, 1]. Let bmin

and bmax be the minimum and the maximum bi values over all disks i not yet on the

stack, respectively. A disk i is inserted into the RCL whenever bi ≥ bmin+α(bmax−
bmin). We experiment with strategies to select a value for α which not only yields

solutions of high quality but also promotes their diversity (see e.g. [3]). After the

creation of the RCL, one of the disks in it is randomly selected and stacked on top

of the disks already chosen.

Two neighborhoods are considered for the local search, which we denote by inser-

tion and swap neighborhoods. An insertion move removes a disk from its current

level and inserts it in another position. A swap move exchanges the position of two

disks. These neighborhoods are also used to implement a Variable Neighborhood

Descent (VND). A first improvement strategy is used with both of them because

it takes less time than a best improvement strategy and the quality of the results

is very similar. To search the insertion neighborhood quickly, we use a variation

of a segment tree to manipulate geometric objects in an efficient way (see [1] for

more details). We also developed fast procedures to evaluate the change produced

98

by each swap move.

Path-relinking is applied to every local optimum generated by the local search. We

create an elite set to store the best Nelite solutions found during the execution of the

heuristic. After the local search, a solution from the elite set is randomly chosen

and is relinked to the local optimum, i.e., a sequence of disk moves is executed to

transform one solution into the other in such a way that the distance between the

solutions always decreases. Afterwards, local search is applied to the best interme-

diate solution found. This improved solution is a candidate for the elite set and its

inclusion follows the rules described in [3].

In order to measure the distance between two solutions, we consider three metrics,

namely, the minimum number of insertions (insertion metric) and the minimum

number of swaps (swap metric) necessary to transform one solution into the other,

and the number of inversions between the solutions (inversion metric). Given two

disks i and j, we say that an inversion occurs when level(i) > level(j) in one of

the solutions and level(i) < level(j) in the other. We execute insertion moves with

the insertion and the inversion metric and swap moves with the swap metric.

Evolutionary path-relinking is used after the end of the GRASP iterations by apply-

ing path-relinking to pairs of elite solutions. We also implement a variation of this

method in which each elite solution s is relinked to the solution s ′ obtained by re-

versing the order of the disks in s. Thus, the distance between s and s′ is maximum

under the inversion metric.

We also implement a parallel version of our heuristic using MPI as follows. Let Ni

and Np be the number of iterations performed by the heuristic and the number of

processors, respectively. Each processor is assigned an initial subset of Ni/Np iter-

ations but whenever a processor’s set is completed, it is free to take over some from

other busy processors. After every 10 iterations, each processor requests all others

to send their elite sets and the solutions received are candidates for its own elite

set. To avoid idle processors, non-blocking communication is used. Evolutionary

path-relinking is executed independently by each processor. Since the processors

may have very similar elite sets, each one stores a local elite set that contains only

solutions found by itself. Evolutionary path-relinking is applied only to these local

elite sets.

3 Computational results

Preliminary experiments show that setting α = 0.4 produces solutions of the high-

est total visible boundary values. Furthermore, using the insertion neighborhood

leads to faster runs and finds better solutions than the swap neighborhood. There-

fore, our VND searches the insertion neighborhood first. The experiments also in-

dicate that path-relinking finds the best solutions with the inversion metric and an

elite set of size Nelite = 10. We run 1000 GRASP iterations for each instance and

the parallel implementation uses 4 processors.

With these configurations, we performed experiments with 28 real-world instances

99

generated from data on the population of cities. We apply the decomposition tech-

niques from [2] and compare the results obtained by our heuristic with the ones

found by the exact method described in that work. The experiments were run on an

Intel Core 2 Quad 2.83GHz CPU with 8GB RAM. The sequential and the parallel

GRASP heuristics found optimal solutions for 15 and 14 instances, respectively.

Moreover, when no optimal solution was found, the average relative gaps between

the value of the best heuristic solution and the optimal was 0.07% for the sequential

and 0.04% for the parallel GRASP. On average, the sequential GRASP ran 110.25
times faster than the exact method and the parallel implementation was 2.45 times

faster than the sequential. A linear speedup is not achieved because the initial de-

composition is executed sequentially and the evolutionary path-relinking runs in-

dependently on each processor. Some results are shown in Table 5. The values are

calculated ignoring arcs that are always visible in every solution. Optimal values

found by the GRASP are highlighted in bold.

Table 5. Results for real-world instances. Times are given in seconds.

References

[1] S. Cabello, H. Haverkort, M. van Kreveld, and B. Speckmann. Algorithmic

aspects of proportional symbol maps. Algorithmica, 58(3):543–565, 2010.

[2] G. Kunigami, P. J. de Rezende, C. C. de Souza, and T. Yunes. Optimizing the

layout of proportional symbol maps. Optimization Online, 2010.

[3] M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search pro-

cedures: Advances, hybridizations, and applications. In F. Glover and G. A.

Kochenberger, editors, Handbook of Metaheuristics, volume 57 of Interna-

tional Series in Operations Research and Management Science, chapter 8,

pages 219–249. Springer, second edition, 2009.

100

Sensor Network Localization Using Compressed

Extended Kalman Filter

M. Carli, a F. Pascucci b

aDip. Elettronica Applicata, Università degli Studi “Roma Tre”

Via della Vasca Navale, 84, 00146 Roma – IT

carli@uniroma3.it

bDip. Informatica e Automazione, Università degli Studi “Roma Tre”

Via della Vasca Navale, 79, 00146 Roma – IT

pascucci@uniroma3.it

Key words: Wireless Sensor Networks, Distributed Algorithms, Disk Graph

1 Introduction

Recent advances in wireless communication and electronics have enabled the de-

velopment of low cost, low power, and multifunctional sensors that are small in size

and communicate in short distances. Smart sensors, connected through wireless

links and deployed in large numbers, promise of many new applications in the area

of monitoring and controlling. In these applications it is necessary to accurately

locate the nodes with respect to a global coordinates framework, in order to corre-

late sensor readings with physical locations. Since manually recording and entering

the position of each sensor is impractical for very large networks, self localization

capability is highly desirable characteristic of Wireless Sensor Networks (WSNs).

Nowadays, the most simple, off-the-shelf mechanism for determining the sensor

node location is to use Global Positioning System (GPS). However, it is unsuitable

for low-cost, ad-hoc sensor networks, since it is based on extensive infrastructure,

satellites, and it cannot be used indoor. For these reasons, localization in WSNs

has drawn considerable attention and several localization protocols have been pro-

posed in literature. A complete discussion about issues in WSN localization can

be found in [1]. Here we focus our attention to distributed localization algorithms,

based on ranging technique. The localization problem is mapped into a stochastic

estimation problem for systems with uncertainty. The proposed procedure exploits

the benefits of Cluster Based Routing Protocol (CBRP)[2] and of Compressed Ex-

tended Kalman Filter (CEKF)[3]. The overall system is self-organizing (i.e., it does

not depend on global infrastructure), robust (i.e., it is tolerant to node failures and

range errors), and energy efficient (i.e., low computational complexity and commu-

nication overhead).

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

2 Problem setting

The localization scenario here considered refers to a set of sensors deployed in the

plane (i.e., they have coordinates in R2) assuming that few nodes, called anchors,

are equipped with absolute positioning devices. Since only nodes within a commu-

nication range can measure their relative distances, the localization problem can

be regarded as a graph realization problem over a quasi unit disk graph, which is

known to be NP-HARD [4]. Many strategies have been proposed in literature as

[5], [6]. Most of them relies on centralized approach and do not take into account

both computational load and communication overhead. Moreover they lack of ro-

bustness, as do not consider node failures and outliers.

In this work the localization problem is formulated as a stochastic estimation prob-

lem for systems with uncertainty described by the following equations:

xk = f(xk−1, wk) = xk−1 + wk

zk = h(xk, vk)
(1)

where xk = [px
1,k, p

y
1,k, . . . , p

x
N,k, p

y
N,k] is a stochastic variable representing the posi-

tions of nodes in a 2D geometric coordinates, wk and vk are noises affecting the sys-

tem (i.e., uncertainties), and h(·) characterizes inter-nodes ranging measurements,

i.e. zi,j
k =

√

(px
i,k − px

j,k)
2 + (py

i,k − py
j,k)

2. In a Maximum Likelihood framework

a prediction-correction scheme of Bayes filtering can be exploited to recursively

refine position estimate. Since the capability of the nodes are very limited, collab-

oration between nodes is required.

3 Localization Algorithm

The proposed localization algorithm is based on Extended Kalman Filter (EKF). As

already known [8], due to the particular structure of the system, the computation

of EKF for WSN localization can be fully distributed over the network. In this

way, each node is able to estimate its own position and maintain information about

the accuracy of the estimate of all nodes in the network. The main drawback of

this approach is in the heavy communication overhead. Moreover it is unreliable

for large scale network, since accuracy information grows with the number of the

nodes and both, limited memory and low CPU power, are not able to cope with this

large amount of data. Here, to solve these problems a divide et impera approach

is adopted, by decomposing the network into clusters. The localization problem is

solved in a coarse to fine two step procedure. During the first step, a cluster based

routing protocol is used to discover the topology of the network-graph and provide

a rough estimate for the position of the nodes using bounding-box techniques [7].

Then the localization procedure, CEKF, is applied to each cluster. In the following

some details of clustering and CEKF are reported.

102

3.1 Cluster Based Routing Protocol

In the proposed framework, we adopt the hierarchical routing algorithm for ad-

hoc networks known as CBRP. It uses clustering’s structure for decreasing routing

control overhead and improving the networks scalability. Clustering transforms a

physical network into a virtual network of interconnected clusters or groups of

nodes. Basically it exploits both proactive (each node maintains an updated lists of

linked nodes and their routes by periodically distributing routing tables throughout

the network) and reactive (each node discover the network path by flooding the net-

work with Route Request packets) routing behavior. Each node acts as a proactive

or reactive ones according to its hierarchic level. The 2 steps procedure is based on

a setup phase in which the nodes are clustered in 2-hop-diameter interconnected

substructures (clusters) followed by a Cluster Head (CH) selection for each clus-

ter. The CH coordinates and maintains the cluster membership information. The

routing is therefore established with proactively created routes among the CHs (by

dynamically sharing and using the cluster membership information); the remaining

nodes are served by reactive flooding on the lower levels. Each node belonging to

a cluster holds a Neighbor table wherein the information about the other neighbor

nodes is stored. In the following the main aspects of CBRP are reported for sake of

clarity. Each node can be a CH if it has the necessary functionality, such as process-

ing, localization capability, or transmission power. Following the cluster formation

phase and the CH election one, a gateway discovery procedure is performed. A

node acts as a gateway node of a cluster if, from the Cluster Adjacency table, it has

link to a node from another cluster. This table is dynamically created in each node

during the CH election.

3.2 Compressed Extended Kalman Filter

After the network topology discover procedure is completed, each cluster runs

CEKF to refine localization. The process starts in the clusters containing the big-

ger number of anchors, since their localization will be more reliable. Next, as in a

flooding procedure, the other clusters characterized by a lower number of anchors

start their localization procedure taking advantage from the high accuracy of the

just computed position of neighboring clusters. CEKF relies on the well known

equation of EKF, here applied to WSN localization.

During the prediction step a decomposition strategy is easy to find, as the state tran-

sition map is represented by an identity matrix. More complex is the decomposition

of the correction step, wherein the Kalman gain has to be calculated as well as a

full update of the covariance matrix Pk|k. To achieve the desired decomposition the

covariance matrix can be partitioned into M sub matrices, having dimension 2× 2,

i.e. the cross correlation matrices between nodes. Since a rough estimation for node

position in the cluster is available at k = 0, it is possible to consider only one mea-

sure between two nodes i − j at each instant k. Under these assumptions it is easy

to show that a nodes l needs to store information about its own cross correlation

matrices and to receive few data from the net (Sk, J
h
k , i.e. the innovation covariance

103

and the Jacobian of the observation map) in order to perform a complete update.

To further reduce the computational complexity, here a sub-optimal solution is pro-

posed by updating the states, without updating the cross covariance sub matrices

of nodes in the cluster which are not neighbor of nodes i − j involved in the mea-

surement process. This partition generate a conservative estimate and is known in

literature as CEKF.

4 Conclusion

In this contribution the problem of distributed localization algorithms, based on

ranging technique, has been addressed. The localization problem is mapped into a

stochastic estimation problem for systems with uncertainty by using Cluster Based

Routing Protocol and Compressed Extended Kalman Filter. On the other end, the

CEKF reduces the computational complexity of a localization procedure. Even if

the sub-optimal solution is achieved, the localization accuracy is suitable for most

WSNs application scenarios. Experimental test, performed on random graph having

different degree of connection, show the effectiveness of the proposed approach.

Future work is devoted to apply the localization procedure to scale-free and small

world networks.

References

[1] G. Mao, B. Fidan, B.D.O. Anderson, Wireless sensor network localization

techniques, Computer Networks, Vol 51–10, 2007, 2529-2553

[2] M. Jiang, J. Li, and Y.C. Tay, Cluster based routing protocol, Cluster

Based Routing Protocol (CBRP) Functional Specification Internet Draft,

http://tools.ietf.org/html/draft-ietf-manet-cbrp-spec, June 1999.

[3] J.E. Guivant and E.M. Nebot, Optimization of the Simultaneous Localization

and Map-Building Algorithm for Real-Time Implementation, in IEEE Trans.

On Robotics And Automation, Vol. 17, No. 3, June 2001

[4] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad hoc networks beyond unit disk

graphs, Wirel. Netw. 14, 5 (October 2008), 715-729.

[5] L. Doherty, K. S. J. Pister, and L. El Ghaoui, Convex position estimation in

wireless sensor networks, Proceedings of IEEE Infocom, 2001.

[6] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, Semidefinite programming

based algorithms for sensor network localization, ACM Trans. Sensor Netw.

2, 2, 188–220, 2006.

[7] S. Simic and S.S. Sastry, Distributed Localization in Wireless AdHoc Net-

works, technical report, Univ. of California, Berkeley, 2002.

[8] M. Di Rocco and F. Pascucci, Sensor network localisation using distributed

Extended Kalman filter, IEEE/ASME Int. Conf. on Advanced Intelligent

Mechatronics, 2007, 1–6.

104

A Generalized Stochastic Knapsack Problem with

Application in Call Admission Control

Marco Cello, Giorgio Gnecco, Mario Marchese,

Marcello Sanguineti

Department of Communications, Computer and Systems Science (DIST), University of

Genoa - Via Opera Pia, 13 - 16145 Genova (Italy)

{marco.cello,
giorgio.gnecco,mario.marchese,marcello}@dist.unige.it

Key words: Stochastic Knapsack, Feasibility Region, Call Admission Control,

Coordinate-Convex Policies.

1 Introduction

In the classical knapsack problem, a knapsack of capacity C is given, together with

K classes of objects. For every k = 1, . . . , K, each object of the class k has a size

bk and an associated reward rk. The objects can be placed into the knapsack as long

as the sum of their sizes does not exceed the capacity C. The problem consists in

placing the objects inside the knapsack so as to maximize the total reward.

Among the various extensions to a stochastic framework available in the literature

(see, e.g., [7,5,3]), we consider the stochastic knapsack problem proposed in [7].

In such a model, objects belonging to each class become available randomly, ac-

cording to exponentially-distributed inter-arrivals times with means depending on

the class and on the state of the knapsack. Each object has a sojourn time indepen-

dent from the sojourn times of the other objects and described by a class-dependent

distribution. If put into the knapsack, an object from class k generates revenue at

a positive rate rk. Let nk ≥ 0 denote the number of objects of class k that are

currently inside the knapsack. Then one has the linear constraint

∑

k∈K

nkbk ≤ C . (1)

The problem consists in finding a policy that maximizes the average revenue, by

accepting or rejecting the arriving objects in dependence of the current state of the

knapsack.

The stochastic knapsack problem that we have just described has application, e.g.,

in Call Admission Control (CAC) for telecommunication networks. In such a con-

text, the objects are requests of connections coming from K different classes of

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

users, each with a bandwidth requirement bk, k = 1, . . . , K, and a distribution for

its duration. In CAC problems, often the constraint (1) arises as a linearization of

the nonlinear constraint

∑

k∈K

βk(nk) ≤ C , (2)

where the βk(·) are nonlinear nonnegative functions. The model in which the linear

constraint (1) is replaced by the nonlinear one (2) is known in the literature as the

generalized stochastic knapsack problem 1 [4]. In call admission control, the coef-

ficients bk of the linearized constraint are called effective bandwidths [6, Chapter

1].

The sets

ΩFR := {(n1, . . . , nK) ∈ NK
0 :

∑

k∈K

nkbk ≤ C}, (3)

in the linear case, and

ΩFR := {(n1, . . . , nK) ∈ NK
0 :

∑

k∈K

βk(nk) ≤ C} (4)

in the nonlinear case, are called feasibility regions. In the context of admission

control they model subsets of the call space {(n1, . . . , nK) ∈ NK
0 }, where given

Quality of Service (QoS) constraints are satisfied.

In general, finding optimal policies is a difficult combinatorial optimization task

both for the stochastic knapsack problem [6, Chapter 4] and for the generalized

stochastic one [1,2]. The a-priori knowledge of structural properties of the (un-

known) optimal policies is useful to find the solutions or, at least, good subop-

timal policies. For two classes of objects and the linear constraint (1), structural

properties were derived in [7] for the optimal policies belonging to the family

of coordinate-convex policies. Such properties restrict the K-tuple (n1, . . . , nK)
to suitable subsets of the feasibility region ΩFR. Some extensions to nonlinearly-

constrained feasibility regions of the structural results obtained in [7] for linearly-

constrained ones were derived in [2] and other structural results were obtained in

[1].

2 Problem formulation

Let n denote the vector (n1, . . . , nk). For each class k = 1, . . . , K, the inter-arrival

time is exponentially distributed with mean value 1/λk(nk). The sojourn times of

the accepted objects are independent and identically distributed (i.i.d.) with mean

values 1/µk, k = 1, . . . , K. At the time of its arrival, each object is either accepted

or rejected, according to a coordinate-convex policy, defined as follows [6, p. 116].

1 Note that this is different from the “generalized stochastic knapsack” considered in [6,

Chapter 3].

106

Definition 2.1 A nonempty set Ω ⊆ ΩFR ⊂ NK
0 is coordinate-convex iff it has the

following property: for every n ∈ Ω with nk > 0 one has n − ek ∈ Ω, where ek

is a K-dimensional vector whose k-th component is 1 and the other ones are 0.

The coordinate-convex policy associated with a coordinate-convex set Ω admits an

arriving object iff after its insertion one has n ∈ Ω.

Note that by (3) or (4), the set ΩFR is itself coordinate-convex. As there is a one-to-

one correspondence between coordinate-convex sets and coordinate-convex poli-

cies, in the following we use the symbol Ω to denote either a coordinate-convex set

or a coordinate-convex policy.

The objective to be maximized in the set P(ΩFR) of coordinate-convex subsets of

ΩFR is given by

J(Ω) =
∑

n∈Ω

(n · r)PΩ(n) , (5)

where r denotes the vector (r1, . . . , rK) and PΩ(n) is the steady-state probability

that the current content of the knapsack is n. As Ω is coordinate-convex, one can

show that PΩ(n) takes on the product-form expression

PΩ(n) =

∏K
i=1 qi(ni)

∑

n∈Ω

∏K
i=1 qi(ni)

, where qi(ni) :=

∏ni−1
j=0 λi(j)

ni!µ
ni

i

. (6)

Due to (6), in general the objective (5) is nonlinear. What makes the problem dif-

ficult is that, given any two coordinate-convex sets Ω1, Ω2 ⊆ ΩFR, in general the

relationship Ω1 ⊆ Ω2 does not imply J(Ω1) ≤ J(Ω2).

3 Contributions

For generalized stochastic knapsack problems with two classes of objects (which

model CAC with two classes of users), in [1] we derived for the optimal coordinate-

convex policies structural properties that do not depend on the revenue ratio R :=
r2/r1. In [2], instead, we obtained properties that do depend on it. In the present

work, we develop the investigation in the following directions.

(i) We analyze the optimal choices for some parameters used by a criterion pro-

posed in [1] to improve certain suboptimal coordinate-convex policies. The

criterion is based on the removal or addition of rectangular subregions near

suitably-defined corner points.

(ii) We propose a greedy algorithm of approximate solution, based on the optimal

choice of the parameters in (i). The related simulations show an improvement

of the objective over the numerical results derived in [1].

(iii) We address some relationships between general structural properties of the

optimal coordinate-convex policies and the greedy algorithm in (ii). In partic-

ular, we extend [1, Theorem III.6] by proving that the coordinate-convex set

associated with an optimal coordinate-convex policy has a nonempty inter-

section with the upper boundary (∂ΩFR)+ of the feasibility region ΩFR (see

107

Fig. 1), independently of the number of its corner points.

(iv) We exploit another general structural property of the optimal coordinate-

convex policies to initialize the greedy algorithm in (ii).

(a) (b) n1n1

n2n2

(!"FR)+

(!"FR)+

1

Fig. 1. The upper boundary (∂ΩFR)+ of a feasibility region ΩFR with two classes of ob-

jects in the case of (a) a linearly-constrained ΩFR (stochastic knapsack) and (b) a nonlin-

early-constrained ΩFR (generalized stochastic knapsack).

References

[1] M. Cello, G. Gnecco, M. Marchese, and M. Sanguineti. CAC with nonlinearly-

constrained feasibility regions. IEEE Communications Letters, 15(4):467–469,

2011.

[2] M. Cello, G. Gnecco, M. Marchese, and M. Sanguineti. Structural properties of

optimal coordinate-convex policies for CAC with nonlinearly-constrained feasi-

bility regions. In Proceedings of IEEE INFOCOM (Mini-Conference), pages

466–470, 2011.

[3] B. C. Dean, M. X. Goemans, and J. Vondrak. Approximating the stochastic

knapsack problem: The benefit of adaptivity. Mathematics of Operations Re-

search, 33(4):945–964, 2008.

[4] T. Javidi and D Teneketzis. An approach to connection admission control in

single-hop multiservice wireless networks with QoS requirements. IEEE Trans-

actions on Vehicular Technology, 52(4):1110–1124, 2003.

[5] A. J. Kleywegt and J. D. Papastavrou. The dynamic and stochastic knapsack

problem with random sized items. Operations Research, 49(1):26–41, 2001.

[6] K. W. Ross. Multiservice Loss Models for Broadband Telecommunication Net-

works. Springer, New York, 1995.

[7] K.W. Ross and D.H.K. Tsang. The stochastic knapsack problem. IEEE Trans-

actions on Communications, 37(7):740–747, 1989.

108

A partial characterization by forbidden subgraphs of

edge path graphs

Márcia R. Cerioli, a 1 Hugo Nobrega, a 2 Petrucio Viana ?? 3

aCOPPE/Engenharia de Sistemas e Computação, Universidade Federal do Rio de

Janeiro, Caixa Postal 68511, 21941-972, Rio de Janeiro, Brazil

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530,

21941-909, Rio de Janeiro, Brazil

{cerioli,petrucio}@cos.ufrj.br

Key words: edge path graphs, forbidden subgraphs, critical graphs

1 Introduction

Path graphs is the generic name given to the several classes of intersection graphs

of paths in trees. An extensive study of the structural properties of these classes was

done by C. Monma and V. Wei in [4] where, considering trees which are directed

(D) or undirected (U), paths which are given by their vertex sets (V) or edge sets

(E), families of paths which have the Helly property (H) or not, and trees which are

rooted (R) or not, the classes UV, DV, RDV, UE, UEH, and DE were investigated.

Since every path graph is defined by an intersection property, each one can be

characterized by forbidden induced subgraphs (forbidden subgraphs, for short).

For the classes UV [3], DV [5], and a subclass of UEH [1], the complete families

of forbidden subgraphs have already been found, but for no other path graph class

is this the case.

Of particular interest is the class UE, also known as edge path graphs, which was

introduced independently by M. Syslo [6] and M. Golumbic and R. Jamison [2].

This interest is justified by this being one of the relatively few examples of graph

classes which are both widely studied and are NP-complete to recognize [7]. There-

fore, it is somewhat natural to expect that the forbidden subgraphs for this class will

be especially hard to find and describe completely.

In this work, we show how a large family of forbidden subgraphs for UE graphs

can be obtained using a construction from the well-known class of 4-critical graphs.

1 Research supported in part by CAPES, CNPq, and FAPERJ.
2 Research supported by FAPERJ (Bolsa Mestrado Nota 10).
3 Research supported in part by CNPq and FAPERJ.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

This also implies that this family of forbidden subgraphs for UE is as hard to rec-

ognize as 4-critical graphs.

2 Preliminaries

The main tool which has been used in characterizing path graph classes by forbid-

den subgraphs is the Separator Theorem, due to Monma and Wei [4]. This theorem

is based on the following concepts. If C is a maximal clique (maxclique, for short)

whose removal disconnects G, then C separates G, and if Vi is the vertex set of a

connected component of G!C, then Gi = G[Vi ∪C] is a separated graph of G by

C. If v ∈ C has a neighbor vi ∈ Vi, then Gi is a neighboring subgraph of v.

Now, two separated graphs Gi and Gj of G by C are antipodal when there exist

maxcliques Ci, C
′
i, C

′′
i of Gi and Cj , C

′
j, C

′′
j of Gj, such that:

(1) Ci ∩ C ′
j *= ∅;

(2) Ci ∩ C *⊇ C ′′
j ∩ C;

(3) Cj ∩ C ′
i *= ∅; and

(4) Cj ∩ C *⊇ C ′′
i ∩ C.

The antipodal graph of G by C, denoted by A (G, C), is the graph which has the

separated graphs of G by C as vertices, and such that two vertices Gi and Gj are

adjacent iff Gi and Gj are antipodal.

Note that, if G is a split graph which is separated by its central maxclique C, then

separated graphs Gi = G[{vi}∪C] and Gj = G[{vj}∪C] are antipodal iff NG(vi)
and NG(vj) have nonempty intersection, but are incomparable.

Although the class UE itself is not characterized by Monma and Wei’s Separator

Theorem, the subclass of UE graphs which are also chordal, denoted by UEC, is:

Theorem 13 (Separator Theorem for UEC) Let G be separated by a maxclique

C. Then G is a UEC graph iff each separated graph Gi is a UEC graph, and

A (G, C) has a 3-coloring in which the set of neighboring subgraphs of each v ∈ C
is 2-colored.

For our main result, we shall also need the following concept. A graph G is k-

critical when χ(G) = k and, for each proper subgraph H of G, we have χ(H) < k.

It is well known that if G is k-critical, then δ(G) ≥ k − 1, where δ(G) is the

minimum degree of G.

The construction

Given G, construct the graph constr(G) by first subdividing each edge e of G by

a new vertex also denoted e, and then transforming the set of new vertices used

in these subdivisions into a clique CG. It is immediate to see that constr(G) is a

split graph. What is more important, and also not hard to see, is that if δ(G) ≥ 2,

then CG is the only separating maxclique of constr(G), and A (constr(G), CG) is

isomorphic to G.

110

3 Main results

Let C4 be the set of all graphs which are (isomorphic to) constr(G) for some 4-

critical graph G.

Theorem 14 C4 is a family of forbidden subgraphs for UEC.

Proof (sketch) [Sketch of proof] Let H be a 4-critical graph, and G = constr(H).
To see that G is a forbidden subgraph for UEC, note that since A (G, CH) = H is

not 3-colorable, we immediately have that G is not a UEC graph. However, since

G is a split graph, each separated graph of G by CH consists of at most two max-

cliques, and it is easy to see that each one is a UEC graph — indeed, an edge path

representation for such a graph is easily found.

Now let G′ = G!v. If v *∈ CH , then since H has more than 3 vertices, we have

that CH still separates G. It follows that A (G′, CH) is obtained from H by the

removal of one vertex, and is 3-colorable since H is 4-critical. Since each w ∈ CH

has at most two neighboring subgraphs, this set is 2-colored in any coloring of

A (G′, CH). Furthermore, since each separated graph of G′ by CH is UEC, by the

separator theorem we have that G′ is a UEC graph.

On the other hand, if v ∈ CH , then let C ′ = CH!{v}. By construction, v subdivides

some edge v1v2 of H . Therefore, in G′ the separated graphs G[{v1} ∪ C ′] and

G[{v2}∪C ′] are not antipodal (since NG′(v1) and NG′(v2) have empty intersection),

but since δ(H) ≥ 3, all other separated graphs of G′ by C ′ are antipodal iff the

corresponding separated graphs of G by CH are antipodal. Hence, it follows that

A (G′, C ′) is obtained from H by the removal of the edge v1v2, and is also 3-

colorable since H is 4-critical. By a similar reasoning as the one used above, we

have that G′ is a UEC graph.

Since constr(G) is chordal for every G, we also have that C4 is a family of forbidden

subgraphs for UE graphs.

The proof of the following result is omitted due to space constraints.

Theorem 15 All of the forbidden subgraphs for UV graphs are also forbidden

subgraphs for UEC graphs.

This implies that the set C4 is a complete subfamily of forbidden subgraphs for the

class UEC, in the following sense.

Theorem 16 If G is a forbidden subgraph for UEC graphs, but not for UV graphs,

such that G is separated by a maxclique C, such that A (G, C) is not 3-colorable,

and such that each v ∈ C has at most two neighboring subgraphs, then G ∈ C4.

This result is a direct consequence of the following lemmas, whose proofs are also

omitted due to space constraints.

Lemma 1 If G is a forbidden subgraph for UEC graphs, but not for UV graphs,

such that G is separated by a maxclique C, such that A (G, C) is not 3-colorable,

and such that each v ∈ C has at most two neighboring subgraphs, then G is a split

graph, and G is isomorphic to constr(A (G, C)).

Lemma 2 If G is a split graph separated by its central maxclique C, such that

each v ∈ C has at most 2 neighboring subgraphs and δ(A (G, C)) ≥ 3, then for

111

each proper subgraph H of A (G, C) with δ(H) ≥ 3, there exist a proper induced

subgraph G′ of G and a separating maxclique C ′ of G′ such that A (G′, C ′) = H .

Proof (sketch) [Sketch of proof of Theorem 16] Suppose G satisfies all of the hy-

potheses. By Lemma 1, G is a split graph, and G is isomorphic to constr(A (G, C)).

Hence, if A (G, C) was not a 4-critical graph, there would exist a proper subgraph

H of A (G, C) which was not 3-colorable. By Lemma 2, this would imply that

there exist a proper induced subgraph G′ of G and a separating maxclique C ′ of

G′ such that A (G′, C ′) = H . Thus we would have G′ *∈ UEC, contradicting the

hypothesis that G is a forbidden subgraph for UEC.

References

[1] M. R. Cerioli and P. Petito. Forbidden subgraph characterization of split

graphs that are UEH. Electronic Notes in Discrete Mathematics, 19:305 –

311, 2005. Proceedings of GRACO 2005.

[2] M. Golumbic and R. E. Jamison. The edge intersection graphs of paths in a

tree. Journal of Combinatorial Theory, Series B, 38:8 – 22, 1985.

[3] B. Lévêque, F. Maffray, and M. Preissmann. Characterizing path graphs by

forbidden induced subgraphs. Journal of Graph Theory, 62:369 – 384, 2009.

[4] C. L. Monma and V. K. Wei. Intersection graphs of paths in a tree. Journal of

Combinatorial Theory, Series B, 41(2):141 – 181, 1986.

[5] B. S. Panda. The forbidden subgraph characterization of directed vertex

graphs. Discrete Mathematics, 196(1):239 – 256, 1999.

[6] M. M. Syslo. On characterizations of cycle graphs and on other families of

intersection graphs. Technical Report N-40, Institute of Computer Science,

University of Wroclaw – Poland, 1978.

[7] M. M. Syslo. Triangulated edge intersection graphs of paths in a tree. Discrete

Mathematics, 55(2):217 – 220, 1985.

112

Combined Location and Routing Problems in Drug

Distribution

Alberto Ceselli, Giovanni Righini, Emanuele Tresoldi

Dipartimento di Tecnologie dell’Informazione, Universit̀a degli Studi di Milano

{alberto.ceselli, giovanni.righini,

emanuele.tresoldi}@unimi.it

Key words: location-routing, column generation, branch-and-price

1 Introduction

Mathematical programming models and algorithms have been successfully used for

decades to optimize operations in distribution logistics: typical examples concern

freight carriers, mail services and on-demand pick-up and delivery services.

A more recent field of investigation concerns the application of similar techniques

to the optimization of logistics operations in health care systems and emergency

management. These sectors are characterized by a larger dependency on “human

factors”, such as the behavior of the customers (which is often unpredictable), fair-

ness in service provision (which is not an issue in industrial logistics) and lack of

reliable historical data (because of the uniqueness of the events considered, espe-

cially in case of emergency management).

We tackle a variation of the Vehicle Routing Problem (VRP) arising in the context

of the distribution of vaccines and anti-viral drugs in case of a pandemic outbreak.

The problem requires to reach the maximum number of citizens within a speci-

fied time limit. The starting point for our study is a paper by Shen et al. [7], who

presented a stochastic VRP model which is then reformulated and solved as a de-

terministic VRP with a tabu search algorithm. Our problem can also be seen as a

special case of the Team Orienteering Problem (TOP), because the minimization

of the fraction of population that is not visited is equivalent to maximize a “profit”

from visiting a subset of the sites. Exact algorithms for the TOP have been pro-

posed by Boussier et al. [3], while recent heuristics include that of Archetti et al.

[1].

We explore the option of reaching citizens in two ways: by establishing depots, and

delivering the drugs at homes using an heterogeneous fleet of vehicles, or by es-

tablishing distribution centers where the citizens go by their own means to receive

treatments or drugs. In this way a particular combined location-routing problem

arises. Even if location-routing is a lively research area [12], to the best of our

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

knowledge this combined location-routing problem has never been addressed be-

fore. We present an exact algorithm for such a problem, which is based on column

and cut generation and branch-and-bound, and where the pricing subproblem is

solved through advanced dynamic programming techniques.

2 A mathematical programming formulation

Our algorithm is based on the following set partitioning formulation for the prob-

lem.

min
∑

i∈N
disi (1)

s.t. si +
∑

l∈L

∑

h∈H

∑

k∈Klh

aikzk +
∑

l∈L

∑

w∈Wl

biwyw ≥ 1 ∀i ∈ N (2)

∑

l∈L

∑

k∈Klh

zk ≤ Vh ∀h ∈ H (3)

∑

h∈H

∑

k∈Klh

zk +
∑

w∈Wl

Tyw ≤ T ∀l ∈ L (4)

∑

l∈L

∑

w∈Wl

yw ≤ C (5)

si, yw, zk binary (6)

where N is the set of sites to be visited, H is the set of types of available vehicles,

L ⊆ N is the set of sites in which a depot or a distribution center can be located,

Klh is the set of feasible routes for the vehicles of type h ∈ H starting from depot

l ∈ λ, Wl is the set of feasible clusters for the distribution center l ∈ L, that is each

w ∈ Wl is a set of sites that can be served by a distribution center placed in l; Vh

is the number of vehicles for each type h ∈ H,
∑

h∈H Vh = T , C it the maximum

number of distribution centers allowed, di is the number of citizens reached when

site i ∈ N is visited, aik = 1 iff site i ∈ N is in the route k ∈ Klh, biw = 1 iff

site i ∈ N is in the cluster w ∈ Wl, zk is a binary variable corresponding to route

k ∈ Klh, yk is a binary variable corresponding to the cluster w ∈ Wl, si is a binary

variable corresponding to skipping site i ∈ N .

We refer to (1)-(6) as the master problem.

The model above has an exponential number of columns and so, in order to obtain

dual bounds, its linear relaxation is solved by column generation. Since the columns

in our problem can represents either a route or a cluster there are two different

pricing problems everyone associated with a particular distribution strategy. The

expression of the reduced costs of the “route columns” is as follows:

r′hl = −
∑

i

πiai + µh + σl (7)

where π ≥ 0 is the vector of dual variables corresponding to constraints (2), µh ≤ 0
with h ∈ H is the scalar dual variable corresponding to constraint (3), σl ≤ 0 with

114

l ∈ L is the scalar dual variable corresponding to constraint (4). The constraints of

this pricing problem require that: the route is elementary, it must start at the depot,

all sites along the route must be visited within a specified deadline and the sum of

the demands in the sites reached must be less then or equal to the capacity of the

vehicle used. The resulting problem is an elementary shortest path problem with

resource constraints.

The “distribution center columns” have the following reduced costs expression:

r′′l = −
∑

i

πibi + σl + ρ (8)

where π ≥ 0 is the vector of dual variables corresponding to constraints (2), σ ≤ 0
with l ∈ L is the scalar dual variable corresponding to constraint (4), ρ ≤ 0 is

the scalar dual variable corresponding to constraint (5). In this case constraints of

the pricing problem only require that: the sum of the citizens in the sites covered

by the distribution center must be less than or equal to its capacity, and that every

covered site must be within a given range of the distribution center. This problem

is a classical 0-1 knapsack problem.

Pricing algorithms. Pricing is the most time-consuming part in the branch-and-

price exact algorithm relying upon the previous formulation. To speed up the pric-

ing phase we rely on both heuristic and exact pricing algorithms. Exact pricing for

the “route columns” is done by bi-directional dynamic programming with decre-

mental state space relaxation, following the approach described in Righini and

Salani [5] [6], heuristic pricing relies on greedy algorithms and dynamic program-

ming with relaxed dominance conditions. For the “distribution center columns” we

used a modified version of the min-core pseudo-polynomial time algorithm pro-

posed by Pisinger [8].

Cuts generation and branching. In order to devise an efficient and performing

branch and price algorithm we implemented a stabilization method to mitigate pos-

sible convergence problems [11] and we took into account additional inequalities

coming from modifications and extensions of classical cuts such as subset rows in-

equalities [9] and 2-path cuts[10]. Finally five different branching strategies were

developed in order to recover the integrality when a fractional solution arises.

3 Computational Results

For testing purpose we have generated 630 instances, up to 50 nodes, using the

same procedure described in [7]. We run the algorithm on all instances using four

different scenarios:

VRP: a classical VRP, single depot, homogeneous fleet of vehicles,

VRP-HF: VRP with heterogeneous fleet of vehicles,

VRP-HF-MD: in this scenario an additional location problem is taken into account,

in fact multiple possible location for building depots are available,

115

VRP-HF-MD-DC: this scenario represents the complete problem with all the pre-

vious features and the alternative distribution strategy.

We analyzed the variation in the quality of the solution measured in terms of frac-

tion of population served and distance from the optimality for every scenario. Ag-

gregate average results are reported in Table 6.

VRP VRP-HF VRP-HF-MD VRP-HF-MD-DC

opt: 630/630 opt: 622/630 opt: 599/630 opt: 612/630

Optimality avg gap: 1% avg gap: 2% avg gap: 1%

max gap: 3% max gap: 14% max gap: 9%

Pop. reached Avg: 82.11 % Avg: 82.45% Avg: 89.36% Avg: 90.82%

Max Time: 857

Time (s) Avg Time: 11 Avg Time: 161 Avg Time: 274 Avg Time: 170

Table 6. Average results on four different scenarios

References

[1] C. Archetti, A. Hertz and M.G. Speranza, “Metaheuristics for the team orien-

teering problem”, Journal of Heuristics 13, 49-76 (2007).

[2] R. Baldacci, M. Battarra and D. Vigo, “Routing a Heterogeneous Fleet of Ve-

hicles”, in The Vehicle Routing Problem: latest advances and new challenges,

B.L. Golden, S. Raghavan and E. Wasil (eds), 3-27, Springer Science + Busi-

ness Media (2008).

[3] S. Boussier, D. Feillet and M. Gendreau, “An exact algorithm for team orien-

teering problems”, 4OR 5, 211-230 (2007).

[4] L. Ke, C. Archetti and Z. Feng, “Ants can solve the team orienteering prob-

lem”, Computers and Industrial Engineering 54, 648-665 (2008).

[5] G. Righini and M. Salani, “Symmetry helps: Bounded bi-directional dynamic

programming for the elementary shortest path problem with resource con-

straints”, Discrete Optimization 3, 255-273 (2006).

[6] G. Righini and M. Salani, “New Dynamic Programming Algorithms for the

Resource Constrained Elementary Shortest Path Problem”, Networks 51, 155-

170 (2008).

[7] Z. Shen, F. Ordóñez and M. Dessouky, “A Two-Stage Vehicle Routing Model

for Large-Scale Bioterrorism Emergencies”, Networks 54(4), 255-269 (2009).

[8] D. Pisinger, “A minimal algorithm for the 0-1 knapsack problem”, Operations

Research 45, 758-767 (1997).

116

[9] M. Jepsen, B. Petersen, S. Spoorendonk, D. Pisinger, “Subset-Row Inequali-

ties Applied to the Vehicle-Routing Problem with Time Windows” Operations

Research 56, 497-511 (2008).

[10] N. Kohl, J. Desrosiers, O. Madsen, M. Solomon, F. Soumis, “2-path cuts for

the vehicle routing problem with time windows” Transportation Science 33,

101-116 (1999).

[11] A. Pessoa, E. Uchoa, M. Poggi de Aragao. “ A new stabilization method for

column generation” Column Generation Workshop, conference presentation,

Aussois, (2008).

[12] G. Nagy, S. Salhi, “Location-routing: Issues, models and methods” European

Journal of Operational Research 177, 649 - 672 (2007).

117

The impact of the norm on the k-Hyperplane

Clustering problem: relaxations, restrictions,

approximation factors, and exact formulations

Stefano Coniglio

Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza L. da Vinci 32, 22133, Milano

coniglio@elet.polimi.it

Key words: hyperplane clustering, nonconvex optimization, global optimization, convex

relaxations and restrictions, approximation factors

1 Introduction

Given m points {a1, . . . , am} in Rn, the k-Hyperplane Clustering problem is to as-

sign each point to one of k clusters and to determine, for each of them, a hyperplane

so as to minimize the sum, over all the points, of the square of their orthogonal dis-

tances to the corresponding hyperplane, measured in p-norm.

Given a point ai and a hyperplane of equation wT
j x = γj , where wj ∈ Rn and

γj ∈ R, their p-norm orthogonal distance, for p ∈ N ∪ {∞}, amounts to
|wT

j
ai−γj |

‖wj‖p′
,

where 1
p

+ 1
p′

= 1. Here, we consider the case where p = 2 (Euclidean norm),

because it allows to find solutions that are invariant to rotations. Since 1
2

+ 1
2

= 1,

for p = 2 we have p = p′ and, therefore, the distance function amounts to
|wT

j
ai−γj |

‖wj‖2
.

The problem is nonconvex, due to the nonconvexity of the objective function. It is

also NP-hard for any choice of p, since the problem of deciding whether k lines

can fit m points in R2 with zero error is NP-complete [MT82].

The k-Hyperplane Clustering problem is relevant in many fields, such as, for

instance, data mining [BM00], operations research [MT82], and line detection

in digital images [AM02]. Heuristic approaches have been proposed in [BM00]

and [AC09]. For the bottleneck version of the problem, see [Dhy09].

In this work, we propose exact formulations for the problem which yield globally

optimal solutions, as well as relaxations and restrictions that guarantee a certain

approximation factor.

Since, of the n + 1 parameters that characterize a hyperplane, only n are indepen-
dent, a constraint can be introduced for each cluster without loss of generality. By
imposing ‖wj‖2 = 1, for each j = 1, . . . , k, we can replace the nonconvex expres-

sion
|wT

j
ai−γj |

‖wj‖2
with |wT

j ai − γj|. In addition, since we can prove that any solution

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

where ‖wj‖2 > 1, for some j, cannot be optimal, we can relax ‖wj‖2 = 1 into
‖wj‖2 ≥ 1. We formulate the problem as the following nonconvex Mixed-Integer
Quadratically Constrained Quadratic Program:

min
m

∑

i=1

y2
i (1)

s.t.

k
∑

j=1

xij = 1 i = 1, . . . ,m (2)

yi ≥ (wT
j ai − γj)xij i = 1, . . . ,m, j = 1, . . . , k (3)

yi ≥ (−wT
j ai + γj)xij i = 1, . . . ,m, j = 1, . . . , k (4)

‖wj‖2 ≥ 1 j = 1, . . . , k (5)

yi ∈ Rn
+ i = 1, . . . ,m (6)

wj ∈ Rn, γj ∈ R j = 1, . . . , k (7)

xij ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , k. (8)

The binary variable xij equals 1 if the point ai is assigned to cluster j and 0 oth-

erwise. The continuous variables (wj, γj), for j = 1, . . . , k, correspond to the hy-

perplane parameters. The variable yi, due to Constraints (3)–(4), represents the dis-

tance from the point ai to the hyperplane associated to cluster j. Constraints (2) are

assignment constraints. Constraints (3)–(4) can be linearized via the well-known

McCormick envelope. In addition, valid lower and upper bounds for all the contin-

uous variables can be derived and introduced to tighten the formulation. We solve

(1)–(8) with a standard Spatial Branch-and-Bound method, as implemented in the

solver COUENNE [BLL+09]. It is based on iteratively splitting the nonconvex fea-

sible region into subregions and on finding lower bounds for each subregion by

constructing and optimizing over a polyhedral envelope, adopting a Branch-and-

Bound technique.

2 Relaxations and restrictions within an approximation factor

The problem that is obtained after reformulating Constraints (3)–(4) is noncon-

vex due to the 2-norm Constraints (5). We propose to substitute them with ei-

ther ‖wj‖1 ≥ c or ‖wj‖∞ ≥ c (adopting the so-called polyhedral norms), for

an appropriate c > 0 (see below). Since these constraints can be described by

introducing linear constraints and mixed-integer variables, the corresponding k-

Hyperplane Clustering problem (in 1-norm or ∞-norm) can be formulated as a

Mixed-Integer Quadratic Program, which is easier to solve than the original 2-norm

one. As summarized in the following theorem, when formulating the problem with

either ‖wj‖1 ≥ c or ‖wj‖∞ ≥ c, for an appropriately chosen c, we obtain relax-

ations and restrictions which yield lower and upper bounds on the optimal value of

the original problem within an approximation factor.

Theorem 17 Let OPT be the value of an optimal solution of the 2-norm k-

Hyperplane Clustering problem.

119

• Let LB be the value of an optimal solution obtained after replacing each con-

straint ‖wj‖2 ≥ 1 with either ‖wj‖1 ≥ 1 or ‖wj‖∞ ≥ 1√
n

. We have 1
n

OPT ≤
LB ≤ OPT.

• Let UB be the value of an optimal solution obtained after replacing each con-

straint ‖wj‖2 ≥ 1 with either ‖wj‖1 ≥ √
n or ‖wj‖∞ ≥ 1. We have OPT ≤

UB ≤ nOPT.

The proof, which is omitted for lack of space, is based on two ingredients: finding

a value c > 0 such that the set that is feasible for ‖w‖p ≥ c either contains or

is contained into that which is feasible for ‖w‖2 ≥ 1 and applying equivalence

relations between p-norms.

Given any p ∈ N ∪ {∞} and c > 0, we can show that the solution that is obtained

when imposing ‖w‖p ≥ c can be obtained from that corresponding to ‖w‖p ≥ 1 by

scaling the vectors wj , for j = 1, . . . , k, by c. Therefore, we can solve just two of

the four problems in the theorem, one per norm, and then derive the solution of the

other two by scaling.

The formulations are solved via the Branch-and-Bound method for Mixed-Integer

Quadratic programs of CPLEX.

3 Enhanced formulations

We propose three enhanced exact formulations for the 2-norm k-Hyperplane Clus-

tering problem, where the constraints ‖wj‖2 ≥ 1, ‖wj‖1 ≥ 1, and ‖wj‖∞ ≥ 1√
n

are

simultaneously imposed for each j = 1, . . . , k, even if the last two are redundant

and weaker than the former. Such formulations allow to achieve a tighter lower

bound within fewer nodes of the enumeration tree, thus leading to an overall faster

Spatial Branch-and-Bound algorithm.

Note that, due to the presence of the squares in the objective function, by replacing

wj with −wj, for any j = 1, . . . , k, we obtain an equivalent solution. We break this

form of symmetry by constraining the first component of each wj to be nonnegative.

4 Computational results

Computational experiments are carried out on a set of 88 realistic randomly gen-

erated instances, with m = 10, . . . , 30, n = 2, 3, and k = 2, 3. They are obtained

with the generator used in [AC09].

We investigate the practical tightness of the relaxations and restrictions that are
obtained when using either the 1-norm, the ∞-norm, or both. The first table com-
pares the theoretical approximation factors as in Theorem 17 (columns three and
four) with those that are empirically found by solving the formulations (columns
five and six). For each value of n, the empirical worst-case approximation factor
is reported. Interestingly, the empirical approximation factors of the lower bounds
match the theoretical ones, whereas much tighter upper bounds are obtained.

120

The second table reports the percentage of instances that are solved to optimality
within two hours of CPU time, using the exact formulation in (1)-(8) (first row)
and those enhanced with 1-norm constraints (2nd row), ∞-norm constraints (3rd
row), and both (4th row). The results show that, for both n = 2 and n = 3, the
introduction of redundant constraints in 1 or ∞-norm almost doubles the number
of instances that are solved to global optimality within the time limit.

References

[AC09] E. Amaldi and S. Coniglio. An adaptive point-reassignment meta-

heuristic for the k-hyperplane clustering problem. In Proc. of Meta-

herustic International Conference, pages 1–10, 2009.

[AM02] E. Amaldi and M. Mattavelli. The MIN PFS problem and piecewise

linear model estimation. Discrete Applied Mathematics, 118(1-2):115–

143, 2002.

[BLL+09] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching

and bound tightening techniques for non-convex MINLP. Optimization

methods and software, 24:597–634, 2009.

[BM00] P. Bradely and O. Mangasarian. k-plane clustering. Journal of Global

Optimization, 16:23–32, 2000.

[Dhy09] K. Dhyani. Optimization models and algorithms for the hyperplane

clustering problem. PhD thesis, Dipartimento di Elettronica e Infor-

mazione, Politecnico di Milano, Italy, 2009.

[MT82] N. Megiddo and A. Tamir. On the complexity of locating linear facili-

ties in the plane. Operations Research Letters, 1(5):194–197, 1982.

121

A Lagrangian Relaxation Approach

for Gene Regulatory Networks

Roberto Cordone, a Guglielmo Lulli b

aUniversity of Milano, Department of Computer Science

Via Comelico 39, 20135 - Milano, Italy

roberto.cordone@unimi.it

bUniversity of Milano “Bicocca”, Department of Informatics, Systems and

Communication

viale Sarca 336, 20122 Milano, Italy

lulli@disco.unimib.it

Key words: Gene regulatory networks, Lagrangean relaxation, Branch-and-bound, Tabu

Search

1 The Weighted Gene Regulatory Network problem

A gene regulatory network G(N, A∪I, w) is a graph model of the dynamics of gene

expression in a living cell: the set of nodes N represents gene products, two disjoint

sets of arcs A and I represent, respectively, activation and inhibition influences

between the gene products. Each arc has a weight w : A ∪ I → (]0; 1], derived

from statistical correlation indices: wij = 0 denotes a full correlation between i
and j; wij = 1 no correlation.

The problem is to identify a subset of nodes which explain the expression of all

other nodes, by acting either as activators or as inhibitors. A node should only

exert influences coherent with its label, or no influence at all. However, biological

evidence suggests the presence of few genes exerting both kinds of influence. To

account for this, given the minimum feasible number M of labelled nodes, the

model minimizes the total weight of the influences (i.e., arcs) exerted by nodes

labelled incoherently with respect to the arc. Let z
(A)
i = 1 if i is labelled as activator,

0 otherwise, z
(I)
i = 1 if i is labelled as inhibitor, 0 otherwise. Let xij = 1 if arc

(i, j) ∈ A ∪ I represents an incoherent influence, 0 otherwise.

min φ =
∑

(i,j)∈A∪I

wij · xij

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

s.t.
∑

i:(i,j)∈A

z
(A)
i +

∑

i:(i,j)∈A

xij ≥ 1 j ∈ N (1)

∑

i:(i,j)∈I

z
(I)
i +

∑

i:(i,j)∈I

xij ≥ 1 j ∈ N (2)

z
(A)
i + z

(I)
i ≤ 1 i ∈ N (3)

∑

i∈N

(z
(A)
i + z

(I)
i) = M (4)

xij ≤ z
(I)
i (i, j) ∈ A (5)

xij ≤ z
(A)
i (i, j) ∈ I (6)

xij ∈ {0, 1} (i, j) ∈ A ∪ I (7)

z
(A)
i , z

(I)
i ∈ {0, 1} i ∈ N (8)

Each node receives at least one activating and one inhibiting arc from the identified

subset, either coherent with the label of the source node or not (1,2). Each gene is

labelled as activator, inhibitor or neutral (3). The number of activator and inhibitor

nodes is bounded from above, but any optimal solution with less than M labelled

nodes can be replaced by an equivalent one with exactly M labelled nodes (4).

An incoherent influence requires the arc and the source node to have opposite la-

bels (5,6).

2 A Lagrangian branch-and-bound

To compute lower bounds on the optimum, we dualize the covering constraints (1)

and (2) with multipliers λi and πi, respectively :

L(z, x, λ, π) =
∑

(i,j)∈A

γij ·xij +
∑

(i,j)∈I

δij ·xij−
∑

i∈N

(αi ·z
(A)
i +βi ·z

(I)
i)+

∑

i∈N

(πi +λi)

where

αi =
∑

j∈N :(i,j)∈A

λj i ∈ N γij = wij − λj (i, j) ∈ A

βi =
∑

j∈N :(i,j)∈I

πj i ∈ N δij = wij − πj (i, j) ∈ I

Once the z variables have been fixed, the optimal values of the x variables are

uniquely determined: if (i, j) ∈ A, xij = 1 if γij < 0 and z
(I)
i = 1, 0 otherwise; if

(i, j) ∈ I , xij = 1 if δij < 0 and z
(A)
i = 1, 0 otherwise. Thus, for each node i we

can sum to weight αi (or βi) all negative weights δij (or γij) for the arcs exiting that

node. This reduces the problem to optimizing the z variables subject to cardinality

and disjunctive constraints. To solve it, we sort the nodes by increasing values of

the modified weights and label the first M nodes as activator or inhibitor, according

to the label with the lower weight.

123

The multipliers are initially set to zero; then, they are tuned by a modified subgradi-

ent procedure. This iteratively solves the Lagrangian relaxed problem and updates

the multipliers based on a moving average of the violations of the covering con-

straints in the relaxed Lagrangian solutions computed so far.

The branching mechanism operates by labelling nodes: it selects a node and gener-

ates two subproblems by forcing or forbidding it to be neutral (without specifying

its label in the latter case). When all nodes are neutral or nonneutral, a second

branching mechanism generates two subproblems by forcing a labelled node to be

an activator or an inhibitor. The branching node is chosen on the basis of the La-

grangian multipliers. First, we compute for each node the sum of the Lagrangian

multipliers over all the nodes covered by it. Then, we select the node with the largest

sum, so that labeling it will have the strongest possible influence on the constraints.

3 A Tabu Search algorithm

To compute feasible solutions of the problem (upper bounds) we implemented a

Tabu Search (TS) metaheuristic for the WGRN problem. This computes a start-

ing solution with a greedy procedure, and improves it with a local search procedure

based on a natural neighbourhood. As finding a feasible solution is an NP-complete

problem, both phases relax the covering constraints (1,2) and evaluate the solu-

tions lexicographically according to: i) the number of violated constraints, v; ii) the

cost, φ.

The neighbourhood of solution S is the set of solutions NS obtained by i) turning

a single activator (inhibitor) node into inhibitor (activator); ii) assigning the label

of a nonneutral node to a neutral one and turning the former into neutral. These

moves do not modify the total number of labelled nodes, M . The neighbourhood is

composed of M +M (|N |− M) solutions, not necessarily feasible, and it is always

completely visited.

In order to avoid a cyclic behaviour, the algorithm stores for each node i the last

iterations ℓN
i , ℓA

i and ℓI
i , in which node i was, respectively, neutral, activator or

inhibitor. At each iteration, the algorithm visits the whole neighbourhood of the

current solution S and divides the solutions into tabu and non tabu, based on the

values stored in ℓN
i , ℓA

i and ℓI
i and on a tabu tenure L: a solution is tabu if it assigns

to a node a label assumed less than L iterations ago. The best non tabu neighbour

solution replaces the current one. As an exception, the best tabu neighbour solu-

tion is selected if it is better and it improves the best one found so far (aspiration

criterium).

To enhance the search, the tabu tenure is adaptively tuned within a fixed range

[Lmin; Lmax]): L increases when the current solution gets worse, decreases when it

improves. The aim is to guide the search away from already visited local optima

and towards not yet visited local optima. To diversify the search, the algorithm

is terminated and restarted r times from solutions generated selecting M random

nodes, half labelled as activators, half as inhibitors.

124

4 Experimental results

We have generated at random four groups of ten benchmark instances with |N | =
100 nodes. First we have randomly drawn the indegree of each node in a suitable

range ([10; 20], [30; 50], [60; 80] or [99; 99]), then randomly generated the ingoing

arcs, classifying them half as activators half as inhibitors, and finally associated to

each arc a random cost from [0; 1]. The number M of labelled nodes was set to the

minimum for which a feasible solution exists, to respect the parsimony principle

required by the application.

The benchmark is quite hard for the basic TS (one third of unsolved instances even

after Kmax = 100 000 iterations and with several different tabu tenure settings).

However, random restart overcomes this ineffectiveness: r = 100 runs of 1 000
iterations perform well (all solutions are feasible and 26 hit the best known result),

and r = 1 000 run of 100 iterations even better (all solutions are feasible and 37 hit

the best known result).

Neither the Lagrangean branch-and-bound nor CPLEX 11 could solve any instance

within one hour, and the gaps are wide. However, the upper bound found by TS

is always better than that computed by CPLEX. The Lagrangian lower bound is

much stronger than that computed by CPLEX on most instances (two orders of

magnitude on the complete ones), except for the sparsest class of instances, where it

is comparable. CPLEX generates much more branching nodes than the Lagrangean

approach, in sharp contrast with the fact that the Lagrangean subproblem enjoys the

integrality property, and therefore provides (at the root node) a bound equivalent

to the linear one. This might be due to a stronger effectiveness of the branching

strategy adopted.

125

Bound constraints for Point Packing in a Square

Alberto Costa, a Pierre Hansen, a,b Leo Liberti a

aLIX (UMR CNRS 7161), École Polytechnique, 91128 Palaiseau, France.

{costa, liberti }@lix.polytechnique.fr
bGERAD and HEC Montreal, Canada.

pierre.hansen@gerad.ca

Key words: point packing in a square, nonconvex NLP, bound constraints.

1 Introduction

In this paper we present a conjecture about the bounds on the variables for the

Point Packing in a Square (PPS) problem. There exist several formulations for this

problem, most of them are introduced in [1]; in order to semplify the following

presentation, we use this formulation:

Place n points in the unit square such that the minimum pairwise distance is

maximal.

This problem can be formulated this way:

max α (1)

∀i < j ≤ n (xi − xj)
2 + (yi − yj)

2 ≥α (2)

∀i ≤ n xi ≤ 1 (3)

∀i ≤ n yi ≤ 1 (4)

∀i ≤ n xi ≥ 0 (5)

∀i ≤ n yi ≥ 0 (6)

α≥ 0. (7)

The positive variable α is the square of the minimum pairwise distance between the

points. Constraints (2) are the distance inequalities, while inequalities (3)-(6) mean

that the points are inside the unit square.

When we try to solve PPS by means of solvers which implement the spatial Branch-

and-Bound algorithm [2,3], like COUENNE [4] or BARON [5], we notice that it is

not easy to decrease the value of the upper bound on α during the computation. In

" Financial support by grants: Digiteo 2009-14D “RMNCCO”, Digiteo 2009-55D “ARM”

is gratefully acknowledged.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

next Section, we will show that it depends also on the bound on the variables, and

we propose a method to obtain better results by modifying the inequalities (3)-(6).

After that, in Section 3 we present some computational results, while in Section 4

there are the conclusions and the future work.

2 Bounds on the variables

PPS is a nonlinear nonconvex problem; when we try to solve it by means of spatial

Branch-and-Bound, usually the root node corresponds to a linear relaxation of the

problem, whose optimal solution represents an upper bound for the original prob-

lem. For the formulation (1)-(7) the relaxation is the following (as explained in

[6,7]).

maxα (8)

∀i < j ≤ n − l(i, j)≥α (9)

∀i ≤ n xi ≤ 1 (10)

∀i ≤ n yi ≤ 1 (11)

∀i ≤ n xi ≥ 0 (12)

∀i ≤ n yi ≥ 0 (13)

α≥ 0. (14)

where l(i, j) = −(Lxi−Uxj +Uxi−Lxj)(xi−xj)−(Lyi−Uyj +Uyi−Lyj)(yi−
yj) + (Lxi −Uxj)(Uxi −Lxj) + (Lyi −Uyj)(Uyi −Lyj) is the convex envelope

of the nonlinear part of constraint (2) while L and U represent respectively the

lower and upper bounds on the variables (in this case, L = 0 and U = 1 for all the

variables).

Proposition 2.1 The optimal solution of the problem (8)-(14) is α∗ = 2.

Proof (sketch) It is easy to see that when all the lower bounds have the same value

L, and the upper bounds have the same value U , then −l(i, j) = 2(U − L)2. The

problem of maximizing α, with the constraints ∀i < j ≤ n α ≤ 2(U − L)2, has

obviously optimal solution α∗ = 2(U − L)2. Since L = 0 and U = 1, then the

optimal solution of (8)-(14) is α∗ = 2.

The bound provided by the previous relaxation is not very good: since α is the

square of the minimum distance between the points, the upper bound on the dis-

tance is
√

2, that is the optimal solution obtained when there are only 2 points in the

square, placed in two opposite vertices. Furthermore, this bound does not depend

on the number of points n, nor on the value of the variables x and y: due to the fact

that all the lower (upper) bounds have the same value, in the linear relaxation l(i, j)
all the coefficients of the terms containing x and y become 0.

In order to improve the bound on α, we should change the value of lower and upper

bounds for some variables; thus, the corresponding terms containing x and y in the

linear relaxation do not disappear. The following conjecture refers to that idea.

Conjecture 3 Consider an instance of PPS with n points. Divide the unit square

in k2 equal subsquares, with k = arg min
s

∣

∣

∣

n
2
− s2

∣

∣

∣, s ∈
{⌈√

n
2

⌉

,
⌊√

n
2

⌋}

. There is

at least one point of the optimal solution in each subsquare.

127

The meaning of this conjecture is that we can change the value of the bounds for

k2 points. For example, consider the case with n = 9: here, k = 2, so there are 4

subsquares. According to the conjecture, we can place one point in each subsquare;

for instance, if we put the point i is in the bottom left subsquare, we can modify the

bounds provided by (3)-(4) obtaining xi ≤ 0.5 and yi ≤ 0.5.

In order to change other bounds, we can use these properties of the optimal solution,

as remarked in [8]:

• at least nx = ⌈n
2
⌉ points are on the left half of the square (x bounds property);

• among the previous nx points, at least ny = ⌈nx

2
⌉ are on the bottom half (y

bounds property).

After dividing the square in k2 subsquares, we have placed in the left half of the

square η < nx points, so for others nx − η points we can change the upper bounds

on the variable x from 1 to 0.5, according to x bounds property. A similar idea can

be used for the y bounds property.

3 Results

In this Section we present the values of the upper and lower bounds for some in-

stances of the PPS problem obtained at the root node, using COUENNE, with and

without the bound constraints presented in the previous section. Furthermore, we

present the values of the optimal distance d∗ =
√

α∗ for these solutions (which can

be found in http://www.packomania.com and [1]).

4 Conclusions and future work

In this paper we showed the effect of the bounds constraints: the upper bounds

obtained are better, as well as the lower bounds (namely the best solutions found).

Moreover, we can see an improvement of the upper bounds from the instance n =
12 (where k = 3) to the instance n = 13 (where k = 4).

The future work has three main directions: first, we want to prove the conjecture

presented in this paper. Second, we want to try other kinds of subdivision of the

128

square. Finally, we will try to adapt these ideas for other formulations of this prob-

lem where some symmetry breaking constraints are used [9,10].

References

[1] P. G. Szabó, M. Cs. Markót, T. Csendes, E. Specht, L. G. Casado and I.

Garca. New Approaches to Circle Packing in a Square: With Program Codes.

Springer Optimization and Its Applications, Springer-Verlag New York, 2007.

[2] E. Smith and C. Pantelides. A symbolic reformulation/spatial branch-and-

bound algorithm for the global optimization of nonconvex MINLPs. Comput-

ers & Chemical Engineering, 23: 457–478, 1999.

[3] L. Liberti. Writing global optimization software. In L. Liberti and N. Mac-

ulan, editors, Global Optimization: from Theory to Implementation, 211-262,

Springer, 2006.

[4] P. Belotti, J. Lee, L. Liberti, F. Margot and A. Wächter. Branching and bounds

tightening techniques for non-convex MINLP. Optimization Methods and

Software, 24(4): 597–634, 2009.

[5] N.V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global Optimization of

Mixed-Integer Nonlinear Programs. User’s Manual, 2005.

[6] M. Locatelli and U. Raber. Packing equal circles in a square: II. A Determin-

istic Global Optimization Approach. Technical Report 09-99, Dip. Sistemi e

Informatica, Univ. di Firenze, 1999.

[7] U. Raber. Nonconvex all-quadratic global optimization problems: solution

methods, application and related topics. Ph.D. Thesis, University of Trier,

Germany, 1999.

[8] K. Anstreicher. Semidefinite programming versus the reformulation-

linearization technique for nonconvex quadratically constrained quadratic

programming. Journal of Global Optimization, 43(2): 471–484, 2009.

[9] P. Hansen A. Costa and L. Liberti. Formulation symmetries in circle packing.

In R. Mahjoub, editor, ISCO 2010 Proceedings, Electronic Notes in Discrete

Mathematics, 36: 1303–1310, Elsevier, 2010.

[10] A. Costa, P. Hansen and L. Liberti. Static symmetry breaking in circle pack-

ing. In U. Faigle, editor, CTW 2010 Proceedings, 47–50, University of Köln,

2010.

129

Bicolored independent sets and bicliques

Jean-François Couturier, Dieter Kratsch

Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine - Metz,

57045 Metz Cedex 01, France

{couturier,kratsch}@univ-metz.fr

Key words: exact exponential algorithms, graph algorithms, NP-hard problems, bicolored

independent sets, bicliques.

1 Introduction

Throughout the paper all graphs G = (V, E) are undirected and simple.

A bicolored graph is a graph G = (V, E) in which each vertex is colored with one

of two possible colors, let us call them red and blue. We denote such a bicolored

graph by G = (R, B, E) where R is the set of red vertices and B is the set of

blue vertices. Let us emphasize that the coloring of G by red and blue colors is not

required to be a proper coloring. We introduce the following natural generalization

of the well-known INDEPENDENT SET problem.

Bicolored Independent Set: The BICOLORED INDEPENDENT SET problem (BIS)

has as input a graph G = (R, B, E) and non-negative integers k1 and k2; the task

is to decide whether there is an independent set I ⊆ V of G such that |I∩R| = k1

and |I ∩ B| = k2.

A simple reduction from the NP-complete INDEPENDENT SET problem shows that

BIS is NP-complete. Our original motivation to introduce and study the BIS prob-

lem was its strong relation to well-studied biclique problems.

Let the vertex sets X and Y be independent sets of a graph G = (V, E) such that

xy ∈ E for all x ∈ X and y ∈ Y . The pair (X, Y) is called a biclique of G. The

pair (X, Y) is called a non-induced biclique of the graph G if xy ∈ E for all x ∈ X
and y ∈ Y . (Note that neither X nor Y are required to be independent sets of G.)

Applications of bicliques in data mining, artificial intelligence, automata, language

theory and biology are discussed in [1]. The complexity of algorithmic problems

on bicliques has been studied extensively (see e.g. [5]).

We are interested in finding bicliques in bipartite graphs and in finding non-induced

bicliques in graphs.

" This work has been supported by the ANR project AGAPE.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Bipartite Biclique: The input of the problem is a bipartite graph G = (X, Y, E)
and non-negative integers k1 and k2; the task is to decide whether there is a

biclique (X ′, Y ′) of G such that |X ′| = k1, |Y ′| = k2, X ′ ⊆ X and Y ′ ⊆ Y .

Noninduced Biclique: The input of the problem is a graph G = (V, E) and non-

negative integers k1 and k2; the task is to decide whether there is an non-induced

biclique (X ′, Y ′) of G such that |X ′| = k1 and |Y ′| = k2.

The best known exact algorithms for these problems run in time O(1.6914n) for the

NONINDUCED BICLIQUE problem and O(1.3006n) for the BIPARTITE BICLIQUE

problem; both needing only polynomial space [2].

Our Results. An algorithm solving the BICOLORED INDEPENDENT SET problem

in time O(1.2691n) (needing exponential space) is our main result. It is established

by combining a branching algorithm with a dynamic programming algorithm. The

time analysis of the overall algorithm is based on Measure & Conquer. This ap-

proach has been used to design and analyse exact exponential-time algorithms for

the dominating set problem [3,6].

Our algorithm solving the BICOLORED INDEPENDENT SET problem can be used to

establish an O(1.2691n) time algorithm solving the BIPARTITE BICLIQUE problem

and an O(1.6107n) time algorithm solving the NONINDUCED BICLIQUE problem.

Finally let us mention that all three algorithms can be modified such that they solve

the corresponding counting problem.

2 The main result

In the remainder of this extended abstracted we present our exact exponential algo-

rithm bis solving the BICOLORED INDEPENDENT SET problem.

Algorithm bis(G, k1, k2)

Input: Bicolored graph G = (R, B, E), non-negative integers k1 and k2

Output: Boolean variable being TRUE iff G has an independent set I
such that |I ∩ R| = k1 and |I ∩ B| = k2.

1 Choose a vertex v of maximum degree;

2 if d(v) ≤ 4 then
3 return bounded-pathwidth(G,k1, k2)

4 else

5 found← bis(k1,k2,G\{v})

6 if v ∈ R then
7 return bis(k1-1,k2,G\N [v]) ∨ found

8 else

9 return bis(k1,k2-1,G\N [v]) ∨ found

Our algorithm combines branching and dynamic programming. As long as the max-

imum degree of the instance of the current subproblem is at least 5 the algorithm

branches on a vertex v of maximum degree into two subproblems: in the first one

(line 5) it discards v, i.e. v is definitely excluded from the independent set (and

removed from the graph), in the second one (line 7 or 9) it takes v into the indepen-

dent set (and removes v and all its neighbors from the graph). The branching stops

when the maximum degree of the current graph G′ is at most 4. Then a standard

131

algorithm solving MAXIMUM INDEPENDENT SET on graphs given with a path-

decomposition of width ℓ in time O(2ℓ) (see e.g. [4]) is used. It is easy to modify it

such that it stores for any partial solution (often called characteristic) the number of

red and the number of blue vertices in a corresponding independent set. The mod-

ified dynamic programming algorithm bounded-pathwidth(G ′, k1, k2) com-

putes for input graph G′ (of maximum degree at most 4) all pairs (r, b) such that

G′ has an independent set with r red and b blue vertices in time O(2ℓ) and returns

TRUE iff (k1, k2) is among those pairs. Note that while the branching part needs

only polynomial space the dynamic programming algorithm requires exponential

space.

The correctness of the algorithm follows from the fact that the branching verifies

all possible cases and that the dynamic programming algorithm on any instance G ′

of a leaf of the search tree computes all possible pairs (b, r). But how to analyse the

running time of such a combined algorithm?

2.1 Simple Analysis

The branching on a vertex v with a degree at least 5 gives the following recurrence.

If we take v in the independent set, we can eliminate v and all its neighbours from

the graph, and search an independent set with k1−1 red vertices and k2 blue vertices

if v ∈ R, or an independent set with k1 red vertices and k2−1 blue vertices if v ∈ B.

Hence ∆select ≥ 6. If we don’t take v in the independent set, we remove v from the

graph and continue to search an independent set in G\{v} with k1 red and k2 blue

vertices. Hence ∆discard = 1. Consequently the branching vector is at least (1, 6)
and thus the running time is O(1, 2852n).

Consider a leaf G′ of the search tree of the branching algorithm, we use a dynamic

programming algorithm on a pathwidth decomposition of G ′. To analyse the run-

ning time we need an upper bound for the width of a path-decomposition of G ′.
Fomin et al. have shown in [3] that for all ε > 0 there exists an nε such that for all

graphs G of maximum degree 4 with n > nε holds: pw(G) ≤ n3

6
+ n4

3
+ εn, where

ni is the number of vertices of degree i. Furthermore such a path-decomposition of

width n3

6
+ n4

3
+ εn can be computed in polynomial time. Since G′ has maximum

degree 4 we obtain pw(G′) ≤ n
3

+ εn. Hence the running time is O(1, 26|V (G′)|) for

any leaf G′ of the search tree.

To analyse the overall algorithm let us consider all leaves G′ on h vertices. The

number of such leaves of the search tree is O∗(αn−h) (here α = 1, 2852) and

the dynamic programming on such a leaf runs in time O∗(βh) (here β = 1, 26).

Then as pointed out in [3] the overall running time is
∑n

h=0 O∗(αn−h · βh) =
O∗(max(α, β)n). Consequently our algorithm has running time O(1, 2852n).

2.2 Measure & Conquer analysis

A better upper bound on the worst-case running time can be achieved by using a

more sophisticated measure for instances of subproblems in the branching algo-

132

rithm. In the simple analysis the measure of a graph is the number of its vertices.

We use now the measure µ(G) =
∑

0≤i≤n(ni ·wi), where ni denotes the number of

vertices of degree i and 0 ≤ wi ≤ 1 for all i.

A careful analysis of the recurrences for branching on a vertex of degree at least 5
in a graph of measure µ, which are all of the type T (µ) = T (µ−∆select) + T (µ−
∆discard), establishes a running time of O(1.2691n) for the branching algorithm

using the weights given in the following table.

i 0 1 2 3 4 5 ≥ 6

wi 0 0.5386 0.8059 0.9233 0.9701 0.9999 1

For any µ, the number of leaves G′ of the search tree such that µ(G′) = µ is

O(1.2691n−µ). To upper bound the running time of the dynamic programming al-

gorithm we need to upper bound the maximum pathwidth of any graph of maxi-

mum degree 4 of measure µ. Using the approach of [3,6] we show that the dynamic

programming algorithm on a leaf G′ of measure µ runs in time O(1.2691µ). Com-

bining those bounds as in the simple analysis, one obtains that algorithm bis has

running time O(1.2691n).

References

[1] J. AMILHASTRE, M.C. VILAREM, P. JANSSEN, Complexity of minimum biclique

cover and minimum biclique decomposition for bipartite dominofree graphs, Discrete

Applied Mathematics 86 (1998), 125–144.

[2] D. BINKELE-RAIBLE, H. FERNAU, S. GASPERS, M. LIEDLOFF, Exact exponential-

time algorithms for finding bicliques, Information Processing Letters 110 (2010), 64–

67.

[3] F.V. FOMIN, S. GASPERS, S. SAURABH, AND A.A. STEPANOV, On two techniques

of combining branching and treewidth, Algorithmica 54 (2009), 181–207.

[4] F.V. FOMIN, D. KRATSCH, Exact Exponential Algorithms, Springer, Texts in Theo-

retical Computer Science, 2010.

[5] S. GASPERS, D. KRATSCH, M. LIEDLOFF, On independent sets and bicliques, Pro-

ceedings of WG 2008, LNCS 5344, Springer, Berlin, LNCS 5344, 2008, pp. 171–182.

[6] J.M.M. VAN ROOIJ, J. NEDERLOF, AND T.C. VAN DIJK, Inclusion/Exclusion Meets

Measure and Conquer, Proceedings of ESA 2009, LNCS 5757, Springer, Berlin, 2009,

pp. 554–565.

133

New Results for the Directed Network Diversion

Problem

Christopher Cullenbine, a R. Kevin Wood, b Alexandra Newman a

aDivision of Economics and Business, Colorado School of Mines, Golden, Colorado,

80401 USA

{ccullenb,newman}@mines.edu
bOperations Research Department, Naval Postgraduate School, Monterey, California,

93943 USA

kwood@nps.edu

Key words: network diversion, interdiction, s-t cut, NP-complete, vertex cover

1 Extended Abstract

The directed network-diversion problem (DND) seeks a minimum-weight, minimal

s-t cut in a directed graph that contains a pre-specified “diversion edge,” denoted

here by e′. Although straightforward to describe, this is an interesting and difficult

combinatorial optimization problem. We present an improved integer-programming

formulation (IP) for DND, and new, more precise results on its computational com-

plexity.

DND, and its undirected counterpart “UND,” arise in intelligence-gathering and

war-fighting scenarios. Curet [3] formulates DND as an IP and applies Lagrangian

relaxation to solve that IP approximately; see also [2]. Erken [4] solves DND by

enumerating near-minimum-weight s-t cuts. Yang and Park [9] create a tabu-search

heuristic for DND, and Cho [1] applies an IP-based cut-enumeration algorithm to

the formulation in [3].

2 A Stronger Integer-Programming Formulation

Section 3 presents new complexity results on DND, but the general problem is

known to be NP-hard [3]. An IP formulation is therefore appropriate, and we begin

with one; this also helps define the problems precisely.

Curet [3] describes an IP for DND, denoted here as P1, that consists of (a) a

standard minimum-weight s-t cut model (i.e, the linear-programming dual to the

maximum-flow problem), (b) a network-flow model that routes one unit of flow

along a directed s-t path containing e′, and (c) linking constraints that ensure that

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

the cut and path-flow intersect only at the diversion edge e′. If all edges in the min-

imum cut are interdicted (deleted or destroyed), except for the diversion edge, then

all communication from s to t must pass through e ′ where it can be exploited. One

might try to formulate DND without (b) and (c) and simply fix e′ to be a forward

edge of the minimum cut, but this may result in a non-minimal cut that disconnects

s from t entirely.

P1’s “single-commodity formulation” can be improved, however. In particular, the

LP relaxation of P1 allows flow around cycles containing e′, which our “two-

commodity formulation” P2 precludes:

Indices and Index Sets:

i ∈ V vertices; special vertices s, t ∈ V, s *= t, are also defined

e ∈ E directed edges; e = (i, j) with tail vertex i and head vertex j
e′, Ê e′ = (i′, j′) is the diversion edge, and Ê = E \ {e′}
E+

i (E−
i) set of edges with tail (head) vertex i

Parameters:

we interdiction weight for edge e, where we > 0 ∀e ∈ Ê, we′ ≡ 0
di (d̄i) ds = 1, di′ = −1 and di = 0 for i ∈ V − s − i′ (d̄j′ = 1, d̄t = −1 and

d̄i = 0 for i ∈ V − t − j′)
Variables:

αi 1 if vertex i ∈ S̄ of an identified cutset [S, S̄], 0 otherwise

βe 1 if edge e is interdicted (is a forward edge w.r.t. [S, S̄]), 0 otherwise

ye (ȳe) 1 if edge e lies on a path from s to i′ (from j ′ to t), and 0 otherwise

Formulation (P2): (all variables in {0, 1})

z∗ = min
∑

e∈E

weβe (1)

s.t. αi − αj + βe ≥ 0 ∀ e ∈ E (2)
∑

e∈E+
i

ye −
∑

e∈E−

i

ye = di ∀ i ∈ V (3)

∑

e∈E+
i

ȳe −
∑

e∈E−

i

ȳe = d̄i ∀ i ∈ V (4)

ye + ȳe + βe ≤ 1 ∀ e ∈ Ê (5)
∑

e∈E+
i

ye + αi ≤ 1 ∀ i ∈ V \{t} (6)

∑

e∈E+
i

ȳe − αi ≤ 0 ∀ i ∈ V \{s} (7)

βe′ ≡ 1, αs ≡ 0, αi′ ≡ 0, αj′ ≡ 1, αt ≡ 1 (8)

The objective function (1) minimizes the total weight of the interdicted edges. (As

in [3], we find that a small, symmetry-breaking path-length penalty, not shown, can

also be helpful here.) Constraints (2) coupled with fixed variables in (8) require the

identification of an s-t cut that contains e′. Constraints (3) require that one unit of

flow be routed from s to i′, while constraints (4) require that one unit of flow be

routed from j ′ to t. Constraints (5) require, with mutual exclusivity, that an edge

135

e ∈ Ê may define (a) part of a “flow-preserving path” from s to i′, (b) part of a

flow-preserving path from j ′ to t, (c) a forward edge of the s-t cut, or (d) none of

those three possibilities. Constraints (6) imply that flow on variables ye, from s to

i′, can pass only through vertices in S, and constraints (7) are analogous for flow

on variables ȳe in S̄. Constraints (6) and (7) are not strictly necessary, but help to

tighten the formulation in practice. The following proposition is clear.

Theorem 2.1 Formulation P2 for DND is at least as strong as P1.

Computational tests using CPLEX 12.1 on a fast workstation indicate that P2 is

much superior toP1. For instance, one planar model instance based on a rectangular

grid with |V | = 10,000, |E| = 39,800 and we ∈ {1, . . . , 5} for e ∈ Ê solves in

14 seconds with P2, but does not solve in under 3,600 seconds with P1. Another

instance of P2 solves in 92 seconds while no integer solution for P1 is found in

3,600 seconds. On a set of 10 test problems, P2 closes the average duality gap

observed for P1 by 18%, with a range of 3%-52%.

3 Computational Complexity

This section describes new results on the theoretical computational complexity of

DND, and to a lesser degree on UND. Proofs are omitted. We begin by noting that

Curet [3] actually defines DND with respect to a set of diversion edges E ′. That

is, he seeks to interdict a minimum-weight set of edges such that all s-t paths must

traverse at least one edge of E ′.

Theorem 3.1 DND defined for a set of diversion edges E ′ is polynomially equiva-

lent to DND defined for a single diversion edge e′.

Thus, no generality is lost by studying DND having only a single diversion edge;

in fact, the improved IP formulation P2 depends on this assumption.

Proposition 3.2 (See [3].) DND is NP-complete.

Curet [3] does not formally prove Proposition 3.2, but argues that DND is feasible if

and only if there exists a simple directed s-t path containing e′, and then applies the

fact that this “edge-restricted feasible-path problem” is an NP-complete instance of

the directed subgraph homeomorphism problem [5]. (See also [9].) The analogous

path problem for undirected graphs is solvable in polynomial time, so this result

implies nothing about UND’s complexity.

Using a transformation from the vertex-cover problem [6], we can prove the fol-

lowing stronger result and a corollary:

Theorem 3.3 DND is strongly NP-complete even when the diversion edge is inci-

dent out of s or into t.

The proof involves interdicting directed edges, of course, but undirected edges suf-

fice in the proof if diversion through e′ is accomplished by interdicting vertices

rather than edges. Thus, the following corollary results.

Corollary 1 The vertex-interdiction version of both DND and UND is strongly NP-

complete.

136

We are still investigating general instances of UND, but have shown that special

cases of both UND and DND are solvable in polynomial time.

Theorem 3.4 Both UND and DND are solvable in polynomial time in s-t planar

graphs.

Theorem 3.4 is shown by (a) creating a single-commodity flow model in the s-t
planar dual graph G∗ that moves one unit of “dual flow” from each of the dual

vertices in faces incident to e′ to a dual vertex in the outer face of G, and (b) places

a capacity of one on the flow through any dual vertex.

The related maximum-flow network-interdiction problem ([8], [7]) can be solved

in polynomial or pseudo-polynomial time in general directed or undirected planar

graphs, not just s-t planar ones. The solution algorithm involves finding an odd-

parity cycle in G∗ with respect to a simple s-t path in G. cycle in G∗ crosses the

path in G an odd number of times.) Interestingly, this technique seems to apply to

neither UND nor DND.

References

[1] Cho, D., 2009, “An optimization algorithm for the network diversion problem

using combinatorial Benders’ cut,” M.S. Thesis, Dept. of Industrial Engineer-

ing, Korea Advanced Institute of Science and Technology, Daejon, Korea.

[2] Cintron-Arias, A., Curet, N., Denogean, L., Ellis, R., Gonzalez, C., Oruganti,

S. and Quillen, P., 2000, “A network diversion vulnerability problem,” IMA

Preprint.

[3] Curet, N.D., 2001, “The network diversion problem,” Military Operations Re-

search, 6, 35–44.

[4] Erken, O., 2002, “A branch and bound algorithm for the network diversion

problem,” Master’s thesis, Operations Research Department, Naval Postgrad-

uate School, Monterey, California.

[5] Fortune, S., Hopcroft, J. and Wyllie, J., 1980, “The directed subgraph home-

omorphism problem,” Theoretical Computer Science, 10, 111–121.

[6] Karp, R., 1972, “Reducibility among combinatorial problems,” In Complexity

of Computer Computations, R. Miller and J. Thatcher, eds., Plenum Press,

85–103.

[7] Phillips, C.A., 1993, “The network inhibition problem,” In STOCâ 93: Proc.

of the 25th Annual ACM Symposium on Theory of Computing, ACM Press,

New York, NY, 776–785.

[8] Wood, R.K., 1993, “Deterministic network interdiction,” Mathematical and

Computer Modelling, 17, 1–18.

[9] Yang, H. and Park, S., 2004, “A tabu search algorithm for the network diver-

sion problem,” J. of the Military Operations Research Society of Korea, 30,

30–47.

137

A New Feasibility Pump-Like Heuristic for Mixed

Integer Problems

M. De Santis, S. Lucidi, F. Rinaldi

Dipartimento di Informatica e Sistemistica, Sapienza Universit̀a di Roma

Via Ariosto, 25 - 00185 Roma - Italy

{mdesantis,lucidi,rinaldi}@dis.uniroma1.it

Key words: Mixed integer programming, Concave penalty functions, Frank-Wolfe

algorithm, Feasibility Pump.

Many real-world problems can be modeled as Mixed Integer Programming (MIP)

problems, namely as minimization problems where some (or all) of the variables

only assume integer values. Finding a first feasible solution quickly is crucial for

solving this class of problems. In fact, many local-search approaches for MIP prob-

lems such as Local Branching [8], guide dives and RINS [6] can be used only if a

feasible solution is available.

In the literature, several heuristics methods for finding a first feasible solution for a

MIP problem have been proposed. Recently, Fischetti, Glover and Lodi [7] pro-

posed a new heuristic, the well-known Feasibility Pump, that turned out to be

very useful in finding a first feasible solution even when dealing with hard MIP

instances. The FP heuristic is implemented in various MIP solvers such as BON-

MIN [5].

The basic idea of the FP is that of generating two sequences of points {x̄k} and

{x̃k} such that x̄k is LP-feasible, but may not be integer feasible, and x̃k is integer,

but not necessarily LP-feasible. To be more specific the algorithm starts with a so-

lution of the LP relaxation x̄0 and sets x̃0 equal to the rounding of x̄0. Then, at each

iteration x̄k+1 is chosen as the nearest LP-feasible point in ℓ1-norm to x̃k, and x̃k+1

is obtained as the rounding of x̄k+1. The aim of the algorithm is to reduce at each

iteration the distance between the points of the two sequences, until the two points

are the same and an integer feasible solution is found. Unfortunately, it can happen

that the distance between x̄k+1 and x̃k is greater than zero and x̃k+1 = x̃k, and the

strategy can stall. In order to overcome this drawback, random perturbations and

restart procedures are performed.

As the algorithm has proved to be effective in practice, various papers devoted to

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

its further improvements have been developed. Fischetti, Bertacco and Lodi [3] ex-

tended the ideas on which the FP is based in two different directions: handling MIP

problems with both 0-1 and integer variables, and exploiting the FP information to

drive a subsequent enumeration phase. In [1], in order to improve the quality of the

feasible solution found, Achterberg and Berthold consider an alternative distance

function which takes into account the original objective function. In [9], Fischetti

and Salvagnin proposed a new rounding heuristic based on a diving-like procedure

and constraint propagation. Here we report a brief outline of the Feasibility Pump

basic scheme:

The Feasibility Pump (FP) - basic version

Initialization: Set k = 0, let x̄0 := arg min{cT x : Ax ≥ b}

While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k

Step 2 Compute x̃k = round(x̄k)
Step 3 If (cycle detected) perturb(x̃k)

Step 4 Compute x̄k+1 := arg min{∆(x, x̃k) : Ax ≥ b}
Step 5 Update k = k + 1

End While

An interesting interpretation of the FP has been given by J.Eckstein and M.Nediak

in [4]. In this work they noticed that the FP heuristic may be seen as a form of

Frank-Wolfe procedure applied to a nonsmooth merit function which penalizes the

violation of the 0-1 constraints:

min ψ(x)

s.t. Ax ≥ b

0 ≤ xj ≤ 1 ∀j ∈ I

where

ψ(x) =
∑

i∈I

φ(xi) =
∑

i∈I

min{xi, 1 − xi}.

In this paper, taking inspiration from [9], we propose the following merit functions:

Logarithmic function

φ(t) = min
{

λ1,1(t + ε), λ1,1[(1 − t) + ε]
}

;

Hyperbolic function

φ(t) = min
{

− (t + ε)−p,−[(1 − t) + ε]−p
}

;

Concave function

φ(t) = min
{

1 − exp(−αt), 1 − exp(−α(1 − t))
}

;

139

Logistic function

φ(t) = min
{

[1 + exp(−αt)]−1, [1 + exp(−α(1 − t))]−1
}

.

The use of these merit functions leads to a new FP scheme in which the ℓ1-norm

used for calculating the next LP-feasible point is replaced with a “weighted” ℓ1-

norm of the form

∆W (x, x̃) =
∑

j∈I

wj |xj − x̃j | = ‖W (x − x̃)‖1,

where

W = diag(w1, . . . , wn)

and

wk
j = |gk

j |

with gk ∈ ∂ψ(x̄k), where ∂ψ(x) belongs to the supergradient of the function ψ.

The main feature of the method is the use of an infeasibility measure that

- tries to discourage the optimal solution of the relaxation from being far from x̃
(similarly to the original FP algorithm);

- takes into account, in some way, the information carried by the LP-feasible points

obtained at the previous iterations of the algorithm for speeding up the conver-

gence to integer feasible points.

Here we report an outline of the algorithm:

Reweighted Feasibility Pump (RFP) - basic version

Initialization: Set k = 0, let x̄0 := arg min{cT x : Ax ≥ b}

While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k

Step 2 Compute x̃k = round(x̄k)
Step 3 If (cycle detected) perturb(x̃k)

Step 4 Compute x̄k+1 := arg min{‖W k(x − x̃k)‖1 : Ax ≥ b}
Step 5 Update k = k + 1

End While

This approach is extended to the case of general MIP problems where the use of

suitable nonsmooth merit functions allows us to penalize the violation of the integer

constraints.

Finally, a reported computational experience seems to indicate that the use of these

new merit functions can improve the FP efficiency.

140

References

[1] T. ACHTERBERG AND T. BERTHOLD. Improving the feasibility pump. Dis-

crete Optimization, 4, pp 77–86, 2007.

[2] E. BALAS, S. CERIA, M. DAWANDE, F. MARGOT, G. PATAKI. OCTANE: A

new heuristic for pure 0-1 programs. Operations Research, 49(2), pp 207–225,

2001.

[3] L. BERTACCO, M. FISCHETTI, AND A. LODI. A feasibility pump heuristic for

general mixed-integer problems. Discrete Optimization, 4, pp 63–76, 2007.

[4] J. ECKSTEIN AND M. NEDIAK. Pivot, cut, and dive: a heuristic for 0-1 mixed

integer programming. Journal of Heuristics, 13, pp 471–503, 2007.

[5] P. BONAMI, L.T. BIEGLER, A.R. CONN, G. CORNUEJOLS, I.E. GROSS-

MANN, C.D. LAIRD, J. LEE, A. LODI, F. MARGOT, N.SAWAYA AND A.

WAECHTER. An Algorithmic Framework for Convex Mixed Integer Nonlinear

Programs. IBM Research Report RC23771, To appear in Discrete Optimiza-

tion, in press.

[6] E. DANNA, E. ROTHBERG, C. LE PAPE. Exploring relation induced neigh-

borhoods to improve MIP solution. Mathematical Programming 102, 1, pp 71–

90, 2005.

[7] M. FISCHETTI, F. GLOVER, A. LODI. The Feasibility Pump. Mathematical

Programming, 104, pp 91–104, 2005.

[8] M. FISCHETTI, A. LODI. Local Branching. Mathematical Programming,

98(1-3), pp 23–47, 2003.

[9] M. FISCHETTI, D. SALVAGNIN. Feasibility pump 2.0. Mathematical Pro-

gramming Computation, 1, pp 201–222, 2009.

[10] F. GLOVER, M. LAGUNA. General purpose heuristics for integer program-

ming - part I. Journal of Heuristics, 3, 1997.

[11] F. GLOVER, M. LAGUNA. General purpose heuristics for integer program-

ming - part II. Journal of Heuristics, 3, 1997.

[12] S. LUCIDI, F. RINALDI. Exact penalty functions for nonlinear integer

programming problems. Journal of Optimization Theory and Applications

Vol.145(3), 479-488, 2010.

141

Continuous Reformulations for Zero-one

Programming Problems

M. De Santis, S. Lucidi, F. Rinaldi

Dipartimento di Informatica e Sistemistica, Sapienza Universit̀a di Roma

Via Ariosto, 25 - 00185 Roma - Italy

{mdesantis,lucidi,rinaldi}@dis.uniroma1.it

Key words: Zero-one programming, Concave functions, Continuous Programming.

Several important problems arising in operations research, graph theory and math-

ematical programming are formulated as 0-1 programming problems:

min cT x

x ∈ C

x ∈ {0, 1}n

where C is a convex set.

A possible approach for solving this class of problems can be that of transforming

the original problem into an equivalent continuous problem. Various transforma-

tions have been proposed in the literature (see e.g. [1]-[3], [10]-[12]). A well-known

continuous reformulation comes out by relaxing the integrality constraints on the

variables and by adding a penalty term ψ(x) to the objective function:

min cT x + ε ψ(x)

x ∈ C

x ∈ [0, 1]n

where ε is a positive parameter. This approach has been first introduced by

Raghavachari [13] to solve 0-1 linear programming problems, then extended by

Giannessi and Niccolucci [6] to general nonlinear integer programming problems.

Many other reformulations related to the one by Raghavachari have been proposed

in the literature (see e.g. [4],[7]-[9], [14] and [16]).

An important theoretical result is that, under weak assumptions, there exists a

threshold value ε̄ > 0 of the penalty parameter ε such that, for any ε ∈ (0, ε̄], any

solution of the continuous problem is also a solution of the related binary problem

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

(see e.g. [9]).

In this paper, we consider convex sets C satisfying some specific assumptions and

we show that:

- a value ε̄ > 0 that guarantees the equivalence between the original integer

problem and its continuous reformulation can be explicitly calculated;

- a different continuous reformulation for solving 0-1 programming problems (ob-

tained by relaxing the integrality constraints on the variables and by making a

nonlinear transformation of the variables in the objective function) can be de-

fined.

In particular, the new continuous reformulation assumes the following form:

min f(x)

s.t. x ∈ C

0 ≤ x ≤ e

where

f(x) =
n

∑

i=1
ci>0

ci gi(xi) +
n

∑

i=1
ci<0

|ci| gi(xi) +
n

∑

i=1
ci=0

gi(xi) −
n

∑

i=1
ci<0

|ci|,

and gi : [0, 1] → R, i = 1, . . . , n are continuous concave functions.

Starting from the ideas developed in [5], we propose various examples of functions

gi. First of all, we denote

c̃ =
(n + 1) maxi |ci| +

∑

i |ci|

mini |ci|

and we define two values xl and xu as follows:

xl = inf
x∈S

l(x),

xu = sup
x∈S

u(x),

where S ⊂ [0, 1]n is the set of extreme points of the feasible set of the continuous

reformulation and

l(x) =











min{xi : i = 1, . . . , n; xi *= 0} if x *= 0

1 if x = 0;
(1)

u(x) =











max{xi : i = 1, . . . , n; xi *= 1} if x *= e

0 if x = e.
(2)

143

Now we can define the functions gi to be used in the continuous reformulation:

Case ci > 0 :

gi(t) = min
{

γ1+ φ(t), 1 + γ2+ φ(1 − t)
}

, (3)

γ1+ >
c̃

φ(xl)
, γ2+ >

c̃ − 1

φ(1 − xu)
; (4)

Case ci < 0 :

gi(t) = min
{

1 + γ1− φ(t), γ2− φ(1 − t)
}

, (5)

γ1− >
c̃ − 1

φ(xl)
, γ2− >

c̃

φ(1 − xu)
; (6)

Case ci = 0 :

gi(t) = min
{

γ0 φ(t), γ0 φ(1 − t)
}

, (7)

γ0 > max







n maxi |ci| +
∑

i |ci|

φ(xl)
,
n maxi |ci| +

∑

i |ci|

φ(1 − xu)







; (8)

with φ : R → R a strictly increasing, concave function such that φ(0) = 0.

By choosing functions gi equal to (3), (5) and (7), we can prove that a binary prob-

lem and the continuous reformulation are equivalent.

Finally, we report a numerical comparison between our approach and the one based

on the exact penalty reformulation.

References

[1] ABELLO, J., BUTENKO, S., PARDALOS, P.M., RESENDE, M.,Finding inde-

pendent sets in a graph using continuous multivariable polynomial formula-

tions. J. Glob. Optim. 21, 111-137, 2001.

[2] BALASUNDARAM, B., BUTENKO, S.,Constructing test functions for global

optimization using continuous formulations of graph problems. Optim. Meth-

ods Softw. 20, 439-452, 2005.

[3] HORST, R., PARDALOS, P.M., THOAI, N.V.,Introduction to Global Optimiza-

tion 2nd edn. Kluwer, Dordrecht, 2000.

[4] BORCHARDT M., An Exact Penalty Approach for Solving a Class of Mini-

mization Problems with Boolean Variables. Optimization. 19(6), pp. 829-838,

1988.

144

[5] M. DE SANTIS, S. LUCIDI, F. RINALDI. New Concave Penalty functions for

improving the feasibility pump. Department of Computer and System Sciences

Antonio Ruberti Technical Reports, Vol.2(10), 2010.

[6] GIANNESSI F., NICCOLUCCI F., Connections between nonlinear and integer

programming problems. Symposia Mathematica, Academic Press, New York ,

Vol. 19, pp. 161-176, 1976.

[7] KALANTARI B., ROSEN J.B., Penalty Formulation for Zero-One Integer

Equivalent Problem. Mathematical Programming, Vol. 24, pp. 229-232, 1982.

[8] KALANTARI B., ROSEN J.B., Penalty Formulation for Zero-One Nonlinear

Programming. Discrete Applied Mathematics, Vol. 16(2), pp. 179-182, 1987.

[9] S. LUCIDI, F. RINALDI. Exact penalty functions for nonlinear integer pro-

gramming problems. J Optim Theory Appl Vol. 145, pp. 479-488, 2010.

[10] MANGASARIAN, O.L., Knapsack Feasibility as an Absolute Value Equation

Solvable by Successive Linear Programming.Optim. Lett. Vol. 3(2), 2009.

[11] MURRAY W., NG K. M., An algorithm for nonlinear optimization prob-

lems with binary variables. Computational Optimization and Applications, Vol.

47(2), 257-288, 2010.

[12] PARDALOS P. M., PROKOPYEV O. A., BUSYGIN S., Continuous Ap-

proaches for Solving Discrete Optimization Problems. Handbook on Modelling

for Discrete Optimization, Springer US, Vol. 88, pp. 39-60, 2006.

[13] RAGHAVACHARI M., On Connections Between Zero-One Integer Program-

ming and Concave Programming Under Linear Constraints, Operation Re-

search Vol. 17(4), pp. 680-684, 1969.

[14] RINALDI F. New results on the equivalence between zero-one programming

and continuous concave programming, Optimization Letters, Vol. 3(3), 377–

386, 2009.

[15] ROCKAFELLAR T., Convex Analysis, Princeton University Press, 1970.

[16] ZHU W. X., Penalty Parameter for Linearly Constrained 0-1 Quadratic Pro-

gramming, Journal of Optimization Theory and Applications, Vol. 116(1), pp.

229-239, 2003.

145

The maximum labeled clique problem

Paolo Dell’Olmo, a Raffaele Cerulli, b Francesco Carrabs b

aDepartment of Statistic Sciences, Sapienza University of Rome, Italy.

paolo.dellolmo@uniroma1.it

bDepartment of Mathematics, University of Salerno, Italy.

{raffaele,fcarrabs}@unisa.it

Key words: Clique, Edge Labeled Graph, Budget Constraint

1 Introduction

The maximum clique problem may be called one of the most important combina-

torial optimization problem, with application in many real world situations. In this

paper we study a variant of the maximum clique problem, namely, the Maximum

Labeled Clique problem (MLC). Given a graph G with a label (color) assigned to

each edge (not necessarily properly) we look for a clique of G as large as possible

but with the minimum number of different edge labels. Moreover, the number of

usable labels is limited by a fixed constant (budget) as will be described later in the

mathematical formulation.

The problem has several applications, among others, in telecommunication and so-

cial networks. For example, let us consider a telecommunication network where the

connections belong to different companies, each one identified by a different label.

Our aim is to localize the maximum number of nodes connected with each other

where to place mirroring servers. These servers share the same information and the

direct connection with each other guarantees that when a server falls down the oth-

ers remain synchronized. Since the use of connections have to be paid to the owner

company, a second aim is to minimize the number of labels used for the connec-

tions. However, there is even a budget that bounds the number of different labels

usable. Then our problem is to find a maximum clique with the minimum number of

labels without exceeding the budget available. A further application may be found

in social network environment. Examples of application of graph analysis to social

networks are given [14] where nodes represent persons and undirected edges repre-

sent a generic realtionship among individuals (communication, friendship, working

cooperation and so on). In this context, cliques represent groups of individuals mu-

tually connected by the mentioned relation. The label of edges may represent the

specific topic or argument which motivated the communication. Hence, a (maxi-

mum) clique with a small number of labels corresponds to the largest group (mu-

tually connected) with small etherogeneity on the excanged subjects, i.e. largest

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

”most focused” group on a single idea. The study of such structures on the web

and organizational communities (e.g. large corporate groups) is also motivated by

the need of identifing new business or management opportunities by analysing the

people behaviour by means of the corresponding graphs.

In this paper we provide a formulation of the problem, analyze its complexity and

introduce a heuristic approach that computes feasible solutions for the problem ex-

ploiting the information concerning edge colors and budget constraint. The exact

solutions provided by model are used to verify the efficacy of our heuristic. More-

over, the performances of algorithms are experimentally evaluated on a wide set of

instances.

A number of problems with labeled graphs have been studied in recent years. One

such problem is the Minimum Label Spanning Tree (MLST) Problem, in which a

spanning tree with the minimum number of labels is sought over a labeled graph.

The problem was introduced in [4,5]. Heuristics for the problem have been dis-

cussed, for instance, in [10]. Other works involving classic combinatorial optimiza-

tion problems defined on labeled graphs include the Minimum Label Steiner Tree

Problem discussed in [11], the Minimum Label Generalized Forest Problem dis-

cussed in [4], the Minimum Label Path Problem studied in [12] and the Labeled

Maximum Matching Problem in [13]. At the best of our knowledge, the MLC prob-

lem has not been studied before.

2 Definitions and Notations

Let G = (V, E, L) a labeled, connected and undirected graph where V denotes the

set of n vertices, E the set of m edges and L the set of labels associated to the

edges. Let us define the function c : E → L that given an edge (i, j) returns its

color. Given a subset X ⊆ V of vertices, we define X̄ = V \X its complementary

set. Moreover, we denote by G[X] the subgraph of G induced by the set of vertices

X. Formally, G[X] = (X, E[X], L[X]) where E[X] = {(i, j) ∈ E : i, j ∈ X}
and L[X] = {l ∈ L : ∃(i, j) ∈ E[X] with c(i, j) = l}. The Maximum

Labeled Clique problems (MLC) consists to find a maximal complete subgraph

G′ = (V ′, E[V ′], L[V ′]) of G with the minimum number of different colors and

such that |L[V ′]| ≤ b, with b ∈ Z+ and b ≤ L. The MLC is a generalization of

the Maximum Clique (MC) problem. Indeed, this last problem can be seen as a

MLC where |L| = 1 and b ≥ 1. However, it is interesting to notice that the polyno-

mial cases of MC not necessary are polynomial for the MLC. For instance, the MC

problem is solvable in polynomial time on perfect graphs and in particular on these

graphs there are polynomial algorithms that enumerate all the maximal cliques.

This means that in polynomial time it is possible to find the maximum clique with

the minimum number of colors by these enumerating algorithms. However, because

of constrains on budget b, this solution could be infeasible for MLC.

In the following are introduced the formulation and a brief description of heuristic.

The set of variables for the MLC formulation are:

147

• binary variable xi for each i ∈ V that assumes value 1 if the vertex i is selected

and 0 otherwise;

• binary variable yl for each l ∈ L that assumes value 1 if there is at least an edge

which color is l in G′ and 0 otherwise.

Moreover, let al
ij = 1 if c(i, j) = l. Then, the formulation of MLC is the following:

max |L|
∑

v∈V

xv −
∑

l∈L

yl (1)

∑

l∈L

yl ≤ b (2)

xi + xj ≤ 1 ∀(i, j) ∈ Ē (3)

al
ij(xi + xj)≤ yl + 1 ∀(i, j) ∈ E, l ∈ L (4)

xi ∈ {0, 1} ∀i ∈ V (5)

yl ∈ {0, 1} ∀l ∈ L (6)

The objective function (1) of the formulation shown above requires to maximize the

difference between the number of nodes selected and the number of colors inside

the clique inducted by these nodes. The first sum is multiplied for number of colors

because the primary objective of the problem is to maximize the number of nodes

selected. This means that we prefer a clique with k nodes and p > 1 colors instead

that a clique with k−1 nodes and 1 color. Constraint (2) guarantee that the number

of colors inside the clique selected do not exceeed the budget b. Constraints (3)

ensure that two nodes xi and xj can be selected only if exists the edge (xi, xj) in

G. Constraints (4) ensure that yl is equal to 1 if and only if in the clique there is an

edge (xi, xj) such as c(xi, xj) = l. Finally, constraints (5) and (6) require that xi

and yl are binary variables.

Regarding the heuristic approach it is derived from most efficient heuristics pro-

posed in literature [1,2,3,6,7,8,9] for the MC problem. The heuristic is divided in

two phases: expansion and improvement.

Into the first phase the aim is to maximize the number of vertices inside the clique

obviously respecting the budget constraints. To this end, the algorithm sorts the ver-

tices taking in account for each vertex: its degree, the degree of its neighbor and the

number of colors incident to it. Later, it inserts the vertices inside the current clique

(initially empty) according to previous sorting and checking that the new subgraph

produced is again a clique. Once completed the insertion of vertices, it is carried

out a local search to increase the cardinality of current clique.

Obtained the maximal clique from first phase, in the second phase is applied lo-

cal search to reduce the number of colors present in it. During the local search the

cardinality of clique never changes. However, alternating phases of plateau (same

cardinality, same colors but at least a different node) and reduction (same cardinal-

ity,less colors) are carried out.

148

References

[1] R. Battiti and M. Protasi Reactive Local Search for the Maximum Clique

Problem. Algorithmica, 29, 610-637, (2001).

[2] R.Battiti and F. Mascia Reactive Local Search for the Maximum Clique Prob-

lem: a new implementation. Technical Report, (2007).

[3] S. Busygin A new trust region technique for the maximum clique problem.

Internal report, http://www.busygin.dp.ua.

[4] H. Broersma and X. Li. Spanning trees with many or few colors in edge-

colored graphs. Discussiones Mathematicae Graph Theory, 17(2), (1997),

259-269.

[5] R.S. Chang and S.J. Leu. The minimum labeling spanning trees. Information

Processing Letters, 63(5), (1997), 277-282.

[6] W. Pullan, H.H. Hoos Dynamic Local Search for the Maximum Clique Prob-

lem. Journal of Artificial Intelligence Research, 25, (2006), 159-185

[7] A.Grosso, M. Locatelli, F.D. Croce, Combining swaps and node weights in

an adaptive greedy approach for the maximum clique problem. Journal of

Heuristics, 10, (2004), 135-152.

[8] K. Katayama, A. Hamamoto, H. Narihisa An effective local search for the

maximum clique problem, Information Processing Letters, 95 Issue 5, (2005)

[9] S. Fenet and C. Solnon Searching for Maximum Cliques with Ant Colony

Optimization Lecture Notes in Computer Science, Volume 2611/2003, 291-

302, (2003)

[10] R. Cerulli, A. Fink, M. Gentili, and S. Vos. Metaheuristics comparison for the

minimum labelling spanning tree problem. In B. Golden, S. Raghavan, and

E. Wasil, editors, The Next Wave in Computing, Optimization, and Decision

Technologies, 93-106. Springer, 2005.

[11] R. Cerulli, A. Fink, M. Gentili, and S. Voss. Extensions of the minimum la-

belling spanning tree problem. Journal of Telecommunication and Informa-

tion Technology, 4, 39-45, (2006).

[12] R.D. Carr, S. Doddi, G. Konjedov, and M. Marathe. On the red-blue set cover

problem. In 11th ACM-SIAM Symposium on Discrete Algorithms, 345-353,

(2000).

[13] F. Carrabs, R. Cerulli, M. Gentili. The Labeled Maximum Matching Problem.

Computers & Operations Research, 36(6), 1859-1871, (2009).

[14] S. Wasserman, K. Faust. Social network analysis: methods and applications.

Cambridge University Press, (1999).

149

Pickup and Delivery Problem with Incompatibility

Constraints

Pablo Factorovich, Isabel Méndez-Dı́az, Paula Zabala

Departamento de Computación - FCEyN, Universidad de Buenos Aires and CONICET

{pfactoro,imendez,pzabala}@dc.uba.ar

Key words: pickup and delivery problem, incompatibilities, routing

1 Introduction

In the Asymmetric Single Vehicle One-to-One Pickup and Delivery Problem With-

out Time Windows nor Capacity Constraints (PDP herein), there is a set of requests

and a vehicle must follow a route that starts at a source depot,

accomplishes all the requests and finishes at an end depot. Each request consists

in a transportation task from a pickup node to a delivery node, being each of those

pairs potentially different for each task. As a consequence of this, the activities es-

tablish precedences between the nodes. The goal of the problem is to find a route

of minimum cost satisfying the collection of precedences given by the requests.

Pickup and delivery problems have a large set of applications in routing problems,

but we can emphasize their use in door-to-door courier service and transportation

for handicapped people.

As far as we know, there are no articles on this particular version of the problem;

however, for the symmetric version we found few articles (among which, the recent

[2]). For a survey on similar problems see [1].

A different scenario arises for the transportation of certain incompatible goods like

food and detergents or hazardous materials. This situation is considered in legisla-

tion all around the world. The proposed solutions for routing incompatible goods

use different trucks or specialized vehicles with compartments to serve nodes in

conflict. The former is inefficient and the latter requires more expensive vehicles

(and it could still be dangerous in case of accident).

In this work, we propose to use the same vehicle for accomplish the tasks and

simply forbid routes including incompatible goods on the vehicle at the same time.

We will name this problem Pickup and Delivery Problem with Incompatibilities

" This work is partially supported by UBACyT X143 and PICT 1600
1 Work partially supported by YPF foundation and EADIC (Erasmus Mundus)

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

(PDPwI herein). We were not able to find this problem in the scientific literature

(we just were able to find a patent [3]).

If we consider instances where every pair of goods is incompatible, we have an

ATSP instance since every pick have to be followed by its delivery in a feasible

solution. In addition, we have also proved that PDPwI generalizes Vertex Color-

ing problem (VC). Since PDP, ATSP and VC can be polynomially reduced to our

problem, PDPwI is NP-hard.

2 Mathematical formulations

First, we give a formal definition of PDP. Let n be the number of requests and

G = (VG, EG) a directed graph where VG = {0, ..., 2n + 1} is the node set and EG

the arc set, each arc having a positive cost. Nodes 2n and 2n + 1 represent source

and target depots respectively. The sets P = {0, ..., n−1} and D = {n, ..., 2n−1}
denote the pickup and delivery sets respectively. Requests are pairs (i, i+n), where

node i ∈ P and i + n ∈ D.

The goal of the problem is to find the minimum cost Hamiltonian path among those

starting from 2n, finishing at 2n+1 and following the pickup-delivery precedences.

In PDPwI we add an incompatibility undirected graph I = (VI , EI) to the in-

stances, where VI = P and (i, j) ∈ EI iff goods picked at i and j cannot be on the

vehicle at the same time.

We have implemented 4 models for this problem. The first one (2iFM) is a variation

of the model used in [2] obtained by adding the following constraints to forbid paths

with incompatibilities:

X(T)≤ |T |− 2 ∀T ⊂ P ∪ D : ∃i, j ∈ T ∩ P : (i, j) ∈ EI , (i + n), (j + n) /∈ T

The second and third models (PV1 and PV2) use bi,j binary variables which take

value 1 iff node i is before node j in the solution and are based on models proposed

in [5] and [4] respectively. Clearly we need to set bi,i+n = 1 in a pickup and delivery

context and we have to add to the model the following equalities to account the

incompatibilities

bi,j = bi+n,j ∀(i, j) ∈ EI

bi,j = bi+n,j+n ∀(i, j) ∈ EI , i < j

Finally, we have developed a model based on new binary variables zi,j, being 1
iff j ∈ {i, i + n} or j is in the path from i to its delivery i + n. To consider

incompatibilities, we just have to set zi,j = 0 for (i, j) ∈ EI . The proposed model

(ITVM) is obteined adding to an ATSP formulation –based on the classical one for

TSP introduced by Dantzig, Fulkerson and Jhonson (1954)– the following

xi,j + zk,i ≤ zk,j + 1 ∀i, j ∈ VG, k ∈ P ; j *= i, i + n, k, k + n; i *= k + n

xi,j + zk,j ≤ zk,i + 1 ∀i, j ∈ VG, k ∈ P ; j *= i, i + n, k; i *= k, k + n

151

To test the above 4 formulations we took PDP instances in “Set 1” of [2]. From this

set, we used the 10 instances with 10 and 15 tasks (22 and 32 nodes respectively).

For every PDP instance and every percentage K in the set{10%, 25%, 50%, 70%},

we generated 5 different instances adding random incompatibility graphs with K%
of density. In conclusion, we have built 200 instances.

Our models have been tested in the context of a Branch and Cut approach using

CPLEX 10.1 on a 1Ghz processor. Results show that ITVM clearly outperforms the

other models on instances with high incompatibility and, disregarding the density

of I , the larger the |P |, the better it performs in comparison to PV1, PV2 and 2iFM.

Regarding these results, we decided to study the ITVM polyhedron.

3 Polyhedral analysis

For PDPwI we have found the equalities below:

zi,j + zj,i = zi,j+n + zj,i+n ∀(i, j) /∈ EI

xi,j = zi,j ∀(i, j) /∈ EI , dI(i) = n − 2

xj+n,i+n = zi,j+n ∀(i, j) /∈ EI , dI(i) = n − 2

xj,i+n + zi,j+n = zi,j + xi,j+n ∀(i, j) /∈ EI , i < j, dI(i) < n − 2, dI(j) < n − 2,

P − {i, j} = Γ(i)I ∪ Γ(j)I

zi,j + xk+n,i+n = xi,j + zi,k+n ∀i : dI(i) = n − 3,

(i, j), (i, k) /∈ EI , j < k, (j, k) ∈ EI

We have proved that when EI = ∅ (PDP) the first equation and the constraints of the

assignment problem constitute the minimal equation system (the remaining sets are

empty). Therefore, in this case the dimension of the polyhedron is 11
2
n2 − 13

2
n− 1.

We have also proved that, for the general case, equalities listed above form the

minimal equation system.

Finally, we have found 3 families of valid cuts whose size is O(n), 12 with size

O(n2) and 8 with size O(n3). As an example, we provide these families:

zi,j + zj,i + xj+n,i + xi+n,j ≤ 1 ∀i, j ∈ P, i *= j, (i, j) /∈ EI

zi,j + zj,k + zk,i + xi,k + xi+n,j + xj+n,k + xk+n,i ≤ 2 ∀i, j, k ∈ P, i *= j, k *= i, k *= j,

(i, j), (j, k), (k, i) /∈ EI

zi,k + zj,k + xk,j + xk,i ≤ 1 ∀i, j ∈ P, i *= j,

k ∈ P/{i, j} ∪ D/{i + n, j + n},

(i, j) ∈ EI , (j, k), (k, i) /∈ EI

4 Branch and Cut

A subset of 8 families of cuts with size O(n2), the 8 with size O(n3) and all the

equalites, proved to be useful in the context of an exact algorithm. We added the

152

quadratic families to the model and the cubic ones through a separation procedure;

results can be seen in the second column of table 1.

We have also developed a primal heuristic consisting in a greedy constructive phase

followed by a local search. First phase builds a feasible solution “close” to the lin-

ear relaxation vector. Neighborhood for local search is defined by moving every

possible node to every feasible position. The first phase has been implemented in

O(n3) and local search iterations in O(n2). The heuristic found the optimum in

the large majority of the instances (performing also very well in the remaining in-

stances) and the best solution was found in the first 10% of nodes of the decision

tree in average. The improvement on the dual bounds using the cutting planes, com-

bined with primal bounds found with the heuristic, proved to be useful to reduce

the number of explored nodes in the decision tree. Results can be seen in the third

column of table 1.

Without cuts nor heur. With cuts and without heur. With cuts and heur.

Inc.(%) Time(s) #Nodes Time(s) #Nodes Time(s) #Nodes

10 1010,6 20423,64 863,36 16598,6 402,64 3195,84

25 339,08 10153,52 271,92 7519,84 129,44 1844,64

50 16,96 1157,08 19,12 979,24 11,96 407,24

70 0,6 121,94 1,04 108,92 0,52 43,18

Table 7. Average nodes and solution times using cuts and primal heuristic on instances of

10 tasks

References

[1] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia and G. Laporte, Static Pickup

and Delivery Problems: A Classification Scheme and Survey, TOP, 15, 1–31,

(2007).

[2] I. Dumitrescu, S. Ropke, J.-F. Cordeau and G. Laporte, The Traveling Sales-

man Problem with Pickup and Delivery: Polyhedral Results and a Branch-

and-Cut Algorithm, Math. Program. Series A, 121, 269–305 (2010).

[3] X. Feng, Formal sequential lagrangian algorithm for large scale resource

scheduling optimization, US Patent 2006/0089863 A1 (2006)

[4] L. Gouveia and J.M. Pires, The asymmetric travelling salesman problem and

a reformulation of the Miller-Tucker-Zemlin constraints, European J. Oper.

Res., 112, 134–146, (1999).

[5] S.C. Sarin, H.D. Sherali and A. Bhootra, New tighter polynomial length for-

mulations for the asymmetric travelling salesman problem with and without

precedence constraints, Oper. Res. Lett., 33, 62–70, (2005).

153

Representations of Power Series over Word Algebras

Ulrich Faigle, a Alexander Schönhuth b

aMathematical Institute, University of Cologne, Weyertal 80, 50931 Köln, Germany

bCentrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, Netherlands

Key words: power series, representation, equivalence, automata, Markov chain

1 Introduction

We introduce a combinatorial model of power series that admit linear representa-

tions in a general sense. In particular: we establish a generic approach to obtain

efficient tests for equivalence for power series with finite-dimensional representa-

tions and show how the equivalence problems for hidden Markov chains and non-

deterministic finite automata of degree ≤ k may be solved, for example. The latter

have been extensively discussed in the literature, but were tackled by different ap-

proaches [4,1]. Our contribution can be seen as part of a general effort to analyze

stochastic/statistical models with algebraic techniques (cf. [2]).

2 Word algebras and power series

Think of the non-empty set X as an alphabet with letters x ∈ X . A finite string

w = x1 . . . xt of (not necessarily pairwise different) letters xi ∈ X is a word of

length |w| = t. X t denotes the set of all words of length t with X 0 = {!} in

particular. The collection

X∗ :=
⋃

t≥0

X t

of all words is a semigroup (with neutral element !) under the concatenation op-

eration (v, w) <→ vw. A power series (over the field K) is an element f ∈ KX∗

,

which may be denoted as a formal sum

f =
∑

w∈X∗

fww (fw ∈ K).

For notational convenience, we also express the coefficients of a power series f as

f(w) := fw (i.e., we take the view of a function f : X∗ → K).

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

3 Representations

Let V be a K-vector space L(V) the vector space of linear operators on V . A V -

representation of the word algebra X∗ arises from a map σ : X → L(V) that

may be extended to all of X∗. Denoting the image of x ∈ X by σx, we define the

induced covariant representation σ : X∗ → L(V) by

(1) σ! := id.

(2) σw = σx1x2...xt := σx1 ◦ σx2 . . . ◦ σxt for all words w = x1 . . . xt ∈ X∗.

Notice that the covariant representation σ is a semigroup homomorphism:

σuv = σu ◦ σv (u, v ∈ X∗).

The dimension of the V -representation σ is defined as the dimension of V :

dim σ := dimK V

In the finite-dimensional case dim σ = n < ∞, there is no loss of generality to

think of V as the n-dimensional parameter space Kn and of the operators σw as

(n × n)-matrices [σw
ij] with coefficients σw

ij ∈ K.

3.1 Representations of power series

Let σ : X∗ → L(V) be a representation on some K-vector space V . Choose fur-

thermore a vector π ∈ V and a linear functional γ : V → K. Then (σ, γ, π) defines

a power series f(σ, γ, π) ∈ K[X] with coefficients

fw = γ(σw(π)) (w ∈ X∗). (1)

We say that (σ, γ, π) is a representation of the the power series f = f(σ, γ, π) and

we refer to dim σ as the dimension of the representation (σ, γ, π).

4 Examples

We give two examples of relevant power series representations.

Ex. 1 (Hidden Markov chains) Let M be an (n×n)-matrix with real coefficients

mij ≥ 0 and column sums
∑

i mij = 1. Let π ∈ Rn be a non-negative vector with

component sum 1. (M, π) describes a random walk on N = {1, . . . , n} that starts

with the empty word ! at time t = 0, then moves to j1 with probability πj1 at time

t = 1 and subsequently to j2 with probability mj1j2 at time t = 2 and so on.

Let ϕ : N → X be an arbitrary (but fixed) function. Then the random walk induces

a stochastic process (Xt), where Xt = ϕ(j) if the random walk has reached j ∈ N

155

at time t. So the elements j ∈ N can be viewed as the ”hidden” states of the process

(Xt) as they can be observed only indirectly through the symbol ϕ(j) they produce.

Let Sx = [sx
ij] be the (n × n)-matrix given by

sx
ij :=











mij if ϕ(j) = x

0 otherwise.

With 1 := [1, 1, . . . , 1]T being the sum of the unit vectors ei ∈ Rn,

P = ({Sx | x ∈ X}, 1T , π)

is an n-dimensional representation of the probability function p of the stochastic

process (Xt) by virtue of

p(x1x2 . . . xt) = Pr{X1 = x1, X2 = x2, . . . , Xt = xt} = 1T (Sxt . . . Sx1)π.

Ex. 2 (Non-deterministic Finite Automata) Let A = (S, X, δ, s0, F) be a non-

deterministic finite automaton (NDFA) (see e.g. [4] for detailed definitions).

We write i = 1, ..., |S|. Given a NDFA, consider the matrices Tx ∈ {0, 1}S×S for

all x ∈ X , defined by

(Tx)ij =







1 j ∈ δ(i, x)

0 else

Without loss of generality, let s0 = 1. Let ej ∈ RS, j = 1, ..., |S| be the canonical

basis vectors of RS and

eF :=
∑

i∈F

ei.

It then follows from a straighforward proof by induction on the word length |v| that

eT
1 Tx1 · ... · Txn

eF

is the number of accepting paths for v = x1...xn. That is

({Tx, x ∈ X}, eT
1 , eF) represents

∑

u∈X∗

fuu

where fu the number of accepting paths for u in A.

5 Equivalence of representations

It is quite possible that two different representations F = (σ, γ, π) and F ′ =
(σ′, γ′, π′) determine the same power series f ∈ K[X]. The equivalence problem

is:

(EP) Decide whether the representations F and F ′ determine the same power

series.

156

We show that the equivalence problem can be solved efficiently under the following

assumptions:

(1) X is finite and the representations F and F ′ are finite-dimensional with

dim F = n and dim F ′ = n′.
(2) F is presented by an explicit set {σx | x ∈ X} of (n × n)-matrices σx over

the field K and parameter vectors γ, π ∈ Kn.

(3) F ′ is presented by an explicit set {(σ ′)x | x ∈ X} of (n′ × n′)-matrices (σ′)x

over the field K and parameter vectors γ ′, π′ ∈ Kn′

.

In particular, we can show:

Theorem 5.1 The equivalence problem for presentations F and F ′ can be solved

by an algorithm whose number of arithmetic operations is bounded by a polynomial

in max{dim(F), dim(F ′)} and |X|.

References

[1] U. FAIGLE AND A. SCHÖNHUTH, “Efficient tests for equivalence of hidden

Markov processes and quantum random walks”, IEEE Transactions on Infor-

mation Theory, to appear, 2011.

[2] L. PACHTER AND B. STURMFELS, Tropical geometry of statistical models,

Proc. Proc. Nat. Academy of Sciences 101 (2004), 16132.16137.

[3] M. DRTON, B. STURMFELS AND S. SULLIVANT, Lectures on Algebraic

Statistics, Oberwolfach Seminar Series 39, Birkhäuser 2009.

[4] R.E. STEARNS AND H.B. HUNT III, “On the Equivalence and Containment

Problems for Unambiguous Regular Expressions, Regular Grammars and Fi-

nite Automata”, SIAM J. Comp., 14(3), p. 598–611, 1985.

157

The Boat and Barge Routing Problem

Mette Gamst, a Niels Kjeldsen b

aUniversity of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

bUniversity of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

DONG Energy, Kraftvaerksvej 53, DK-7000 Fredericia, Denmark

Key words: BBRP, VRPTW, TTRP, column generation

1 Introduction

The thermal power plants in Denmark need to be refueled at regular intervals to

ensure stable and reliable production of electricity. Fuel (typically coal) for the

power plants is delivered from overseas to two central depots in Denmark, from

here the fuel is distributed to the power plants by an internal fleet of tug boats and

barges. The fuel is loaded into a barge which is then pulled by a tug boat to a power

plant harbor where the barge is unloaded. During the loading and unloading period

the tug boat is not needed and can service other deliveries. Barges cannot move on

their own. The internal fleet does not always have the capacity to service all power

plants, in these cases an external delivery can be made at a significantly higher cost.

The Barge and Boat Routing Problem (BBRP) shares similarities with the Vehicle

Routing Problem with Time Windows (VRPTW), see e.g. Toth and Vigo [6], and

with the Truck and Trailer Routing Problem (TTRP), see e.g. Chao [2].

As in the VRPTW each delivery is also associated with a time window. The key

difference from the TTRP are the autonomous vehicles in the BBRP, i.e., the pos-

sibility to change which tug boat pulls which barge — in the TTRP trailers are

always moved by the same truck. Drexl considers a variant of the Vehicle Routing

Problem in [3] called the Vehicle Routing Problem with Trailers and Transship-

ments (VRPTT). The VRPTT also includes autonomous vehicles along with other

complicating constraints. Drexl solves a simplified core part of the problem with a

branch-and-cut algorithm, but only for a very small instance. He concludes that the

addition of autonomous vehicles greatly increases the complexity of the problem.

The contribution of this work is the introduction of the BBRP, a MIP formula-

tion (which we do not state here) and a branch-and-price algorithm for the BBRP.

" This project was supported in part by DONG Energy and by the Villum-Kann-

Rasmussen Foundation.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

The mathematical formulation is based on formulations for the VRPTW, see e.g.

Kallehauge et al. [4]. We propose a branch-and-price algorithm with two pricing

problems: one for generating barge paths and one for generating tug boat paths.

Both the mathematical formulation and the branch-and-price algorithm have been

tested on a number of real-life test instances based on data from the Danish utility

company DONG Energy. Early results indicate that the branch-and-price algorithm

clearly outperforms the mathematical formulation.

2 Branch-and-price algorithm

The BBRP is Dantzig-Wolfe decomposed and solved to optimality using a branch-

and-price (BP) algorithm. Two different pricing problems are generated; one for

creating paths for tug boats and one for creating paths for barges. The master prob-

lem merges the paths into an overall feasible solution. The BBRP works on a graph

G = (N, A). The nodes N is the union of depots (denoted D) and deliveries at

power plants (denoted L); arcs A connect the nodes. Time is discretized into a set

of time stamps T . Let kB be the set of barges, kT be the set of tug boats and let the

set of paths for vehicles of type k ∈ {kB, kT} be denoted Pk. The binary variable zi

is an expensive, external delivery to power plant i, with cost ci. Let yk
p be a binary

variable denoting whether or not a vehicle k travels on path p, let ck
p ≥ 0 be the cost

for using a vehicle of type k on path p. The master problem is:

min
∑

p∈PkT

ckT
p ykT

p +
∑

i∈L

cizi (1)

s.t.
∑

p∈PkB

δi
py

kB
p + zi = 1 ∀i ∈ L (2)

∑

p∈PkB

δ
p
ijτy

kB
p −

∑

p∈PkT

δ
p
ijτy

kT
p ≤ 0 ∀(i, j) ∈ A, ∀τ ∈ T (3)

∑

p∈Pk

yk
p ≤ |k| k ∈ {kB, kT} (4)

yk
p ∈ {0, 1} ∀p ∈ Pk, ∀k ∈ K (5)

zi ∈ {0, 1} ∀i ∈ L (6)

The objective function (1) minimizes the total cost of transporting fuel. The first

constraints (2) ensure that all deliveries are satisfied: constant δ i
p denotes whether

or not path p performs delivery i. Constraints (3) ensure that barges sail with tug

boats: constant δ
p
ijτ denotes whether or not path p sails on arc (i, j) at time τ . The

number of used barges resp. tug boats is limited in constraints (4), where |k| denotes

the number of vehicles of type k. Finally, bounds (5)-(6) force variables to take on

feasible values.

Pricing problem for tug boats

Let πi ∈ R, λijτ ≤ 0 and ωkT
≤ 0 be the dual variables of constraints (2), (3) and

159

(4), respectively. The reduced cost for a tug boat path p is:

c̄kT
p = ckT

p +
∑

(i,j)∈A

∑

τ∈T

λkT

ijτ − ωkT
≤ 0⇒

∑

(i,j)∈A

(

ckT

ij +
∑

τ∈T

λkT

ijτ

)

≤ ωkT
(7)

A tug boat must satisfy constraints on time windows and must travel from one

depot or power plant to the next such that the reduced cost (7) is minimized. Cycles

are allowed, i.e., a path can visit the same depot or power plant several times. The

reduced costs can be interpreted as arc weights, hence the pricing problem becomes

the Shortest Path Problem with Resource Constraints and is solved by a pseudo-

polynomial labeling algorithm [1].

Pricing problem for barges

The reduced cost for a barge path p is:

c̄kB
p = −

∑

i∈L

πi −
∑

(i,j)∈A

∑

τ∈T

λijτ ≤ ωkB
(8)

Again, the reduced cost (8) must be minimized according to constraints on time

windows and path connectivity. By subtracting πi from all edges into i, the reduced

costs can be viewed as arc weights and a barge path can be seen as pairs of depots

and deliveries, where each pair must add to the negative reduced cost. Enumerating

all pairs of depots and deliveries gives O(|D||L||T |2) pairs. Combining these pairs

into a barge route can be done with a dynamic programming approach, and this

gives a pseudo-polynomial algorithm for the pricing problem.

Branching

Branching is necessary, when the solution in the current branch-and-bound node

is fractional. A solution with binary barge path variables can be transformed into

being integer using Proposition 4 in [7], hence branching on barge usage of arcs at

specific times eventually ensures a feasible solution and is a finite strategy.

3 Computational Evaluation

The proposed BP-price algorithm is implemented and compared to solving the

mathematical formulation using a standard MIP-solver. The solution methods are

tested on instances based on real-life data provided by DONG Energy, Denmark.

A test instance consists of a number of deliveries at a number of power plants. The

start time of a delivery is defined by the time at which the plant has enough capacity

to stock a delivery of fuel. The end time of a delivery is defined by the time at which

the plant reaches the least allowed amount of available fuel. Time is discretized into

hours, i.e., each time stamp represents an hour. The instance covering a full year’s

fuel consumption consists of 122 deliveries, which all have large time windows.

160

The proposed BP-algorithm is implemented using the COIN Bcp framework [5].

CPLEX 12.1 is used for solving the MIP formulation. The presented work is still in

progress, hence a full computational evaluation has not yet been performed. Early

results suggest that the BP-algorithm outperforms solving the original formulation.

Current performance of the BP-algorithm indicates the necessity of a good primal

heuristic. Without such a heuristic, the BP-algorithm converges slowly and gener-

ates a very large number of columns; the far majority of these columns does not

improve the solution. The many columns are caused by large time windows giving

rise to many different arrival and departure times. Also, the reduced costs only in-

dicate that expensive arcs should not be used at certain times instead of indicating

that the arcs should never be used. Finally, ensuring that barges and tug boats sail

together adds to the number of columns.

References

[1] J. E. Beasley and N. Christofides. An algorithm for the resource constrained

shortest path problem. Networks, 19:379–394, 1989.

[2] I.-M. Chao. A tabu search method for the truck and trailer routing problem.

Computers and Operations Research, 29(1):33–51, 2002.

[3] M. Drexl. On Some Generalized Routing Problems. PhD thesis, RWTH

Aachen University, 2007.

[4] B. Kallehauge, J. Larsen, O. Madsen, and M. Solomon. Vehicle routing prob-

lem with time windows. Column Generation, pages 67–98, 2005.

[5] R. Lougee-Heimer. The common optimization interface for operations re-

search. IBM Journal of Research and Development, 47:57–66, 2003.

[6] P. Toth and D. Vigo. The Vehicle Routing Problem. SIAM - Monographs on

Discrete Mathematics and Applications, Philadelphia, 2002.

[7] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming

and ways to perform branching in a branch-and-price algorithm. Operations

Research, 48(1):111–128, 2000.

161

A Probabilistic Cellular Automata algorithm for the

clique problem

A. Gaudilliére, a Antonio Iovanella, b B. Scoppola, c E. Scoppola, a

M. Viale d

aDipartimento di Matematica, University of Rome “Roma Tre”

Largo San Murialdo, 1 - 00146 Rome, Italy

{gaudilli,scoppola}@mat.uniroma3.it
bDipartimento di Ingegneria dell’Impresa, University of Rome “Tor Vergata”

Via del Politecnico, 1 - 00133 Rome, Italy.

iovanella@disp.uniroma2.it

cDipartimento di Matematica, University of Rome “Tor Vergata”

Via della Ricerca Scientifica - 00133 Rome, Italy

scoppola@mat.uniroma2.it

dDipartimento di Fisica, University of Rome “Roma Tre”

Via della Vasca Navale, 84 - 00146 Rome, Italy

viale@fis.uniroma3.it

1 Extended Abstract

In this paper we want to present a randomized algorithm for the metaheuristic

search of the maximum clique of a graph. The method is substantially new be-

cause it exploits the featureas of the so-called Probabilistic cellular automata to

sample a probability measure that is mainly concentrated on the large cliques of

the graph. This techniques is presented here just applied to the maximum clique

problem, but it can be easily generalized.

Let G = (V, E) be a graph, and consider the set of configurations σ on V as

σ ∈ {0, 1}V := X .

Consider the following function on V × V

Jij =







0 if(i, j) ∈ E

1 if(i, j) /∈ E
(1)

and

Ji,i = −h ∀i ∈ V (2)

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

For each site i ∈ V and each configuration σ we define the cavity field:

hi(σ) =
∑

j

Jijσj ≡
∑

j 0=i

Jijσj − hσi (3)

Finally, for each pairs of configurations σ, σ′ we can define the Hamiltonian

H(σ, σ′) = 2
∑

(i,j)

Jijσiσ
′
j − h

∑

i

σiσ
′
i =

∑

i

hi(σ)σ′
i (4)

The hamiltonian H(σ, σ′) is symmetric in the exchange σ, σ ′ and its value is min-

imal only on pairs of configurations σ, σ ′ such that σ = σ′ with σ a maximum

clique.

For any integer k ≤ n = |V | we define

Xk := {σ ∈ X :
∑

i∈V

σi = k} (5)

We consider the canonical case, i.e., we define a MCMC on the configuration space

Xk; we define the partition function depending on σ:

Zσ =
∑

τ∈Xk

e−βH(σ,τ) (6)

and the transition probabilities:

P (σ, σ′) =
e−βH(σ,σ′)

∑

τ∈Xk
e−βH(σ,τ)

=
e−βH(σ,σ′)

Zσ

(7)

By an immediate computation we can conclude that the detailed balance condition

w.r.t. the invariant measure

Πσ =

∑

τ e−βH(σ,τ)

∑

τ,σ e−βH(σ,τ)
=

Zσ

Z
(8)

is verified for large β, the stationary measure Πσ is exponentially concentrated on

cliques.

Note that at each step all the sites are updated; it could be considered a canonical

version of probabilistic cellular automata (PCA).

The dynamics we just presented has some very interesting features.

First, changing suitably β and h we can see that their typical paths tend to have very

different behaviors: for large h the system tends to ”freeze” on fixed configurations,

while for small h it tends to flip all its component in a single step. From a detailed

numerical study we realized that for suitable intermediate values of h the system

tend to reach quite quickly cliques of size k, if any. The algorithm has been tested

on Erdos random graphs of size up 8000 vertices, finding in a reasonable time a

maximum clique

163

References

[1] B. BOLLOBAS Random graph, 2nd ed.,Cambridge University Press, 2001.

[2] M. CARAMIA, G. FELICI Mining relevant information on the Web: a clique

based approach, International Journal of Production Research, special issue

on Data Mining, accepted 2006.

[3] M. MÉZARD, G. PARISI, The cavity method at zero temperature, J. Stat.

Phys 111 (2003) 1.

[4] M. MÉZARD, G. PARISI, R. ZECCHINA, Analytic and algorithmic solution

of random satisfiability problems, Science 297, 812-815 (2002).

164

Odd cyclic surface separators in planar graphs

Petr A. Golovach, a Marcin Kamiński, b 1 Dimitrios M. Thilikos c

aSchool of Engineering and Computing Sciences, University of Durham, UK

bDépartement d’Informatique, Universit́e Libre de Bruxelles, Belgium

cDepartment of Mathematics, National and Kapodistrian University of Athens, Greece

Key words: planar graphs, odd cycles, irrelevant vertex

Given a plane graph G and two vertices s and t in G, an s-t surface separator is

a closed curve C such that s belongs to the other region of R2 \ C than t. A cycle

C is called a cyclic surface separator if C is an s-t surface separator, and an odd

cyclic surface separator if C is an odd cycle. We consider the problem of finding

odd cyclic surface separators in planar graphs and show that the problem can be

solved in polynomial time.

1 Introduction

Given two vertices s, t ∈ V (G), we are interested in finding a cycle in G such that

one of the two regions of R2 \ C contains s and the other contains t. We show

that the problem is solvable in polynomial time, even when we impose a parity

condition on the length of the cycle.

Our proof is based on the irrelevant vertex technique introduced by Robertson and

Seymour in Graph Minors: we prove that either the treewidth of the input graph G is

small, and then the problem can be solved by dynamic programming, or when it is

large, the G contains a vertex v such that G−v is a yes-instance if and only if G is a

yes-instance. Moreover, such an irrelevant vertex can be found in polynomial time.

We recursively remove irrelevant vertices, each time reducing the size of the graph.

Finally, the treewidth is small and we apply the dynamic programming approach.

For a cycle C in a plane graph G, there are two open regions of R2 \ C. The one

containing the outerface of G is the exterior of C. The other one if the interior of

C and we denote it by int(C). If a path contains a vertex from the interior and a

vertex from the exterior of a cycle, we say that is crosses the cycle.

1 Chargé de Recherches du FRS-FNRS.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

2 Results

2.1 The bipartite case

Lemma 3 Let G be a plane graph, s, t ∈ V (G), C be a cycle in G and G′ be

the graph induced by the vertices in the interior of C. If G[V (G′)] is bipartite,

s, t /∈ V (G′ ∪ C) and exists a vertex v ∈ int(C), then if G has an odd cyclic

surface separator, so does G − v.

Proof. Let us consider an odd cyclic surface separator in G. If it does not cross C, it

contains no vertex of V (G′). (Notice that s and t lie in the exterior of C.) Assume

that every odd cyclic surface separator crosses C and let C∗ be one which crosses

C the minimum number of times. Exactly one of the terminals, without loss of

generality we assume it is s, lies in the interior of C ∗.

Let P be the set of edges of C∗ that lie in the interior of C, and Q be the set of

edges of C that lie in the interior of C∗. (P and Q are disjoint.) Then, C ∪ P − Q
is a collection of cycles. Terminal s lies in the interior of one of the cycles in the

collection; let this cycle be called Cs.

Notice that Cs does not cross C. If Cs was an odd cycle, it would be an odd cyclic

surface separator; hence, Cs is even. Hence, there must be another cycle in C∪P −
Q which is of odd parity, since C∗ was odd. Let us call the odd cycle Codd.

Now we will investigate how Cs and Codd are related. Suppose there is a subpath

vLPvR of Cs such that vL, vR ∈ C but no vertex of P belongs to C. Now, C can

be split into two disjoint paths between vertices vL and vR. Exactly one of those

two paths has the property that the cycle formed by vLPvR and this path does not

contain the other path inside. Let us call that path P ′. The cycle formed by vLPvR

and P ′ will be called a pouch.

Clearly, Codd lies in one of the pouches of Cs; we will look at this pouch now. Let

vL, vR, P and P ′ be as in the definition of the pouch. Vertices vL and vR split Cs

into two paths; one is P and let the other be called Q. We investigate two cases:

CASE 1. First let us assume that the other terminal t does not lie in the interior of
the pouch. Let v′L and v′

R be the first and last vertex along P ′ that belong to Codd.

Notice that since Codd is odd, vertices v′
L and v′

R split it into two paths of different

parity Peven and Podd. Consider the two cycles formed by the path v ′
LP ′vLQvRP ′v′

R

and either Peven or Podd. They both are s, t-separators and they do not cross C.

However, exactly one of them is odd; a contradiction.

CASE 2. Now let us assume that t lies in the interior of the pouch of Cs in which

Codd also lies. We define pouches for Codd analogously. If t does not lie in the

interior of the pouch of Codd that contains Cs, then the same argument as in CASE

1 can be applied to show a contradiction.

Let us assume that t lies in the interior of the pouch of Codd that contains Cs. Also

let v′
L, v′

R, Podd, and Peven be as in CASE 1. Consider the two cycles formed by the

path v′
LP ′vLPvRP ′v′

R and either Peven or Podd. They both are s, t-separators and

166

they do not cross C. However, exactly one of them is odd; a contradiction.

2.2 Odd cycle

Lemma 4 Let G be a 2-connected, plane graph, s, t ∈ V (G), C be a cycle in G
and G′ be the graph induced by the vertices in the interior of C. If G[V (G′)] is

non-bipartite and contains a odd cycle C ′ such that exists a vertex v ∈ int(C ′),
s, t /∈ V (G′ ∪ C), then if G has an odd surface separator, so does G − v.

Proof. As in the proof of Lemma 3, we can assume that there is a cycle Cs whose

interior contains s. Also, |C ∩ Cs| ≥ 2. From 2-connectivity, there are two paths

P1 and P2 between C ∩ Cs and C ′. The endpoints of P1 and P2 on C ′ split C ′ into

two paths P ′
1 and P ′

2. Similarly, the endpoints of P1 and P2 split Cs into two paths;

let Ps be one of these paths, the one that contains vertices from the exterior of C.

Then, both PsP1P
′
1P2 and PsP1P

′
2P2 are cyclic separators and they are of different

parity.

Clearly, if G has an odd surface separator, so does G − v.

2.3 Algorithm

Let G be a plane input graph. The problem easily reduces to 2-connected graphs

so we can assume that G is 2-connected. There exists a constant c such that if the

treewidth of G is at least c, then (1) it contains a cycle C with a vertex in its interior

and (2) if the graph induced by the vertices in the interior of C is not bipartite,

the interior of C contains an odd cycle whose interior contains a vertex. Therefore,

if the treewidth of G is at least c, then we can find using Lemmas 3 and 4 an

irrelevant vertex v. Removing v reduces the size of the graph and we recurse. If the

treewidth of G is at most c, then the problem can be solved efficiently by dynamic

programming.

Theorem 18 There exists a polynomial-time algorithm deciding given a plane

graph G and two of its vertices s, t, whether G contains an odd cyclic surface

separator.

167

Computing Derivatives via Compression : An Exact

Scheme

Shahadat Hossain 1

Department of Mathematics and Computer Science, University of Lethbridge, Canada

Abstract

We describe a branch-and-bound approach for determining a sparse Jacobian matrix A ∈
Rm×n using an extended notion of structural independence or structural orthogonality of

segments of columns of A or AT . We assume that the sparsity pattern of the sparse Jacobian

is a priori known. Our branching strategy is based on Zykov contraction algorithm [8].

Key words: Sparsity, Automatic Differentiation, optimal direct methods, column

partitioning.

1 Introduction

We consider the problem of determining the Jacobian matrix F ′(x) of a mapping

F : Rn <→ Rm. Using differences, the jth column of the Jacobian matrix may be

approximated as

∂F (x + ts)

∂t

∣

∣

∣

∣

∣

t=0

= F ′(x)s ≈ As =
1

ε
[F (x + εs) − F (x)] ≡ b (1.1)

with one extra function evaluation, where ε > 0 is a small increment. Also Algo-

rithmic (or Automatic) Differentiation (AD) [3] forward mode gives b = F ′(x)s
accurate up to the machine round-off, at a cost which is a small multiple of the cost

of one function evaluation. The Jacobian matrix determination problem (JMDP)

can be stated as below.

Problem 2 (JMDP) Obtain vectors si ∈ Rn, i = 1, . . . , p and wj ∈ Rm, j =
1, . . . , q with p + q minimized such that the products bk = Ask, j = 1, · · · , p or

B = AS and cT
k = wT

k A, k = 1, · · · , q or CT = W T A determine the matrix A
uniquely.

1 This research was supported in part by the Natural Sciences and Engineering Research

Council of Canada (NSERC).

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

In absence of any sparsity information, one may use the Cartesian basis vectors

ei, i = 1, . . . , n in (1.1) using n extra function evaluations, or in the case of AD,

m reverse mode calculations or n forward mode calculations, whichever is smaller.

Specifically, for a scalar function the gradient is obtained with just one reverse

calculation. On the other hand, for example, if a group of columns of matrix A,

say columns j and l, are structurally orthogonal i.e. no two columns have nonzero

entries in the same row position only one extra function evaluation

F ′
j + F ′

l ≈ A(:, j) + A(:, l) = 1
ε
[F (x + ε(ej + el)) − F (x)],

is sufficient to read-off the nonzero entries from the product b = As where s ≡
(ej + el), an observation due to [1]. A group of nonzero unknowns are said to

be directly determined or read-off from the product b = As if no floating point

arithmetic operation is needed to recover them. Thus, if the columns (rows) can

be partitioned into p (q) structurally orthogonal groups then the Jacobian matrix

is directly determined from the row compressed (column-compressed) matrix B =
AS (CT = W T A). In this case we have a one-sided compression of matrix A.

Specifically, with q = 0 we have row compression and with p = 0 we have column

compression.

In this paper, we consider exact methods for one-sided direct determination of

sparse Jacobian matrices. We show that a branching scheme originally proposed

in [8] for exact coloring of undirected graphs can be applied to the Jacobian matrix

determination problem via merging of structurally orthogonal column segments.

Although the matrix problem can be formulated as a graph coloring problem [2,6],

we believe that the matrix formulation is more natural and yields efficient imple-

mentation since, for a sparse matrix A its column intersection graph G(A) is likely

to be dense. Further, we avoid forming a large graph [4] corresponding to column

segments.

2 Compression and Branching

Let A ∈ {0, 1}m×n be obtained from the Jacobian A where A(i, j) = 1 if A(i, j) *=
0 and A(i, j) = 0, otherwise. Without loss of generality, we assume that indices

j and l satisfy j < l. For structurally orthogonal columns A(:, j) and A(:, l) the

sequence of operations

A(:, j) ← A(:, j) + A(:, l); A(:, l) ← 0

represents a row compression of matrix A where the columns j and l are merged

together and can be identified as column j of the compressed matrix while column l
is now replaced with a vector of all zeros 0. With each column j of Awe associate a

set of column indices f , the forbidden set of columns that were initially structurally

orthogonal to column j but are now forbidden to be merged with j. We denote the

matrix resulting from the merging of columns j and l by A(j←l) and the matrix

169

where columns j and l have been made forbidden for each other by A(j 0←l) (in this

case indices l and j are added to the respective forbidden sets of columns j and l).
When a pair of columns are merged we take the union of their respective forbidden

sets and assign it to the resulting column. Denote by g(A) the minimum number

of row compressions needed to determine A directly using column merging. Note

that a column consisting entirely of zero does not play any further role in the com-

pression process and hence can be ignored. The following result follows from [8].

Theorem 19 For structurally orthogonal columns A(:, j) and A(:, l),

g(A) = min
{

g
(

A(j←l)
)

, g
(

A(j 0←l)
)}

.

The above theorem can be applied repeatedly until there are no pair of columns

that are structurally orthogonal and not mutually forbidden. The merging process

can be described by a binary tree of matrices where a leaf node corresponds to a

compressed matrix that cannot be further processed via Theorem 19 and thereby

yielding an upper bound on the number of matrix-vector products needed to de-

termine A. The notion of structural orthogonality can be extended to segments of

columns, and for certain types of matrix sparsity pattern the minimum value of p is

achieved only by exploiting structural orthogonality of column segments [6].

A row κ-partitioning Π is a partition of {1, 2, . . . , m} yielding

w1, w2, . . . , wĩ, . . . , wκ where wĩ contains the row indices that constitute the

block ĩ, denoted by

A(wĩ, :) ∈ Rm
ĩ
×n, ĩ = 1, 2, . . . , κ

where mĩ = |wĩ|. A segment of column j in block ĩ of A, denoted by A(wĩ, j), ĩ =
1, 2, . . . , κ, is called a column segment. Unless explicitly stated the column seg-

ments in the following are not identically zero.

Definition 1 (Structurally Orthogonal Column Segments.)

• (Same Column)

Column segments A(wĩ, j) and A(wk̃, j), ĩ *= k̃ are structurally orthogonal.

• (Same Row Block)

Column segments A(wĩ, j) and A(wĩ, l), j *= l are structurally orthogonal if

there does not exist i ∈ wĩ such that aij *= 0 and ail *= 0.

• (Different)

Column segments A(wĩ, j) and A(wk̃, l), ĩ *= k̃ and j *= l are structurally

orthogonal if

· A(wĩ, j) and A(wĩ, l) are structurally orthogonal and

· A(wk̃, j) and A(wk̃, l) are structurally orthogonal.

With κ = m the structurally orthogonal column segments A(i, j) and A(k, l) are

said to be isolated [7]. We can now extend compressions of structurally orthogonal

columns to structurally orthogonal column segments and an analogous result can be

derived for column segments. Clearly, for structurally orthogonal column segments

(wĩ, j) and (wk̃, l), g(A) = min{g(A(w
ĩ
,j←l)), g(A(w

ĩ
,j 0←l))}. Denote by γ(A) the

minimum number of matrix-vector products needed to determine A using a direct

170

method. Then the branching scheme for column segments compression where κ =
m we have

Theorem 20 γ(A) = min{γ(A(w
ĩ
,j←l)), γ(A(w

ĩ
,j 0←l))}

This result is also derived in [5] using extended graph coloring. The example below

illustrates the compression algorithm with column segments (for clarity of identifi-

cation of the compressions we use matrix A),

























a11 0 0 a14 0 0

0 a22 0 0 a25 0

0 0 a33 0 0 a36

a41 a42 a43 0 0 0

a51 0 0 0 a55 a56

0 a62 0 a64 0 a64

0 0 a73 a74 a75 0

























(1:2,1←2)⇒

























a11 0 0 a14 0 0

a22 0 0 0 a25 0

0 0 a33 0 0 a36

a41 a42 a43 0 0 0

a51 0 0 0 a55 a56

0 a62 0 a64 0 a64

0 0 a73 a74 a75 0

























(1:3,1←3)⇒

























a11 0 0 a14 0 0

a22 0 0 0 a25 0

a33 0 0 0 0 a36

a41 a42 a43 0 0 0

a51 0 0 0 a55 a56

0 a62 0 a64 0 a64

0 0 a73 a74 a75 0

























∗⇒ . . .

∗⇒

























a11 a11 a14 a14

a22 a25 a22 a25

a33 a36 a36 a33

− a41 a42 a43

a51 − a56 a55

a62 a66 − a64

a73 a75 a74 −

























where the first compression performed is A(1:2,1←2) and after a sequence of com-

pressions we arrive at a matrix containing four columns. The entries marked − can

be ignored. It can be shown that γ(A) = 4 while using Theorem 1 a trivial upper

bound on γ is 6 as no pair of columns of matrix A is structurally orthogonal.

3 Concluding Remarks

We have proposed a branching scheme for direct determination of sparse Jacobian

matrices based on Zykov contraction algorithms for vertex coloring. The matrix

formulation offers a more natural representation of the Jacobian determination as

matrix-vector product calculation. We are currently exploring new heuristics for

column segments partitioning and extension to two-sided compressions.

References

[1] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse

Jacobian matrices. J. Inst. Math. Appl., 13:117–119, 1974.

[2] A. H. Gebremedhin, F. Manne, and A. Pothen. What color is your Jacobian?

graph coloring for computing derivatives. SIAM Rev., 47(4):629–705, 2005.

171

[3] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Tech-

niques of Algorithmic Differentiation. Society for Industrial and Applied Math-

ematics, Philadelphia, PA, USA, 2008.

[4] S. Hossain. Cseggraph: a graph colouring instance generator. International

Journal of Computer Mathematics, 86(10/11):1956 – 1967, 2009.

[5] S. Hossain and T. Steihaug. Optimal direct determination of sparse Jacobian

matrices. Technical Report 254, Department of Informatics, University of

Bergen, Norway, oct 2003. Revised version to appear in Optimization Methods

and Software.

[6] S. Hossain and T. Steihaug. Graph coloring in the estimation of sparse deriva-

tive matrices: Instances and applications. Discrete Appl. Math., 156(2):280–

288, 2008.

[7] G. N. Newsam and J. D. Ramsdell. Estimation of sparse Jacobian matrices.

SIAM J. Alg. Disc. Meth., 4(3):404–417, 1983.

[8] A. A. Zykov. On some properties of linear complexes. Amer. Math. Soc. Trans-

lation, 1952(79):33, 1952.

172

Improved Taxation Rate for Bin Packing Games

Walter Kern, Xian Qiu

Department of Applied Mathematics, University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands

Key words: cooperative games, core, taxation rate, bin packing

1 Introduction

A cooperative game is defined by a tuple 〈N, v〉, where N is a set of players and

v : 2N → R is a value function satisfying v(∅) = 0. A subset S ⊆ N is called a

coalition and N itself is the grand coalition. The usual goal in cooperative games is

to ‘fairly’ allocate the total gain v(N) of the grand coalition N among the individual

players. A well known concept is the core of a cooperative game (see von Neumann,

Morgenstern [5]), defined by

(i) x(N) ≤ v(N),
(ii) x(S) ≥ v(S) for all S ⊆ N .

As usual, we abbreviate x(S) =
∑

i∈S xi.

When the core is empty, one may want to relax the condition (ii) above in such

a way that the modified core becomes nonempty. Faigle and Kern [1] introduced

the multiplicative ε-core as follows. Given ε > 0, the ε-core consists of all vectors

x ∈ RN satisfying condition (i) above together with

(ii’) x(S) ≥ (1 − ε)v(S) for all subsets S ⊆ N .

A bin packing game is defined by a set of k bins, of capacity 1 each, and n items

1, 2, · · · , n of sizes a1, a2, · · · , an, where we assume, w.l.o.g, 0 ≤ ai ≤ 1.

Let A be the set of items and B be the set of bins. A feasible packing of an item

set A′ ⊆ A into a set of bins B ′ ⊆ B is an assignment of some (or all) elements

in A′ to the bins in B ′ such that the total size of items assigned to any bin does not

exceed the bin capacity one.

The player set N consists of all items and all bins. The value v(S) of a coalition

S ⊆ N , where S = AS ∪ BS with AS ⊆ A and BS ⊆ B, is the maximum value of

all feasible packings of AS into BS . A corresponding feasible packing is called an

optimum packing.

An intriguing problem is to find the ‘minimal’ taxation rate εmin such that the εmin-

core is nonempty for all bin packing games. It was shown in Faigle and Kern [1]

that 1/7 ≤ εmin ≤ 1/2. Woeginger [6] improved this result to εmin ≤ 1/3. Kuipers

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

[3] showed that εmin = 1/7 if all item sizes are strictly larger than 1/3. We present

an alternative proof for the result εmin ≤ 1/3 based on a straightforward greedy

packing heuristic. After that, we apply the same greedy heuristic w.r.t. modified

(“virtual”) item sizes to derive a slightly better bound. Finally, we conjecture that

εmin = 1/7 and draw the reader’s attention to the connection with the well-known

3-PARTITION problem.

2 Fractional packings

A set F of items is called a feasible set if its total size does not exceed 1. Denote

by F the set of all feasible sets. Let σF be the value of a feasible set and let σ =
(σF) ∈ RF for all F ∈ F , then the total earning v(N) of the grand coalition N
equals

max σT y

s.t.
∑

F∈F
yF ≤ k,

∑

F)i

yF ≤ 1 (i = 1, 2, · · · , n),

y ∈ {0, 1}F .

(2.1)span

The value v′(N) of an optimum fractional packing is defined by the relaxation of

(2.1), i.e.,

max σT y

s.t.
∑

F∈F
yF ≤ k,

∑

F)i

yF ≤ 1 (i = 1, 2, · · · , n),

y ∈ [0, 1]F .

(2.2)span

A fractional packing of our bin packing problem is a vector y satisfying the con-

straints of the linear program (2.2). Faigle and Kern [2] have given a sufficient and

necessary condition for the non-emptiness of the ε-core of a bin packing game.

Lemma 5 ([2]) The ε-core is nonempty if and only if ε ≥ 1 − v/v ′.

If all items are packed in a feasible integer packing, we obviously have v ′ = v, thus

the core is nonempty. For convenience of description, we always ignore this trivial

case. As a consequence, v > v′/2 can always be achieved by filling each bin to 1/2.

So the 1/2-core is nonempty for all bin packing games. Denote by εN = 1 − v/v′

the minimal taxation rate of a bin packing game N . We thus seek for good lower

bounds on v/v′.

The first step in [6] is to reduce the analysis to item sizes ai > 1/3. Similarly, if we

aim for a bound εN ≤ ε with ε ∈ [1/4, 1/3), it suffices to investigate instances with

item sizes ai > 1/4, as can be seen from the following two lemmas:

174

Lemma 6 Let A be a set of items disjoint from N and v(N) + σ(A) ≤ v(N ∪ A).
Then εN∪A ≤ εN .

For δ ∈ (0, 1), let Nδ denote the restriction of N to items of size ai > δ.

Lemma 7 If δ, εNδ
≤ ε, then εN ≤ ε.

Thus in what follows, when seeking for an upper bound εN ≤ ε with ε ∈ [1/4, 1/3),
we may assume that all item sizes are at least ai > 1/4. (This is actually a rather

interesting class anyway, as it contains all instances of 3 − PARTITION , c.f.

section 4).

3 Greedy heuristic and modified greedy selection

Consider any bin packing game with k bins and item sizes a1, · · · , an with all

ai > 1/4. Let y = (yF) be an optimal fractional packing. We order the support

F = {F | yF > 0} according to non-decreasing values of σF : Assume that, say,

F = {F1, · · · , Fm} and

σF1 ≥ σF2 ≥ · · · ≥ σFm
.

Note that the number of fully packed items is at most 3k (3 items per bin), so that

m ≤ 3k+1. The basic idea is to construct an integral solution “greedily” as follows:

Let Fi1 := F1 and Fi1 := {F ∈ F | F ∩ Fi1 *= 0}. Then choose the largest size

feasible set Fi2 in F\Fi1, let Fi2 = {F ∈ F\Fi1 | F ∩ Fi2 *= ∅} etc. Each Fis

contains at most 3 items. Hence in each step, when removing Fis , we remove at

most 3 from the total sum
∑

F yF = k, so that our construction yields Fi1 , · · · , Fir

with r ≥ k/3. Assuming σF ≥ 2/3 for each F and extending our greedy selection

by k − r bins (each at least filled to 1/2), we arrive at an integer packing whose

value can be shown to satisfy

v ≥ 1

3
v′ + (r − k

3
)
2

3
+ (k − r)

1

2
≥ 2

3
v′, (3.1)

so the 1/3-core is nonempty. The estimate can be (slightly) improved by modify-

ing the greedy selection so as to give higher priority to feasible sets F ∈ F with

comparatively large yF . Consider the modified (“virtual”) size σ̃F := σF + 1
9
yF .

We order the F ∈ F according to non-increasing σ̃-values, i.e.,

σF1 +
1

9
yF1 ≥ σF2 +

1

9
yF2 · · · ≥ σFm

+
1

9
yFm

and apply greedy selection w.r.t the modified size. This results in a slightly im-

proved lower bound of ε ≤ 1/3 − 1/108 = 35/108.

4 Remarks and open problems

Clearly the most straightforward problem is to determine the smallest ε such that all

bin packing games have non-empty ε -core. We conjecture that 1/7 is best possible

175

(c.f. [1] for an example showing that ε < 1/7 is impossible and a proof that the

ε-core is non-empty for any sufficiently large (in terms of k) bin packing game).

A further challenging conjecture due to Woeginger states that v ′ − v is bounded by

a universal constant.

We finally would like to draw the attention of the reader to the well-known

3 − PARTITION problem: Given a set of items of sizes a1, · · · , a3k with

1/4 < ai < 1/2 and k bins, can we pack all items? If the fractional optimum

is less than k, the answer is clearly “no”. Note that the fractional optimum can be

computed efficiently as there are only O(k3) feasible sets. Thus if P *= NP , then

there must be instances with fractional optimum equal to k and integral optimum

< k. Although we tried hard, we could not exhibit a single such instance.

References

[1] U. Faigle and W. Kern. On some approximately balanced combinatorial co-

operative games. Mathods and Models of Operation Research, 38:141-152,

1993.

[2] U. Faigle and W. Kern. Approximate core allocation for binpacking games.

SIAM J. Discrete Math, 11:387-399, 1998.

[3] J. Kuipers. Bin packing games. Mathematical Methods of Operations Re-

search, 47:499-510, 1998.

[4] L. Lovász and M. Plummer. Matching Theory. North-Holland Math, Amster-

dam, 1986.

[5] J. V. Neumann and O. Morgenstern. Theory of Games and Economic Behav-

ior. Princeton University, Princeton, 1947.

[6] G. J. Woeginger. On the rate of taxation in a cooperative bin packing game.

Mathematical Methods of Operations Research, 42:313-324, 1995.

176

Decomposition of Tutte Polynomial

Martin Kochol

MÚ SAV, Stefánikova 49, 814 73 Bratislava, Slovakia,

martin.kochol@mat.savba.sk

Key words: Tutte polynomial, determinant, partition, edge cut

1 Introduction

Tutte polynomial is an important invariant encoding many properties of graphs (see

[1,5]). Computing of the polynomial is a ♯P -complete problem (see [2,3]) but can

be evaluated in polynomial time for some special classes of graphs [4]. We show

that if an n-edge cut divides a graph into two subgraphs, then the Tutte polynomial

of the original graph can be fully expressed by Tutte polynomials of these parts.

We give a formula consisting from a determinant of size 1 + bn (where bn is the

nth Bell number). The edge cut induces a bipartite graph with partition of vertices

of size p and p′. Our second formula uses determinat of size 1 + min{p, p′}. This

improvement can be significant if one of p or p′ is much smaller then n. Thus, from

computational point of view, we can effectively evaluate the Tutte polynomial of a

graph with small vertex cut if we know these polynomials on the two parts.

2 A general formula

If G = (E, G) is a graph and A ⊆ E, then r(A) = |V | − c(A), where c(A)
is the number of components of the graph (V, A). The Tutte polynomial of G is

TG(x, y) =
∑

A⊆E(x − 1)r(E)−r(A)(y − 1)|A|−r(A). We need to consider its rational

version T ′
G(x, y) = (x − 1)−r(E)TG(x, y).

Denote by Bn the set of partitions of {1, . . . , n}, |Bn| = bn. If P = {Q1, . . . , Qp},

P ′ = {Q′
1, . . . , Q

′
p′} ∈ Bn and for each Qk there exists Q′

k′ such that Qk ⊆ Q′
k′ ,

then P ≤ P ′. Denote by BP,n = {P ′ ∈ Bn; P ≤ P ′}.

Let C = {e1, . . . , en} be an edge cut of a graph G and G − C has components G1

and G′
1. Let ei = viv

′
i, vi ∈ V (G1), v′

i ∈ V (G′
1) for i = 1, . . . , n. Denote by PC

(P ′
C) the permutation from Bn so that i, j ∈ {1, . . . , n} belong to one set in PC

(P ′
C) if and only if vi = vj (v′

i = v′
j).

" Partially supported by grant VEGA 2/0118/10

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Let H be the graph arising from G1 after adding n new vertices u1, . . . , un and

edges u1v1, . . . , unvn. Consider P = {Q1,. . . , Qp} ∈ Bn. For k = 1, . . . , p, iden-

tify the set of vertices {uq; q ∈ Qk} into a new vertex xk and denote the resulting

graph by [H, P]. In a similar way construct [H ′, P] from G′
1.

Take n isolated edges w1w
′
1, . . . , wnw

′
n and partitions P = {Q1, . . . , Qp}, P ′ =

{Q′
1, . . . , Q

′
p′} ∈ Bn. For k = 1, . . . , p and k′ = 1, . . . , p′, identify the sets of

vertices {wq; q ∈ Qk} and {w′
q′; q

′ ∈ Q′
k′} into new vertices yk and y′

k′ , respectively,

and denote the resulting graph by [P, P ′].

Let Bn = {Pn,1, . . . , Pn,bn
} and Mn(x, y) be the symmetric bn × bn matrix with

the (i, j)-entry T ′
[Pn,i,Pn,j]

(x, y). Let MH,H′

n (x, y) arise from Mn(x, y) after adding

a row and column so that the (bn + 1, bn + 1)-entry is T ′
G(x, y), the (i, bn + 1)-

entry is T ′
[H′,Pn,i]

(x, y) and the (bn + 1, i)-entry is T ′
[H,Pn,i]

(x, y). If B, B′ ⊆ Bn,

then MB,B′(x, y) (MH,H′

B,B′ (x, y)) denotes the submatrix of Mn(x, y) (MH,H′

n (x, y))
arising after removing the rows and columns corresponding to the permutations not

belonging to B and B ′, respectively. Let M ′H,H′

n (x, y) and M ′H,H′

B,B′ (x, y) arise from

MH,H′

n (x, y) and MH,H′

B,B′ (x, y)), respectively, after replacing T ′
G(x, y) by 0 in the

entry of the last row and the last column.

Theorem 21 Let G be a graph with an n-edge cut C, and BPC ,n ⊆ B ⊆ Bn,

BP ′

C
,n ⊆ B′ ⊆ Bn. Let B̃ ⊆ B, B̃′ ⊆ B′ so that MB̃,B̃′(x, y) is a maxi-

mal regular submatrix of MB,B′(x, y). Then |MH,H′

B̃,B̃′
(x, y)| = 0, i.e., T ′

G(x, y) =

−|M ′H,H′

B̃,B̃′
(x, y)| · |MB̃,B̃′(x, y)|−1.

3 Two specific formulas

We can prove that Mn(x, y) is regular, whence we have the following.

Theorem 22 Let C be an n-edge cut of a graph G. Then |MH,H′

n (x, y)| = 0, i.e.,

T ′
G(x, y) = −|M ′H,H′

n (x, y)| · |Mn(x, y)|−1.

Let P̃ ∈ Bn, P̃ ≤ PC . Then PC = {Q1, . . . , Qp}, and P̃ = {Q1,1, . . . , Q1,k1 ,

. . . , Qp,1, . . . , Qp,kp
}, such that Qi,1, . . . , Qi,ki

are subsets of Qi for i = 1, . . . , p.

Denote by BP̃ ,C the sets of permutations from Bn arising from P̃ after unifying

some sets from {Q1,1, . . . , Q1,p}. Then |BP̃ ,C | = |BPC ,n| = bp and we can prove

that MBPC,n,B
P̃ ,C

(x, y) is regular. This implies the following.

Theorem 23 Let C be an n-edge cut of a graph G and P̃ ∈ Bn, P̃ ≤ PC , P ′
C .

Then |MH,H′

BPC,n,B
P̃ ,C

(x, y)| = 0, in other words T ′
G(x, y) = −|M ′H,H′

BPC,n,B
P̃ ,C

(x, y)| ·

|MBPC,n,B
P̃ ,C

(x, y)|−1.

References

[1] T. Brylawski and J. Oxley, The Tutte polynomial and its applications, in: N.

White (Ed.), Matroid Applications, Cambridge University Press, Cambridge

(1992), pp. 123-225.

178

[2] L.A. Goldberg and M. Jerrum, Inapproximability of the Tutte polynomial, in:

STOC’07: Proceedings of the 39th anual ACM symposium on Theory of com-

puting, ACM, New York, (2007), pp. 459–468.

[3] F. Jaeger, D.L. Vertigan, and D.J.A. Welsh, On the computational complexity

of the Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc. 108

(1990) 35–53.

[4] S.D. Noble, Evaluating the Tutte polynomial for graphs of bounded tree-

width, Combin. Prob. Comp. 7 (1998) 307-321.

[5] D.J.A. Welsh, Complexity: Knots, Colourings and Counting, Cambridge Uni-

versity Press, Cambridge (1993).

179

Approximability of the Two-Stage Knapsack problem

with discretely distributed weights

Stefanie Kosuch

Institutionen för datavetenskap (IDA), Linköpings Universitet, Sweden

stefanie.kosuch@liu.se

Key words: stochastic knapsack problem, multidimensional knapsack, two-stage,

non-approximability, approximation algorithms

1 Introduction and Mathematical Formulation

The knapsack problem is a widely studied combinatorial optimization problem. It

consists in choosing among a set of items a subset such that the total weight of

the chosen items respects a given weight restriction (the capacity of the knapsack)

while the total reward of the chosen items is maximized. The most common appli-

cations arise in fields where some capacity has to be respected (storage, transport,

packing, network optimization...) or where the decision maker has to handle lim-

ited resources (recourse allocation, cutting stock problems...). However, knapsack

problems also serve as subproblems in less obvious fields of application such as

cryptography or finance.

As in many applications the decision maker has to face uncertainty in the involved

parameters, more and more studies are made on various settings of the Stochastic

Knapsack problem, where some of the parameters are assumed to be random (i.e.

not exactly known in the moment the (pre-)decision has to be made). In this paper

we restrict our study to the case where the weights are assumed to be random.

Moreover, we assume that the decision can be made in two stages: A pre-decision is

made while the item weights are still unknown, i.e. the decision maker assigns some

items to the knapsack without knowing their exact weights. In this first stage we

obtain a certain reward for the added items. Then, once the weights of all items have

come to be known, we can make a corrective decision (second stage): If additional

items are added, the reward obtained for these items is smaller than it would have

been in the first stage. And if items are removed, a penalty has to be paid that

is naturally strictly greater than the received first-stage reward. The objective is

to maximize the first-stage reward plus the expected second-stage gain, where the

latter is composed of the reward obtained for added items minus the penalty paid

for removed ones. We call the resulting problem Two-Stage Knapsack problem. Its

mathematical formulation is as follows:

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

(TSKP) max
x∈{0,1}n

n
∑

i=1

rixi + E[Q(x, χ)] (1.1a)

s.t. Q(x, χ) = max
y+,y−∈{0,1}n

n
∑

i=1

riy
+
i −

n
∑

i=1

diy
−
i (1.1b)

s.t. y+
i ≤ 1 − xi, ∀ i = 1, . . . , n, (1.1c)

y−
i ≤ xi, ∀ i = 1, . . . , n, (1.1d)
n

∑

i=1

(xi + y+
i − y−

i)χi ≤ c. (1.1e)

where x is the first-stage decision vector and r > 0 the first-stage reward vector,

both of dimension n. The weight of item i is represented by the random variable χi.

The second-stage binary decision vector y+ models the adding of items while the

decision vector y− models their removal. If item i is added in the second stage we

receive a second-stage reward ri < ri, and if it is removed we have to pay a penalty

di > ri. An item can only be added if it had not been added in the first stage

(constraint (1.1c)) and removed if it has been added previously (constraint (1.1d)).

In the end, the items (remaining) in the knapsack need to respect the knapsack

capacity c > 0 (constraint (1.1e)).

To the best of our knowledge there have only been two previous studies of Two-

Stage Knapsack problems: In [4] the authors study a Two-Stage Knapsack problem

with probability constraint in the first stage where the item weights are assumed to

be normally distributed. The main difficulty in this case arises from the question of

how to evaluate the objective function exactly. The authors therefore propose upper

and lower bounds and apply a branch-and-bound algorithm to search the first-stage

solution space for the best such lower bound. In [2] the authors study Static as well

as Two-Stage Quadratic Knapsack problems with chance-constraint. The authors

assume a finite distribution for the weight vector which allows them to reformulate

the studied problems in a deterministic equivalent form. The authors propose semi-

definite relaxations to obtain good upper bounds in reasonable time.

As in [2] we assume in this paper that the weight vector only admits a finite num-

ber of outcomes (scenarios) with non-zero probabilities. This allows to reformulate

the TSKP deterministically (see e.g. [2]). In fact, in [3] it has been shown that a

stochastic combinatorial optimization problem can, under some mild assumptions,

be approximated to any desired precision by replacing the underlying distribution

by a finite random sample. However, to obtain a good approximation the used set

of random samples needs generally to be rather large. Moreover, if the weights are

e.g. independently, discretely distributed, the number of scenarios might grow ex-

ponentially with the number of items. Solving the obtained deterministic equivalent

problem to optimality is thus generally not tractable. That is why we are interested

in the approximability of the TSKP with discretely distributed weights. Note that,

like its deterministic counterpart, the Two-Stage Knapsack problem is NP-hard.

Moreover, it has been shown in [1] that two-stage stochastic integer programming

problems with discretely distributed parameters are even ♯P-hard. In the second

section we state a non-approximability result for the TSKP and give a sketch of

181

the proof. This is followed by three positive approximation results.

2 (Non)-Approximation results

Theorem 2.1 For any ε > 0, there exists no polynomial-time K− 1
2
+ε - approxima-

tion algorithm for the TSKP , unless P = NP .

Sketch of the proof: The idea of the proof is as follows: Basically we do a reduc-

tion from the multi-dimensional knapsack problem (MDKP). In [5] the authors

prove that, for all ε > 0, the MDKP does not admit a polynomial-time m− 1
4
+ε-

approximation algorithm (where m is the number of constraints) unless P = NP .

This is proven by a reduction from the maximum clique problem. In their paper

the authors use that the maximum clique problem cannot be approximated within

a factor n− 1
2
+ε, for any ε > 0, where n stands for the number of vertices. A newer

result however states that it is even NP-hard to approximate the maximum clique

problem within a factor n−1+ε.

Instead of giving a direct reduction from the MDKP to the TSKP , we first show

how the optimal solution value of the MDKP can be obtained by solving a special

variant of the TSKP where items can only be added in the second-stage (called

AddTSKP). Note that this is not done by an equivalent reformulation: In fact,

the reduction is such that the integer part of the solution value of the AddTSKP
instance gives us the optimal solution value of the initial MDKP instance. How-

ever, the optimal first-stage solution of the former is optimal solution for the latter.

The number of scenarios in the obtained AddTSKP instance equals the number

of constraints of the MDKP . In the second step we show that for any instance

of the AddTSKP there exists an instance of the TSKP with same number of

scenarios, identical optimal solution value and such that an optimal solution of the

TSKP instance is optimal solution of the AddTSKP instance, and vice versa.

The last step consists in proving that these polynomial reductions preserve the non-

approximability result for the MDKP . !

Proposition 2.2 For an instance of the TSKP define α := mini=1...,n
ri

ri
. Then

adding no items in the first stage yields a solution whose solution value is at least

an α-fraction of the optimal solution value.

Idea of the proof: First of all note that α < 1. The idea is to first replace, for all i,
the second-stage reward ri by α · ri. The optimal solution value of the new instance

is thus a lower bound on the optimal solution value of the initial instance. Then

adding no item at all in the first stage yields a solution for the obtained instance

with approximation ratio at most α. This approximation ratio is thus also valid for

the initial instance.

Proposition 2.3 Under the assumption of a polynomial scenario model, there ex-

ists a polynomial-time 1
n

-approximation algorithm for the TSKP .

Underlying algorithm: For all i = 1, . . . , n let Ri denote the maximum ex-

182

pected reward we can obtain for item i. Let Ki = {k ∈ {1, . . . , K} : χk
i ≤ c}

where K is the number of scenarios and χk
i (k = 1, . . . , n) are the outcomes

of the random variable χi. Let pk > 0 be the probability of scenario k. It fol-

lows that Ri = max{ri −
∑

k 0∈Ki
pkdi,

∑

k∈Ki
pkri}. Let j = arg maxi=1,...,n Ri.

If Rj = rj −
∑

k 0∈Kj
pkdj, set xj = 1 and xi = 0 for all i *= j, otherwise set

xi = 0 for all i = 1, . . . , n. This clearly yields a solution with approximation ratio
1
n

. However, in order to determine j in polynomial time, K needs to be polynomial

in n.

Proposition 2.4 Let K-AddTSKP (K-MDKP) denote the variant of the

AddTSKP (MDKP) where the number of scenarios (constraints) is fixed to be

K. Then, for a given ε > 0, there exists a polynomial-time approximation algorithm

for the K-AddTSKP with approximation-ratio 1
2
− ε.

Idea of the underlying algorithm: First, solve the first-stage problem as a K-

MCKP (i.e. the solution has to respect the K second-stage capacity constraints)

using a PTAS. Then, solve independently the K second-stage knapsack problems

using the well known FTPAS and compute the expectation of the obtained solu-

tion values (based on the corresponding probabilities of the scenarios). The associ-

ated solution is to add no item at all in the first stage. Compare the two solutions

and output the better.

References

[1] Dyer, M., Stougie, L.: Computational complexity of stochastic programming

problems. Mathematical Programming 106(3), 423–432 (2006)

[2] Gaivoronski, A.A., Lisser, A., Lopez, R., Hu, X.: Knapsack problem with

probability constraints. Journal of Global Optimization 49(3), 397–413

(2010)

[3] Kleywegt, A.J., Shapiro A., Homem-de-Mello, T.: The sample average ap-

proximation method for stochastic discrete optimization. SIAM Journal on

Optimization 12(2), 479–502 (2002)

[4] Kosuch, S., Lisser, A.: On two-stage stochastic knapsack problems. Discrete

Applied Mathematics (In Press, Corrected Proof) (2010)

[5] Li’ang, Z., Yin, Z.: Approximation for knapsack problems with multiple con-

straints. Journal of Computer Science and Technology 14(4), 289–297 (1999)

183

Computing the Grothendieck constant of some graph

classes

M. Laurent, a A. Varvitsiotis b

aCentrum Wiskunde & Informatica (CWI), Amsterdam, and Tilburg University.

bCentrum Wiskunde & Informatica (CWI), Amsterdam.

1 Introduction

Given a simple loopless graph G = ([n], E), define M(G) to be the set of sym-

metric n × n matrices with zero diagonal that are supported by G, i.e., Aii = 0 for

i ∈ [n] and Aij = 0 for (i, j) *∈ E. For A ∈ M(G), consider the integer quadratic

program over the discrete hypercube

ip(G, A) := max
x∈{±1}n

1

2
xT Ax = max

x∈{±1}n

∑

ij∈E

Aijxixj , (1.1)

whose canonical semidefinite programming relaxation is

sdp(G, A) := max
u1,...,un∈Sn−1

∑

ij∈E

Aiju
T
i uj, (1.2)

where Sn−1 denotes the n-dimensional unit sphere. Let κ(G) denote the integrality

gap of relaxation (1.2), defined by

κ(G) = sup
A∈M(G)

sdp(G, A)

ip(G, A)
. (1.3)

In other words, κ(G) is the smallest constant K > 0 for which the inequality

max
u1,...,un∈Sn−1

∑

ij∈E

Aiju
T
i uj ≤ K max

x∈{±1}n

∑

ij∈E

Aijxixj (1.4)

holds for all matrices A ∈ M(G). Following Alon et al. [1], κ(G) is called

the Grothendieck constant of G. It is shown in [1] that Ω(log ω(G)) = κ(G) =
O(log ϑ(Ḡ)) for any graph G. Here, ω(G) denotes the maximum size of a clique

in G and ϑ(Ḡ) is the Lovász theta function of Ḡ, shown in [9] to lie between ω(G)
and the chromatic number χ(G) of G.

On the other hand, an important inequality of A. Grothendieck states that there

exists a constant K > 0 such that

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

max
u1,...,um∈Sm+n−1

v1,...,vn∈Sm+n−1

m
∑

i=1

n
∑

j=1

Biju
T
i vj ≤ K max

x∈{±1}n

y∈{±1}n

m
∑

i=1

n
∑

j=1

Bijxiyj, (1.5)

holds for all matrices B ∈ Rm×n [7]. The smallest such constant is known as

Grothendieck’s constant and is denoted by KG. Note that this fits into the general

framework of (1.1), since (1.5) is equivalent to

sdp(Km,n, A) ≤ K ip(Km,n, A),

where Km,n is the complete bipartite graph on n + m nodes and A =







0 1
2
B

1
2
BT 0





.

In particular, Grothendieck’s inequality states that the integrality gap of the canon-

ical semidefinite relaxation of (1.1), when restricted to bipartite graphs, is constant.

It is known that KG ≤ π[2λ1,1(1 +
√

2)]−1 ∼ 1.782 [8], and that KG ≥ 1.6769...
[10], but its exact value remains unknown.

We point out some tight connections between problem (1.1) and the max-cut

problem which, given edge weights w ∈ RE, asks for the maximum weight

mc(G, w) of a cut in G. Then, mc(G, w) = maxx∈{±1}n
1
2
(w(E) − xT Awx) =

maxx∈{±1}n
1
4
xT Lwx, where Aw is the weighted adjacency matrix of G and Lw is its

Laplacian matrix. Hence, mc(G, w) = 1
2
(w(E)+ip(G,−Aw)) and sdpGW (G, w) =

1
2
(w(E) + sdp(G,−Aw)) is the canonical semidefinite programming relaxation

of max-cut considered in [6]. The Grothendieck constant of G can be used to

bound the integrality gap for max-cut since, assuming w(E) ≥ 0, we have that

sdpGW (G, w) ≤ κ(G)·mc(G, w). If, moreover, w ≥ 0, then LG is positive semidef-

inite and, as observed in [1], mc(G, w) = ip(G, A), sdpGW (G, w) = sdp(G, A),
where A is the matrix with bipartite pattern Kn,n and off-diagonal block B = Lw/4.

Thus the Grothendieck constant KG (for bipartite graphs) bounds the integrality

gap for max-cut, although it provides a bound less tight than the celebrated bound

1/0.878 ∼ 1.139 of [6].

During the last couple of years there has been increased interest in Grothendieck

type inequalities, since they proved to be extremely useful for an abundance of

applications, most notably in approximation algorithms, optimization and quantum

information theory (see e.g. [1,4]).

In this paper we study the Grothendieck constant κ(G) for some specific graph

classes. It turns out that for K5-minor-free graphs, we can compute it exactly,

whereas for some other graph classes we can obtain tight upper bounds.

2 Geometric reformulation and behavior under graph operations

We begin with a geometric reformulation for the Grothendieck constant κ(G).
For this, define the matrix sets En := {X ∈ S+

n | Xii = 1 ∀i ∈ [n]} and

CUTn := conv(X ∈ En | rankX = 1}, where S+
n is the cone of positive semidefi-

nite matrices. Moreover, if πE denotes the projection from Rn×n onto the subspace

185

RE indexed by the edge set of G, define E(G) := πE(En), CUT(G) := πE(CUTn),
known respectively as the elliptope and the cut polytope of G (see e.g. [5] for a de-

tailed study of these objects). Clearly, CUT(G) ⊆ E(G). The following lemma

shows that that κ(G) is the smallest dilation of the cut polytope containing the

elliptope.

Lemma 2.1 For a graph G, κ(G) is equal to the smallest constant K > 0 for

which

E(G) ⊆ K · CUT(G).

As an easy application we can see that κ(G) = 1 iff G is a forest. Moreover, it

is easy to verify that κ(G) = maxH K(H), where the maximum is taken over all

subgraphs H of G supporting a facet defining inequality of CUT(G).

We mention some results concerning the behavior of κ(G) under graph operations.

Clearly, κ(G) is monotone nondecreasing with respect to edge deletion. On the

other hand, κ(G) is not monotone with respect to edge contraction, since κ(K2) =
1 < κ(C3) = 3/2, while κ(C4) =

√
2 < κ(C3) = 3/2, where Cn denotes the

circuit graph on n nodes.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) for which V1∩V2 is a clique of

size k in both G1 and G2, the graph G = (V1 ∪ V2, E1 ∪ E2) is called the clique k-

sum of G1 and G2. The next lemma uses a result from [2], that gives the description

of CUT(G), when G is a clique k-sum with k ≤ 3 in terms of the descriptions

of the cut polytopes of the component graphs. As an easy application, we obtain

κ(K3,n) ≤ 3/2 and κ(Cn) ≤ 3/2.

Lemma 2.2 Assume G is the clique k-sum of G1 and G2 and k ≤ 3. Then, κ(G) =
max(κ(G1), κ(G2)).

3 Exact computation and bounds for κ(G) for some graph classes

We start with graphs with no K5-minor, for which we can give a formula for their

Grothendieck constant as a function of their girth, i.e., the minimum length of a

circuit in the graph. As a consequence, in this case, κ(G) can be computed in poly-

nomial time.

A well known result from [2] states that if G has no K5-minor, then its cut polytope

CUT(G) is defined by the inequalities |xe| ≤ 1 for e ∈ E, and −x(F)+x(C\F) ≤
|C|− 2 for all cycles C in G and all odd subsets F ⊆ C. Any vector x ∈ [−1, 1]E

can be parametrized as x = cos(πa) where a ∈ [0, 1]E; [3] shows that x ∈ E(Cn)
iff a satisfies the inequalities a(F)− a(Cn \ F) ≤ |F |− 1 for all odd subsets F of

Cn. The above descriptions for CUT(G) (when G has no K5-minor) and for E(Cn)
are the basic ingredients for the following results.

Theorem 3.1 The Grothendieck constant of a circuit Cn, (n ≥ 3) is equal to

κ(Cn) =
n

n − 2
cos

(

π

n

)

.

186

Corollary 2 If G is a graph with no K5-minor (and G is not a forest), then

κ(G) =
g

g − 2
cos

(

π

g

)

,

where g is the minimum length of a circuit in G.

As an application, κ(K2,2) = κ(K2,n) = κ(K3,3) = κ(K3,n) =
√

2; κ(C2n) was

computed in [11] in the context of quantum information theory.

Moreover, we can bound the Grothendieck constant for graphs whose cut polytope

is defined by inequalities supported by at most k points. Let Rk(Kn) denote the

polyhedron in REn defined by all the valid inequalities for CUT(Kn) that are sup-

ported by at most k points, and define its projection Rk(G) := πE(Rk(Kn)) for

any graph G on n vertices.

Theorem 3.2 For any graph G, we have that E(G) ⊆ κ(Kk) · Rk(G).

Define Gk to be the class of graphs for which CUT(G) = Rk(G). For instance, G2

is the class of graphs with no K3-minor (all forests), while G3 = G4 is the class of

graphs with no K5-minor. Clearly, for G ∈ G2, κ(G) = κ(K2) = 1; we saw above

that, for G ∈ G3, κ(G) ≤ κ(K3) = 3/2. More generally, we have:

Corollary 3 For any graph G ∈ Gk, we have that κ(G) ≤ κ(Kk). This bound is

tight since Kk ∈ Gk.

References

[1] N. Alon, K. Makarychev, Y. Makarychev, and A. Naor. Quadratic forms on

graphs. Invent. Math., 163(3): 499–522, 2006.

[2] F. Barahona. The max-cut problem on graphs not contractible to K5. Oper.

Res. Lett., 2: 107–111, 1983.

[3] W.W. Barrett, C.R. Johnson, and P. Tarazaga. The real positive definite com-

pletion problem for a simple cycle. Linear Algebra Appl., 192:3–31, 1993.

[4] J. Briët, H. Buhrman and B. Toner. A generalized Grothendieck inequality

and entangled XOR games. Preprint, arXiv:0901.2009 [quant-ph].

[5] M.M. Deza and M. Laurent. Geometry of Cuts and Metrics, Springer, 1997.

[6] M.X. Goemans and D. Williamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. J.

ACM, 42:1115–1145, 1995.

[7] A. Grothendieck. Résumé de la théorie métrique des produits tensoriels

topologiques. Bol. Soc. Mat. Sao Paolo, 8:1–79, 1953.

[8] J. Krivine. Sur la constante de Grothendieck. Comptes Rendus de l’Académie

des Sciences de Paris Series A-A, 284:445–446, 1977.

[9] L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inf. Theory,

25(1):1–7, 1979.

187

[10] J.A. Reeds. A new lower bound on the real Grothendieck

constant. Unpublished note, 1991. Avalaible at

http://www.dtc.umn.edu/˜reedsj/bound2.dvi

[11] S. Wehner. Tsirelson bounds for generalized CHSH inequalities. Physical Re-

view A, 73:022110, 2006.

188

Branch-and-Prune trees with bounded width

Leo Liberti, a Benoı̂t Masson, b Carlile Lavor, c Antonio Mucherino b

aLIX, École Polytechnique, 91128 Palaiseau, France

liberti@lix.polytechnique.fr

bIRISA, INRIA, Campus de Beaulieu, 35042 Rennes, France

{benoit.masson, antonio.mucherino}@inria.fr
cDept. of Applied Maths (IMECC-UNICAMP), State Univ. of Campinas, C.P. 6065,

13081-970, Campinas - SP, Brazil

clavor@ime.unicamp.br

Key words: DMDGP, distance geometry, order, reflection, symmetry.

1 Introduction

The MOLECULAR DISTANCE GEOMETRY PROBLEM, which asks to find the em-

bedding in R3 of a given weighted undirected graph, is a good model for deter-

mining the structure of proteins given a set of inter-atomic distances [6,4]. Its gen-

eralization to RK is called DISTANCE GEOMETRY PROBLEM (DGP), which has

applications in wireless sensor networks [2] and graph drawing. In general, the

MDGP and DGP implicitly require a search in a continuous Euclidean space. Pro-

teins, however, have further structural properties that can be exploited to define

subclasses of instances of the MDGP and DGP whose solution set is finite [5].

These instances can be solved with an algorithmic framework called Branch-and-

Prune (BP) [3,5]: this is an iterative algorithm where the i-th atom of the protein

can be embedded in R3 using distances to at least three preceding atoms. Since the

intersection of three 3D spheres contains in general two points, the BP gives rise

to a binary search tree. In the worst case, the BP is an exponential time algorithm,

which is fitting because the MDGP and DGP are NP-hard [9].

Compared to continuous search algorithms, the performance of the BP algorithm

is impressive from the point of view of both efficiency and reliability. In this paper

we try to explain why the BP algorithm is so much faster than other approaches

notwithstanding its worst-case exponential running time. Specifically, using the

particular structure of the protein graph, we argue that it is reasonable to expect

that the BP will yield a search tree of bounded width.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

2 Discretizable instances and the BP algorithm

For all integers n > 0, we let [n] = {1, . . . , n}. Given an undirected graph G =
(V, E) with |V | = n, for all v ∈ V we let N(v) = {u ∈ V | {u, v} ∈ E} be

the set of vertices adjacent to v. Given a positive integer K, an embedding of G in

RK is a function x : V → RK . If d : E → R+ is a given edge weight function

on G = (V, E, d), an embedding is valid for G if ∀{u, v} ∈ E ‖xu − xv‖ = duv,

where xv = x(v) for all v ∈ V and duv = d({u, v}) for all {u, v} ∈ E. For any

U ⊆ V , an embedding of G[U] (i.e. the subgraph of G induced by U) is a partial

embedding of G. If x is a partial embedding of G and y is an embedding of G
such that ∀u ∈ U (xu = yu) then y is an extension of x. For a total order < on V
and for each v ∈ V , let ρ(v) = |{u ∈ V | u ≤ v}| be the rank of v in V with

respect to <. The rank is a bijection between V and [n], so we can identify v with

its rank and extend arithmetic notation to V so that for i ∈ Z, v + i denotes the

vertex u ∈ V with ρ(u) = ρ(v) + i. For all v ∈ V and ℓ < ρ(v) we denote by

γℓ(v) the set of ℓ immediate predecessors of v. If U ⊆ V with |U | = h such that

G[U] is a clique, let D′(U) be the symmetric matrix whose (u, v)-th component is

d2
uv for u, v ∈ U , and let D(U) be D′(U) bordered by a left (0, 1, . . . , 1)3 column

and a top (0, 1 . . . , 1) row (both of size h + 1). Then the Cayley-Menger formula

[1] states that the volume in Rh−1 of the h-simplex defined by G[U] is given by

∆h−1(U) =

√

(−1)h

2h−1((h−1)!)2
|D(U)|.

Generalized DISCRETIZABLE MOLECULAR DISTANCE GEOMETRY PROB-

LEM (KDMDGP). Given an integer K > 0, a weighted undirected graph

G = (V, E, d) with d : E → Q+, a total order < on V and an embedding

x′ : [K] → RK such that:

(1) x′ is a valid partial embedding of G[[K]] (START)

(2) G contains all (K + 1)-cliques of <-consecutive vertices as induced sub-

graphs (DISCRETIZATION)

(3) ∀v ∈ V with v > K, ∆K−1(γK(v)) > 0 (STRICT SIMPLEX INEQUALI-

TIES),

is there a valid embedding x of G in RK extending x′?

We denote by X the set of embeddings solving a KDMDGP instance. The KDMDGP

generalizes the DISCRETIZABLE MOLECULAR DISTANCE GEOMETRY PROBLEM

(DMDGP) [3] from R3 to RK . Furthermore, it is a subclass of the DISCRETIZ-

ABLE DISTANCE GEOMETRY PROBLEM (DDGP) [3] given by all DDGP instances

where the K adjacent predecessors used to determine the two positions for the cur-

rent vertex are immediate. Since for the DDGP |X| is finite [3], this also holds

for the KDMDGP; and since the DMDGP is NP-hard [3], the same is true for the
KDMDGP. For a partial embedding x of G and {u, v} ∈ E let Sx

uv be the sphere

centered at xu with radius duv. The BP algorithm, used for solving the DDGP and

its restrictions, is BP(K + 1, x′, ∅) (see Alg. 2). By STRICT SIMPLEX INEQUALI-

TIES, |P | ≤ 2. At termination, X contains all embeddings extending x ′ [3,5].

190

Algorithm 1 BP(v, x̄, X)

Require: A vtx. v ∈ V ! [K], a partial emb. x̄ = (x1, . . . , xv−1), a set X .

1: P =
⋂

u∈N(v)
u<v

S x̄
uv;

2: ∀p ∈ P ((x ← (x̄, p)); if (ρ(v) = n) X ← X ∪ {x} else BP(v + 1, x, X)).

3 BP tree geometry

Since the definition of the KDMDGP requires G to have at least those edges

used to satisfy the DISCRETIZATION axiom, we partition E into the sets ED =
{{u, v} | |ρ(v) − ρ(u)| ≤ K} and EP = E ! ED. With a slight abuse of notation

we call ED the discretization distances and EP the pruning distances. Discretiza-

tion distances guarantee that a DGP instance is in the KDMDGP. Pruning distances

are used to reduce the BP search space by pruning its tree. In practice, pruning

distances might make the set P in Alg. 2 have cardinality 0 or 1 instead of 2. We

assume G is a feasible instance of the KDMDGP.

Let GD = (V, ED, d) and XD be the set of embeddings of GD; since GD has

no pruning distances, the BP search tree for GD is a full binary tree and |XD| =
2n−K . The discretization distances arrange the embeddings so that, at level ℓ, there

ν1

ν2

1
2

53 4ν3 ν4

ν5

ν6 ν7

ν8

ν9

ν10

ν11

ν12

ν13
ν14

ν15

ν16

Fig. 1. A pruning distance {1, 4} prunes either ν6, ν7 or ν5, ν8.

are 2ℓ−K possible embeddings xv for the vertex v with rank ℓ. Furthermore, when

P = {xv, x
′
v} and the discretization distances to v only involve the K immediate

predecessors of v, we have that x′
v = Rv

x(xv) [7], the reflection of xv w.r.t. the

hyperplane through xv−K , . . . , xv−1. This also implies that the partial embeddings

encoded in two BP subtrees rooted at reflected nodes ν, ν ′ are reflections of each

other.

Theorem 24 ([7]) With probability 1: ∀v > K, u < v−K ∃ Huv ⊆ R s.t. |Huv| =
2v−u−K and ∀x ∈ X ‖xv−xu‖ ∈ Huv; also ∀x ∈ X ‖xv−xu‖ = ‖Ru+K

x (xv)−xu‖
and ∀x′ ∈ X (x′

v *∈ {xv, R
u+K
x (xv)} → ‖xv − xu‖ *= ‖x′

v − xu‖).
Proof (sketch) Sketched in Fig. 1; the circles mark distances to vertex 1.

191

4 BP search trees with bounded width

Consider the BP tree for GD and assume that there is a pruning distance {u, v} ∈
EP ; at level u there are max(2u−K, 1) nodes, each of which is the root of a subtree

with 2v−max(u,K) nodes at level v. By Thm. 24, for each such subtree only two nodes

will encode a valid embedding for v (we call such nodes valid). Thus the number

of valid nodes at level v > K is 2max(u−K+1,1).

Fig. 2 shows a Directed Acyclic Graph (DAG) Duv that we use to compute the

number of valid nodes in function of pruning distances between two vertices u, v ∈
V such that v > K and u < v − K. The first line shows different values for

2

2

2

2

2

2

4

4

4

4

4

8

8

8

8

16

16

16

32

32 64
v u+K+1 u+K+2 u+K+3 u+K+4 u+K+5 u+K+6

0

0

0

00

0

0

0 0

0

0

1

1

1

11

1

1 2

2

22

3

3

4

0 ∨
1

1 ∨ 2 2 ∨ 3
3 ∨ 4

0 ∨ 1 ∨ 2

1 ∨ 2 ∨ 3 2∨3∨4

0 ∨ . . . ∨ 3

1 ∨ . . . ∨ 4

0 ∨ . . . ∨ 4

Fig. 2. Number of valid nodes in function of the pruning distances.

the rank of v w.r.t. u; an arc labelled with an integer i implies the existence of

a pruning distance {u + i, v} (arcs with ∨-expressions replace parallel arcs with

different labels). An arc is unlabelled if there is no pruning distance {w, v} for any

w ∈ {u, . . . , v−K−1}. The nodes of the DAG are arranged vertically by BP search

tree level. A path p in this DAG represents the set of pruning distances between u
and v: pℓ is the number of valid nodes in the BP search tree at level ℓ. For example,

following unlabelled arcs corresponds to no pruning distance between u and v and

leads to a full binary BP search tree with 2v−K nodes at level v.

Each EP corresponds to a longest path in D1n; BP trees have bounded width when

these paths are below a diagonal with constant node labels.

Proposition 1 If ∃v0 ∈ V ! [K] s.t. ∀v > v0 ∃!u < v − K with {u, v} ∈ EP then

the BP search tree width is bounded by 2v0−K .

Proof (sketch) This corresponds to a path p0 = (2, 4, . . . , 2v0−K , . . . , 2v0−K) that

follows unlabelled arcs up to level v0 and then arcs labelled v0 −K − 1, v0 −K −
1∨ v0 −K, and so on, leading to nodes that are all labelled with 2v0−K (see Fig. 3,

left).

Proposition 2 If ∃v0 ∈ V ! [K] such that every subsequence s of consecutive

vertices >v0 with no incident pruning distance is preceded by a vertex vs such that

∃us < vs (ρ(vs) − ρ(us) ≥ |s| ∧ {us, vs} ∈ EP), then the BP search tree width is

bounded by 2v0−K .

192

Proof (sketch) Such instances yield paths that are below the path p0 described in

the proof of Prop. 1 (Fig. 3, right).
2

2

2

2

2

2

4

4

4

4

4

8

8

8

8

16

16

16

32

32 64 2

2

2

2

2

2

4

4

4

4

4

8

8

8

8

16

16

16

32

32 64

Fig. 3. A path p0 with treewidth 8 (left) and another path below p0 (right).

Moreover, For those instances for which the BP search tree width has a O(log n)
bound, the BP has a polynomial worst-case running time O(L2log n) = O(Ln),
where L is the complexity of computing P .

On a set of 16 protein instances from the Protein Data Bank (PDB), twelve satisfy

Prop. 4.1, and four Prop. 4.2, all with v0 = 4. This validates the expectation that

BP has polynomial complexity on real proteins.

References

[1] L. Blumenthal. Theory and Applications of Distance Geometry. Oxford Uni-

versity Press, Oxford, 1953.

[2] T. Eren, D.K. Goldenberg, W. Whiteley, Y.R. Yang, A.S. Morse, B.D.O. Ander-

son, and P.N. Belhumeur. Rigidity, computation, and randomization in network

localization. IEEE Infocom Proceedings, pages 2673–2684, 2004.

[3] C. Lavor, L. Liberti, and N. Maculan. The discretizable molecular distance

geometry problem. Technical Report q-bio/0608012, arXiv, 2006.

[4] C. Lavor, A. Mucherino, L. Liberti, and N. Maculan. On the computation

of protein backbones by using artificial backbones of hydrogens. Journal of

Global Optimization, accepted.

[5] L. Liberti, C. Lavor, and N. Maculan. A branch-and-prune algorithm for the

molecular distance geometry problem. International Transactions in Opera-

tional Research, 15:1–17, 2008.

[6] L. Liberti, C. Lavor, A. Mucherino, and N. Maculan. Molecular distance ge-

ometry methods: from continuous to discrete. International Transactions in

Operational Research, 18:33–51, 2010.

[7] L. Liberti, B. Masson, C. Lavor, J. Lee, and A. Mucherino. On the number of

solutions of the discretizable molecular distance geometry problem. Technical

Report 1010.1834v1[cs.DM], arXiv, 2010.

[8] A. Mucherino, C. Lavor, and L. Liberti. The discretizable distance geometry

problem. Optimization Letters, in revision.

[9] J.B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard.

Proceedings of 17th Allerton Conference in Communications, Control and

Computing, pages 480–489, 1979.

193

Discounted Markov Decision Processes and

Algorithms for Solving Stochastic Control Problem

on Networks

Dmitrii Lozovanu, a Stefan Pickl b

aInstitute of Mathematics and Computer Science, Academy of Sciences,

Academy str., 5, Chisinau, MD–2028, Moldova

lozovanu@usm.md

bInstitut für Theoretische Informatik, Mathematik und Operations Research,

Fakultät fur Informatik, Universität der Bundeswehr, München

stefan.pickl@unibw.de

Abstract

A class of discounted Markov decision processes with stopping states is considered and

the problem of determining the optimal policy in such processes is studied. The linear

programming approach for determining the optimal solution of the considered problem is

proposed and its application for solving the discounted stochastic control problem on net-

works is described. Furthermore a polynomial time algorithm for determining the optimal

stationary strategies of the control problem on networks with fixed starting and final states

is developed.

Key words: Discounted Markov Decision Processes , Stochastic Control Problem on

Network, Optimal Stationary Strategies, Polynomial Time Algorithm.

1 Introduction and Problem Formulation

In this paper we apply the concept of discounted Markov decision processes to

stochastic optimal control problem on networks and develop the linear program-

ming approach for determining the optimal stationary strategies of the problem

with fixed starting and final states [1,2]. Based on this approach we develop a poly-

nomial time algorithm for solving the discounted stochastic control problem on

network. The statement of this problem is the following.

Let L be a time-discrete system with finite set of states X . At every discrete moment

of time t = 0, 1, 2, . . . the state of the dynamical system is x(t) ∈ X . Two states

x0, xf ∈ X are given where x0 = x(0) is the staring state of L and xf is the

state in which the dynamical system must be brought. The dynamics of system L is

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

described by a directed graph G = (X, E) where the set of vertices X corresponds

to the set of states of system L and a directed edge e = (x, y) ∈ E signifies the

possibility of system L to pass from the state x = x(t) ∈ X to the state y =
x(t + 1) ∈ X for arbitrary discrete moment of time t = 0, 1, 2, Thus the set of

edges E(x) = {e = (x, y) ∈ E|y ∈ X} corresponds to the set of feasible controls

in the state x = x(t) . On edge set E is defined a function c : E → R which

gives to each directed edge e = (x, y) a cost ce = cx,y, i.e. cx,y expresses the cost

of system’s transition from the state x = x(t) to the state y = x(t) for arbitrary

t = 0, 1, 2, The transitions costs of the dynamical system we consider with

given discount factor γ which means that if the system at the moment of time t
passes from the state x = x(t) to the state y = x(t + 1) then the the cost cx,y is

multiplied by γ t, i.e. the cost of system’s transition from the state x = x(t) at the

moment of time t to the state y = x(t + 1) is equal to γ tcx,y.

For the control problem on network we have the following behavior of the dynam-

ical system. If x(0) ∈ X1 then the decision maker select a transition to the state

x(1) = x1 and we obtain the state x1 at the moment of time t = 1; in the case

x(0) ∈ X2 the system passes from x(0) to a state x(1) in the random way. If at the

moment of time t = 1 the state xf is reached (x1 = xf), then the dynamical system

stops transitions. In general case, if at the moment of time t the system is in the state

x(t) ∈ X1 and x(t) *= xf then the decision maker select a transition to the next state

x(t + 1); if x(t) ∈ X2 then the system passes to to a state x(t + 1) in the random

way. The dynamical system stops transitions if x(t) = xf . It is evident that the

final states xf in this process can be reached with the probability that depends on

probability distribution functions in uncontrollable states as well on control in con-

trollable states. We assume that G possesses the property that the final state xf can

be reached with the probability equal to 1 for an arbitrary control and consider the

problem of determining the control with minimal expected total discounted cost.

For general case of the problem the expected total discounted cost can be estimated

if the final state have been reached. In the considered problem we assume that the

decision maker in the control process uses the stationary the stationary strategies

of state’s transition for the dynamical system. A stationary strategy we define as a

map

s : x → y ∈ X1(x) for x ∈ X1 \ {xf},

which uniquely determine the transitions from the states x = x(t) ∈ X1 \ {xf}
to the states y = s(x) ∈ X for arbitrary discrete moment of time t = 0, 1, 2,

In the terms of stationary strategies the discounted stochastic control problem on

network can be formulated in the following way.

Let s be an arbitrary stationary strategy. We define the graph Gs = (X, Es ∪E2),
where Es = {e = (x, y) ∈ E | x ∈ X1, y = s(x)}, E2 = {e = (x, y) | x ∈
X2, y ∈ X}. This graph corresponds to a Markov process with the probability

195

matrix P s = (ps
x,y), where

ps
x,y =



























px,y, if x ∈ X2 and y = X;

1, if x ∈ X1 and y = s(x);

0, if x ∈ X1 and y *= s(x).

For this Markov process with transition costs ce, e ∈ E we define the expected

total discounted cost σγ
x0

(s) [1,2]. We consider the problem of determining the

strategy s∗ for which

σγ
x0

(s∗) = min
s

σγ
x0

(s).

We show that if xf is a sink vertex in G and ce for e ∈ E are positive then the

optimal strategy s∗ for the considered problem exists and it can be found using the

linear programming approach, i.e the problem can be solved by using a polynomial

time algorithm.

2 The Main Results

To study and solve the considered stochastic control problem on network we use the

framework of discounted Markov decision process (X, A, c, p) with discount factor

γ (0 < γ < 1), where X is the set of states of the system, A is the set of actions,

c : X ×X → R is the transition cost function that gives the costs cx,y of system’s

transitions for arbitrary x, y ∈ X and p : X × X × A → [0, 1] is the transition

probability function that satisfy the condition
∑

y∈X pa
x,y = 1, ∀x ∈ X, a ∈ A(x)

(here A(x) is the set of actions in the state x ∈ X). A stationary strategy (a policy)

in this Markov decision process we define as a map s : X → A that determines

for each x ∈ X an action a ∈ A(x). We consider a Markov decision processes

with given absorbing state xf ,where cxf ,xf
= 0, i.e. we assume that the process

stops as soon xf is reached. For such Markov processes we consider the problem

of determining the stationary strategy s∗ that provides the minimal expected total

discounted costs for an arbitrary starting state. We sow that optimal solution of the

problem can be found by solving the following linear programming problem:

Minimize

φ(α, β) =
∑

x∈X

∑

a∈A(x)

(
∑

y∈X

cx,ypx,y)αx,a (2.1)

subject to































βy − γ
∑

x∈X

∑

a∈A(x) pa
x,y αx,a ≥ 1, y ∈ X;

∑

a∈A(x) αx,a = βx, ∀x ∈ X \ {xf};

βy ≥ 0, ∀y ∈ X \ {xf}; αx,a ≥ 0, ∀x ∈ X \ {xf}, a ∈ A(x).

(2.2)

196

The optimal stationary strategy s∗ for the problem with stopping state xf ∈ X is

determined as follows: for x ∈ X \ {xf} fix a = s∗(x) if α∗
x,a *= 0. Using the dual

lineal programming model for problem (2.1),(2.2) we show that for determining

the optimal stationary strategies in the discounted stochastic control problem can

be used the following linear programming problem:

Maximize

ϕ(σ) =
∑

x∈X

σx (2.3)

subject to















σx − γσy ≤ cx,y, ∀x ∈ X1, y ∈ X(x);

σx − γ
∑

y∈X px,yσy ≤ ∑

y∈X(x) cx,ypx,y, ∀x ∈ X2 \ {xf}
(2.4)

The optimal stationary strategy for the problem on network can be determined by

fixing s∗ : X \ {xf} → A such that s∗(x) = y ∈ X∗(x) ∀x ∈ X1 \ {xf}, where

X∗(x) = {y ∈ X(x)| σx − γσy = cx,y}. Note that the considered model is valid

also for γ = 1. It is easy to observe that the linear programming model (2.3),(2.4)

in the case X2 = ∅, γ = 1 is transformed in the linear programming model for

minimum cost problem in a weighted directed graph with fixed sink vertex xf .

References

[1] Lozovanu, D, Pickl, S., Determining optimal stationary strategies for dis-

counted stochastic optimal control problem on networks. 9th Cologne-Twente

Workshop on Graphs and Combinatorial Optimization, Cologne 115-118,

(2010)

[2] Puterman, M., Markov Decision Processes:Stochastic Dynamic Program-

ming. John Wiley, New Jersey (2005)

197

Infeasible path formulations for the time-dependent

TSP with time windows

I. Méndez-Dı́az, a J.J. Miranda-Bront, a P. Toth, b P. Zabala a

aDepartamento de Computación, FCEyN, Universidad de Buenos Aires,

Av. Cantilo s.n., Pabellón I, Ciudad Universitaria, Buenos Aires, Argentina

{imendez, jmiranda, pzabala}@dc.uba.ar
bDEIS, University of Bologna,

Bologna, Italy

paolo.toth@unibo.it

Key words: Branch and Cut, Infeasible path, TDTSP, Time Windows

1 Introduction

The Time-Dependent TSP with Time Windows (TDTSP-TW) is a generalization of

the classical ATSP-TW in which the cost of the travel between two cities depends

on the time of the day the arc is travelled.

The problem can be stated as follows: Consider a complete digraph D = (V, A),
with V = {0, 1, . . . , n, n+1} the set of vertices and A the set of arcs. Vertices 0 and

n + 1 represent the depot. There is a discrete time horizon 0, 1, . . . , T in which the

vehicle moves along the network. We assume that, for each arc (i, j) ∈ A, the travel

time function is discretized into M different time periods, and that it is constant

(and integer). Therefore, the problem is formulated on an expanded network where

we replace each arc (i, j) ∈ A by M parallel links going from i to j, one for each

possible time period. Time period m for arc (i, j) ∈ A is bounded by (T m−1
ij , Tm

ij],
for m = 1, . . . , M , where T 0

ij = 0. We name cm
ij and θm

ij the travel time and cost

from i to j in time period m, respectively. For each vertex i ∈ V , pi represents its

processing time and Wi = [ri, di] the corresponding time window, where ri and di

are the realease and deadline times, respectively. The TDTSP-TW involves finding

a minimum cost tour, starting from vertex 0 and ending at vertex n + 1, that visits

each vertex within its time window exactly once. It is important to note that waiting

times at both the arrival and the departure of each vertex are allowed.

Exact approaches for the TDTSP can be found in [3,4] and the version considering

time windows in [1], although the latter does not allow waiting times at departure

1 Partially supported by an ERASMUS Mundus Grant from the EU.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

of a vertex. In this paper, we propose two new formulations for the TDTSP-TW

based on the idea of infeasible paths, that can be adapted for the case without time

windows. In addition, we also present preliminary computational results for a B&C

algorithm on instances with up to 60 vertices.

2 Models

We start by generalizing the definition of infeasible paths for the ATSP-TW (see,

e.g. [2]) to the time-dependent case. Let P = (v1, v2, . . . , vk) be a simple path and

T = (m1, m2, . . . , mk−1) the corresponding sequence of time periods. We define a

time dependent simple path as a combination between P and T , [P, T], such that

arc (vi, vi+1) is travelled in time period mi, for i = 1, . . . , k − 1. Let tvi
and svi

be, respectively, the earliest departure and arrival time for vertex vi given [P, T],
defined as: (a) tv1 = Tm1−1

v1v2
+ 1, (b) svi

= max{tvi−1
+ cmi−1

vi−1vi
, rvi

}, i = 2, . . . , k

and (c) tvi
= max{svi

+ pvi
, Tmi−1

vivi+1
+ 1}, i = 2, . . . , k − 1.

These formulae allow waiting times, both at the arrival and the departure of a vertex.

A Hamiltonian time dependent path H = (0, v1, . . . , vn) is feasible if T mi−1
vivi+1

<
tvi

≤ min{Tmi
vivi+1

, dvi
+ pvi

} and rvi
≤ svi

≤ dvi
for vi ∈ H . A time dependent

simple path is infeasible if it cannot be a subpath in any feasible Hamiltonian path.

We let binary variable xm
ij take value 1 iff we are travelling from vertex i to vertex j

in time period (T m−1
ij , Tm

ij], and P = (v1, v2, . . . , vk) and T = (m1, m2, . . . , mk−1)
be an infeasible time dependent simple path. The generalization of well-known

Tournament constraints (TDTOURs) reads

k−1
∑

i=1

k
∑

j=i+1

xmi
vivj

≤ k − 2. (2.1)

Traditional xij variables from the ATSP can be easily defined in terms of xm
ij . By

considering the assignment equations from [3], the SEC over xij variables, inequal-

ities (2.1) and the objective function minimizing the cost of the tour, we obtain a

formulation for the TDTSP-TW, which we name TDIPF.

2.1 A Refined Formulation

Aiming to obtain stronger LP relaxations, we generalize the ideas presented in [2].

Following their notation, for each vertex i ∈ V its corresponding time window Wi

is divided into a set of Li buckets Bi = {bi
1, . . . , b

i
Li
} in such a way that each bucket

bi
l = [rbi

l
, dbi

l
] satifies the following conditions: (i) rbi

1
= ri, (ii) dbi

Li

= di + pi,

(iii) rbi
l+1

> dbi
l
, for l = 1, . . . , Li − 1 and (iv) If Tm

ij ∈ Wi for j ∈ V and

1 ≤ m ≤ M , then for some 1 ≤ l ≤ Li, dbi
l
= Tm

ij .

Condition (iv) is new with respect to the original ones. To account for time-

dependency, we force time period changes taking place during the vertex’s time

window to match the end of one of the buckets defined. By definition, given an arc

199

(i, j) ∈ A, a bucket b ∈ Bi belongs to exactly one time period. Therefore, we de-

note by cb
ij = cm

ij the time-dependent travel time when travelling arc (i, j) starting

at vertex i during bucket b. Conversely, for (i, j) ∈ A a time period 1 ≤ m ≤ M is

covered by a unique set of buckets b ∈ Bi.

We define, for each vertex i and bucket bl ∈ Bi, Ik(i, bl) = {b ∈ Bk : dbl−1
<

rb + pk + cb
ki ≤ dbl

} as the collection of possible starting buckets at vertex k given

that we select arc (k, i) and the starting bucket at vertex i is bl, with db0 = −∞. As

in [2], we let binary variables xb
ij take value 1 iff the vehicle travels from vertex i

to vertex j starting from i in b ∈ Bi, and zb
i take value 1 iff the vehicle arrives at i

in bucket b. To account for waiting times at the departure of a vertex, we introduce

binary variables yb
i which take value 1 iff the vehicle leaves vertex i in bucket b.

Variables xm
ij , and therefore xij , can be defined correctly in terms of xb

ij .

By considering (2.2) - (2.8) together with SEC and inequalities (2.1) for all time
dependent infeasible pahts we obtain another model for the TDTSP-TW, that we
name TDTBF. The objective function (2.2) minimizes the cost of the tour. Equa-
tions (2.3) and (2.4) establish that each vertex should be visited, and (2.5) account
for waiting times at the departure. Finally, equations (2.6) and (2.7) relate xb

ij vari-

ables with zb
i and yb

i , respectively.

min zcost =
∑

(i,j)∈A

M
∑

m=1

θm
ij xm

ij (2.2)

s.t.
∑

b∈Bi

zb
i = 1 ∀ i ∈ V \{0} (2.3)

∑

b∈Bi

yb
i = 1 ∀ i ∈ V \{n + 1} (2.4)

∑

β≥b, β∈Bi

yβ
i ≥ zb

i ∀ i ∈ V \{0, n + 1}, β ∈ Bi (2.5)

n
∑

j=1,j 0=i

xb
ij = yb

i ∀ i ∈ V \{n + 1}, ∀ b ∈ Bi (2.6)

n
∑

k=1,k 0=i

∑

β∈Ik(i,b)

xβ
ki = zb

i ∀ i ∈ V \{0}, ∀ b ∈ Bi (2.7)

xb
ij , z

b
i , y

b
i ∈ {0, 1} ∀ (i, j) ∈ A, ∀ i ∈ V, ∀ b ∈ Bi (2.8)

3 Preliminary computational results

We conducted experiments considering the input files provided in [1] for 1 minute

discretization and values of n = 10, 20, . . . , 60. The maximum values for the size of

the time windows are 20, 40, 60, with five instances for each value (named pnwX,

with n the number of vertices). We consider also instances with time windows of

maximum size 80 and 120, obtained by doubling the size of the ones with 40 and

200

60, respectively (named pnwXA). We implemented the modified version of the

formulation in [3] proposed in [4] (MD), the final formulation from [4] (SCM) as

well as formulations TDIPF and TDTBF.

Algorithms are coded using CPLEX 12 and tests were run on a laptop with an

Intel i3-350 CPU and 4 Gb of RAM. For MD and SCM, we consider the default

CPLEX 12 algorithm. For TDIPF and TDTBF, we develop for each model a B&C

algorithm including the SEC and TDTOURs as cuts. All CPLEX general purpose

features are disabled. The table below shows the average computational results for

the % GAP of the lower bounds at the root node corresponding to the LP relaxations

for MD and SCM and to the cutting plane procedures for TDIPF and TDTBF, as

well as the running time (expressed in seconds) of the overall exact algorithm for

all methods. A cell filled with (∗ ∗ ∗) means that the algorithm cannot solve any of

the corresponding instances to optimality within 1800 seconds. A number between

parenthesis represents the number of instances that were solved to optimality. Due

to space limitations, we report the results only for instances with n ≥ 30. For

MD and TDTBF, the average times are calculated over instances solved by both

algorithms.

The TDTBF appears as the best approach, solving more instances than the other

methods with less computational effort. The only exception is for instances in

p40wX, but the difference is produced by only one of the 15 instances in the group.

The corresponding lower bounds are tight, obtaining also the best results. TDIPF

lower bounds are also reasonable, but not as good as the previous ones. This is due

to the quality of the initial LP relaxations. Model MD produces reasonable results,

but tend to get worse as the time windows are wider. SCM shows that when mini-

mizing the cost of the tour (instead of the makespan, as in [4]) both running times

and quality of the LP relaxations are not good.

As future research we will continue working on deriving new families of valid

inequalities as well as other aspects related with the B&C algorithm.

References

[1] J. Albiach, J. M. Sanchis, and D. Soler. An asymmetric tsp with time windows and

with time-dependent travel times and costs: An exact solution through a graph trans-

formation. Eur. J. Oper. Res., 189(3):789–802, 2008.

201

[2] S. Dash, O. Günlük, A. Lodi, and A. Tramontani. A time bucket formulation for the

tsp with time windows. Forthcoming in INFORMS J. Comput., 2010.

[3] C. Malandraki and M. S. Daskin. Time dependent vehicle routing problems: For-

mulations, properties and heuristic algorithms. Transportation Sci., 26(3):185–200,

1992.

[4] G. Stecco, J.-F. Cordeau, and E. Moretti. A branch-and-cut algorithm for a produc-

tion scheduling problem with sequence-dependent and time-dependent setup times.

Comput. Oper. Res., 35(8):2635–2655, 2008.

202

A hereditary view on efficient domination

Martin Milanic

University of Primorska

UP FAMNIT, Glagoljaska 8, 6000 Koper, Slovenia

UP PINT, Muzejski trg 2, 6000 Koper, Slovenia

martin.milanic@upr.si

Key words: perfect code, efficient domination, perfect domination, hereditary efficiently

dominatable graph, forbidden induced subgraph characterization, polynomial time

algorithm

1 Introduction

The concept of an efficient dominating set in a graph (also known as perfect code, 1-

perfect code, perfect dominating set, or perfect independent dominating set) was in-

troduced by Biggs [2] as a generalization of the notion of a perfect error-correcting

code in coding theory. Given a (simple, finite, undirected) graph G = (V, E), we

say that a vertex dominates itself and each of its neighbors. An efficient dominating

set in G is a subset of vertices S ⊆ V such that every vertex v ∈ V is dominated

by precisely one vertex from S. Efficient domination has several interesting appli-

cations in coding theory and resource allocation of parallel processing systems.

We say that a graph is efficiently dominatable (ED) if it contains an efficient dom-

inating set. The problem of recognizing ED graphs is NP-complete even for re-

stricted graph classes such as planar cubic graphs, planar bipartite graphs, chordal

bipartite graphs and chordal graphs, but solvable in polynomial time for trees, in-

terval graphs, series-parallel graphs, split graphs, block graphs, circular-arc graphs,

permutation graphs, trapezoid graphs, cocomparability graphs, bipartite permuta-

tion graphs and distance-hereditary graphs.

Some small graphs such as the bull, the fork, or the 4-cycle C4 are not efficiently

dominatable. (The bull is the graph with vertex set {a, b, c, d, e} and edge set

{ab, bc, bd, cd, de}, and the fork is the graph obtained from the the claw K1,3 by

subdividing one of its edges.) All paths are efficiently dominatable, and a cycle Ck

on k vertices is efficiently dominatable if and only if k is a multiple of 3.

""This work was supported in part by “Agencija za raziskovalno dejavnost Republike

Slovenije”, research program P1-0285.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

The difficulty of characterizing ED graphs is perhaps related to the fact that they

do not form a hereditary graph class (that is, a class of graphs closed under vertex

deletions): adding a dominating vetrtex to any graph results in an ED graph. In this

paper we investigate hereditary efficiently dominatable graphs, that is, graphs every

induced subgraph of which is efficiently dominatable.

For a set of graphs F = {F1, . . . , Fk}, we say that a graph is (F1, . . . , Fk)-free if

no induced subgraph of it is isomorphic to a member of F . We will also say that a

graph G is (bull, fork, C3k+1, C3k+2)-free if no induced subgraph of G is isomor-

phic to a graph from the set {bull, fork} ∪ ⋃

k≥1{C3k+1, C3k+2}. Clearly, the set of

hereditary efficiently dominatable graphs forms a hereditary class contained in the

class of (bull, fork, C3k+1, C3k+2)-free graphs. We show in the present paper that

the converse inclusion holds as well. This result is obtained as a consequence of a

decomposition theorem for (bull, fork, C4)-free graphs. We also outline a polyno-

mial time algorithm for a problem generalizing the recognition of ED graphs in a

class of graphs properly extending the class of (bull, fork, C4)-free graphs, by re-

ducing the problem to the maximum weight independent set problem in claw-free

graphs.

2 Preliminary definitions

The structure theorem for (bull, fork, C4)-free graphs (Theorem 1.7 in Section 3)

will rely on certain operations that build larger graphs from smaller ones. We intro-

duce the necessary definitions in this section.

Duplicating a vertex v in a graph G means adding to G a new vertex and making it

adjacent to v and to all neighbors of v.

For n ≥ 1, a raft Rn is a graph consisting of two disjoint cliques on n + 1 vertices

each, say X = {x0, x1, ..., xn} and Y = {y0, y1, ..., yn} together with additional

edges between {x1, ..., xn} and {y1, ..., yn} such that for every i = 1, ..., n, vertex

xi is adjacent precisely to yi, yi+1, ..., yn. We say that X and Y are the parts of the

raft, and x0 and y0 are the tips of the raft. See Fig. 1 for examples of rafts.

x1

x2

x3

y1

y2

y3

x0

x1

x2

R2

R3
R4

y0

y1

y2

y0x0

x1

x2

x3

x4

y1

y2

y3

y4

x0 y0

Fig. 1. Rafts R2, R3 and R4

For n ≥ 1, a semi-raft Sn is a graph obtained from a raft Rn (as above) by deleting

its tips. We say that X \ {x0} and Y \ {y0} are the parts of the semi-raft. See Fig. 2

for examples of semi-rafts.

204

S2

S3

S4

Fig. 2. Semi-rafts S2, S3 and S4

For a graph G and a set X ⊆ V (G), we denote by G[X] the subgraph of G in-

duced by X . Given a graph G and a pair x, y of non-adjacent vertices in G, a raft

expansion (with respect to x, y) is the operation that replaces G with the graph G′

where:

• V (G′) = (V (G) \ {x, y}) ∪ (X ∪ Y) such that

• G′[X ∪ Y] is a raft with parts X and Y and

• E(G′) = {uv ∈ E(G) : {u, v} ∩ {x, y} = ∅} ∪ {ux′ : x′ ∈ X, ux ∈
E(G)}∪ {uy′ : y′ ∈ Y, uy ∈ E(G)} ∪E(G′[X ∪ Y]), where E(G′[X ∪ Y]) is

the edge set of G′[X ∪ Y].

Given a graph G and a pair x, y of adjacent vertices in G, a semi-raft expansion

(with respect to x, y) is the operation that replaces G with the graph G′ where:

• V (G′) = (V (G) \ {x, y}) ∪ (X ∪ Y) such that

• G′[X ∪ Y] is a semi-raft with parts X and Y and

• E(G′) = {uv ∈ E(G) : {u, v} ∩ {x, y} = ∅} ∪ {ux′ : x′ ∈ X, ux ∈
E(G)} ∪ {uy′ : y′ ∈ Y, uy ∈ E(G)} ∪ E(G′[X ∪ Y]).

3 Results

We give the following decomposition theorem for (bull, fork, C4)-free graphs:

Theorem 25 Let G be a (bull, fork, C4)-free graph. Then, G can be built from paths

and cycles of order at least 5 by applying a sequence of the following operations:

• disjoint union of two graphs,

• vertex duplication,

• addition of a dominating vertex,

• raft expansion,

• semi-raft expansion.

It can be shown that the set of ED graphs is closed under each of the above opera-

tions. This implies the following characterization of hereditary efficiently dominat-

able graphs in terms of forbidden induced subgraphs.

Theorem 26 The class of hereditary efficiently dominatable graphs equals the

class of (bull, fork, C3k+1, C3k+2)-free graphs.

We now turn to some algorithmic questions. Bange et al. [1] introduced the efficient

domination number of a graph, denoted F (G), as the maximum number of vertices

205

that can be dominated by a set S that dominates each vertex at most once. Clearly,

a graph G = (V, E) is efficiently dominatable if and only if F (G) = |V |. The

efficient domination problem is the problem of computing in a given graph G a set

S that dominates F (G) vertices and dominates each vertex at most once. It is not

hard to see that the efficient domination problem in a graph G is a special case

of the maximum weight independent set problem in the square of G, which is the

graph G2 = (V, E2) such that uv ∈ E2 if and only if either uv ∈ E or u and v
have a common neighbor in G. More precisely, denoting by αω(G) the maximum

weight of an independent set in G with respect to vertex weights ω, we have the

following result:

Proposition 1 Let G = (V, E) be a graph. Define ω(x) := |N [x]| for all x ∈ V .

Then, a set S ⊆ V dominates F (G) vertices, each vertex at most once, if and only if

S is an independent set of maximum ω-weight in G2. In particular, F (G) = αω(G2)
and G is efficiently dominatable if and only if αω(G2) = |V |.

The net is the graph obtained from a triangle by adding a pendant edge to each

vertex, and we denote by E the graph obtained from the claw by subdividing two

of its edges. It can be verified that the square of every (E,net)-free graph is claw-

free. Based on Proposition 1 and the fact that the maximum weight independent

set problem is solvable in polynomial time for claw-free graphs (see, e.g., [3]), this

implies the following result.

Theorem 27 The efficient domination problem can be solved in polynomial time

for (E,net)-free graphs.

It follows from Theorem 26 that every hereditary efficiently dominatable graph is

(E, net)-free. Hence:

Corollary 1 An efficient dominating set in a hereditary efficiently dominatable

graph can be found in polynomial time.

References

[1] D. W. Bange, A. E. Barkauskas and P. J. Slater, Efficient dominating sets in

graphs. In: R. D. Ringeisen and F. S. Roberts (Eds.), Applications of Discrete

Mathematics, pages 189–199, SIAM, Philadelphia, PA, 1988.

[2] N. Biggs, Perfect codes in graphs, J. Combin. Theory, Ser. B, 15 (1973) 288–

296.

[3] Y. Faenza, G. Oriolo and G. Stauffer, An algorithmic decomposition of claw-

free graphs leading to an O(n3)-algorithm for the weighted stable set problem.

In: SODA ’11, pages 630–646.

206

On the Robust Knapsack Problem

Michele Monaci, a Ulrich Pferschy b

aDEI, University of Padova, Via Gradenigo 6/A, I-35131 Padova, Italy.

monaci@dei.unipd.it

bDepartment of Statistics and Operations Research, University of Graz,

Universitaetsstr. 15, A-8010 Graz, Austria.

pferschy@uni-graz.at

Key words: knapsack problem, robust optimization, approximation ratio

1 Introduction

A standard assumption when solving an optimization problem is that all input data

is known in advance. Unfortunately, this is not always the case when real problems

are considered, since the models we use only provide an approximation of real sys-

tems and because uncertainty can change the effective values of some parameters.

Two main methods have been proposed so far to deal with uncertainty. Stochastic

optimization is used when a finite number of scenarios is possible and some in-

formation about the probabilistic distribution of data is available. On the contrary,

robust optimization is based on the definition of a robust counterpart for a nominal

problem, in which hard constraints are imposed to forbid extreme solutions that are

likely to become infeasible.

A widely discussed definition of robustness was provided by Ben-Tal and Ne-

mirovski [2,3], who considered uncertainty to be represented by a certain ellip-

soidal set, so as to control the level of conservatism of the solution. The resulting

models, despite tractable, turn out to be hard to solve in practice. A more recent

progress in robust optimization is the work by Bertsimas and Sim [4], who give a

definition of robustness which can be enforced by solving a robust problem that has

the same computational complexity as the nominal problem, and that turns out to

be efficiently solvable in practice, provided the nominal problem is as well.

In this paper, we consider robustness for the classical 0-1 knapsack problem (KP)

(cf. Kellerer et al. [5]) which can be formulated as follows:

(KP) max
∑

j∈N

pj xj (1.1)

∑

j∈N

wj xj ≤ c (1.2)

xj ∈ {0, 1} j ∈ N (1.3)

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

where xj = 1 iff item j is inserted into the knapsack. For convenience we assume

real weight values and c = 1.

Following [4] we study situations of uncertainty where the actual value of each

weight coefficient wj (j ∈ N) is not known in advance, but belongs to the interval

[wj − wj, wj + wj], and at most Γ coefficients can receive arbitrary weight values

within this interval – the remaining item weights remain at wj. The integer parame-

ter Γ is used to control the trade-off between the required quality of the solution and

its robustness with respect to data uncertainty. Indeed, this definition of uncertainty

reflects the fact that it is very unlikely that all weight coefficients change simulta-

neously, and that whenever more that Γ coefficients change, they tend to balance

each other. Formally, this means that (1.2) is replaced by

∑

j∈N

wj xj + max
S⊆N :|S|=Γ

∑

j∈S

wj xj ≤ 1. (1.4)

In this contribution we will always assume that there is not uncertainty in the profit

coefficients and the capacity. Finally, we make two further assumptions on the na-

ture of uncertain weights. First, we assume that each item can be inserted in the

knapsack in each robust solution, i.e., wj +wj ≤ 1 ∀j ∈ N . Clearly, any item vio-

lating this assumption could be removed from consideration. Then, we assume that,

for each item j, the weight uncertainty be at most a constant fraction of the nominal

weight of item j, i.e., wj = δwj (j ∈ N). This second requirement is an essential

constraint and follows exactly the setup introduced in [4, Sec. 6.1]. From these two

assumptions one gets that, for a given instance, the uncertain set is uniquely defined

by parameters δ and Γ. In addition, we get that

wj ≤
1

1 + δ
∀j ∈ N. (1.5)

The resulting problem has been defined as Robust Knapsack Problem (RKP) in

[4], where computational experiments about the effect of Γ on the optimal solution

value are given. Klopfenstein and Nace [6,7] showed that, under certain assump-

tions on the way the coefficients change, feasible solutions to (RKP) are also fea-

sible for the Chance-constrained Knapsack Problem, i.e., the knapsack problem in

which one is required to satisfy constraint (1.2) with a given probability 1−ε. In [6]

some special cases in which the optimal solution of (RKP) is optimal for (KP) as

well are considered, and the dynamic programming algorithm for (KP) is extended

to (RKP). Aissi et al. [1] considered a more restrictive notion of robustness where

a certain number of different data scenarios are given and the solution has to be

determined before we get to know which scenario actually occurs.

2 Worst Case Ratio Between KP and RKP

In the following we will denote, for a given instance I , the integer optimal solution

value of (KP) as z∗(I). In addition, given δ and Γ, we denote by zR
δ,Γ(I) the inte-

ger optimal solution value of (RKP). The ratio rδ,Γ(I) = zR
δ,Γ(I)/z∗(I) provides

208

an indication of the relative worsening of the solution value for instance I due to

uncertainty defined by δ, Γ. We are interesting in computing r(I) in the worst case

for a fixed uncertainty, i.e.

Rδ,Γ = min
I

rδ,Γ(I) (2.1)

Note that if assumption (1.5) is violated, one easily gets Rδ,Γ arbitrarily close to

zero (for any δ > 0 and Γ > 0), by considering an instance with an item w1 = 1
and p1 = M , while all other items have profit ε. The following theorem provides

the exact value for Rδ,Γ=1 for all values of δ.

Theorem 1

Rδ,1 =
1

1 + ⌈δ⌉ for all δ > 0.

Note that for δ ≤ 1 this yields Rδ,1 = 1
2

. For general Γ ≥ 2 and δ > 1
2
, we get the

following ratio.

Theorem 2

Rδ,Γ =
1

1 + ⌈2δ⌉ for all δ >
1

2
, Γ ≥ 2.

For Γ ≥ 2 and δ ≤ 1
2

the following stronger result similar to Theorem 1 holds.

Theorem 3

Rδ,Γ =
1

2
for all δ ≤ 1

2
, Γ ≥ 2.

3 LP Relaxation of RKP

As always for integer optimization problems we are also interested in the behavior

of the LP relaxation. This means that we allow items to be partially packed into

the knapsack, i.e. xj ∈ [0, 1]. First we can show the worst case ratio between the

robust and the best standard solution value of the LP-relaxations. In analogy to the

definition of (2.1) we get:

Theorem 4

RLP
δ,Γ =

1

1 + δ
for all δ > 0, Γ ≥ 1.

Considering the worst-case performance ratio of the LP-relaxation with respect to

the optimal solution value of (RKP) we define

WRδ,Γ = inf
I

{

zR
δ,Γ(I)

zR
δ,Γ(I)

}

, (3.1)

where zR
δ,Γ(I) denotes the solution value of the LP-relaxation for instance I . Even

for Γ = 1 no approximation can be guaranteed, although a constant bound can be

derived for δ ≤ 1.

Theorem 5

WRδ,Γ =
1

n
for some δ ≥ 0 and all Γ ≥ 1.

209

Theorem 6

WRδ,1 =
1

3
for any δ ≤ 1.

Finally, we consider combinatorial algorithms to solve the LP-relaxation of (RKP).

For the special case Γ = 1, it is obvious that the available capacity of a robust

solution depends on the weight wmax of the largest weight of an item included in

the solution and is given by c − δwmax.

It can be shown that the function that gives the best solution value of a solution with

largest weight wmax is a piece-wise linear concave function with at most 2n linear

pieces. Moreover, we can move from one linear piece to the next in logarithmic

time by using an appropriate data structure. Thus computing the optimal solution

of the LP-relaxation for Γ = 1 can be done in O(n log n) time.

For arbitrary Γ, we define a profit functionP (wmin) that depends on the smallest

weight wmin among the largest Γ item weights in the best LP-solution. It can be

shown that also P (wmin) is piece-wise linear with O(n) linear pieces, but not nec-

essarily concave. Each of the linear pieces of P (wmin) can be determined in linear

time by a fairly complicated iterative procedure exploiting a theoretical result which

describes the necessary structure of an optimal LP-solution for any given value of

wmin. This yields a total running time of O(n2).

References

[1] H. Aissi, C. Bazgan, D. Vanderpooten, Min-max and min-max regret versions

of combinatorial optimization problems: A survey, European Journal of Op-

erational Research 197, 427–438, (2009).

[2] A. Ben-Tal, A. Nemirovski, Robust convex optimization, Operations Re-

search 23, 769–805, (1998).

[3] A. Ben-Tal, A. Nemirovski, Robust solutions of linear programming problems

contaminated with uncertain data, Math. Progr. 88, 411–424, (2000).

[4] D. Bertsimas, M. Sim, The price of robustness, Operations Research 52, 35–

53, (2004).

[5] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, (2004).

[6] O. Klopfenstein, D. Nace, A robust approach to the chance-constrained knap-

sack problem, Operations Research Letters 36, 628–632, (2008).

[7] O. Klopfenstein, D. Nace, Valid inequalities for a robust knapsack polyhedron

- Application to the robust bandwidth packing problem, Networks, (2011).

210

Sparsifying Distance Matrices for Protein-Protein

Structure Alignments

Antonio Mucherino, a Inken Wohlers, b Gunnar W. Klau, b

Rumen Andonov c

aCERFACS, Toulouse, France

mucherino@cerfacs.fr

bCWI, Life Sciences Group, Amsterdam, The Netherlands

IRISA, Rennes, France

{i.wohlers,g.w.klau}@cwi.nl
cIRISA, Rennes, France

randonov@irisa.fr

Abstract

The problem of finding similarities between native protein conformations can be formu-

lated as the problem of aligning inter-residue distance matrices. Recently proposed exact

algorithms are able to solve this problem for large proteins only if the considered distance

matrices are sparse. We propose a strategy for sparsifying distance matrices in which we

keep the distances needed for uniquely reconstructing the conformations of the proteins.

Key words: protein structural alignment, sparse distance matrices, distance geometry

1 Introduction

We consider the problem of aligning native protein conformations [4]. Given two

proteins A and B, the problem consists in finding structural similarities between

the three-dimensional (3d) structure of A and the 3d structure of B. One way to

approach to this problem is to consider inter-residue distance matrices (that can be

computed from the known 3d coordinates of residues of A and B) and to identify

distances which are similar, in some sense, in the two matrices. In this context,

aligning inter-residue distance matrices is the process of discovering similarities

between pairs of elements contained in the two matrices. This alignment problem

is NP-hard [1]: many heuristic algorithms have been proposed for its solution, as

well as some exact algorithms.

Structural alignments have important applications in biology [4]. They help in

studying the evolutionary relationships among proteins and in investigating their

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

biological function. The hypothesis is that a protein’s function is more conserved

during evolution than its sequence. As function is in most cases dictated by struc-

ture, protein structure is more conserved than sequence. While in general proteins

with similar sequence fold in similar ways, there are thus also proteins with differ-

ent sequence that share the same structure. In such a case two proteins may share

a common ancestor, but their sequences changed over time such that an evolution-

ary relationship cannot be detected by sequence comparison alone. Furthermore,

structural similarities hint to possible functional similarities. It is evident then how

structural alignment helps gaining the knowledge that is needed to solve important

biological problems, such as unraveling molecular pathways and drug design.

We propose a strategy for sparsifying the protein inter-residue distance matrices

which is based on a discrete reformulation of the distance geometry problem. In

Section 2, we give more details about the alignment problem. Section 3 briefly in-

troduces the discrete reformulation of the distance geometry problem and describes

the strategy for sparsifying the inter-residue distance matrices. Initial computational

experiments and conclusions are given in Section 4.

2 Aligning distance matrices

Recently, a general mathematical model for the alignment of inter-residue distance

matrices has been proposed in [5]. Special cases of this model consider only sparse

inter-residue distance matrices. Aligning proteins based on contact map overlap

(CMO) is such a special case. In CMO, the matrices contain only small inter-residue

distances which may denote a chemical interaction, i.e. a contact, between two

residues. Exact algorithms like A PURVA [6] perform very well for such sparse

distance matrices and can oftentimes compute optimal solutions in running times

comparable to or less than those of recent heuristics.

In the general case, the two compared inter-residue distance matrices contain non-

zero elements only (except for the diagonal elements). Considering all available

information can help, in theory, the alignment algorithm in performing its task.

Nonetheless, exact alignment algorithms can in most cases not manage to compare

all this data. One way to overcome this issue is to select only the distances that are

useful for finding the biologically correct alignment.

3 Sparsifying distance matrices

In this work, we propose a strategy for sparsifying the inter-residue distance ma-

trices. For each matrix, a subset of distances that is sufficient for a unique recon-

struction of the protein’s 3d conformation is selected. The problem of determining

a protein conformation from an n × n distance matrix D = (dij) is a distance ge-

ometry problem (DGP) [2]. In particular, we consider a discrete reformulation of

the distance geometry problem which allows us to construct high precision models

of the original protein conformation and also to verify their uniqueness. We refer

to this problem to as the discretizable DGP (DDGP) [3].

212

DDGP matrices D = (dij) must satisfy the following assumption:

∀j = {2, . . . , n} ∃i1, i2, i3 :

• i1 < j, i2 < j, i3 < j (i1 = i2 if j ≤ 2; i2 = i3 if j ≤ 3);

• di1,j *= 0, di2,j *= 0, di3,j *= 0 (no distances can be equal to 0);

• di1,i3 < di1,i2 + di2,i3 .

Note that we implicitly suppose that there is a total ordering on the atoms of the

considered molecule. This assumption allows to discretize the problem and to solve

it by using an efficient Branch & Prune (BP) algorithm. This algorithm, differently

from other algorithms based on heuristics and/or continuous formulations of the

problem, is able to identify all possible solutions to the DDGP. Moreover, if the

assumption for the discretization is strengthened, so that not only 3 distances but

rather 4 distances are required, then there is a trilateration order on the atoms of

the molecule. These instances can be solved in polynomial time (even if, in the

worst case, the BP algorithm is exponential), and there are only two symmetric

solutions. Since one of these two symmetric solutions can be discarded by biologi-

cal considerations, DDGP distance matrices contain information enough to recon-

struct uniquely the original protein conformation. They should therefore be able to

describe well the corresponding protein structure.

In general, there exists more than one distance matrix which has this property. For

this reason, we select the distance matrix in which the distances have the smallest

values, because they are most likely able to capture interactions between residues,

like hydrogen-bonding, and thus contain more information regarding the structure.

4 Results and conclusions

For each structure we obtain the full inter-residue distance matrix by computing the

relative distances between any pair of Cα carbon atoms of each residue. Then, we

sparsify the distance matrix by choosing the distances di1,j, di2,j , di3,j and di4,j so

that they are the smallest distances for which the assumption for the discretization

is satisfied, and the corresponding DDGP has two symmetric solutions only. We

remark that distances between neighbouring residues are avoided (when possible)

because they cannot be useful during the alignment process. Finally, we compare

the results obtained by aligning these matrices with the results obtained for CMO

matrices.

First computational results were obtained for the 98 protein pairs from the Sisy data

set of manually curated, challenging structural alignments [7]. We use A PURVA

[6] to align the proposed sparse distance matrices. A PURVA determines the struc-

tural alignment with the maximum number of aligned distances, i.e. with the high-

est number of overlapping non-zero matrix elements. For the considered data set,

the average number of non-zero elements in CMO matrices is 932 and in DDGP

matrices 1060 (A PURVA considers no hetero atoms). The quality measure here

is the alignment accuracy. 100% alignment accuracy means 100% overlap with

the biologically correct reference alignment. The seven heuristic pairwise methods

213

analyzed in [7] reach between 56 and 83% average alignment accuracy (median

65 − 95%). The matrices obtained by DDGP reach on average 56% (median 67%)

alignment accuracy and the CMO matrices 70% (median 86%). Therefore, DDGP

matrices perform, in general, worse than CMO matrices (average -14%, median

-19%).

This is due to the fact that pairs of distances that are important for detecting the sim-

ilarity are missing. Nevertheless, the above preliminary results for sparsifying the

distance matrices are interesting, since they have been obtained by simply choos-

ing the smallest distances for which the matrices satisfy the DDGP assumptions

and ensure the uniqueness of the conformation. We are therefore confident that a

smarter search among the possible DDGP matrices could help in improving their

performances. We are currently investigating the possibility of sparsifying the two

matrices simultaneously so that, in average, distances that are considered in one

matrix are also present in the second one. We furthermore plan to study how to

identify during the execution of the alignment program the best distances to be

considered. This may require the solution of several DDGPs for solving one align-

ment problem.

References

[1] R.H. Lathrop, The Protein Threading Problem with Sequence Amino Acid In-

teraction Preferences is NP-complete, Protein Engineering 7(9), 1059–1068,

1994.

[2] L. Liberti, C. Lavor, A. Mucherino, N. Maculan, Molecular Distance Geome-

try Methods: from Continuous to Discrete, International Transactions in Oper-

ational Research 18(1), 33–51, 2011.

[3] A. Mucherino, C. Lavor, L. Liberti, The Discretizable Distance Geometry

Problem, in revision.

[4] M.L. Sierk, G.J. Kleywegt, Déjà Vu All Over Again: Finding and Analyzing

Protein Structure Similarities, Structure 12, 2103–2111, 2004.

[5] I. Wohlers, R. Andonov, G.W. Klau, Algorithm Engineering for Optimal

Alignment of Protein Structure Distance Matrices, Optimization Letters,

ISSN:1862–4472, DOI:10.1007/s11590-011-0313-3, 1–13, 2011.

[6] R. Andonov, N. Malod-Dognin, N. Yanev, Maximum Contact Map Overlap

Revisited, Journal of Computational Biology 18(1): 27–41, 2011.

[7] C. Berbalk, C.S. Schwaiger, P. Lackner, Accuracy Analysis of Multiple Struc-

ture Alignments, Protein Science 18(10): 2027–2062, 2009.

214

Minimally 2-connected graphs and colouring

problems

N. Narayanan

Dept. Mathematics, National Taiwan University, Taipei, Taiwan.

Key words: Minimally 2-connected graphs, colouring, Structural graph theory.

1 Extended Abstract

A 2-connected graph G is minimally 2-connected (m2c) , if G − e contains a

cut vertex for any edge e. Thus every edge is critical for the 2-connectivity. This

class has been studied independently by Plummer [10] and Dirac [6] and they ob-

tain some interesting structural properties of these classes. In the context of edge

colouring problems, we revisit these results and this reveals some interesting struc-

tural properties which are useful in several graph colouring problems. We present

the structural properties and application to 4 different problems viz. induced match-

ing, acyclic and k-intersection edge colourings and balanced decomposition. The

structure has similarity with structure of degenerate graphs and this enables one to

also generalise some of these results to graphs of given degeneracy. All these re-

sults are co-authored by the author in [9,3,4,5]. In the following, d(x) is the degree

of a vertex, ∆ maximum degree. Vertices of degree at least, at most and equal to k
are denoted k+, k−, k. For each connected graph we can find a block-cut-vertex tree

which contains all cut-vertices and blocks of G and a cut-vertex v of G is adjacent

to a block B of G whenever v ∈ V (B). An end block is a block containing at most

one cut-vertex in G. Undefined terms can be found in standard textbooks in graph

theory.

Theorem 1.1 ([6]) If G is a minimally 2-connected graph, then for any edge e,

G−e decomposes into blocks such that each block is either an edge or a minimally

2-connected subgraph of G.

Theorem 1.2 ([10]) (1) A 2-connected graph is minimally 2-connected iff no cy-

cle in the graph contains a chord.

(2) If G is a minimally 2-connected graph which is not a cycle and S is the set of

all degree 2 vertices of G, then G−S is a forest with components T1, T2, . . . , Ts

with s ≥ 2 such that there is no S-path joining two vertices of the same tree

Ti.

It follows from the above that,

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Lemma 1.3 Every subgraph of minimally 2-connected graphs contains some ver-

tex x such that at least d(x) − 1 of its neighbours are 2−-vertices.

The following lemma is a key observation. We provide a sketch of the proof.

Lemma 1.4 If G is a minimally 2-connected graph, then G − {u, v} is connected

for any edge uv.

Proof sketch: Observe that u and v have neighbours in every component and uv
forms a chord to some cycle in G if there are more than one components.

v

w1

w′
1

w2
w3

wk

x

Fig. 1. 1. Structure of m2c graph. 2 H and G − H in balanced decomposition.

Induced Matching: An edge colouring is an induced matching (aka strong edge

colouring) if the subgraph induced by the set of vertices of any colour class is the

colour class itself. In other words, any two edges of the same colour is separated

by a path of length at least 2. The minimum k such that G admits a strong edge

colouring using k colours is the strong chromatic index χ ′
s(G). This problem of

finding χ′
s is well studied and is notoriously difficult even for simple classes of

graphs.

In [8], a conjecture by Erdös and Faudree at al [11] proved that for graphs where all

cycle lengths are multiples of four, χ′
s(G) ≤ ∆

2 and conjectured that it is linear in

∆. We prove a stronger result which implies the conjecture. A graph is chordless,

if no cycle contains a chord.

Theorem 1.5 (1) If G is 2-degenerate, then χ′
s(G) ≤ 10∆ − 10.

(2) If G is chordless, then χ′
s(G) ≤ 8∆ − 8.

Proof Sketch: Let B = {1, 2, . . . , 4∆ − 4} and A = {1′, 2′, . . . , (4∆ − 4)′}.

From the structure of m2c graphs (Lemma 1.3), we pick an edge xy where d(y) ≤
2. Inductively assume that for any m2c graph G on at most m edges, there is a

strong edge colouring C that satisfies the following.

(1) The colouring C uses at most 8∆ − 8 colours.

(2) Every pendant edge (if any) is coloured from B.

(3) For a pendant edge e coloured c, no edge at a distance 1 is coloured c′.

After colouring xy, if the property fails to hold, we can see that we may recolour the

only other edge of y, say zy coloured c, to c′. It can be verified that the conditions

of hypothesis still hold and we are done.

Acyclic edge colouring: Acyclic edge colouring is a proper edge colouring in

which the union of any 2 colour classes is a forest. The minimum number of colours

216

needed to acyclically edge colour a graph is its acyclic chromatic index χ′
a. This is

another hard problem where even for complete graphs we do not have good upper

bounds. The best upper bound known is 16∆ while it is conjectured that for any

graph G, χ′
a(G) ≤ ∆(G) + 2, where ∆ is the maximum degree. We obtain [9] a

simple proof for this conjecture (actually a stronger version) for chordless graphs

(graphs where no cycle contains a chord edge) making use of the properties of

minimally 2-connected graphs. We give a sketch of the proof.

Theorem 1.6 Let G be minimally 2-connected. Then χ′
a(G) ≤ ∆(G) + 1.

Proof Sketch: Note that we can find uv ∈ E such that all but one neighbour of u
have degree at most 2. Inductively ∆+1 colour G−uv. It can be easily verified that

uv can be properly coloured with some colour. It can create at most one bichromatic

cycle since it is incident to a vertex of degree at most 2 and only through the high

degree neighbour of u. With some case analysis, we show that one can swap the

colours of two edges to avoid the bichromatic cycle.

k-Intersection edge colouring: The notion of k-intersection edge colouring is a

generalisation of strong edge colouring and proper edge colouring concepts in a

set theoretic sense. We say that a vertex sees colour c if c appears on one of it’s

incident edges. An edge colouring where a pair of adjacent vertices see at most k
colours in common is called a k-intersection edge colouring (k-IEC). It is easy to

see that when k = 1 this is strong edge colouring and when k = ∆ it is proper edge

colouring. It is known that the k-IEC chromatic index χ′
k is O(∆2

k
) for all values of

k and there are graphs that require Ω(∆
2

k
).

We prove the following using structure of m2c and k-degenerate graphs [4].

Theorem 1.7 (1) If G is ℓ-degenerate, then χ′
k(G) ≤ (ℓ + 1)∆− k for all ℓ ≤ k.

(2) If G is a subgraph of a minimally 2-connected graph, then for k ≥ 2 we have

χ′
k(G) ≤ maxuv∈E(d(u) + d(v) − k + 1).

Proof Sketch: Let G be an m2c graph on m + 1 edges. Choose some vertex v ∈
V (G) as before. Let w be a 2−-neighbour of v. By the induction hypothesis, H =
G − e has a k-intersection edge colouring satisfying the bounds. The rest of the

proof is a simple counting of the edges within a distance 1. Similar argument for

the ℓ-degenerate case works as they have similar treelike structure.

Balanced Decomposition: A balanced colouring of a graph G is a pair (R, B) of

subsets R, B ⊆ V (G) such that R ∩ B = ∅ and |R| = |B|. For any vertex subset

S ⊆ V , the subgraph induced by S is the graph G[S] with vertex set S and edge set

E[S] = {xy ∈ E: x, y ∈ S}. A balanced decomposition of a balanced colouring

(R, B) of G is a partition of vertices V (G) = V1 ∪ V2 ∪ . . . ∪ Vr such that G[Vi]
is connected and balanced. The balanced decomposition number f(G) of a graph

G is the maximum over all balanced colourings minimum of max1≤i≤r |Vi| among

all decompositions of G. We prove the following theorem which was conjectured

in [2].

Theorem 1.8 Let G be a 2-connected n-vertex graph. Then, f(G) ≤ ⌊n
2
⌋ + 1.

Proof Sketch: We use the following key lemma.

Lemma 1.9 If u and v are two distinct vertices in a 2-connected graph G, then

217

there is an ordering u = x1, x2, . . . , xn = v of V (G) such that the graphs Gi =
G[x1, x2, . . . , xi] and G′

i = G − V (Gi) are connected for 1 ≤ i ≤ n.

Proof sketch: Let x1 = u. Then G1 and G′
1 are connected since G is 2-connected.

Assume that Gi−1 and G′
i−1 are connected, where v ∈ G′

i−1. By the fact that G is

2-connected, every end block of G′
i−1 has a non-cut-vertex adjacent to some vertex

in Gi−1. Choose such a vertex xi, which can be assumed to be different from v in

the case when G′
i−1 has at least two vertices.

Note that any 2-connected G graph has a balanced decomposition to at least 2

balanced components. Start with a maximal subcomponent H of size at most ⌊ n
2
⌋−

1. Observe that each end-block of G − H has a non-cut vertex adjacent to a vertex

in H . Since H is maximal, we can see that each of the neighbours of H should

have the same colour (say blue). The proof proceeds to show that in such a case,

G−H has more blue vertices than red vertices contradicting the assumption that it

was balanced.

References

[1] N. Alon, B. Sudakov and A. Zaks. Acyclic edge colorings of graphs.

Journal of Graph Theory, 37:157–167, 2001.

[2] S. Fujita and H. Liu. The balanced decomposition number and vertex

connectivity. SIAM J. Discrete Math., 24:1597, 2010.

[3] G. J. Chang and N. Narayanan. Strong chromatic index of 2-degenerate

graphs. Submitted, 2010.

[4] G. J. Chang and N. Narayanan. k-intersection edge colouring of

ℓ-degenerate graphs. Submitted, 2011.

[5] G. J. Chang and N. Narayanan. On a conjecture on the balanced

decomposition number. Submitted, 2011.

[6] G. A. Dirac. Minimally 2-connected graphs. J. Reine Angew Math.,

228:204–216, 1967.

[7] R. Faudree, A. Gyárfas, R. H. Schelp and Z. Tuza. Induced matchings in

bipartite graphs. Discrete Math., 78(1-2):83–87, 1989.

[8] M Molloy and B Reed. A bound on the strong chromatic index of a graph.

Journal of Combinatorial Theory Series B, 69:103–109, 1997.

[9] R. Muthu, N. Narayanan and C. R. Subramanian. Some graph classess

satisfying acyclic edge colouring conjecture. Submitted, 2010.

[10] M.D. Plummer. On minimal blocks. Transactions of the American

Mathematical Society, 134 No. 1:85–94, 1968.

[11] R.J. Faudree, R.H. Schelp, A. GyÃ¡rfÃ¡s and Zs. Tuza. The strong

chromatic index of graphs. Ars Comb., 29(B):205–211, 1990.

218

Bipartite finite Toeplitz graphs

Sara Nicoloso, a Ugo Pietropaoli b

aIASI - CNR, Viale Manzoni 30, 00185 Roma, Italy

nicoloso@disp.uniroma2.it

bUniversità di Roma Tor Vergata, Dipartimento di Ingegneria dell’Impresa,

Via del Politecnico 1, 00133 Roma, Italy

pietropaoli@disp.uniroma2.it

Key words: Toeplitz graphs, bipartiteness, chromatic number

1 Extended Abstract

Let n, a, b, c be distinct positive integers such that 1 ≤ a < b < c < n (a, b, c
are called entries). By Tn(a, b, c) = (V, E) (Tn(a, b), resp.) we denote the simple

undirected finite Toeplitz graph where V = {v0, v1, . . . , vn−1} and E = {(vi, vj),
for |i − j| ∈ {a, b, c} (|i − j| ∈ {a, b}, resp.), see Fig. 1. If |i − j| = a (b, c, resp.),

we say that vi, vj ∈ V are a-adjacent (b-, c-adjacent, resp.) and that (vi, vj) ∈ E
is an a-edge (b-, c-edge, resp.). By a-path Ap, p = 0, 1, . . . , a − 1, we denote the

path containing vertex vp and made of a-edges only (notice that all the vertices vx

verifying x mod a = p belong to Ap).

Fig. 1. The Toeplitz graph T12(3, 5).

In the literature, also Toeplitz graphs with an infinite number of vertices have been

defined, and the bipartite ones are characterized in [4]. As for finite Toeplitz graphs,

in [3] an O(log2(b + 1)) procedure is proposed to test a Tn(a, b) for bipartiteness,

and some results are stated for a subclass of bipartite Tn(a, b, c)’s. In this paper

we provide a simple alternative condition to test a Tn(a, b) for bipartiteness, and

characterize the whole family of bipartite Tn(a, b, c)’s. A consequence of these re-

sults and those in [5] is a complete characterization of the chromatic number of

Tn(a, b, c)’s.

The following theorem provides a simple characterization for bipartite Tn(a, b)’s.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Theorem 1.1 Consider a Toeplitz graph Tn(a, b). If n ≤ a + b − gcd(a, b), it is

always bipartite; if n ≥ a + b − gcd(a, b) + 1, it is bipartite if and only if a
gcd(a,b)

and b
gcd(a,b)

are odd.

As far as Tn(a, b, c)’s are concerned, the following result can be proved:

Theorem 1.2 A Toeplitz graph Tn(a, b, c) with gcd(a, b, c) > 1 is bipartite if and

only if T⌈ n
gcd(a,b,c)⌉

(

a
gcd(a,b,c)

, b
gcd(a,b,c)

, c
gcd(a,b,c)

)

is.

Thanks to this result, in the remainder of the paper we shall limit ourselves to

consider Tn(a, b, c)’s with gcd(a, b, c) = 1, stating three theorems which give a

complete characterization of this class of graphs.

Theorem 1.3 A Toeplitz graph Tn(a, b, c) with gcd(a, b, c) = 1 and n ≤ c +
gcd(a, b) − 1 is bipartite if and only if Tn(a, b) is.

Theorem 1.4 A Toeplitz graph Tn(a, b, c) with gcd(a, b, c) = 1 and n ≥ max{a +
b − gcd(a, b) + 1; c + gcd(a, b)} is bipartite if and only if a, b, c are odd.

All the remaining cases are the Toeplitz graphs Tn(a, b, c) with gcd(a, b, c) = 1 and

c+gcd(a, b) ≤ n ≤ a+ b−gcd(a, b) which we now focus on. Observe that when b
is a multiple of a, i.e. b = ka for some integer k, then the a-path vi, vi+a, . . . , vi+ka

and the b-edge vi, vi+ka form a cycle with k + 1 edges: if k is even, the cycle is odd

(and the graph is non-bipartite); if k is odd, the cycle is even: in this case the a-path

and the b-edge are both odd paths and, as we shall see later, it suffices to keep just

one of them. The same holds if c is a multiple of a and motivates the following

definition.

We define En(a, b, c) = [ei,j] as the matrix whose rows and columns are indexed

from 0 to a− 1, and from b to n− 1, respectively, where ei,j = qA iff |i− j| = qa,

for some integer q, or ei,j = B (C, resp.) iff |i − j| = b (|i − j| = c, resp.) and

b (c, resp.) is not a multiple of a. The multiplicity of ei,j is the number of edges

it represents. En(a, b, c) is a diagonal matrix whose non-empty diagonals are: the

leftmost A-diagonal of elements kA; a diagonal of B-elements (the B-diagonal); a

diagonal of C-elements (the C-diagonal); and the rightmost A-diagonal of elements

(k + 1)A. Depending on the parity of k, either one of the A-diagonals is an even

A-diagonal, and the other one is an odd A-diagonal. We distinguish two types of

matrices: if
⌊

b
a

⌋

=
⌊

c
a

⌋

then En(a, b, c) is of type 1; if
⌊

b
a

⌋

<
⌊

c
a

⌋

then En(a, b, c) is

of type 2 (see Fig. 2).

11 12 13 14 15 16

0 B C 2A

1 B C 2A

2 B C 2A

3 B C

4 1A B C

5 1A B

6 1A

19 20 21 22 23 24

0 B 3A C

1 B 3A

2 B 3A

3 B 3A

4 B

5 2A B

6 2A

Fig. 2. The type 1 matrix E17(7, 11, 12) (left) and the type 2 matrix E25(7, 19, 24) (right).

220

In order to investigate the bipartiteness of Tn(a, b, c), we notice that a cycle in the

graph must necessarily contain some b- or c-edges (in fact, the subgraph induced

by all the a-edges is a collection of disjoint a-paths). We can prove that:

Lemma 1.5 Consider a Tn(a, b, c). If n ≤ a+ b− gcd(a, b), then every b-edge and

every c-edge connects the smallest-indexed vertex of an a-path with the largest-

indexed vertex of a different a-path, and every vertex has at most one b-edge and at

most one c-edge incident to it.

Two are the consequences of the above lemma. One is that in every cycle C the

maximal sequences of consecutive a-edges are separated by non-empty paths alter-

nating a b- and a c-edge; the other one is that every maximal sequence of consecu-

tive a-edges in a cycle C is an a-path. These two facts show that on matrix E(a, b, c)
all the cycles of Tn(a, b, c) are easily represented, as we now explain.

A cycle C of Tn(a, b, c) can be mapped onto a Closed Manhattan Curve (CMC,

for short) with corners in the non-empty elements of En(a, b, c), and viceversa.

Precisely: CMC has a corner in an element ei,j of a kA-diagonal (B- or C-diagonal,

resp.) iff all the k a-edges of path Ai (the b-edge (vi, vj) or the c-edge (vi, vj))
belong to C.

In order to prove the bipartiteness of Tn(a, b, c), we are interested in the parity of the

number of edges in a cycle. An easy way to evaluate such parity is to focus on the

vertical segments of the corresponding CMC. In fact, the sum of the multeplicity

of the endpoints of each vertical segment is an odd quantity if and only if one

endpoint belongs to the even A-diagonal. For this reason, an odd cycle in Tn(a, b, c)
is represented by a CMC of En(a, b, c) with an odd number of vertical segments

incident to elements of the even A-diagonal.

Another important observation is related to the “geometry” of a CMC. In fact, the

lengths of the vertical/horizontal segments in a CMC are limited to few quantities:

the distances among two consecutive diagonals and the sum of suitable pairs of

them. Let ki, for i = 1, 2, 3 be the distance among the i-th and the (i + 1)-th
diagonal (from left to right), the following diophantine equation can be written

k1x + k2y + k3t = 0. (1.1)

k1, k2, k3 are easily defined: in a type 1 matrix, k1 = b mod a, k2 = c − b, k3 =
a − c mod a, and, clearly k1 + k2 + k3 = a; in a type 2 matrix, k1 = b mod a,

k2 = a − b mod a = a
⌈

b
a

⌉

− b, k3 = c mod a, and, clearly, k1 + k2 = a.

A solution (x, y, t) to (1.1) corresponds to a CMC in En(a, b, c) iff it verifies some

constraints. First of all we have to ensure that the number of available vertical

segments is not exceeded. That is: |x| ≤ Ux, |y| ≤ Uy, |t| ≤ Uz, where Ux, Uy, Ut

are obtained by applying a simple elimination procedure, which removes from the

matrix those sets of elements corresponding to “dangling” paths. In addition, since

we are looking for odd cycles of Tn(a, b, c), we require that a solution contains an

odd number of vertical segments incident to the even A-diagonal. That is: for a type

1 matrix we require x odd if
⌊

b
a

⌋

even, and t odd if
⌊

b
a

⌋

odd; for a type 2 matrix we

require x odd if
⌊

b
a

⌋

even, and y + t odd if
⌊

b
a

⌋

odd. A solution satisfying all the

221

required constraints will be called a constrained solution.

Equation (1.1) admits a solution as gcd(k1, k2, k3) divides 0 (it takes O(log2 a) to

compute a solution by Euclid’s algorithm), thus it admits an infinite number of them

[2] (generated from the first one). Among them, we are interested in a constrained

one, if any, as stated by the following theorem (notice that in the worst case we

need to generate at most O(a2) solutions to find a constrained one, if any).

Lemma 1.6 Consider a Tn(a, b, c) with gcd(a, b, c) = 1 and c + gcd(a, b) ≤ n ≤
a + b − gcd(a, b). Every constrained solution to (1.1) corresponds to an odd cycle

of Tn(a, b, c), and viceversa.

As a consequence

Theorem 1.7 Tn(a, b, c) with gcd(a, b, c) = 1 and c + gcd(a, b) ≤ n ≤ a + b −
gcd(a, b) is bipartite if and only if (1.1) has no constrained solution.

We remark that the above results, together with those in [5], completely characterize

the chromatic number of Toeplitz graphs Tn(a, b, c). In addition, Theorems 1.1, 1.2

and 1.4 immediately provide a simple characterization for bipartite infinite Toeplitz

graphs with two or three entries.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Al-

gorithms, Second Edition. McGraw Hill, 2001.

[2] H. Cohen. Number Theory: Volume I: Tools and Diophantine Equations.

Springer Graduate Texts in Mathematics, 239, 2007.

[3] R. Euler. Characterizing bipartite Toeplitz graphs. Theoret. Comput. Sci.,

263:47–58, 2001.

[4] R. Euler, H. Le Verge, and T. Zamfirescu. Characterizing bipartite Toeplitz

graphs. In Ku Tung-Hsin (Ed.), Combinatorics and Graph Theory ’95, vol-

ume 1, pages 119–130, 1995.

[5] S. Nicoloso, and U. Pietropaoli. On the chromatic number of Toeplitz graphs.

Manuscript, 2010.

222

A reduction algorithm for the weighted stable set

problem in claw-free graphs

Paolo Nobili, a Antonio Sassano b

aDipartimento di Matematica, Università del Salento, Lecce, Italy

bDipartimento di Informatica e Sistemistica “Antonio Ruberti”, Universit̀a di Roma “La

Sapienza”, Roma, Italy

Key words: claw-free graphs, stable set, clique reduction, matching

1 Introduction

The Maximum Weight Stable Set Problem (MWSSP) in a graph G(V, E) with node-

weight function w : V → R asks for a maximum weight subset of pairwise non-

adjacent nodes. The Maximum Weight Matching Problem is a special case of the

Maximum Weight Stable Set Problem. In fact, the latter can be transformed into the

former in a very specific class of graphs: the line graphs. The line graph of a graph

G(V, E) is the graph L(G) with node set E and an edge ef for each pair {e, f}
of edges of E incident to the same node. A graph G is a line graph if and only if

there exists a graph H (the root graph of G) with the property that L(H) = G.

A graph G(V, E) is claw-free if no vertex v ∈ V has three mutually non-adjacent

nodes in its neighbourhood. By letting w(T) =
∑

v∈T w(v) (where T ⊆ V) we

have that a stable set S in a claw-free graph has maximum weight if and only if

there does not exist a path / cycle (augmenting path / cycle) P in G with strictly

positive weight w(P \ S)− w(P ∩ S). A graph G(V, E) is quasi-line if the neigh-

bourhood of each node v ∈ V can be covered by two cliques. Each line-graph

is a quasi-line graph and each quasi-line graph is a claw-free graph. A 5-wheel

W5 = (v̄; v0, v1, v2, v3, v4) is a graph consisting of a 5-hole R = {v0, v1, v2, v3, v4}
and the node v̄ adjacent to every node of R. If S is a stable set of G(V, E) then a

node v ∈ V \ S is called superfree if |N(v) ∩ S| = 0, free if |N(v) ∩ S| = 1 and

bound if |N(v) ∩ S| = 2.

In 1980, Minty [1] proposed a O(|V |6) algorithm to find a maximum weight sta-

ble set in a claw-free graph. Minty’s crucial idea was that of defining a new map

(different from the line transformation L(G)) from the node-weighted graph G to

an edge-weighted graph H with the property that a stable set has maximum (node)

weight in G if and only if a suitable matching has maximum (edge) weight in H .

For more than twenty years no algorithm better than Minty’s was proposed. Re-

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

cently, an astonishing O(|V |3) algorithm has been proposed by Faenza, Oriolo and

Stauffer (SODA 2011).

This paper proposes a different line of attack by combining the basic ideas of

Minty’s algorithm with the clique reduction by Lovasz and Plummer [2] produc-

ing a O(|V |4log(|V |)) time algorithm for the same problem. Following Minty, we

call a wing of {s, t} ⊆ S the set W (s, t) = {u ∈ V \ S : N(u) ∩ S = {s, t}}.

By claw-freeness α(W (s, t)) ≤ 2; if α(W (s, t)) = 1 the wing W (s, t) is said

to be a clique-wing. An x-y-alternating path with respect to S is an induced path

P = {x, . . . , y} whose nodes alternate between S and V \ S and x (y) is free

or belongs to S. An x-y-alternating path P such that x and y are both free is an

x-y-augmenting path.

2 Reducible and Strongly Reducible Cliques

Let S be a maximal stable set of a claw-free graph G(V, E). A maximal clique

Q is reducible [2] if α(N(Q)) ≤ 2. A maximal clique Q in G(V, E) is strongly

reducible if there exists a node u ∈ Q (hinge of Q) with the property that N(u) \Q
induces a clique in G and each node x ∈ N(Q) \ N(u) is adjacent to each node in

Q \ {u}.

Definition 2.1 We call w-reduction of the pair (G, w) with respect to a strongly

reducible clique Q with hinge node u ∈ S, the pair (GQ, wQ), where GQ(VQ, EQ)
is the graph obtained from G by deleting Q and adding all edges between vertices

of N(Q). The added edges are called false edges. The new weighting vector wQ

indexed by VQ is defined as wQ(s) = w(s) if s /∈ N(u) and by wQ(s) = w(s) −
w(u)+w(ts) if s ∈ N(u), where ts is any node maximizing w(t) in the set Q\N(s).
Each node ts with this property is called a companion of s.

Theorem 2.1 Let S be a stable set in G, let Q be a strongly reducible clique with

hinge node u ∈ S and let x, y be two free nodes with respect to S that do not

belong to Q. Then an alternating path P is a maximum weight x-y-augmenting

path in G with respect to S and w if and only if PQ = P \ Q is a maximum weight

x-y-augmenting path in GQ with respect to SQ = S \ {u} and wQ.

3 Augmenting subgraph

Let S be a stable set in a claw-free graph H(U, F) and let {x, y} ⊆ U \ S be a

pair of non-adjacent free nodes with respect to S. In this section we first define a

subgraph G of H containing all possible x-y-augmenting paths with respect to S in

H and then we show that either α(G) ≤ 3 or G is a line graph or a quasi-line graph

which contains a strongly reducible clique.

Definition 3.1 Let H(U, F) be a connected claw-free graph. Let S be a stable

set of H , let UF ⊆ U \ S and USF ⊆ U \ S be the set of free and super-free

nodes with respect to S and let {x, y} ⊆ UF be a pair of non-adjacent free nodes.

224

Let UR ⊆ U be the smallest set containing all the nodes z satisfying one of the

following conditions:

(i) z ∈ USF ∪ UF \ {x, y};

(ii) z ∈ (N(x) ∪ N(y)) \ S;

(iii) z ∈ U \ S: there exists no pair {s, t} ⊆ U \ (S ∪ UR) with the property that

N(s)∩N(t)∩S = ∅ and (s, u, z, v, t), with {u, v} = N(z)∩S, is an alternating

P5.

If x and y do not belong to the same connected component of H [U \ UR] then

define Aug(H, S, x, y) to be the empty graph. Otherwise, let Aug(H, S, x, y) be

the connected component of H [U \ UR] containing the nodes x and y. We call

Aug(H, S, x, y) the Augmenting Subgraph of H with respect to S and {x, y}.

In what follows, we will call redundant a node satisfying condition (iii) of Defini-

tion 3.1.

Theorem 3.1 The Augmenting Subgraph Aug(H, S, x, y) contains all the x-y-

augmenting paths with respect to S in H(U, F).

In the rest of this section we will denote by G(V, E) the graph Aug(H, S, x, y).

Theorem 3.2 If α(G) ≥ 4 then the augmenting subgraph G does not contain an

induced 5-wheel.

Fouquet proved that a claw-free and 5-wheel-free graph with stability number

greater than 3 is a quasi-line graph. Hence, by Theorem 3.2, if |S| ≥ 4 then G
is a quasi-line graph and the neighborhood of each node u ∈ S is partitioned into

two cliques, say Q′
u and Q̄′

u. Let Qu = Q′
u ∪ {u} and Q̄u = Q̄′

u ∪ {u}. We prove

that Qu and Q̄u are maximal cliques.

If |S| ≥ 4 we denote by C = {{Qs, Q̄s} : s ∈ S} a family of clique pairs with

the property that N(s) = Qs ∪ Q̄s \ {s} and Qs ∩ Q̄s = {s} for each s ∈ S. The

clique Q̄s (Qs) is said to be the mate clique of Qs (Q̄s) with respect to s. Since S is

a maximal stable set of a quasi-line graph G, the family C always exists and covers

all the nodes of G.

Each family C = {{Qs, Q̄s} : s ∈ S} partitions the wings {W (u, v) : u, v ∈ S}
into cliques, called partial wings. Observe that each wing is partitioned into at most

two partial wings. If for each node s ∈ S whose neighborhood N(s) is partitioned

into two clique-wings W (s, v1) and W (s, v2) we have {Qs, Q̄s} = {W (s, v1) ∪
{s}, W (s, v2) ∪ {s}} then we call C an S-cover of G.

We are now ready to state the main result of our contribution, namely that the

augmenting graph G can be turned into a line graph by a sequence of reductions of

strongly reducible cliques.

Theorem 3.3 Let |S| ≥ 4 and let C be an S-cover of the augmenting subgraph G.

Then either G is a line graph or C contains a strongly reducible clique Q, where

Q \ S is a clique-wing.

Theorem 3.3 has a natural algorithmic consequence. In order to check the optimal-

ity of a stable set S, one has to search, in an S-cover C of the augmenting subgraph,

for a strongly reducible clique Q such that Q \ S is a clique-wing. If such a clique

225

exists then we can reduce the augmenting subgraph to a smaller one. If, conversely,

such a clique does not exist then the augmenting subgraph is a line graph and the

optimality test can be performed by simply looking for a maximum weight aug-

menting path with respect to the matching M corresponding to S.

4 A O(n4 log n) Algorithm for MWSSP in claw-free graphs

Gabow’s algorithm for Maximum Weight Matching applied to the root graph of a

line graph H with n nodes, implies that a maximum weight x-y-augmenting path

in H can be found in O(n2 log n). Using this fact, we show that, even if H is claw-

free, the same problem can be solved in O(n2 log n). The algorithm consists of

two phases. In the first phase, the augmenting subgraph G = Aug(H, S, x, y) is

constructed in O(n2). In the second phase, a sequence of reductions of strongly

reducible cliques is performed, each time updating the resulting graph and stable

set in order to finally produce a (reduced) augmenting subgraph G which does

not contain a strongly reducible clique anymore. Then, by Theorem 3.3, either G
is a line graph or its stable set S satisfies |S| ≤ 3. In the first case, we find a

maximum weight x-y-augmenting path by applying Gabow’s algorithm in the root

graph; if |S| ≤ 3 we can easily find a maximum weight x-y-augmenting path in

O(n2) by enumeration. In both cases, the x-y-augmenting path can be extended, by

Theorem 2.1, to a maximum weight x-y-augmenting path in the original graph H
in O(n). Moreover, we can show that the sequence of reductions and updates of the

relevant structures can also be performed in O(n2). Subsequently, we prove that in

a claw-free graph H a maximum weight stable set can be obtained as an extension

of a maximum weight stable set of H − v by computing O(n) maximum weight

augmenting paths. This implies an overall complexity of O(n4 log n) to compute a

maximum weight stable set of a claw-free graph.

References

[1] Minty, George J., On maximal independent sets of vertices in claw-free

graphs, J. Comb. Theory, Ser. B, 28, 284–304, 1980.

[2] Lovász, László and Plummer, M.D., Matching theory, Annals of Discrete

Mathematics, 29. North-Holland Mathematics Studies, 121. Amsterdam etc.:

North-Holland. XXXIII, 544 p, 1986.

226

Edge-chromatic sums of regular and bipartite graphs

P.A. Petrosyan, a R.R. Kamalian b

aInstitute for Informatics and Automation Problems, National Academy of Sciences, 0014,

Armenia

pet petros@ipia.sci.am

bDepartment of Informatics and Applied Mathematics, Yerevan State University, 0025,

Armenia.

rrkamalian@yahoo.com

Key words: edge-coloring, sum edge-coloring, regular graph, bipartite graph

1 Introduction

We consider finite undirected graphs that do not contain loops or multiple edges.

Let V (G) and E(G) denote the sets of vertices and edges of G, respectively. For

a graph G, let δ(G) and ∆(G) denote the minimum and maximum degree of G,

respectively. The degree of a vertex v ∈ V (G) is denoted by dG(v), the chromatic

number of G by χ(G) and the edge-chromatic number of G by χ′(G).

A proper vertex coloring of a graph G is a mapping α : V (G) → N such that

α(u) *= α(v) for every uv ∈ E(G). If α is a proper vertex coloring of a graph G,

then Σ(G, α) denotes the sum of the colors of the vertices of G. For a graph G,

define the vertex-chromatic sum Σ(G) as follows: Σ(G) = minα Σ(G, α), where

the minimum is taken among all possible proper vertex colorings of G. If α is a

proper vertex coloring of a graph G and Σ(G) = Σ(G, α), then α is called a sum

vertex coloring. The strength of a graph G (s(G)) is the minimum number of col-

ors needed for a sum vertex coloring of G. The concept of sum vertex coloring

and vertex-chromatic sum was introduced by Kubika [9] and Supowit [13]. In [10]

Kubika and Schwenk showed that the problem of finding the vertex-chromatic sum

is NP -complete in general and polynomial time solvable for trees. Jansen [7] gave

a dynamic programming algorithm for partial k-trees. In papers [3,8,11] approx-

imation algorithms were given for various classes of graphs. For the strength of

graphs, a theorem like a Brook’s one was proved in [6]. On the other hand, there

are graphs with s(G) > χ(G) [4]. Some bounds for the vertex-chromatic sum of a

graph were given in [14]. Similar to the sum vertex coloring and vertex-chromatic

sum of graphs, in [3,5,6] was introduced sum edge-coloring and edge-chromatic

sum of graphs. A proper edge-coloring of a graph G is a mapping α : E(G) → N

such that α(e) *= α(e′) for every pair of adjacent edges e, e′ ∈ E(G). If α is

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

a proper edge-coloring of a graph G, then Σ
′(G, α) denotes the sum of the col-

ors of the edges of G. For a graph G, define the edge-chromatic sum Σ
′(G) as

follows: Σ
′(G) = minα Σ

′(G, α), where the minimum is taken among all possi-

ble proper edge-colorings of G. If α is a proper edge-coloring of a graph G and

Σ
′(G) = Σ

′(G, α), then α is called a sum edge-coloring. The edge-strength of a

graph G (s′(G)) is the minimum number of colors needed for a sum edge-coloring

of G. For the edge-strength of graphs, a theorem like a Vizing’s one was proved

in [6]. In [3] Bar-Noy et al. proved that the problem of finding edge-chromatic

sum is NP -hard for multigraphs. Later, in [5] it was shown that the problem is

NP -complete for bipartite graphs with maximum degree 3. Also, in [5] the au-

thors proved that the problem can be solved in polynomial time for trees and

s′(G) = χ′(G) for bipartite graphs. In [12] Salavatipour proved that the edge-

chromatic sum and the edge-strength are NP -complete for r-regular graphs with

r ≥ 3. Also he proved that s′(G) = χ′(G) for regular graphs. On the other hand,

there are graphs with χ′(G) = ∆(G) and s′(G) = ∆(G) + 1 [6].

In the present paper we give a polynomial time 11
8

-approximation algorithm for

the edge-chromatic sum problem of r-regular graphs for r ≥ 3. We also present a

polynomial time 13
9

-approximation algorithm for the edge-chromatic sum problem

of almost regular graphs with additional condition. Finally, we give two complexity

results for the problem of finding the edge-chromatic sum of bipartite graphs with

maximum degree 3.

2 Two approximation algorithms

A proper edge-coloring with 1, 2, . . . , t colors we call a proper t-coloring. Let G be

a graph and R ⊆ V (G). A proper t-coloring of a graph G is called an R-sequential

t-coloring [1,2] if the edges incident to each vertex v ∈ R are colored by the colors

1, 2, . . . , dG(v).

It is easy to see that the edge-chromatic sum problem of graphs with ∆(G) ≤ 2
can be solved in polynomial time. On the other hand, in [12] it was proved that

the problem of finding the edge-chromatic sum of an r-regular (r ≥ 3) graph is

NP -complete. Clearly, Σ
′(G) ≥ nr(r+1)

4
for any r-regular graph G with n vertices,

since the sum of colors appearing on the edges incident to any vertex is at least
r(r+1)

2
. Moreover, it is easy to see that Σ

′(G) = nr(r+1)
4

if and only if χ′(G) = r for

any r-regular graph G with n vertices.

First we give some results on R-sequential colorings of regular and almost regular

graphs and then we use these results for constructing approximation algorithms.

Theorem 1. If G is an r-regular graph with n vertices, then G has an R-sequential

(r + 1)-coloring with |R| ≥
⌈

n
r+1

⌉

.

228

Theorem 2. If G is a graph with χ′(G) = ∆(G) = r and ∆(G) − δ(G) ≤ 1

(r ≥ 3), then G has an R-sequential r-coloring with |R| ≥
⌈

(r−1)nr+n
r

⌉

, where

n = |V (G)| and nr = |{v ∈ V (G) : dG(v) = r}|.

In [3] it was shown that there exists a 2-approximation algorithm for the edge-

chromatic sum problem on general graphs. Now we show that there exists a
11
8

-approximation algorithm for the edge-chromatic sum problem on regular

graphs and 13
9

-approximation algorithm for the edge-chromatic sum problem on

almost regular graphs (∆(G) − δ(G) ≤ 1) with additional condition.

Theorem 3. For any r ≥ 3, there is a polynomial time
(

1 + 2r
(r+1)2

)

-approximation

algorithm for the edge-chromatic sum problem on r-regular graphs.

Theorem 4. For any r ≥ 3, there is a polynomial time 13
9

-approximation al-

gorithm for the edge-chromatic sum problem on almost regular graphs G with

χ′(G) = ∆(G) = r.

We also consider the problem of finding the edge-chromatic sum of bipartite

graphs. In [1,2] it was proved the following:

Theorem 5. If G = (U, V, E) is a bipartite graph with dG(u) ≥ dG(v) for every

uv ∈ E(G), then G has a U-sequential ∆(G)-coloring.

Corollary. If G = (U, V, E) is a bipartite graph with dG(u) ≥ dG(v) for every

uv ∈ E(G), then a U-sequential ∆(G)-coloring of G is a sum edge-coloring of G

and Σ
′(G) =

∑

u∈U
dG(u)(dG(u)+1)

2
.

Finally, we give two complexity results for the problem of finding the edge-

chromatic sum of bipartite graphs with ∆(G) = 3.

Problem 1.

Instance: A bipartite graph G = (U, V, E) with ∆(G) = 3.

Question: Is Σ
′(G) =

∑3
i=1 i · |{u ∈ V (G) : u ∈ U and dG(u) ≥ i}|?

Problem 2.

Instance: A bipartite graph G = (U, V, E) with ∆(G) = 3 and for i = 1, 2, 3

|{u ∈ V (G) : u ∈ U and dG(u) = i}| = |{v ∈ V (G) : v ∈ V and dG(v) = i}|.

Question: Is Σ
′(G) = 1

2

∑3
i=1 i · |{w : w ∈ V (G) and dG(w) ≥ i}|?

Theorem 6. Problems 1 and 2 are NP -complete.

229

References

[1] A.S. Asratian, Investigation of some mathematical model of scheduling the-

ory, Doctoral Thesis, Moscow, 1980.

[2] A.S. Asratian, R.R. Kamalian, Investigation on interval edge-colorings of

graphs, J. Combin. Theory Ser. B 62 (1994) 34-43.

[3] A. Bar-Noy, M. Bellare, M.M. Halldorsson, H. Shachnai, T. Tamir, On chro-

matic sums and distributed resource allocation, Inform. and Comput. 140

(1998) 183-202.

[4] P. Erdős, E. Kubika, A. Schwenk, Graphs that require many colors to achieve

their chromatic sum, Congr. Numer. 71 (1990) 17-28.

[5] K. Giaro, M. Kubale, Edge-chromatic sum of trees and bounded cyclicity

graphs, Inform. Proc. Letters 75 (2000) 65-69.

[6] H. Hajiabolhassan, M.L. Mehrabadi, R. Tusserkani, Minimal coloring and

strength of graphs, Discrete Math. 215 (2000) 265-270.

[7] K. Jansen, The optimum cost chromatic partition Problem, in: Proc. of the 3rd

Italian Conference on Algorithms and Complexity (CIAC’97), Lecture Notes

in Computer Science 1203, 1997, pp. 25-36.

[8] K. Jansen, Aproximation results for the optimum cost chromatic partition

problem, J. Algorithms 34 (2000) 54-89.

[9] E. Kubika, The chromatic sum of a graph, PhD Thesis, Western Michigan

University, 1989.

[10] E. Kubika, A.J. Schwenk, An introduction to chromatic sums, in: Proc. of the

17th Annual ACM Computer Science Conference, ACM Press, New York,

1989, pp. 39-45.

[11] K. Kubika, G. Kubika, D. Kountanis, Approximation algoriths for the chro-

matic sum, in: Proc. of the First Great Lakes Computer Science Conference,

Lecture Notes in Computer Science 507, 1989, pp. 15-21.

[12] M.R. Salavatipour, On sum coloring of graphs, Discrete Appl. Mathematics

127 (2003) 477-488.

[13] K.J. Supowit, Finding a maximum planar subset of nets in a channel, IEEE

Trans. Comput. Aided Design CAD 6(1) (1987) 93-94.

[14] C. Thomassen, P. Erdős, Y. Alavi, P.J. Malde, A.J. Schwenk, Tight bounds on

the chromatic sum of a connected graph, J. Graph Theory 13 (1989) 353-357.

230

Range minimization problems in path-facility

location on trees

Justo Puerto, a Federica Ricca, b Andrea Scozzari c

aUniversidad de Sevilla,

puerto@us.es

b“Sapienza” Università di Roma ,

federica.ricca@uniroma1.it

cUniversità Telematica delle Scienze Umane “Niccolò Cusano”, Roma,

andrea.scozzari@unisu.it

Key words: Path location, range criterion, length constraint.

1 Extended Abstract

In location analysis, the issue of equity among clients has become a relevant crite-

rion especially when locating public facilities. Equity refers to the distribution of

the clients’ demand in a geographical area and the objective is to locate facilities

in order to ensure a low variability of the distribution of the distances from the de-

mand points (clients) to a facility. In this paper we study the problem of locating

path-shaped facilities on a tree network with nonnegative weights associated to the

vertices and positive lengths associated to the edges. We consider the maximum and

the minimum weighted distances of a client to a facility and minimize the Range

function which is defined as the difference between the maximum and the mini-

mum weighted distance from the vertices of the network to a facility. This problem

arises, for example, when locating a transit line for commuters on a network with

the aim of making the line easily accessible to all the clients scattered in a given

territory.

The single point location problem under equity measures was considered in [1].

The extension to the case of locating path-shaped facilities of minimum Range

can be found in [2], where the problem is formulated in the following three dif-

ferent versions: locating a path which minimizes the Range; locating a path which

minimizes the maximum weighted distance subject to the minimum weighted dis-

tance bounded below by a constant; locating a path which maximizes the minimum

weighted distance subject to the maximum weighted distance bounded above by a

constant. However, in [2] all these problems are studied in the special case in which

all the vertices of the network have the same weight. Here we extend these results

to the more general case of arbitrary vertex weights. We discuss all the above three

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

formulations of the problem and their generalization including an additional con-

straint on the length of the path. For the solution of each problem we provide a

polynomial time algorithm.

Let T = (V, E) be a tree with |V | = n. Suppose that a nonnegative weight wv

is associated to each vertex v ∈ V , while a positive real length ℓ(e) = ℓ(u, v) is

assigned to each edge e = (u, v) ∈ E. For a path P in T , whose endpoints are or

may be vertices of T (i.e., discrete and continuous case, respectively) the weighted

Range objective function is defined as follows:

R(P) = max
u∈V \P

wud(u, P)− min
u∈V \P

wud(u, P), (1.1)

where d(u, P) denotes the distance from a vertex u of T to the path P , that is, the

length of the shortest path from u to a vertex or an endpoint of P . In this paper we

investigate the problem of finding a path P in T that minimizes the weighted Range

function (Problem P1), along with the two constrained versions of the problem that,

for a given nonnegative γ, can be formulated as follows:

P2 : min max
u∈V \P

wud(u, P)

min
u∈V \P

wud(u, P) ≥ γ,
(1.2)

and

P3 : max min
u∈V \P

wud(u, P)

max
u∈V \P

wud(u, P) ≤ γ.
(1.3)

In addition, we extend the study of all the three above problems also to the case

when there is a bound on the length of the path, that is, L(P) =
∑

e∈P
ℓ(e) ≤ L.

After a preprocessing phase, which is common for all the three problems, in order to

solve problem (1.1) in the case when the endpoints of P are not necessarily vertices

of the tree, the idea of the algorithm is to root T at a vertex r, and consider the rooted

tree Tr. Then, for every pair of edges (u, v) and (k, h) in Tr, among all the paths P
with endpoints x and y such that x ∈ (u, v) and y ∈ (k, h), one computes the path

that minimizes the Range. We show that for solving this problem it is necessary to

solve a sequence of linear programming problems each having a constant number

of variables and O(n) constraints. Hence, the overall time complexity for finding a

(continuous) path P in T that minimizes the Range is O(n3). We also provide that

this complexity remains unchanged if the length constraint is considered. When

specializing the method for finding a path P whose endpoints are vertices of T
(i.e., the discrete case), we obtain a lower time complexity and we solve problem

(1.1), with or without the length constraint, in time O(n2).

Consider now problems (1.2) and (1.3). For both of them the idea is to take an edge

(h, k) and the two subtrees that can be obtained from T by removing it. Denote

232

by T (h) and T (k) the subtrees rooted at h and k, respectively. The following two

propositions hold:

Proposition 1.1 Let P (x̄, h) be a path in T with x̄ fixed in T (h), and such that

µ(P (x̄, h)) ≥ γ. Then, there exists a unique point ȳ in (h, k) such that for every

y *= ȳ in (h, k) satisfying:

µ(P (x̄, y)) ≥ µ(P (x̄, ȳ)) ≥ γ,

one has:

E(P (x̄, y)) ≥ E(P (x̄, ȳ)).

Proposition 1.2 Let P (x̄, h) be a path in T with x̄ fixed in T (h), and such that

E(P (x̄, k)) ≤ γ. Then, there exists a unique point ȳ in (h, k) such that for every

y *= ȳ in (h, k) satisfying:

E(P (x̄, y)) ≤ E(P (x̄, ȳ)) ≤ γ,

one has:

µ(P (x̄, y)) ≤ µ(P (x̄, ȳ)).

In view of these two propositions, we show that it is possible to solve problems

(1.2) and (1.3), again by solving a sequence of linear programming problems with

an overall time complexity of O(n2). Table 8 reports the summary of the complexity

results provided in this paper.

Table 8. Summary of the results.

Range-type Problems without length constraints with length constraints

Problem Discrete Continuous Discrete Continuous

P1 minR(P) O(n2) O(n3) O(n2) O(n3)

P2

min max
u∈V \P

wud(u, P)

s.t. min
u∈V \P

wud(u, P) ≥ γ
O(n2) O(n2) O(n2) O(n3)

P3

max min
u∈V \P

wud(u, P)

s.t. max
u∈V \P

wud(u, P) ≤ γ
O(n2) O(n2) O(n2) O(n3)

233

References

[1] Mesa J.A., Puerto J., Tamir A., Improved algorithms for several network location

problems with equality measures. Discrete Applied Mathematics, vol. 130 (2003),

437-448.

[2] Puerto J., Ricca F., Scozzari A., Extensive facility location problems on networks

with equity measures. Discrete Applied Mathematics, vol. 157 (2009), 5, 1069-1085.

234

The price of equity in the Hazmat Transportation

Problem

Fabio Roda, a Pierre Hansen, a,b Leo Liberti a

aLIX (UMR CNRS 7161), École Polytechnique, 91128 Palaiseau, France.

{roda,liberti}@lix.polytechnique.fr
bGERAD and HEC Montreal, Canada.

pierre.hansen@gerad.ca

Key words: equity, hazmat, multiobjective optimization, transportation problem

1 Introduction

We consider the problem of the transportation of hazardous materials on a road

network (Hazardous Materials Transportation Problem). We can figure it this way:

there are N trucks which have to transport some kind of dangerous material from

one or many production points to one or many garbage dumps and we have to

select a set of paths which is optimal from the point of view of risk, cost and equity.

The optimization of cost and risk on a network leads quite spontaneously to shortest

path and flow problems which are milestones of Operational Research, but equity is

somehow unusual and hard to define. We consider and compare two different ideas.

The first approach simply requires that all the areas involved in the transportation

network share the same level of risk. This is a fair and intuitive idea but it could also

lead to “improper” solutions where risk is equal but uniformly high. The second

(more interesting) definition of equity we use is inspired by the concept of fairness

of J. Rawls [2,3]. Basically, in this context, the difference principle means that we

may introduce disparities only if they advantage the worst-off, namely reduce the

risk of the less favourite area (the most exposed to the risk).

The aim of this work is to provide rational elements to be able to estimate the cost of

choosing a particular definition of equity (for hazmat trasportation). We investigate

the relation between each definition of equity and the cost it generates. This can be

used as a first criterion to make a choice.

2 Mathematical programming formulation

Let G = (V, A) be a directed graph, modelling a road network.

We consider many origin-destination pairs (s, t) ∈ C ⊆ V × V . For every pair

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

(s, t) there is a commodity to be trasported from a source s to a destination t to

respond to a specific demand which we indicate with dst. We look for a global

route planning given by a multicommodity flow function x : C × A → R+ (the

situation involving only one origin and one destination is a special case). Typically

we can imagine that the road network covers a geographic area which is divided

into zones; in particular each arc (road) belongs to a zone ζ ∈ Z. For the sake of

simplicity we assume that each arc belongs to only one zone. Each arc (i, j) has a

positive traversal cost cij , a probability pij of an accident occurring on that arc, a

value of damage (in monetary units) ∆ij caused by a potential accident on that arc

and a capacity χij.

(1) Sets:

• C ⊆ V × V is the set of all pairs (s, t);
• Z is the set of all zones;

• ζl ⊆ A is a zone (1 ≤ l ≤ |Z|);
(2) Parameters:

• 1 ≤ l ≤ |Z| = zone index

• pst
ij : probability of accident on an arc;

• ∆
st
ij : damage (in monetary units) caused by an accident on an arc ;

• cst
ij : cost on an arc;

• s : source;

• t : destination (target);

• dst : demand of commodity (st);
We call pst

ij∆
st
ij traditional risk and we indicate it, alternatively, as rst

ij .

(3) Decision variables:

∀(i, j) ∈ A, ∀(s, t) ∈ C xst
ij : flow of the commodity (st) on the arc (i, j)

(4) Constraints.

• (capacity)
∑

(st)∈C xst
ij ≤ c(ij)

• (demand)
∑

(i)∈V xst
it = dst

• (flow conservation) ∀(st) ∈ C
∑

(i,j)∈A
xst

ij −
∑

(j,i)∈A
xst

ij =



























1 if i = s

−1 if i = t

0 otherwise

(5) Objective function 1 (Cost): minimize total cost

min
∑

(i,j)∈A

∑

(s,t)∈C

cst
ijx

st
ij (2.1)

(6) Objectives concerning equity, two possible versions:

• Objective function 2 (a) (Risk sharing): minimize the difference of tradi-

tional risk between two zones

236

min





∑

∀(ζl,ζm)∈Z×Z

∣

∣

∣

∣

∣

∣





∑

(i,j)∈ζl

∑

(s,t)∈C

rst
ijx

st
ij



 −




∑

(h,l)∈ζm

∑

(s,t)∈C

rst
hlx

st
ij





∣

∣

∣

∣

∣

∣





(2.2)

• Objective function 2 (b) (Rawls’ principle): minimize the traditional risk

of the least advantaged zone

min



max
ζ∈Z

∑

(i,j)∈ζ

∑

(s,t)∈C

rst
ijx

st
ij



 (2.3)

3 Methodology and Tests

The problem we are considering belongs to the special class of optimization prob-

lems called Multicriteria Optimization Problems (MOP) [5,7,6]. Probably, the most

common approaches are the weighted sum method and the ε-constraint method.

Since the latter can be used either with convex or with non-convex objectives space,

and we plan to introduce many sources of non-convexity in next refinements of our

model, we adopt from the outset the ε-constraint method. The basic idea of this

method consists in the trasformation of all the objectives in constraints, out of one

which is minimized (or maximized). Varying εi, alternative solutions are obtained

(even if it is known that it is difficult to chose proper values for the vector ε and

arbitrarily ones produce no feasible solutions).

We consider first small instances of the problem based on networks composed by a

kept down number of nodes and involving a few zones and shipments and only one

origin and destination. We used the AMPL modelling environment and the off-the-

shelf CPLEX 10.1 solver running on a 64-bit 2.1 GHz Intel Core2 CPU with 4GB

RAM. The results we got using an instance composed by 15 nodes distributed in

2 zones, with 10 shipments show that both kind of equity have a negative impact

on the cost and make it grow, which is the awaited outcome. The aim is to estab-

lish which one makes it increase most. In order to solve this question we introduce

some methodological expedients. In fact, even if we solved either C1 and C2 apply-

ing the ε-constraint method, we can not simply compare the cost for a fixed equal

threshold of ε because it has a different meaning in the two situations. We have to

normalize the comparison to “equal levels” of equity and to map the cost to the

share of equity instead of its absolute value. For example, we compare the cost we

get when we have the peak of equity in Risk Sharing and Rawls sense, then when

we get the 99% of equity (independently from the different corresponding values

of ε which are different in C1 and C2), the 98% . . . and so on. Thus we establish

first the maximal possible level of equity and then we (can) define the values cor-

responding to its fractions. We measure the increment of cost while equity varies

from its possible minimum to its possible maximum and we map it on the share of

equity. We discover that the raise of cost induced by equity in the sense of Rawls

237

Fig. 1. Comparison between Risk Sharing and Rawls’ Principle

is weaker that the one induced by the “naive” one. We report some sample results

(in the format [Equity Share; Cost of Risk Sharing; Cost of Rawls’ Principle] :

[0;40;40], [50;41;41], [60;42;42], [70;43;43], [80;45;44], [90;50;45], [95;53;49],

[96;55;52], [97;57;54], [98;58;55], [99;60;58], [100;67;67]). Fig.1 shows the cor-

responding plot. The tests are partial since we use small artificial instances. We plan

to use real data and different multi objectives methods in future work to corroborate

our conclusions.

References

[1] G.List and M. Abkowit, Estimates of current hazardous material flow pat-

terns, Transportation Quarterly, n. 40, 1986. p. 483-502.

[2] J. Rawls, A Theory of Justice, Cambridge (US-MA), Harvard University

Press, 1971.

[3] J. Rawls, Political Liberalism, Cambridge, (US-MA), Harvard University

Press, 1993.

[4] J. N. Hooker, Optimality Conditions for Distributive Justice, In: International

Transactions in Operational Research Special Issue: Special issue on Ethics

and O.R.: Guest Edited by Jean-Pierre Brans, Joao Climaco, Giorgio Gallo

and Fred Wenstop, Volume 17, Issue 4, pages 413-426, July 2010.

[5] M. Ehrgott, Multicriteria optimization In: Lecture Notes in Economics and

Mathematical Systems, Springer-Verlag, 2000.

[6] K. Miettinen, Nonlinear multiobjective optimization, Kluwer Academic Pub-

lishers, Boston, 1999.

[7] M. Ehrgott and X. Gandibleux, Multiple Criteria Optimization. State of the

art annotated bibliographic surveys, Kluwer Academic, Dordrecht, 2002.

238

On graph of order-n with the metric dimension n − 3

S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun,

E.T. Baskoro, A.N.M. Salman

Combinatorial Mathematics Research Division, Faculty of Mathematics and Natural

Sciences, Institut Teknologi Bandung, Jl.Ganesha 10 Bandung 40132 Indonesia

{suhadi,rino,s uttunggadewa, hilda,

ebaskoro,msalman}@math.itb.ac.id

Key words: basis; diameter; metric dimension; resolving set.

1 Introduction

Throughout this paper, all graphs are finite, simple, and connected. The vertex set

and the edge set of graph G are denoted by V (G) and E (G), respectively. The dis-

tance between two distinct vertices u, v ∈ V (G) is the length of a shortest (u, v)-
path in G and denoted by dG (u, v). For an ordered vertex set W = {w1, . . . , wk}
of V (G), a representation of v ∈ V (G) with respect to W is defined as k-tuple

r (v | W) = (dG (v, w1) , . . . , dG (v, wk)). The set W is a resolving set of G if ev-

ery two distinct vertices x, y ∈ V (G) satisfy r (x | W) *= r (y | W). A basis of

G is a resolving set of G with minimum cardinality, and the metric dimension of G
refers to its cardinality, denoted by β (G).

The metric dimension and the resolving set problem in general graphs was firstly

studied by Harary and Melter [3], and independently by Slater [7,8]. These prob-

lems have been widely investigated and arise in many diverse areas. These concepts

have some applications in chemistry [1], robot navigation [5,6], and network [7,8].

In the navigation of robots in a graph space, for example, a resolving set for a graph

corresponds to the presence of distinctively labelled “landmark” nodes in the graph.

It is assumed that a robot navigating a graph can detect the distance to each of the

landmarks, and hence uniquely determine its location in the graph.

Determining the metric dimension of a graph is a difficult problem generally. Garey

and Johnson [2] showed solving this problem to a general graph is NP-complete.

However, some characterization results for particular dimensions have been ob-

tained. Chartrand et al. [1] and Khuler et al. [5] showed that a path is the only

graph G with β (G) = 1. Chartrand et al. [1], characterized that Kn is the only

graph G with β (G) = n − 1. They also proved that β (G) = n − 2 if and only if

G is Kr,s for r, s ≥ 1, Kr + Ks for r ≥ 1, s ≥ 2, or Kr + (K1 ∪ Ks) for r, s ≥ 1.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

These are the only known results of characterization of graphs with particular met-

ric dimension.

In this paper, we consider the graphs of order n with metric dimension n − 3.

Generally, Chartrand et al [1] showed a connection between the metric dimension

and the diameter.

Theorem 1.1 [1] If G is a connected graph of order n ≥ 2 and diameter d, then

f(n, d) ≤ β(G) ≤ n − d, where f(n, d) is the least positive integer k for which

k + dk ≥ n.

By Theorem 1.1, the diameter of graph of order n with metric dimension n − 3 is

2 or 3. Furthermore, Hernando et al. [4] have characterized all graphs with metric

dimension n − 3 and diameter 3. In this paper, we classify all graphs of order n,

metric dimension n−3, and diameter 2. This result completes the characterization

of graphs of order n and metric dimension n − 3.

2 Main Results

We consider the neighborhood of a vertex u in a graph G. The open neighborhood

of u is N(u) = {v ∈ V (G) | uv ∈ E(G)}, and the closed neighborhood of u is

N [u] = {v ∈ V (G) | uv ∈ E(G)} ∪ {u}. For two vertices u and v in G, u and v
are called non-adjacent twin if N(u) = N(v), and adjacent twin if N [u] = N [v].
In both cases, the vertices u and v of G are called twins.

We define a relation ≡ on V (G) by u ≡ v if and only if u = v or u and v are twins.

Hernando et al. [4] showed that ≡ is an equivalence relation. For every v ∈ V (G),
let v∗ be a vertex set of G which are equivalent to v under the relation ≡. Let

{v∗
1, v

∗
2, ..., v

∗
k} be the partition of V (G) induced by ≡, where vi is a representative

of the set v∗
i . We define G∗ as a twin graph of G, where V (G∗) = {v∗

1, v
∗
2, . . . , v

∗
k}

and v∗
i v

∗
j ∈ E(G∗) if and only if vivj ∈ E(G).

By G[v∗] we mean a subgraph of G induced by vertices in v∗. Since each v∗ is

an equivalence class then G[v∗] is a complete graph or a null graph. We say that

v∗ ∈ V (G∗) is of type:

• (1) if |v∗| = 1,

• (K) if G[v∗] ∼= Kr and r ≥ 2,

• (N) if G[v∗] ∼= Nr and r ≥ 2, where Nr is the null graph with r vertices and no

edges.

A vertex of G∗ is of type (1KN) if it is of type (1) or (K) or (N). A vertex of G∗

is of type (1K) if it is of type (1) or (K). A vertex of G∗ is of type (1N) if it is of

type (1) or (N). A vertex of G∗ is of type (KN) if it is of type (K) or (N).

We also consider the neighborhood of vertices in G∗. For each u∗ ∈ V (G∗), we

define nat(u∗) = {v∗ ∈ V (G∗) | u∗ and v∗ are non-adjacent twin} and at(u∗) =
{v∗ ∈ V (G∗) | u∗ and v∗ are adjacent twin}. Note that, u∗ ∈ nat(u∗) and u∗ ∈
at(u∗). We prove that for every u∗, v∗ ∈ V (G∗) where β(G) = n− 3, |nat(u∗)| ≤
2, and |at(v∗)| ≤ 3.

For a twin graph G∗ containing u∗ with either |nat(u∗)| = 2 or 2 ≤ |at(u∗)| ≤ 3,

240

we consider a vertex set of twin graph V (G∗) as V ∗
1 ∪V ∗

2 where V ∗
1 is either nat(u∗)

or at(u∗), and V ∗
2 = V (G∗) \ V ∗

1 . By using neighborhood properties, we construct

G∗[V ∗
2] and thus G∗ satisfying β(G) = n − 3, which can be seen in the following

lemmas.

Lemma 2.1 Let G be a connected graph of order n and diameter 2, and G∗ be a

twin graph of G containing a vertex u∗ with |nat(u∗)| = 2. β(G) = n − 3 if and

only if

(1) G∗ ∼= P3 with either two leaves of G∗ are of type (K) and (KN) respectively,

or two leaves of G∗ are of type (K) and (1) and the other vertex is of type of

(N).
(2) G∗ ∼= C4 with two adjacent vertices are of type (K) and the other vertices are

of type (1).
(3) G∗ ∼= K2 + P3 with two adjacent vertices of P3 are of type (1K), one vertex

of K2 is of type (K), and the other vertices are of type (1).
(4) G∗ ∼= K2 + P2 with two vertices of degree 3 are of type (N) and (1K), and

two vertices of degree 2 are of type (1) and (K).
(5) G∗ ∼= K1 + (K1 ∪ P3) with the two biggest degree vertices are of type (1K),

two vertices of degree 2 are of type (1) and (K), and the other vertex is of type

(1).

Lemma 2.2 Let G be a connected graph of order n and diameter 2, and G∗ be a

twin graph of G containing a vertex u∗ with |at(u∗)| = 2. β(G) = n − 3 if and

only if

(1) G∗ ∼= P2 + P3 with a leaf of P3 is of type (1), one vertex of P2 is of type (N),
and the other vertices are of type (1K).

(2) G∗ ∼= K2 + P2 with two vertices of degree 3 are of type (N) and (1K), and

two vertices of degree 2 are of type (1) and (K).
(3) G∗ ∼= K1 + (K1 ∪ P2) with either one vertex of degree 1 is of type (1), one

vertex of degree 2 is of type (N), and the other vertices are of type (1K), or

the biggest degree vertex is of type (1K), one vertex of degree 2 is of type (K),
and the other vertices are of type (N).

Lemma 2.3 Let G be a connected graph of order n and diameter 2, and G∗ be a

twin graph of G containing a vertex u∗ with |at(u∗)| = 3. β(G) = n − 3 if and

only if G∗ ∼= K3 with at least two vertices of G∗ are of type (N).

For a twin graph G∗ containing u∗ such that every vertex u∗ ∈ V (G∗) satisfies

|nat(u∗)| = 1 and |at(u∗)| = 1, we prove that β(G) = n − 3 if and only if

|V (G∗)| = 5. This condition implies that there are 3 possible classes of G∗.

Lemma 2.4 Let G be a connected graph of order n and diameter 2, and G∗ be a

twin graph of G containing a vertex u∗ such that every vertex u∗ ∈ V (G∗) satisfies

|nat(u∗)| = 1 and |at(u∗)| = 1. β(G) = n − 3 if and only if

(1) G∗ ∼= C5 with all vertices are of type (1).
(2) G∗ is a C5 with one chord where two adjacent vertices of degree 2 are of type

(1) and the other vertices are of type (1K).
(3) G∗ ∼= K1+P4 with either the biggest degree vertex is of type (N) and the other

vertices are of type (1), or the two smallest degree vertices are of type (1) and

241

the other vertices are of type (1K), or the smallest degree vertex which is of

type (K), is adjacent to all vertices of type (1K) and the other vertices are of

type (1).

By Lemmas 2.1 - 2.4 together with the results of Hernando et al. [4], we obtain the

following characterization of graph of order n and metric dimension n − 3.

Theorem 2.5 Let G be a connected graph of order n and G∗ be a twin graph of G.

β(G) = n − 3 if and only if G∗ is one of the graphs in Fig. 1.

(K) (KN) (1 KN)

(K) (1) (N)

(1 KN) (1) (1) (1)

(KN) (1) (1) (1)

(KN) (1) (1) (KN)

(KN) (1) (1) (N)

(K) (1) (1) (K)

(1 KN) (N) (1) (N)

(1 KN) (1) (1 N)

(1 N)

(1 N)

(N) (N)

(1 KN)

(K)

(1) (1)

(K)

(1)

(1)

(1) (1)

(1)

(1) (1)

(1 K) (1 K)

(1 K)

(1)

(N) (1 K)

(1 K)

(1 K)

(K) (N)

(N)

(1 K) (1 K)

(1)

(1) (1)

(N)

(1) (1) (1) (1)

(1) (1) (1 K) (1 K)

(1 K)

(K) (1 K)

(1 K)

(1) (1)

(1 K)

(1 K)

(1)

(K)

(1)

(N)

(1 K)

(1)

(K)

(1 K)

(1 K)

(K)

(1)

(1)

(1 K)

(1 K)

(1)

(1 K)

(N)

Fig. 1. Twin graph of G of order n with β(G) = n − 3

References

[1] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in

graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000),

99-113.

[2] M.R. Garey, and D.S. Johnson, Computers and Intractibility: A Guide to the

Theory of NP Completeness, W.H.Freeman and Company, 1979.

[3] F. Harary, and R.A. Melter, On the metric dimension of a graph, Ars Combin.

2 (1976), 191-195.

[4] Carmen Hernando, Mercé Mora, Ignacio M. Pelayo, Carlos Seara, and David

R. Wood. Extremal Graph Theory for Metric Dimension and Diameter, The

Electronic Journal of Combinatorics, 17 (2010), #R30, pp.1-28.

[5] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Dis-

crete Appl. Math., 70 (1996), 217-229.

242

[6] B. Shanmukha, B. Sooryanarayana, and K.S. Harinath, Metric dimension of

wheels, Far East J. Appl. Math 8 (3) (2002) 217-229.

[7] P.J. Slater, Leaves of trees, Proc. 6th Southeastern Conf. on Combinatorics,

Graph Theory, and Computing, Vol 14 of Congr. Numer. (1975) 549-559.

[8] P.J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. Vol.

22 (1988), 445-455.

243

Matchings in balanced hypergraphs

Robert Scheidweiler, Eberhard Triesch

Lehrstuhl II für Mathematik, RWTH-Aachen University, 52056 Aachen, Germany

{scheidweiler,triesch}@math2.rwth-aachen.de

Key words: matching, vertex cover, balanced hypergraph

1 Introduction

The present work deals with the matching and vertex cover problem in balanced

hypergraphs. This class of hypergraphs is, according to the definition by Berge

in the 70s, one possible generalization of bipartite graphs. Several authors have

investigated the matching problem in this class so far (cf. [1],[2], and [3]). On

the one hand there are linear programming algorithms, which find maximum

matchings and minimum vertex covers in balanced hypergraphs, due to the

integrality of associated polytopes. On the other hand no polynomial matching

algorithm is known, which makes use of the special combinatorial properties of

this class of hypergraphs, e.g. its strong coloring properties. In our opinion this is

the main reason for investigating the matching problem in balanced hypergraphs.

Hence, the foremost aim of this work is to provide better insight into matching and

vertex cover problems for balanced hypergraphs.

2 Basic notions and results

Let V = {v1, · · · , vn} be a finite set and E = {e1, · · · , em} a collection of subsets

of V. The pair H = (V, E) is called hypergraph. As usual the elements vi of V are

the vertices of H and the elements ei of E are the edges of H. Let {v0, v1, · · · , vl} ⊆
V and {e1, · · · , el} ⊆ E. The sequence P = v0e1v1e2 · · · elvl is called a path if

vi−1, vi ∈ ei for i = 1, · · · , l and v0, v1, · · · vl are pairwise distinct. If vi−1, vi ∈
ei for i = 1, · · · , l, v0, v1, · · · vl−1 are pairwise distinct, and v0 = vl it is called

a cycle. A path resp. cycle is called strong, if there is no edge ei, i = 1, · · · , l
containing three vertices of the path resp. cycle. Note, that the notions strong cycle

and cycle resp. strong path and path are equal in the case of graphs. We define

degH(v) = |{e ∈ E | v ∈ e}| the degree of v ∈ V, ∆(H) = max
v∈V

degH(v),

and δ(H) = min
v∈V

degH(v). A hypergraph H with ∆(H) = δ(H) is said to be

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

regular. A subset M ⊆ E of pairwise disjoint edges is called matching of H. We

consider an abitrary weight function d : E → N of the edges and the special

function d(e) = |e| for all e ∈ E. Moreover, we denote the weight of a matching

with maximum d-weight by "d(H) resp. by "V (H) for the special function. A

matching is perfect, if it covers all vertices of the hypergraph. Let x ∈ N|V |. Then

x is called a d-vertex cover if the inequality
∑

v∈e
xv ≥ d(e) holds for every edge

e ∈ E. x is called minimum if there is no vertex cover x̃ with
∑

v∈V
xv >

∑

v∈V
x̃v and

we denote the d-vertex cover number by τd(H) =
∑

v∈V
xv resp. τV (H).

We call a hypergraph H balanced if H contains no strong cycle of odd length. There

are several interesting parallels between bipartite graphs and these hypergraphs. At

first we state Kőnig’s theorem for balanced hypergraphs.

Theorem 1 [5][1] Let H = (V, E) be a balanced hypergraph. Then "d(H) =
τd(H) for all weight functions d : E → N. In particular "V (H) = τV (H).

Kőnig’s theorem on edge colorings of bipartite graphs is also valid for this class.

Theorem 2 [4] Let H = (V, E) be a balanced hypergraph. The edge set E of

H can be decomposed into ∆(H) edge disjoint matchings. In particular, if H is

regular, the edge set of H can be divided into ∆(H) edge disjoint and perfect

matchings.

In the next theorem we investigate the matching number under the condition that a

balanced hypergraph does not differ too much from regularity.

Theorem 3 Let H = (V, E) be a balanced hypergraph.

• If
∑

v∈V
(∆(H) − degH(v)) ≤ q∆(H) − 1, then "V (H) ≥ |V |− q + 1.

• If
∑

v∈V
(∆(H) − degH(v)) ≤ ∆(H) − 1, then H has a perfect matching.

• If
∑

v∈V
(degH(v) − δ(H)) ≤ δ(H) − 1, then H has a perfect matching.

3 Decomposition Theory

The Gallai-Edmonds decomposition is a standard tool in matching theory for ordi-

nary graphs. It is therefore natural to ask for a hypergraph version of this decompo-

sition, especially in the case of balanced hypergraphs, for which the matching prob-

lem is known to be polynomial-time solvable. Our decomposition of the edge set

of a balanced hypergraph generalizes the so called persistency partition, introduced

by Costa for bipartite graphs and their maximum matchings. In the following we

define the hypergraphs H\v := (V \v, {e\{v} | e ∈ E}) and H\e := (V, E\{e}).

Theorem 4 Let H = (V, E) be a balanced hypergraph and d : E → N a weight

function. Then for the following six vertex and edge sets it holds:

245

V d
1 (H) := {v ∈ V | xv > 0 ∀ min d-vertex covers x of H}

= {v ∈ V | "d(H) < "d(H \ v)},

V d
2 (H) := {v ∈ V | ∃ two min d-vertex covers x1, x2 with x1

v > 0, x2
v = 0 }

= {v ∈ V | "d(H) = "d(H \ v) and v ∈ V (M) ∀ d-max matchings M},

V d
3 (H) := {v ∈ V | xv = 0 ∀ min d-vertex covers x of H}

= {v ∈ V | ∃ d-max matching M with v /∈ V (M)},

Ed
1(H) := {e ∈ E | e ∈ M ∀ d-max matchings M}

= {e ∈ E | τd(H) > τd(H \ e)},

Ed
2(H) := {e ∈ E | ∃ two d-max matchings M 1 and M2 with e ∈ M1 and e /∈ M2 }

= {e ∈ E | τd(H) = τd(H \ e) and
∑

v∈e
xv = d(e) ∀ min d-vertex covers x},

Ed
3(H) := {e ∈ E | e /∈ M ∀ d-max matchings M of H}

= {e ∈ E | τd(H) = τd(H \ e) and ∃ min d-vertex cover x with
∑

v∈e
xv > d(e)}.

If we consider maximum matchings regarding to the number of covered vertices,

we prefer a slightly different decomposition of the vertex set.

Theorem 5 Let H = (V, E) be a balanced hypergraph. Then it holds for the

following vertex sets:

V V
1 (H) := {v ∈ V | xv ≥ 2 ∀ min V -vertex covers x}

= {v ∈ V | "V (H) ≤ "V (H \ v) and v ∈ V (M) ∀ V -max matchings M},

V V
2 (H) := {v ∈ V | ∃ min V -vertex cover x with xv = 1}

= {v ∈ V | "V (H) − 1 = "V (H \ v)},

V V
3 (H) := {v ∈ V | xv = 0 ∀ min V -vertex covers x}

= {v ∈ V | ∃ V -max matching M with v /∈ V (M)}.

4 Hall’s theorem

In this chapter we will give a new, short, and combinatorial proof of Hall’s theorem

for balanced hypergraphs by means of our decomposition theory.

Theorem 6 [2] A balanced hypergraph H = (V, E) has a perfect matching if and

only if H satisfies the Hall condition, i.e., for all disjoint A, B ⊆ V with |A| > |B|
there exists an edge e ∈ E with |e ∩ A| > |e ∩ B|

Proof. The “only if” direction is true because any hypergraph with a perfect match-

ing clearly satisfies the Hall condition.

Suppose for the “if” direction that there is a balanced hypergraph H = (V, E),
which satisfies the Hall condition and has no perfect matching. Choose H with

246

these properties such that |V | is minimal. Hence, V = V V
1 (H) ∪ V V

3 (H). Assume

that xv = 2 for all v ∈ V V
1 (H) in a minimum vertex cover x. By Theorem 1,

2|V V
1 (H)| = "V (H), whereas the minimality of |V | implies that "V (H) = n− 1.

Hence,

2|V V
1 (H)| = n − 1 ⇔ |V V

1 (H)| + 1 = |V V
3 (H)|.

Moreover, |e ∩ V V
3 (H)| ≤ |e ∩ V V

1 (H)| for all e ∈ E, otherwise x would not

be a vertex cover. Thus, the sets A = V V
3 (H) and B = V V

1 (H) violate the Hall

condition. Therefore a vertex v∗ ∈ V with xv∗ ≥ 3 exists for any minimum vertex

cover x of H and |V V
3 (H)| > |V V

1 (H)| + 1.
For each v ∈ V V

3 (H) we choose a matching Mv, which is a maximum matching of

H not containing v. Now we consider the hypergraph

H̃ =





V,
∗

⋃

v∈V V
3 (H)

Mv





 .

(The union
∗
⋃

denotes a multiset union.) It holds degH̃(v) = |V V
3 (H)| for all

v ∈ V V
1 (H) and degH̃(v) = |V V

3 (H)| − 1 for all v ∈ V V
3 (H). Hence, we ob-

tain
∑

v∈V
(degH̃(v) − δ(H̃)) = |V V

1 (H)| ≤ |V V
3 (H)| − 2 = δ(H̃) − 1. Therefore,

because of Theorem 3, H̃ has a perfect matching and so we can conclude that H
has a perfect matching, too. This is a contradiction.

References

[1] Delbert R. Fulkerson, Alan J. Hoffman, and Rosa Oppenheim, On balanced

matrices, Mathematical Programming Study 1, 1974, p. 120–132

[2] Michele Conforti, Gérard Cornuéjols, Ajai Kapoor, and Kristina Vusković,

Perfect matchings in balanced hypergraphs, Combinatorica 16 Issue 3, 1996,

p. 325–329

[3] Andreas Huck and Eberhard Triesch, Perfect matchings in balanced hyper-

graphs - a combinatorial approach, Combinatorica 22 Issue 2, 2002, p. 409–

416

[4] Claude Berge, Sur certains hypergraphes généralisant les graphes bipartites,

Combinatorial Theory and its Applications I, Colloquium of Mathematical

Society Janos Bolyai 4, 1970, p. 119–133

[5] Claude Berge and Michel Las Vergnas, Sur un théorème du type König pour

hypergraphes, Annals of the New York Academy of Science 175, 1970, p.

32–40

247

Efficient enumeration of optimal and approximate

solutions of a scheduling problem

Sergey Sevastyanov, a 1 Bertrand M.T. Lin b 2

aSobolev Institute of Mathematics,

Novosibirsk State University, Novosibirsk, 630090, Russia

seva@math.nsc.ru

bInstitute of Information Management, Department of Information and Finance

Management, National Chiao Tung University, Hsinchu, Taiwan

bmtlin@mail.nctu.edu.tw

Key words: listing algorithm, polynomial delay, polynomial space, flowshop scheduling,

makespan, permutational schedule

1 Extended Abstract

When dealing with optimization problems, one normally searches for a “best so-

lution” with respect to a certain objective function. But in reality, the decision-

making process is not that simple, and while solving a real life problem, we choose

a “proper” solution from among those ones that are good enough with respect to

a given criterion, while our ultimate choice depends on a variety of difficult-to-

formalize conditions. In that case we may be interested in enumerating (without

repetition) the set of all approximate solutions that meet a given bound on inaccu-

racy.

An interesting special issue is enumerating all optimal solutions of a specified opti-

mization problem. Clearly, this could be always done by the direct enumeration of

all feasible (and even not necessarily feasible) solutions, but in most cases such

a solution approach is impracticable. And theoretically, we cannot treat such a

method as an efficient one. However, in some cases, while solving the enumer-

ation problem, we cannot avoid the complete enumeration of all solutions. (For

example, this happens in the TSP problem when all n! possible routes through n
towns have the same total length.) Clearly, such a situation happened for a partic-

ular problem instance cannot be an indicator of inefficiency of our algorithm. On

1 Supported by the Russian Foundation for Basic Research (grants nos. 08-01-00370

and 08-06-92000-HHC-a) and by the Federal Target Grant “Scientific and educational

personnel of innovation Russia” for 2009–2013 (government contract no. 02.740.11.0429).
2 Partially supported by the National Science Council of Taiwan (grants no. 98-2410-H-

009-011, 98-2811-H-009-003).

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

the other hand, when we can guarantee for our algorithm that, whatever problem

instance is given, it will enumerate proper and only proper solutions, such an al-

gorithm cannot be treated as inefficient (even if the output is very large for some

problem instances). If, in addition, finding each proper solution requires small (i.e.,

polynomially bounded) time and space, we come to the notions of so called poly-

nomial delay and polynomial space algorithms.

Definition 1.1 We say that a listing algorithm has polynomial delay if the time

required for generating each new output element and the time needed to halt the

algorithm after the last output are polynomial in the input size.

Definition 1.2 We say that a listing algorithm runs with polynomial space if at any

step it consumes memory space polynomial in the input size.

Although the direction of enumerating optimal solutions for combinatorial prob-

lems is known for decades (since the paper by Johnson et al. (1988), where the

notions of polynomial delay and polynomial space algorithms were introduced), in

scheduling theory this research direction can hardly be positioned as “well devel-

oped”. The more so this is valid with respect to designing algorithms of enumer-

ating approximate solutions. (And very likely, such a research direction should be

treated as novel in discrete optimization in all.)

In our paper we undertake the first (up to our knowledge) attempt of that kind in-

vestigation with respect to the classical scheduling problem stated by Johnson in

his seminal paper (Johnson, 1954) from which the contemporary machine schedul-

ing theory took its origin. In his paper, Johnson presented an efficient algorithm

for solving the following two-machine problem. (As is known now due to Garey,

Johnson and Sethi (1976), the corresponding three-machine problem is strongly

NP-hard.)

Problem setting. We are given n jobs {J1, . . . , Jn} = J that are to be processed

on two machines, M1 and M2. Each job Jj has exactly two operations Oj1 and

Oj2 that must be executed in a strictly defined order: first Oj1 on machine M1, and

then Oj2 on machine M2, with predefined processing times aj and bj , respectively.

Each machine may process its operations also consecutively, in some order that

should be chosen in the course of problem resolution. The objective is searching

for a schedule S with the minimum length, or the minimum makespan denoted as

Cmax(S). According to the common three-field classification [5], the problem is

normally denoted as F2 ||Cmax.

As follows from the general project scheduling theory, to minimize the makespan

in flowshop scheduling, it suffices to restrict our consideration to active schedules

only, each of which is uniquely defined by the sequences of operations on machines

M1 and M2. Moreover, as shown by Johnson (1954), we need not enumerate all

combinations of the two sequences. It suffices to consider only pairs of identical

sequences on the two machines specified by a unique permutation π of jobs, as-

suming that the operations of all n jobs on each machine (including zero length

operations) are the elements of the permutation. Such schedules (Sπ) are called

permutational.

249

In his analysis of optimality of a given sequence, Johnson defined a relation ”F”

on the set of jobs: Ji F Jj, if min{ai, bj} ≤ min{aj , bi}.
He found a sufficient condition for a sequence of jobs to be optimal (Johnson’s

rule): a permutation of jobs (job indices) π = (π1, . . . , πn) is optimal, if

Jπi
F Jπj

, for all i < j. (1.1)

And though the relation ”F” does not define a linear order (for it is not transitive:

the relations J1 F J2, J2 F J3 do not necessarily imply J1 F J3), Johnson showed

that for any problem instance there always exist job sequences (further referred to

as Johnson’s sequences) with property (1.1). Some of those sequences can be found

in O(n log n) time, by implementing a so called special Johnson’s rule.

It can be seen that in the case when all operation processing times are different,

Johnson’s rule defines a unique job sequence, because relation (1.1) becomes tran-

sitive and anti-symmetric. Yet in general, Johnson’s rule yields a wide variety of

optimal job sequences. Among the papers addressing the issue of enumeration of

all Johnson’s sequences, we would like to mention the book by Bellman, Esogbue

and Nabeshima (1982), where a so called General Working Rule was derived, en-

abling one to generate any Johnson’s sequence. This rule can be transformed into

an efficient procedure of enumerating all Johnson’s sequences without repetition.

However, it is clear that in general case the set of optimal sequences is not lim-

ited to Johnson’s sequences only, because rule (1.1), while being sufficient, is not

necessary for a sequence of jobs to be optimal. So, the problem of enumerating all

optimal permutations of jobs for F2 ||Cmax problem is more general, and is of its

own interest. A number of authors addressed this issue, trying to design enumer-

ation procedures that would be more effective than the direct enumeration of all

n! permutations of n jobs (see, e.g., [2], [8]–[10]). Yet they could guarantee the

efficiency of their procedures neither in polynomial delay, nor in polynomial space

senses. As was claimed by Cheng (1992), the problem of designing an efficient al-

gorithm for enumerating all optimal sequences for F2 ||Cmax remained open that

time.

In our paper we present the first, up to our knowledge, algorithm that enumerates

with polynomial delay and polynomial space all optimal permutations of jobs in

the two-machine flow-shop problem. In fact, our result is more general, since it

concerns the issue of the complete enumeration of all approximate solutions that

meet a given bound on inaccuracy.

Definition 1.3 A sequence π of job indices is called ∆-optimal, if Cmax(Sπ) ≤
B + ∆, where B is the total load of machine M2.

Our main result is designing an algorithm A(∆) with the following property.

Theorem 1.1 Algorithm A(∆) enumerates all ∆-optimal permutations of n jobs

without repetition, while requiring O(n log n) delay for generating each ∆-optimal

permutation and for halting, when all proper permutations are enumerated, and

consuming O(n) memory space at every step.

Clearly, this algorithm can also be used for enumerating all optimal sequences.

250

Our next result concerns the structure of the set of optimal solutions. Given a prob-

lem instance, let its ∆-optimal permutations of jobs be represented as vertices of a

graph G∆. Two permutations π ′ and π′′ are connected by an edge, iff one permuta-

tion can be obtained from the other by a transposition of two neighboring elements.

We prove the following

Theorem 1.2 For any ∆ ≥ 0 graph G∆ is connected.

Corollary 4 Any optimal permutation of jobs can be obtained from any Johnson’s

(optimal) permutation by consecutive transpositions of neighboring elements, so

that all intermediate permutations are also optimal.

References

[1] R. BELLMAN, A.O. ESOGBUE, AND I. NABESHIMA (1982). Mathematical

aspects of scheduling and applications, Pergamon Press, Oxford.

[2] J.C. BILLAUT AND P. LOPEZ (1997). New results for the enumeration of

optimal job sequences, Unpublished manuscript.

[3] T.C.E. CHENG (1992). Efficient implementation of Johnson’s rule for the

n/2/F/Fmax scheduling problem, Computers ind. Engng., 22, 495–499.

[4] M.R. GAREY, D.S. JOHNSON, AND R. SETHI (1976). The Complexity of

Flowshop and Jobshop Scheduling, Mathematics of Operations Research, 1,

117–129.

[5] R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, AND A.H.G. RINNOY KAN

(1979). Optimization and approximation in determenistic sequencing and

scheduling: A survey. Annals of Discrete Mathematics 5, 287–326.

[6] S.M. JOHNSON (1954). Optimal two- and three-stage production schedules

with setup times included. Naval Research Logistics Quarterly, 1, 61–67.

[7] D.S. JOHNSON, M. YANNAKAKIS, AND C.H. PAPADIMITRIOU (1988). On

generating all maximal independent sets. Information Proc. Letters, 27, 119–

123.

[8] Y. LIN AND J. DENG (1999). On the structure of all optimal solutions of the

two-machine flowshop scheduling problem, OR Transactions, 3(2), 10–20.

[9] S.N.N. PANDIT AND Y.V. SUBRAHMANYAM (1975). Enumeration of all se-

quences, Opsearch, 12, 35–39.

[10] W. SZWARC (1981). Extreme solutions of the two machine flow shop prob-

lem, Naval Research Logistics Quarterly, 28(1), 103–114.

251

Majorization and the minimum number of

dominating sets

Zdzislaw Skupień

AGH Kraków, al. Mickiewicza 30, 30–059 Kraków, Poland

skupien@agh.edu.pl

Key words: counting dominating sets, domination number, majorization, numerical

partition

1 Abstract

A recent Wagner result, which characterizes graphs with minimum number of

dominating sets, is based on an earlier characterization restricted to trees. A self-

contained proof of both characterizations is presented. Unions of disjoint stars and

majorization among related numerical partitions are objects and a tool of investiga-

tion. A characterization limited to graphs with upper-bounded domination number

is established.

2 Results

A vertex subset S of a graph G is called a dominating set if each vertex of G − S
is adjacent to a member of S. Let ∂(G) stand for the number of dominating sets in

G. The following statement presents parts of two results, one on trees [2, Theorem

13] and another, due to Wagner [7, Corollary 3], on any graphs.

Given a positive integer k and n = 3k, any tree [graph] G on k vertices is an in-

duced subgraph of an n-vertex tree [graph], H , with smallest number of dominating

sets among n-vertex trees [graphs without isolated vertices] provided that all 2k ad-

ditional vertices of H are leaves in H , which in pairs are joined to each vertex of

G.

Therefore H is an example of a graph built on a UDS (the union of disjoint stars),

which means that a UDS is a spanning subgraph (a factor) of H and all rays in UDS

are pendant edges of H . Our aim is to present a self-contained proof of the above-

mentioned Wagner theorem. The proof refers to UDSs, to partitions of vertices

therein, and to majorization among corresponding numerical partitions. Majoriza-

tion is very likely to help attacking new characterization problems in enumerative

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

domination theory. Besides, equipartition in the solution to an extremal characteri-

zation problem seems symptomatic of majorization hidden behind, cp. the famous

Turán theorem and its extensions.

Lemma 1 Let S(r, ℓ) be a star with ℓ rays, ℓ ≥ 1, and with a vertex designated

xo, a root, which necessarily is the center of the star if ℓ > 1. Let a UDS comprise

such stars as components. Then the numbers of dominating sets are

∂(S(r, ℓ)) = 1 + 2ℓ, (2.1)

∂(UDS)=
∏

S

(1 + 2ℓ(S)) (2.2)

where S ranges over components of UDS and ℓ(S) is the count of rays in S. More-

over, let G be a graph with a UDS as a spanning subgraph, say F . Then

∂(G) ≥ ∂(UDS) (2.3)

where equality holds if and only if G is built on the UDS, UDS = F .

The importance of UDSs in domination theory is established in [1].

Proposition 2 Given a graph G without isolated vertices, a UDS which is a span-

ning subgraph of G can be found in time linear in the number ‖G‖ of edges of

G.

We thus show that characterizing graphs with minimum ∂ reduces to the study of

UDSs.

In general, the structure of the n-vertex graph H , with minimum ∂(H), depends

on the remainder n mod 3, which in what follows is represented by an integer r,

r = 0,±1,−2.

Theorem 3 Assume that n > 1 and r = 0,±1,−2 is such that r ≡ n (mod 3).
Let H be an n-vertex graph without isolated vertices and with smallest number of

dominating sets. Then H is any graph built on a UDS with (n − r)/3 components

such that all components are paths P3 with no exception (r = 0), except one com-

ponent which is P2 (r = −1), or (for n mod 3 = 1) except either one component

K1,3 (r = 1) or two components both being P2 (r = −2).

Corollary 4 Let any n > 1 and let H and r be as assumed in Theorem. Then any

graph G of order (n−r)/3 is an induced subgraph of some of graphs H . Moreover,

∂(H) =







3|r| · 55n/3⌋ if 3|n − r and r = 0,−1,

9 · 55(n−4)/3⌋ if n ≡ 1 (mod 3) and r = 1,−2.
(2.4)

The characterization result of the above theorem will be established via minimiza-

tion of the RHS in formula (2.2). This is the minimization over the distribution

of the rays among components in a UDS, the distribution being represented by a

numerical partition of the total number of rays. Next we refer to majorization [6]

among partitions in order to characterize UDS of order n, with k stars and with

minimum ∂(UDS), 1 ≤ k ≤ n/2. Finally we find the global minimum, the min-

253

imum over the number k of stars. To this end, we refer to z := n/k, the average

number of vertices among stars in the UDS.

Theorem 3 and its corollary present the main Wagner result on the minimum num-

ber of dominating sets. The following result is equivalent to Wagner’s [7, Theorem

4].

Theorem 5 Assume that G ranges over n-vertex graphs which are built on UDSs

with k components. Then there are integers a and b such that

n = (a + 1)k + b with a ≥ 1 and 0 ≤ b < k.

Moreover, ∂(G) attains the minimum value, say

∂o := (1 + 2a)k−b(1 + 2a+1)b, (2.5)

if and only if G is built on the equipartite UDS, with equipartition of the n−k rays

being represented by the integral k-partition x := ({a + 1}b, {a}k−b).

What follows is a new result.

Theorem 6 Given positive integers n and k, let Gn(k) stand for the class of n-

vertex graphs without isolated vertices and with domination number γ ≤ k where

n ≥ 2k. Each member of Gn(k) with minimum number ∂ of dominating sets is

a graph built on an equipartite UDS with at most k components, the number of

components being k (as in Theorem 5) if k < (n + 2)/3, but for a greater k, i.e.

(n + 2)/3 ≤ k ≤ n/2, is (as in Theorem 3) either (n − 1)/3 or (n + 2)/3 if n ≡ 1
(mod 3), and is ⌊(n + 1)/3⌋ otherwise.

References

[1] D. Bauer, F. Harary, J. Nieminen, C.L. Suffel, Domination alteration sets in

graphs, Discrete Math. 47 (1983) 153–161.

[2] Dorota Bród, Z. Skupień, Trees with extremal numbers of dominating sets,

Australas. J. Combin. 35 (2006) 273–290.

[3] E. Cockayne, S. Goodman, S. Hedetniemi, A linear algoritm for the domina-

tion number of a tree, Inf. Proc. Lett. 4 (1975) 41–44.

[4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination, Mar-

cel Dekker, Inc., 1997.

[5] J. Nieminen, Two bounds for the domination number of a graph, J. Inst. Math.

Appl. 14 (1974) 183–187.

[6] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Appli-

cations, Acad. Press, New York et al., 1979.

[7] S. Wagner, A note on the number of dominating sets of a graph, to appear.

254

Reducing the minimum T -cut problem to polynomial

size linear programming

Rüdiger Stephan,

Institut für Mathematik, Technische Universität Berlin,

Straße des 17. Juni 136, 10623 Berlin

stephan@math.tu-berlin.de

Key words: T -cut, Gomory-Hu-tree, matching, compact formulation

1 Extended Abstract

Systems of linear inequalities that fully describe the feasible solutions of a com-

binatorial optimization problem (P) are called compact if they use a polynomial

number of variables and inequalities. If such a system is known, problem (P) can

be solved in polynomial time using any polynomial algorithm for linear program-

ming. Twenty years ago Yannakakis [6] raised the question whether, or not, there

exists a compact formulation for the perfect matching polytope which is the convex

hull of all perfect matchings of a graph G. He gave a partial answer to this ques-

tion by showing that there exists no symmetric compact formulation of the perfect

matching polytope, that is, no compact formulation which is invariant under per-

muting the nodes of the underlying graph. Barahona [2] showed that the minimum

perfect matching problem can be reduced to a sequence of O(m2 log n) minimum

mean cycle problems, where n and m denote the number of nodes and edges of

G. He also showed that the latter problem can be formulated as a compact linear

program. This implies that the minimum perfect matching problem can be reduced

to a polynomial sequence of compact linear programs. For the construction of this

sequence it is, however, important that all intermediate optimal solutions are vertex

solutions. Here, a feasible solution x of a linear program is called a vertex solu-

tion if x is a vertex of the polyhedron determined by the system of equations and

inequalities of this linear program. In this extended abstract we show that the min-

imum T -cut problem, which is related to the perfect matching polytope in terms

of separation, can be reduced to a sequence of only two compact linear programs,

but also in our approach, the construction of the second linear program requires an

optimal vertex solution of the first linear program.

We denote the node and edge set of a graph G by V (G) and E(G), respectively. A

cut of G is a subset C of edges such that C = δ(U), where for any ∅ *= U # V (G),
δ(U) := {{u, v} ∈ E(G)|u ∈ U, v ∈ V (G) \U}. For any nodes s, t ∈ V (G), δ(U)

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

is said to be an s, t-cut if s ∈ U, t ∈ V (G) \U . Let T be a subset of the nodes of G
of even size. A T -cut is a cut δ(U) of G such that |T∩U | is odd. Given capacities on

the edges c : E(G) → R+, in the minimum T -cut problem one wants to find a T -cut

δ(U) of G minimizing c(δ(U)), where for any F ⊆ E(G), c(F) :=
∑

e∈F ce. This

problem can, for instance, be solved with the famous algorithm of Padberg-Rao [4]

which will be the basis for our LP-approach.

Let K be the complete graph on V (G) and let H ⊆ K be a spanning tree on

V (G). For any edge f = {s, t} ∈ E(H), the cut Cf in G determined by the two

components of H − f is called the fundamental cut induced by f . A Gomory-Hu-

tree for (G, c) is a spanning tree H on V (G) such that every fundamental cut C{s,t}

is a minimum s, t-cut in G. The algorithm of Padberg and Rao computes a Gomory-

Hu-tree H for (G, c) and selects among the fundamental cuts Cf , f ∈ E(H), that

are T -cuts a T -cut minimizing c(Cf). This T -cut can be shown to be an optimal

solution of the minimum T -cut problem.

The following linear program combines a compact formulation for the spanning

tree polytope defined on K with minimum s, t-cut formulations defined on G. The

spanning tree polytope PTree(K) is the convex hull of the characteristic vectors

χE(H) ∈ {0, 1}E(K) of spanning trees H ⊆ K, where χF
e = 1 if and only if e ∈ F .

For each edge f ∈ E(K), introduce a variable λf , and for each edge f ∈ E(K),
each node u ∈ f , and each node v ∈ V (K), introduce a variable µf,u,v. Moreover,

for each f ∈ E(K) and each {u, v} ∈ E(G), introduce a variable xf
{u,v}. Finally,

for each edge f ∈ E(K), fix a node tf ∈ f . Consider the linear program

min
∑

f∈E(K)

∑

e∈E(G) c(e)x
f
e

s.t. xf
{u,v} + µf,tf ,u − µf,tf ,v ≥ 0,

xf
{u,v} + µf,tf ,v − µf,tf ,u ≥ 0 for all f ∈ E(K), {u, v} ∈ E(G),

(1.1)

and λ(E(K)) = |V (K)|− 1,

λ ≥ 0, µ ≥ 0

µ{u,v},u,v = µ{u,v},v,u = 0 for all {u, v} ∈ E(K),

λe −
∑

v∈e
µe,v,w = 0 for all e ∈ E(K), w ∈ V (K),

∑

w∈V (K)\{u}
µ{u,w},w,v = 1 for all {u, v} ∈ E(K).

(1.2)

Theorem 28 Any feasible solution ({x̄f}f∈E(K), λ̄, µ̄) of (1.1)-(1.2) is an opti-

mal vertex solution of (1.1)-(1.2) if and only if λ̄ is the characteristic vector of a

Gomory-Hu tree H for (G, c), for each f ∈ E(H), the vector (µ̄f,tf ,v)v∈V (K) is the

characteristic vector of the component of H−f containing tf , x̄f is the characteris-

tic vector of the fundamental cut in G induced by f , and for each f ∈ E(K)\E(H),
µf,u,v = x̄f

v = 0 for all u ∈ f, v ∈ V (G) = V (K).

We sketch the proof. Denote by P the polytope determined by the feasible so-

256

lutions of (1.1)-(1.2). Any ({xf}f∈E(K), λ, µ) ∈ P is a vertex of P if and only

if each component xf
{u,v} is chosen to be minimal, that is, xf

{u,v} = max{µf,tf ,v −
µf,tf ,u, µf,tf ,u−µf,tf ,v} and (λ, µ) is a vertex of the polytope Q constituted by (1.2).

Q is an integer polytope [3] and a compact formulation for PTree(K). One now

verifies that ({xf}f∈E(K), λ, µ) is vertex if and only if it satisfies the conditions

mentioned in Theorem 28. Moreover, observe that a spanning tree H of K is a

Gomory-Hu tree if and only if it minimizes
∑

f∈E(H) c(Cf). For details, the inter-

ested reader is referred to [5].

Once we have computed a Gomory-Hu tree H using (1.1)-(1.2), we have first to

identify the T -cuts among the fundamental cuts and then to select a T -cut Cf mini-

mizing c(Cf). Due to lack of space we skip the first part and instead of we denote by

F ⊆ E(H) the set of all edges f ∈ E(H) that correspond to T -cuts. Indeed, given

H , the characteristic vector of F can be easily determined by linear programming

using path-flow formulations. Consider the following disjunctive programming ap-

proach [1] for finding a minimum T -cut:

min
∑

f∈E(K)

∑

e∈E(G)

c(e)yf
e

s.t. ({xf}f∈E(K), λ, µ) is a vertex solution of (1.1),

νf = 1 ∀ f ∈ F, (1.3)

νf = 0 ∀ f ∈ E(K) \ F, (1.4)
∑

f∈E(K)

ϑf = 1, (1.5)

0 ≤ ϑ ≤ ν, (1.6)

yf
e ≥ xf

e + ϑf − 1 ∀ e ∈ E(G), f ∈ E(K). (1.7)

yf
e ≥ 0 ∀ e ∈ E(G), f ∈ E(K). (1.8)

For any vertex solution ({xf , yf}f∈E(K), λ, µ, ν, ϑ), inequalities (1.3)-(1.6) imply

that ϑ is a unit vector with ϑg = 1 for some g ∈ F . For the same reason,

({xf , yf}f∈E(K), λ, µ, ν, ϑ) satisfies at least one of the two inequalities in (1.7),

(1.8) at equality for each pair of edges e ∈ E(G), f ∈ E(K). Hence, yf = 0 for all

f ∈ E(K) \ {g}, while yg is the characteristic vector of a T -cut.

References

[1] E. BALAS, Disjunctive programming, Ann. Discrete Math. 5 (1979), pp. 3–

51.

[2] F. BARAHONA, Reducing matching to polynomial size linear programming.,

SIAM J. Optim. 3, no. 4 (1993), pp. 688–695.

[3] R. MARTIN, Using separation algorithms to generate mixed integer model

reformulations, Oper. Res. Lett. 10, no. 3 (1991), pp. 119–128.

[4] M. W. PADBERG AND M. RAO, Odd minimum cut-sets and b-matchings.,

Math. Oper. Res. 7 (1982), pp. 67–80.

257

[5] R. STEPHAN, An extension of disjunctive programming and its impact to com-

pact tree formulations, Université catholique de Louvain, Core Discussion

paper 2010/45, 2010.

[6] M. YANNAKAKIS, Expressing combinatorial optimization problems by linear

programs, J. Comput. Syst. Sci. 43, no. 3 (1991), pp. 441–466.

258

The dynamics of deterministic systems from a

hypergraph theoretical point of view

Luis M. Torres, a Annegret K. Wagler b

a Escuela Politécnica Nacional (Departamento de Matemática), Quito, Ecuador,

luis.torres@epn.edu.ec

b Université Blaise Pascal (Laboratoire d’Informatique, de Mod́elisation et

d’Optimisation des Systèmes) and CNRS, Clermont-Ferrand, France,

wagler@isima.fr

Key words: Petri nets, concurrent deterministic dynamic systems, hypergraphs

Petri nets constitute a well-established framework for modeling complex dynamic

systems, see e.g. [1,3,6] for their broad application range. The structure of these

systems is described by means of a network, while the studied dynamic processes

are usually represented in terms of state changes.

The network is a weighted directed bipartite graph G = (P ∪ T, A, w) with two

kinds of nodes, places and transitions, linked by weighted directed arcs. The places

represent the system’s components, while the transitions stand for their possible

interactions.

Some places B ⊆ P have bounded capacities, given by a vector u ∈ ZB
+. A state of

the system is an assignment of tokens to places taking into account the capacities.

Hence, any state can be represented as a vector x ∈ ZP
+ and the potential state

space of the system is X :=
{

x ∈ ZP
+ : xi ≤ ui, ∀i ∈ B

}

.

Dynamic processes are described as sequences x1, . . . , xk of system states, where

xi+1 is obtained from xi by switching a transition t ∈ T . Thereby, t consumes wit

tokens from each pre-place i ∈ P−(t) := {i ∈ P : (i, t) ∈ A} and produces wti

new tokens on each post-place i ∈ P +(t) := {i ∈ P : (t, i) ∈ A}. A transition

t ∈ T is enabled at a state x ∈ X if switching t yields a valid successor state. Thus,

the set of enabled transitions at state x is

T (x) :=
{

t ∈ T : xi − wit ≥ 0, ∀i ∈ P−(t); xi + wti ≤ ui, ∀i ∈ P+(t) ∩ B
}

.

A Petri net (G, x0) is given by a network G and an initial state x0, its state space

is the set of all states reachable from x0 by switching sequences of transitions. If

T (x) contains more than one transition for some state x, a decision between these

alternatives is taken non-deterministically, leading to a branching system behavior

which cannot model deterministic systems.

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

A dynamic system is deterministic if any state x ∈ X has a unique successor state

succ(x). Hence, if there is a state x in such a system where more than one transition

is enabled, a deterministic decision is taken in order to select a unique transition

trans(x) ∈ T (x) that must be switched in order to reach succ(x).

An explicit encoding of trans(x), for instance state-wise, is at least exponential in

the size of G and u. In [9] we propose a compact encoding, using orientations of

the following conflict graph. The transition conflict graph of G is an undirected

graph K = (T, E) having as nodes the transitions from G, where two transitions

t, t′ are joined by an edge if and only if there exists at least one state where both are

enabled, i.e., tt′ ∈ E ⇔ X(t) ∩ X(t′) *= ∅, where

X(t) :=
{

x ∈ X : xi ≥ wit, ∀i ∈ P−(t); xi ≤ ui − wti, ∀i ∈ P+(t) ∩ B
}

denotes the set of states at which transition t is enabled. K can be constructed in

O(|P | |T |2) time checking for box intersections or in a more efficient way sug-

gested in [9]. It clearly follows that, for every state x ∈ X , the set T (x) induces a

clique in K, i.e., a set of mutually adjacent nodes.

A directed graph D obtained by orienting the edges of K is said to be a valid ori-

entation if, for every state x ∈ X with T (x) *= ∅, the clique induced by the nodes

from T (x) has a unique sink, and this sink coincides with trans(x). The arcs of D

can be interpreted as priority relations between pairs of transitions, with trans(x)
being the transition with highest priority in T (x) [7]. Observe that the size of D is

O(|T |2), which is polynomial in the size of G.

In [9], it is shown that for any undirected graph H , there is a network G having H
as its transition conflict graph. Thus, in general, neither K nor D admit particular

properties from a graph-theoretical point of view, which turns characterizing valid

orientations into a difficult task. The aim of this note is to provide some insights into

the structural properties of the transition conflict graph and its valid orientations in

the context of hypergraph theory.

1 Hypergraphs related to the transition conflict graph

Let G = (P ∪ T, A, w) be a network and K = (T, E) its transition conflict graph.

By definition, for every state x ∈ X , the set T (x) of enabled transitions induces

a clique in K. The converse is not necessarily true, but we show that at least the

inclusion-wise maximal cliques in K are associated with states of the system.

The equivalence relation on X , where x ∼ x′ iff T (x) = T (x′), partitions the state

space into r ≤ 2|T | equivalence classes X1, . . . ,Xr of states that share the same sets

of enabled transitions. Let x̃i ∈ Xi with 1 ≤ i ≤ r be representative elements and

define the transition hypergraph HT := (T, ET) of G on the set T of transitions,

whose family ET of hyperedges is given by ET := {T (x̃i) : 1 ≤ i ≤ r} .

The state hypergraph of G is the dual hypergraph HX̃ of HT and has X̃ :=
{x̃1, . . . , x̃r} as node set, where its family of hyperedges is determined by EX̃ :=
{

X(t) ∩ X̃ : t ∈ T
}

.

260

A hypergraph H := (V, E) has the Helly property if, for any family E ′ ⊆ E of pair-

wise intersecting hyperedges, there exists a node v ∈ V contained in all hyperedges

from E ′. This is the case if and only if the inclusion-wise maximal hyperedges of its

dual hypergraph H∗ are precisely the inclusion-wise maximal cliques of the inter-

section graph G(H) of H [2]. Observe that in our case the transition conflict graph

K is exactly G(HX̃). We have shown the following:

Lemma 1.1 HX̃ satisfies the Helly property.

Hence, as a direct consequence, we obtain:

Theorem 1.2 The inclusion-wise maximal hyperedges from ET are exactly the

inclusion-wise maximal cliques of K. Thus, for every inclusion-wise maximal clique

Q there is some state x̃i ∈ X̃ , 1 ≤ i ≤ r, satisfying T (x̃i) = Q.

In general, K does not admit a special structure from a graph-theoretical point of

view [9]. We show, however, that K has some interesting properties, provided that

HT and HX̃ belong to certain classes of hypergraphs.

A cycle of length k in a hypergraph H = (V, E) is a sequence

(v1, E1, v2, E2, . . . , vk, Ek, vk+1)

such that vi ∈ V for all 1 ≤ i ≤ k + 1, Ei ∈ E for all 1 ≤ i ≤ k, Ei *= Ej if i *= j,

vi, vi+1 ∈ Ei for all 1 ≤ i ≤ k, and vk+1 = v1. A hypergraph H∗ = (V ∗, E∗) is

called arboreal if there exists a tree T ∗ on the node set V ∗ such that every hyper-

edge of H∗ induces a subtree in T ∗. Due to structural characterizations in [4,5,8],

arboreal hypergraphs are dual to acyclic hypergraphs and their intersection graphs

are chordal, i.e. each cycle having four or more nodes contains an edge joining two

nodes that are not adjacent in the cycle. Moreover, it can be shown that arboreal

hypergraphs have the Helly property.

Combining the previous observations, we obtain the following result.

Theorem 1.3 The following assertions are equivalent:

• HT is acyclic.

• HX̃ is arboreal.

• K is chordal.

2 Valid orientations

A directed graph D = (T, A) obtained by orienting the edges of K is said to be

valid if, for every state x ∈ X with T (x) *= ∅, the subgraph of K induced by the

nodes from T (x) has a unique sink, and this sink coincides with trans(x).

Consider the equivalence relation between networks, where G ∼K G′ iff their con-

flict graphs are isomorphic. An orientation is strongly valid if it is valid for all

networks of some equivalence class of ∼K.

By [9], an orientation is strongly valid if and only if it does not contain a directed

cycle of length three. Using this, we can exclude the occurrence of directed cycles

for systems with an acyclic transition hypergraph:

261

Theorem 2.1 The transition hypergraph HT of a network G is acyclic if and only

if, for any orientation D of K, the following two statements are equivalent:

(i) D is strongly valid.

(ii) D is acyclic.

In some applications, for instance in systems biology, the set of rules governing the

dynamic behavior of the system is not known a priory, but has to be reconstructed

from information provided by experimental observations. For that, one could search

for minimal sets of edges in K with the property that knowledge about their orien-

tation allows to infer the orientation of the remaining edges [10]. Such kind of

issues are specially relevant in practice, as they can be used to assist the design of

experiments. We expect this problem to be easier in the special case of acyclic tran-

sition hypergraphs by benefiting from structural properties of the chordal transition

conflict graphs.

References

[1] Adam, N.R., Atluri, V., Huang, W.K.: Modeling and analysis of workflows

using Petri nets. J. Intell. Inf. Syst. 10(2), 131–158 (1998).

[2] Berge, C., Duchet, P.: A generalisation of Gilmore’s theorem. In: M. Fiedler

(ed.) Recent Advances in Graph Theory, pp. 49–55. Acad. Praha, Prague

(1975)

[3] Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regu-

latory networks. J. of Discrete Algorithms 6(2), 165–177 (2008).

[4] Duchet, P.: Propriété de Helly et problèmes de représentations. In: Problèmes

Combinatoires et Théorie des Graphes, Coll. Orsay 1976, pp. 117–118. CNRS

Paris (1978)

[5] Flament, C.: Hypergraphes arborés. Discrete Math. 21, 223–226 (1978)

[6] Gu, T., Bahri, P.A.: A survey of Petri net applications in batch processes.

Comput. Ind. 47(1), 99–111 (2002).

[7] Marwan, W., Wagler, A., Weismantel, R.: A mathematical approach to solve

the network reconstruction problem. Math. Methods of Operations Research

67, 117–132 (2008)

[8] Slater, P.J.: A characterization of soft hypergraphs. Canad. Math. Bull. 21,

335–337 (1978)

[9] Torres, L.M., Wagler, A.: Encoding the dynamics of deterministic sys-

tems, Math. Methods of Operations Research, DOI http://dx.doi.org/10.1007/

s00186-011-0353-6 .

[10] Torres, L.M., Wagler, A.: Model reconstruction for discrete deterministic sys-

tems, Elec. Notes Disc. Math. 36, 175–182 (2010)

262

An Evolutionary Algorithm for the Multiobjective

Risk-Equity Constrained Routing Problem

Nora Touati-Moungla, Dimo Brockhoff,

Laboratoire d’Informatique, École Polytechnique,

91128 Palaiseau Cedex, France

Key words: Evolutionary multiobjective optimization, Transportation of hazardous

materials, Risk equity, Shortest Paths.

1 Introduction

The transportation of hazardous materials (hazmat from now on) has received a

large interest in recent years, which results from the increase in public awareness of

the dangers of hazmats and the enormous amount of hazmats being transported [4].

The main target of this problem is to select routes from a given origin-destination

pair of nodes such that the risk for the surrounding population and the environment

is minimized—without producing excessive economic costs. When solving such a

problem by minimizing both cost and the total risk, typically several vehicles share

the same (short) routes which results in high risks associated to regions surround-

ing these paths whereas other regions are not affected. In this case, one may wish

to distribute the risk in an equitable way over the population and the environment.

Several studies consider this additional minimization of the equity risk, but most

of them consist of a single origin-destination hazmat routing for a specific hazmat,

transport mode and vehicle type (see for example [1,4]). A more realistic multi-

commodity flow model was proposed in [4] where each commodity is considered

as one hazmat type. The objective function is formulated as the sum of the econom-

ical cost and the cost related to the consequences of an incident for each material.

To deal with risk equity, the costs are defined as functions of the flow traversing

the arcs which imposes an increase of the arc’s cost and risk when the number of

vehicles transporting a given material increases on the arc.

The majority of all hazmat routing studies deal with a single-objective scenario al-

though the problem itself is multiobjective in nature and it is important to study the

trade-offs among the objectives. Evolutionary Multiobjective Optimization (EMO)

algorithms are able to compute a set of solutions showing these trade-offs within

a single algorithm run which is the reason why we propose to use them for the

problem of hazmat routing in this study (Sec. 3). Before, we formalize the routing

of hazmat problem with three objectives (minimize total routing cost, total routing

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

risk and risk equity) as a multicommodity flow model as in [4] since this model is

the most realistic one permitting to manage several hazmat types simultaneously

(Sec. 2).

2 The multiobjective risk-equity constrained routing problem

Let the transportation network be represented as a directed graph G = (N, A), with

N being the set of nodes and A the set of arcs. Let C be the set of commodities,

given as a set of point-to-point demands to transport a certain amount of hazmats.

For any commodity c ∈ C, let sc and tc be the source node and the destination node

respectively, and let V c be the number of available trucks for the transportation

of commodity c. Each commodity is associated with a unique type of hazmat. We

assume that the risk is computed on each arc of the network and is proportional to

the number of trucks traversing such an arc. We consider a set Q of regions, and

we define rcq
ij as the risk imposed on region q ∈ Q when the arc (i, j) ∈ A is used

by a truck for the transportation of hazmat of type c. We remark that we employ a

notion of spread risk, in that an accidental event on arc (i, j) within region q ∈ Q
may strongly affect another region q′ ∈ Q. With each arc (i, j) ∈ A a cost cc

ij is

associated, involved by the travel of a truck of commodity c on this arc.

The problem of transporting hazmat is multiobjective in nature: one usually wants

to minimize the total cost of transportation, the total risk of transportation imposed

on all regions and the distributed risk, which can be defined as a measure of risk

that is shared among different regions. More specifically, for a given solution, each

region q ∈ Q will be affected by a risk ωq which depends on the transportation

patterns in all other regions. The third objective will then be maxq∈Q ωq, and has to

be minimized.

We introduce the integer variable yc
ij for the number of trucks that use arc (i, j) for

transporting commodity c. We assume a fixed number of trucks and that all trucks

have the same load. The proposed model is defined as follows:

min
∑

c∈C

∑

(i,j)∈A

cc
ijy

c
ij (2.1)

min
∑

c∈C

∑

q∈Q

∑

(i,j)∈A

rcq
ij yc

ij (2.2)

min max
q∈Q

{

∑

c∈C

∑

(i,j)∈A

rcq
ij y

c
ij

}

(2.3)

s.t.
∑

j∈δ+(i)

yc
ij −

∑

j∈δ−(i)

yc
ji = qc

i ∀i ∈ N, c ∈ C (2.4)

yc
ij ∈ {0, 1, 2, . . .} ∀(i, j) ∈ A, c ∈ C. (2.5)

The first objective in (2.1) is a cost function and is to be minimized. The sec-

ond objective, given by (2.2), minimizes the total risk on all regions and ob-

jective (2.3) minimizes the maximum risk imposed on all regions. Constraints

264

(2.4) are conservation constraints, where δ−(i) = {j ∈ N : (j, i) ∈ A} and

δ+(i) = {j ∈ N : (i, j) ∈ A} are the direct successors and predecessors of node i,
and qc

i = V c if i = sc, qc
i = −V c if i = tc and qc

i = 0 otherwise.

3 Evolutionary multiobjective optimization

Evolutionary algorithms (EAs) and Evolutionary Multiobjective Optimization

(EMO) algorithms in particular are general-purpose randomized search heuristics

and as such well suited for problems where the objective function(s) can be highly

non-linear, noisy, or even given only implicitly, e.g., by expensive simulations [6,5].

Since the third objective in the above problem formulation is nonlinear, we propose

to use an EMO algorithm for the multiobjective risk-equity constrained routing

problem here. Our EMO algorithm follows the standard iterative/generational cycle

of an EA of mating selection, variation, objective function evaluation, and environ-

mental selection and is build upon the state-of-the-art selection scheme in HypE

[2] as implemented in the PISA platform [3]. The variation operators as well as the

representation of the solutions, however, have to be adapted to the problem at hand

in the following way in order to fulfill the problem’s constraints at all times.

Representation: We choose a variable length representation as it has been the-

oretically shown to be a good choice for multiobjective shortest paths problems

[7]: A solution is thereby represented by a list of paths of variable lengths with

one path per truck. For the moment, we consider a fixed amount of trucks for each

commodity and therefore a fixed number of paths through the network. In order

to have every variable length path represent an uninterrupted path from source to

destination at any time (see the constraints in (2.4)), we ensure all paths to always

start with the source sc for the corresponding commodity c, ensure with the varia-

tion operator that all neighbored vertices in the path are connected by an arc, and

complete each path by the shortest path between the path’s actual end node and the

commodity’s destination node tc.

Initialization: Initially, we start with a single solution where the paths p for all

trucks are empty (p = (sc)). This corresponds to the situation where all trucks

choose the shortest sc–tc path for their assigned commodity—implying the smallest

possible overall cost but a high risk along the used route(s). Nevertheless, the initial

solution is already Pareto-optimal and is expected to be a good starting point for

the algorithm.

Variation: As mutation operator, we suggest to shorten or lengthen the path of one

or several trucks. In order to generate a new solution s′ from s, for each truck path,

we draw a binary value b ∈ {0, 1} uniformly at random and create the new path p′

from the old one p = (v1 = sc, v2, . . . , vl) as in [7]:

• if b = 0 and l =: length(p) ≥ 2, set p′ = (sc, . . . , vl−1)
• if b = 1 and |Vrem = {v ∈ V | (vl, v) ∈ A}| *= ∅, choose vl+1 from Vrem uniformly

at random and set p′ = (v0, . . . , vl, vl+1).
• otherwise, use the same path p also in the new solution s′.

265

4 Conclusions

The transportation of hazmats is an important optimization problem in the field of

sustainable development and in particular the equitable distribution of risks is of

high interest. Within this study, we formalize this transportation problem as the

minimization of three objectives and propose to use an evolutionary algorithm to

cope with the non-linear equity risk objective.

The third objective function of our problem can be rewritten by minimizing the

additional variable z as third objective and adding the constraints ∀q ∈ Q : z ≥
∑

c∈C

∑

(i,j)∈A rcq
ij f

c
ij . Although this equivalent formulation makes the problem lin-

ear (with additional linear constraints), classical algorithms are expected to have

difficulties with this formulation as well and our algorithm is supposed to be more

efficient in the current formulation due to the fewer number of constraints. Note

that, for the moment, the proposed EMO algorithm exists on paper only and an

actual implementation has to prove in the future which additional algorithm com-

ponents (such as problem-specific initialization, recombination operators, or other

exact optimization (sub-)procedures) are necessary to generate solutions of suffi-

cient quality and whether adaptively changing the number and capacity of trucks is

beneficial.

References

[1] V. Akgun, E. Erkut and R. Batta, On finding dissimilar paths, European Journal

of Operational Research 121(2):232-246, 2000.

[2] J. Bader and E. Zitzler. Hype: An algorithm for fast hypervolume-based many-

objective optimization. Evolutionary Computation, 19(1):45–76, 2011.

[3] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA—a platform and pro-

gramming language independent interface for search algorithms. In Evolution-

ary Multi-Criterion Optimization (EMO 2003), pages 494–508, 2003. Springer.

[4] M. Caramia and P. Dell’Olmo, Multiobjective management in freight logis-

tics: increasing capacity, service level and safety with optimization algorithms,

Springer London Ltd, 2008.

[5] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary

Algorithms for Solving Multi-Objective Problems. Springer, 2007.

[6] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,

Chichester, UK, 2001.

[7] C. Horoba. Analysis of a simple evolutionary algorithm for the multiobjective

shortest path problem. In Foundations of Genetic Algorithms (FOGA 2009),

pages 113–120. ACM, 2009.

266

Popular Ranking

Anke van Zuylen, a Frans Schalekamp, b David P. Williamson c

aMax-Planck-Institut für Informatik, Saarbrücken, Germany,

anke@mpi-inf.mpg.de

bIndependent

cSchool of ORIE, Cornell University, Ithaca, NY, USA.

Key words: Rank aggregation, Kemeny Rank Aggregation, Popular Ranking

1 Introduction

How do you aggregate the preferences of multiple agents in a fair manner? This is

a question that has occupied researchers for several centuries. Suppose we have k
voters who each give their preferences on n candidates. How should the candidates

be ranked to best represent the input? Marquis de Condorcet [5] showed that there

may not exist a “winner”: a candidate who beats all other candidates in a pairwise

majority vote. Borda [4] and Condorcet [5] (and many others after them) proposed

different ways of aggregating the preferences of the voters, and argued over which

method is the right one. Only in the middle of the 20th century, Arrow [2] showed

that there is no right method: there exists no aggregation method that simulata-

neously satisfies three natural criteria (non-dictatorship, independence of irrelevant

alternatives and Pareto efficiency).
This negative result notwithstanding, we still want to find aggregate rankings based

on voters’ inputs. In this paper, we consider the case when, rather than selecting a

winner, we would like to find a permutation of the candidates that represents the

voters’ inputs. Each voter’s input is assumed to be a permutation of the candidates,

where a candidate is ranked above another candidate, if the voter prefers the former

to the latter candidate. The goal is to find a permutation that minimizes the sum

of the distances to the voters’ permutations, where in principle any distance(-like)

function on permutations can be used, e.g. Kendall distance or Footrule distance.
Young & Levenglick [9] show that the Kendall distance is the unique distance func-

tion such that the permutation(s) that minimize it have three desirable properties of

being neutral, consistent and Condorcet. The latter property means that, if there ex-

ists a permutation such that the order of every pair of elements is the order preferred

by a majority, then this permutation has minimum distance to the voters’ permu-

tations. This distance was already proposed by Kemeny [6] for other reasons ([6]

defines axioms on the distance function, and finds that the Kendall distance adheres

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

to the axioms), and the problem of finding an optimal ranking with respect to this

criterion is now known as Kemeny Rank Aggregation.
In this paper, we suggest a new way of thinking about this problem. Suppose instead

of minimizing the total distance from the voters’ inputs, we want to find a permu-

tation that makes a majority of the voters “happy”? Of course, a voter is happy

when we follow her opinion exactly, and we cannot do this simultaneously for a

majority of the voters, unless a majority of the voters is in total agreement. There-

fore, our goal is to find a permutation such that there exists no other permutation

that a majority of the voters prefer, in the sense that their distance to the alternative

permutation is smaller. We call such a permutation a popular ranking.
Unfortunately, we show that such a permutation is unlikely to exist: it only ex-

ists if Condorcet’s paradox does not occur. Even worse than this, we show that if

Condorcet’s paradox does not occur, then it may still be the case that no popular

ranking exists. The only positive news in this context is, perhaps paradoxically, an

NP-hardness result: we show that if Condorcet’s paradox does not occur, then we

can efficiently compute a permutation, which may or may not be popular, but for

which the voters will have to solve an NP-hard problem to compute a permutation

that a majority of them prefer.

Related Work: Our work is inspired by Abraham et al. [1] where the notion of

popular matchings is introduced. Popular ranking is also related to the problem

of designing a voting mechanism in which the voters do not have an incentive to

lie about their preferences. However, rather than considering deviations of a single

voter, a popular solution is robust against deviations of a majority of the voters.

We show that, if the input does not contain Condorcet’s paradox, then there is a

solution that may or may not be popular, but for which it is computationally hard

for a majority of the voters to manipulate the output to their advantage. This result

has a similar flavor as a result by Bartholdi et al. [3], who demonstrate a voting rule

for deciding the “winner” of an election, for which it is computationally hard for a

single voter to manipulate the output.

2 Popular Ranking

We are given a set of alternatives [n] (where the notation [n] means {1, 2, . . . , n})

and a set of voters [k], where each voter ℓ has a complete ordering of the alterna-

tives. We will denote these complete orderings of a voter ℓ as a list of the alterna-

tives, where an alternative earlier in the list is preferred to elements that succeed it,

and use the notation π−1
ℓ : [n] → [n] (the use of “−1” will become clear shortly),

where π−1
ℓ (i) is the alternative at position i in the ordering of voter ℓ. Note that

we can interpret π−1
ℓ as a permutation. Further, the inverse of π−1

ℓ , which we will

denote by πℓ, is well defined and can be interpretated as the position of the alter-

natives in the list of voter ℓ. We will use list(πℓ) to denote the ordered sequence

(π−1
ℓ (1), π−1

ℓ (2), . . . , π−1(n)).

The Kendall distance between two permutations π, σ, denoted by K(π, σ), is de-

fined as the number of pairwise disagreements of π and σ, i.e. K(π, σ) = #{i, j :

268

π(i) < π(j) and σ(i) > σ(j)} + #{i, j : π(i) > π(j) and σ(i) < σ(j)}.

Definition 2.1 We say a permutation π is popular, if * ∃π ′ such that K(πℓ, π
′) <

K(πℓ, π) for a strict majority of the voters ℓ ∈ [k].

We define the majority graph G = (V, A) for an instance as the directed graph

which has a vertex for every i ∈ [n] and an arc (i, j) if a majority of the voters

ℓ ∈ [k] has πℓ(i) < πℓ(j). Condorcet observed that such a graph may have a cycle;

this is known as “Concorcet’s paradox”.

Lemma 2.1 No popular ranking exists if the majority graph has a directed cycle.

Proof (sketch) (sketch) If we order the elements from left to right according to a

ranking π, then there must be some arc (i, j) in the graph that is a back arc, i.e.

for which π(j) < π(i). Let π′ be the permutation we obtain by swapping i and

j, i.e. π′(i) = π(j), π′(j) = π(i) and π′(t) = π(t) for all t *= i, j. Then one can

show that a strict majority of the voters prefer π ′ to π, namely the voters ℓ who have

πℓ(i) < πℓ(j).
If the majority graph is acyclic, then a popular ranking could exist. We consider the

case when the majority graph is a tournament, i.e. for every i, j exactly one of the

arcs (i, j) and (j, i) is in G. Note that the majority graph is always a tournament

if the number of voters is odd. By Lemma 2.1, the only permutation that could be

popular is the permutation we obtain by topologically sorting the majority tourna-

ment. However, it is not the case that this ranking is always a popular ranking, as

we show in the full version of this paper [8].Even though the topologically sort of

the majority tournament is not necessarily a popular ranking, it turns out that it is

a “good” permutation in the sense that it is NP-hard to find a ranking that a ma-

jority of the voters prefer. The proof of the following theorem is given in the full

version [8].

Theorem 2.2 Given an input to the popular rank aggregation problem with an

acyclic majority graph, it is NP-hard to find a ranking ρ that a majority of the

voters S prefers to a topological sort of the majority graph, even if S is given.

3 Directions

We have seen that a popular ranking does not always exist, even if the majority

graph has no cycles. Perhaps popularity is asking for too much and we should relax

our objective. It is an interesting question whether there exists a suitable relaxation

of the notion of popularity, so that one can get positive results. One way of relaxing

the notion is looking for rankings with least-unpopularity-factor (McCutchen [7]

introduced this notion for matchings). The bad news is that it can be shown that

the unpopularity factor of the permutation π we obtain by topologically sorting the

majority tournament may be unbounded. It is an open question however whether

there exists a permutation with bounded unpopularity (and if so, what this uniform

bound is) and whether such a permutation can be found in polynomial time.

Acknowledgements

The first author thanks Chien-Chung Huang for helpful discussions.

269

References

[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings.

SIAM J. Comput., 37(4):1030–1045, 2007.

[2] K. J. Arrow. Social choice and individual values. Yale University Press, 1951.

[3] J. Bartholdi, C. Tovey, and M. Trick. The computational difficulty of manipu-

lating an election. Social Choice and Welfare, 6:227–241, 1989.

[4] J. Borda. Memoire sur les elections au scrutin. Histoire de l’Academie Royal

des Sciences, 1781.

[5] M. Condorcet. Sur l’application de l’analyse à la probabilité des décisions

rendues à la pluralité des voix. L’Imprimerie Royale, Paris, 1785.

[6] J. Kemeny. Mathematics without numbers. Daedalus, 88:575–591, 1959.

[7] R. McCutchen. The least-unpopularity-factor and least-unpopularity-margin

criteria for matching problems with one-sided preferences. In LATIN’08, pages

593–604, Búzios, Brazil, 2008.

[8] A. van Zuylen, F. Schalekamp, and D. P. Williamson. Popular ranking. Full

version available at http://www.mpi-inf.mpg.de/˜anke/.

[9] H. P. Young and A. Levenglick. A consistent extension of Condorcet’s election

principle. SIAM Journal on Applied Mathematics, 35(2):285–300, 1978.

270

Locally optimal dissimilar paths in road networks

Stéphanie Vanhove, 1 Veerle Fack

Department of Applied Mathematics and Computer Science, Ghent University

Krijgslaan 281 - S9, 9000 Ghent, Belgium

Stephanie.Vanhove@UGent.be

Abstract

We present a new algorithm for calculating alternative routes. Our algorithm aims to find

paths that are sufficiently different from each other and avoid illogical detours. It generates

a large number of paths, selects a dissimilar subset and finally improves this subset. The

results are of good quality.

Key words: Graph algorithms, alternative routes, dissimilar paths, road networks

1 Introduction

Modern route planning applications often give the user a few possibilities rather

than only the shortest or fastest route. This gives the user the freedom to choose the

route that best fits his own needs. Having several possible routes is also interesting

in the context of the transportation of hazardous material in order to spread the risk,

as described by Dell’Olmo et al. [1]. Naturally, alternative routes are only useful

if they are not too much alike. The routes should be “dissimilar”. While there are

many algorithms for generating a ranking of k shortest paths (e.g. Eppstein [2], Yen

[3], Hershberger et al. [4]), these algorithms are not suitable for this problem since

the paths generated by these algorithms are usually very similar. Therefore, algo-

rithms which specifically aim to find dissimilar paths of good quality are necessary.

2 Overview

Akgün et al. [5] give a comprehensive overview of existing methods for calculating

dissimilar paths. Many methods rely on generating a large amount of paths of which

a dissimilar subset is selected. The authors define the dissimilarity D between two

paths Pi and Pj as follows:

1 Stéphanie Vanhove is supported by a research grant of the Research Foundation Flanders

(FWO).

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Definition 2.1 D(Pi, Pj) = 1 − [L(Pi ∩ Pj)/L(Pi) + L(Pi ∩ Pj)/L(Pj)]/2

The authors also point out that finding a subset of dissimilar paths is essentially a p-

dispersion problem, in which a subset needs to be chosen from a set of points such

that the minimal dissimilarity between any pair of points in the subset is maximized.

Since this is a computationally hard problem, faster approximation methods are

often used. Several approximation methods can be found in Erkut et al. [6].

Fig. 1. A typical imperfection in generated alternative paths. The path makes a short detour

in small side streets while it would be better to stay on the main road.

A problem with many of the existing algorithms, is that the generated paths can

contain a lot of very small detours which are not logical to the driver. Figure 1

shows an example of such a situation. To overcome this problem, Abraham et al.

[7] introduce the concept of local optimality.

Definition 2.2 A path P is T -locally optimal if and only if every subpath P ′ of P
with weight(P ′) ≤ T is a shortest path.

T is usually chosen as a percentage of the shortest path weight, e.g. 25%.

In this work, we aim to develop an efficient method to find locally optimal dissim-

ilar paths.

3 Our method

Our method for generating dissimilar paths starts by generating a large number of

paths using a bidirectional heuristic. From these paths, a small subset of dissimilar

paths is selected. Dissimilarity is defined as in Definition 2.1.

3.1 Generate a large number of paths

In order to generate a large number of paths, our algorithm uses a bidirectional

heuristic based on the shortest path algorithm of Dijkstra [8]. Two shortest path

trees are built. A forward instance of the algorithm of Dijkstra builds a forward

shortest path tree from the start node, while a backward instance builds a backward

shortest path tree to the target node. Both algorithms take turns in labeling the

neighbours of one node. Each time both searches meet (i.e. a node is contained in

272

both shortest path trees) a new path is generated. Figure 2 illustrates this idea. The

algorithm continues until the desired number of paths is obtained or until no more

paths can be calculated.

Fig. 2. Bidirectional heuristic. Left: the forward (blue) and backward (red) shortest path tree

meet in the blue/red node. Right: path generated after both searches meet. The algorithm

will continue to generate paths in the same way.

3.2 Find a subset of dissimilar paths

Our strategy for finding a subset of dissimilar paths is an approximation method

based on the Greedy Construction heuristic proposed by Erkut et al. [6]. The short-

est path is always included in the selected subset, since this is usually of interest

to the user. After this, from all remaining paths, the path is chosen with the high-

est minimum dissimilarity to the paths already in the selection. This path is added

to the selection. This process is repeated until the selection contains the desired

number of paths.

3.3 Improve local optimality

The selected paths are now improved to make them locally optimal if necessary.

The parts of the path which are not locally optimal are identified. If a subpath from

u to v is not locally optimal, this subpath is replaced by the shortest path from u to

v. This is done for all non-locally optimal subpaths in a path. However, there is no

guarantee that the path is locally optimal after this. An iterative approach is needed

which repeats this method until the path is locally optimal. Typically, less than 10

iterations are needed.

4 Conclusion and future work

An example of the paths found by our algorithm can be seen in Figure 3. The

paths are clearly dissimilar without being excessively long and contain no illogical

detours. This is a satisfying result and was calculated in just a few seconds.

In the future we aim to further speed up our algorithm and to further optimize the

weight of the alternative paths.

273

Fig. 3. Example of a result found by our algorithm (shown as a layer on top of Google

Maps). The shortest path is marked in red, the alternative paths in blue.

References

[1] Paolo Dell’Olmo, Monica Gentili, and Andrea Scozzari. Finding dissimilar

routes for the transportation of hazardous materials. In Proceedings of the 13th

Mini-EURO Conference on Handling Uncertainty in the Analysis of Traffic and

Transportation Systems., pages 785–788, 2002.

[2] David Eppstein. Finding the k shortest paths. SIAM Journal on Computing,

28:652–673, 1998.

[3] Jin Y. Yen. Finding the k shortest loopless paths in a network. Management

Science, 17:712–716, 1971.

[4] John Hershberger, Matthew Maxel, and Subhash Suri. Finding the k shortest

simple paths: a new algorithm and its implementation. ACM Transactions on

Algorithms, 3:45, 2007.

[5] Vedat Akgün, Erhan Erkut, and Rajan Batta. On finding dissimilar paths. Eu-

ropean Journal of Operational Research, 121:232–246, 2000.

[6] Erhan Erkut, Yilmaz Ülküsal, and Oktay Yeniçerioglu. A comparison of p-

dispersion heuristics. Computers and Operations Research, 21(10):1103 –

1113, 1994.

[7] Ittai Abraham et al. Alternative routes in road networks. In SEA, pages 23–34,

2010.

[8] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1:269–271, 1959.

274

Searching Circulant Graphs

Öznur Yaşar Diner, a Danny Dyer, b

aDepartment of Information Technology, Kadir Has University, Turkey

bDepartment of Mathematics and Statistics,

Memorial University of Newfoundland, Canada

Key words: Edge Searching, Circulant Graphs

1 Introduction

Edge searching (or graph searching) is an extensively studied graph theoretical

problem. Its origins date back to the late 1960s in works of Parsons [10] and Breisch

[3]. It was first faced by a group of spelunkers who were trying to find a person lost

in a system of caves. They were interested in the minimum number of people they

needed in the searching team and an optimal search strategy.

Assume that we want to secure a system of tunnels from a hidden intruder who

is trying to avoid us and has unbounded speed. We model this system as a finite

connected graph G = (V, E) where junctions correspond to vertices and tunnels

correspond to edges. We will launch a group of searchers into the system in order

to catch the intruder. We assume that every edge of G is contaminated initially and

our aim is to clean the whole graph by a sequence of steps. At each step we are

allowed to do one of these moves: (1) Place a searcher at a vertex, (2) Remove

a searcher from one vertex and place it on another vertex (a “jump”), (3) Slide

a searcher from a vertex along an edge to an adjacent vertex. Note that placing

multiple searchers on any vertex is allowed. We don’t pose any restriction on the

number of searchers used.

If a searcher slides along an edge e = uv from u to v, then the edge e is cleaned if

either (i) another searcher is stationed at u, or (ii) all other edges incident to u are

already clean. An edge search strategy is a combination of the moves so that the

state of all edges being simultaneously clean is achieved, in which case we say that

the graph is cleaned. The least number of searchers needed to clean the graph is

the (edge) search number of the graph and is denoted s(G). The problem becomes

cleaning (or searching) the graph using the fewest searchers. In this respect, we are

interested in the optimal search strategies, those that use only s(G) searchers.

For a given graph, it is a natural question to ask the following: What is the smallest

value of s(G) = k with which we can clean the graph? and How can we clean the

graph using the minimum possible number of searchers?

CTW2011, Villa Mondragone, Frascati, Italy. June 14–16, 2011

Notice that even once an edge is cleaned, it may not necessarily be true that it will

remain clean until the end of the search strategy. In other words, an edge can be

cleaned at some step and at a later step it can get contaminated again. If a searcher is

stationed at a vertex v, then we say that v is guarded. If a path does not contain any

guarded vertex, then it is called an unguarded path. If there is an unguarded path

that contains one endpoint of a contaminated edge and one endpoint of a cleaned

edge e, then e gets recontaminated. Hence, a clean edge remains clean as long as

every path from it to a contaminated edge is blocked by at least one searcher.

The edge search problem has many variants based on, for instance, how searchers

move or how the edges are cleaned. Due to its closeness with the layout problems,

the problem is related to widely utilized graph parameters such as pathwidth [5],

bandwidth [6] and cutwidth of a graph which arises in VLSI design [4]. The prob-

lem and its variants are related to many applications such as network security [1]

and robotics [8].

The NP-completeness of the Edge Searching problem and its variations invoked

interest in solving these problems on special classes of graphs. In this note, we are

going to consider edge searching of the Ciculant Graphs. This family of graphs

play a significant role in many discrete optimization problems [2,9]. On a related

pursuit evasion game, the cops and robber game, the cop number of the circulant

graph with connection set of size s is fund to be at most ⌈ s+1
2
⌉ in [7]. Here we give

an upper bound on the edge search number of the circulant graphs of prime order

and conjecture that this can be made small.

2 Searching Circulant Graphs

We consider edge searching of circulant graphs of prime order and state our con-

jecture. Let (G, +) be a finite group with identity element 0. Let S ⊆ (G\{0}) such

that S = −S, that is a ∈ S if and only if −a ∈ S. Recall that −a denotes the

inverse of a in (G, +). The Cayley graph on a group G with connection set (or gen-

erating set) S, denoted as Cay(G,S), is the graph that is constructed as follows: (1)

Each element of G corresponds to a vertex vi, and, (2) There exists an edge joining

vi and vj if and only if vi = vj + a where a ∈ S.

Fig. 1. The circulant graphs circ(17; 3, 4) and circ(17; 1, 7)

276

A special class of Cayley graphs is those on cyclic groups. A circulant graph,

denoted as circ(n, S), is the Cayley graph Cay(Zn, S) where Zn is the abelian group

of integers modulo n.

Let p be a prime number and consider the circulant graph circ(p, S) where S ⊆
(Zp\{0}). Notice that G = circ(p, S) is a Hamiltonian cycle when |S| = 2 and 3 ≤
p; thus s(G) = 2. Nevertheless the calculation of the search number of circ(p, S)
gets complicated rapidly as the size of the set S increases.

For brevity, we denote a circulant graph G = circ(p, S) with connection set S =
{a,−a, b,−b} as circ(p; a, b) where 1 ≤ a < b ≤ p−1

2
.

Theorem 2.1 If p is a prime number and 1 ≤ a < b ≤ p−1
2

, then

s(circ(p; a, b)) ≤ 2b + 1.

Proof (sketch) Place the 2b searchers on the following vertices: v1, v2, . . . , vb and

vn−b+1, vn−b+2, . . . , vn. Label these searchers as σ1, σ2, . . . , σ2b respectively. Place

σ2b+1 on v1 and clean all the edges with end vetices in {vn−b+1, vn−b+2, . . . , vn, v1,
v2, . . . , vb}. The only contaminated edge incident to v1 is v1vb+1, thus let σ1 slide

along this edge and clean v1. Next let σ1 clean all the edges with end vetices in

{vn−b+1, vn−b+2, . . . , vn, v2, . . . , vb, vb+1}. Now σ2 can slide along v2vb+2 and clean

v2. We clean v1, v2, . . . , vb in the same way. We repeat this shifting of searchers

on v1, v2, . . . , vb to vb+1, vb+2, . . . , v2b for every group of b consequtive vertex and

clean the whole graph.

The upper bound in Theorem 2.1 is tight for some graphs (for instance, when G =
circ(5; 1, 2)). On the other hand, this bound will be big when b is large. We claim

that this number can be made as small as twice the root of the order of the graph

plus one.

In order to consider isomorphic circulant graphs, we use multiplication in Zp. Let

f : {1, 2, . . . , p} → {1, 2, . . . , p} so that f(n) = (n − 1)a + 1 where 1 ≤ a <
p−1
2

. It is a simple observation that f is an isomorphism between circ(p; a, b) and

circ(p; 1, c) where 1 ≤ a < b ≤ p−1
2

and c = ba−1.

Furthermore, we can show that for any k ≥ 1, circ(p; 1, c) . circ(p; k, ck).

The following conjecture gives a bound on the product of an element of Zp and a

positive integer less then the ceiling of the root of p.

Conjecture 4 For every prime p and every integer i = 1, 2, . . . , p−1
2

, there exists

an integer j, 1 ≤ j ≤ ⌈√p⌉ such that either

ij ≤ ⌈√p⌉ (mod p), or, p − ij ≤ ⌈√p⌉ (mod p).

An ongoing Maple code that mininimizes the maximum desired product shows

that Conjecture 4 holds for up to the 6000th prime. Thus by Theorem 2.1 and the

isomophisms we’ve given, the following is true for the first 6000 primes:

s(circ(p, S)) ≤ 2⌈√p⌉ + 1 (2.1)

for every circulant graph, circ(p, S), where S ⊆ (Zp\{0}), |S| ≤ 4.

277

This is a very good bound considering the size of the graph and the existing upper

bounds on edge search number.

References

[1] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro, Capture of an in-

truder by mobile agents. Proceedings of the 14th annual ACM symposium on

Parallel algorithms and architectures (2002) pp. 200–209.

[2] L. Barrière, P. Fraigniaud, C. Gavollile, B. Mans, and J.M. Robson. On rec-

ognizing Cayley graphs. LNCS, Vol. 1879 Springer-Verlag (2000) pp. 76–87.

[3] R. L. Breisch, An intuitive approach to speleotopology, Southwestern Cavers

6 (1967) pp. 72–78.

[4] F. Chung, On the cutwidth and the topological bandwidth of a tree, SIAM J.

Algebraic Discrete Methods 6 (1985) pp. 268–277.

[5] J. A. Ellis, I. H. Sudborough, J. S. Turner, The Vertex Separation and Search

Number of a Graph, Information and Computation 113 (1994) pp. 50–79.

[6] F. V. Fomin, P. Heggernes and J. A. Telle, Graph searching, elimination trees,

and a generalization of bandwidth, Algorithmica 41 (2004) pp. 73–87.

[7] P. Frankl, Cops and robbers in graphs with large girth and Cayley graphs,

Discrete Appl. Math. 17 (1987) pp. 301–305.

[8] L. J. Guibas, Jean-Claude Latombe, Steven M. LaValle, David Lin, Rajeev

Motwani, A Visibility-Based Pursuit-Evasion Problem, International Journal

of Computational Geometry and Applications 9, No: 4/5 (1999) pp. 471–499.

[9] E. A. Monakhova, O. G. Monakhov and E. V. Mukhoed, Genetic Construction

of Optimal Circulant Network Designs, Evolutionary Image Analysis, Signal

Processing and Telecommunications LNCS, Vol. 1596, (1999) pp. 215–223.

[10] T. Parsons, Pursuit-evasion in a graph, Theory and Applications of Graphs,

Lecture Notes in Mathematics, Springer-Verlag (1976) pp. 426–441.

278

Detailed Conference Program

Tuesday 14

Opening session (9.10 Sala del Teatro)

Bicliques and Bipartite Graphs (Tue A1, Sala del Teatro)

Chairman: P. Nobili

9.20 Couturier J. F. and D. Kratsch, Bicolored independent sets and bicliques

9.50 Albano A. and A. Do Lago, New upper bound for the number of maxi-

mal bicliques of a bipartite graph

10.20 Nicoloso S. and U. Pietropaoli, Bipartite finite Toeplitz graphs

Games and multi-decisor systems (Tue A2, Sala S.S. Pietro e Paolo)

Chairman: R. Schrader

9.20 Van Zuylen A., F. Schalekamp and D. P. Williamson, Popular Ranking

9.50 Kern W. and X. Qiu, Improved Taxation Rate for Bin Packing Games

10.20 Albrecht K. and U. Faigle, Binary Betting Strategies with Optimal Log-

arithmic Growth

Coffee break (10.50–11.10)

Mathematical Programming (Tue B1, Sala del Teatro)

Chairman: A. Agnetis

11.10 Argiroffo G. and A. Wagler, Generalized row family inequalities for the

set covering polyhedron

11.40 De Santis M., S. Lucidi and F. Rinaldi, A New Feasibility Pump-Like

Heuristic for Mixed Integer Problems

12.10 Amaldi E., S. Coniglio and L. Taccari, Formulations and heuristics for

the k-Piecewise Affine Model Fitting problem

12.40 Arbib C., G. Felici and M. Servilio, Sorting Common Operations to

Minimize Tardy Jobs

281

Graph Theory 1 (Tue B2, Sala S.S. Pietro e Paolo)

Chairman: F. Bonomo

11.10 Milanic M., A hereditary view on efficient domination

11.40 Skupień Z., Majorization and the minimum number of dominating sets

12.10 Bermudo S. and H. Fernau, Computing the differential of a graph

12.40 Saputro S.W., R. Simanjuntak , S. Uttunggadewa, H. Assiyatun, E. Tri

Baskoro, A.N.M Salman, On graph of order-n with the metric dimen-

sion n − 3

Lunch (13.10–14.10)

Cliques (Tue C1, Sala del Teatro)

Chairman: S. Nicoloso

14.10 Snels C., G. Oriolo and F. Bonomo, A primal algorithm for the mini-

mum weight clique cover problem on a class of claw-free perfect graphs

14.40 Nobili P. and A. Sassano, A reduction algorithm for the weighted stable

set problem in claw-free graphs

10.20 Bonomo F. and J. L. Szwarcfiter, Characterization of classical graph

classes by weighted clique graphs

Scheduling (Tue C2, Sala S.S. Pietro e Paolo)

Chairman: J. Hurink

14.10 Adacher L. and M. Flamini, Modeling and solving aircrafts scheduling

problem in ground control

14.40 Sevastyanov S. and B. Lin, Efficient enumeration of optimal and ap-

proximate solutions of a scheduling problem

15.10 Agnetis A., P. Detti, M. Pranzo and P. Martineau, Scheduling problems

with unreliable jobs and machines

Coffee break (15.40–16.10)

282

Computational Biology (Tue D1, Sala del Teatro)

Chairman: U. Pferschy

16.10 Liberti L., B. Masson, C. Lavor and A. Mucherino, Branch-and-Prune

trees with bounded width

16.40 Mucherino A., I. Wohlers, G. Klau and R. Andonov, Sparsifying Dis-

tance Matrices for Protein-Protein Structure Alignments

17.10 Cordone R. and G. Lulli, A Lagrangian Relaxation Approach for Gene

Regulatory Networks

Telecom (Tue D2, Sala S.S. Pietro e Paolo)

Chairman: C. Arbib

16.10 Abrardo A, M. Belleschi and P. Detti, Resources and transmission for-

mats allocation in OFDMA networks

16.40 Addis B., G. Carello and F. Malucelli, Network design with SRG based

protection

17.10 Alba M., F. Clautiaux, M. Dell’Amico and M. Iori, Models and Algo-

rithms for the Bin Packing Problem with Fragile Objects

Wednesday 15

Knapsack (Wed A1, Sala del Teatro)

Chairman: M. Iori

9.20 Monaci M. and U. Pferschy, On the Robust Knapsack Problem

9.50 Kosuch S., Approximability of the Two-Stage Knapsack problem with

discretely distributed weights

10.20 Cello M., G. Gnecco, M. Marchese and M. Sanguineti, A Generalized

Stochastic Knapsack Problem with Application in Call Admission Con-

trol

Graph Theory 2 (Wed A2, Sala S.S. Pietro e Paolo)

Chairman: A. Wagler

9.20 Yasar Diner O. and D. Dyer, Searching Circulant Graphs

9.50 Bina W., Enumeration of Labeled Split Graphs and Counts of Important

Superclasses

10.20 Kochol M., Decomposition of Tutte Polynomial

283

Coffee break (10.50–11.10)

Routing (Wed B1, Sala del Teatro)

Chairman: G. Righini

11.10 Factorovich P., I. Méndez-Dı́az and P. Zabala, The Pickup and Delivery

Problem with Incompatibility Constraints

11.40 Kjeldsen N. and M. Gamst, The Boat and Barge Problem

12.10 Roda F., P. Hansen and L. Liberti, The price of equity in the Hazmat

12.40 Méndez-Dı́az I., J. J. Miranda Bront, P. Toth and P. Zabala, Infeasible

path formulations for the time-dependent TSP with time windows

Nonlinear Optimization (Wed B2, Sala S.S. Pietro e Paolo)

Chairman: L. Liberti

11.10 Rinaldi F., M. De Santis and S. Lucidi, Continuous Reformulations for

Zero-one Programming Problems

11.40 Costa A., Pierre Hansen and Leo Liberti, Bound constraints for Point

Packing in a Square

12.10 Coniglio S., The impact of the norm on the k-Hyperplane Clustering

problem: relaxations, restrictions, approximation factors, and exact for-

mulations

12.40 Varvitsiotis A. and M. Laurent, Computing the Grothendieck constant

of some graph classes

Lunch (13.10–14.10)

Session in memory of Bruno Simeone I (Wed C, Sala del Teatro)

Chairman: I. Lari

14.10 Becker R., Research work with Bruno Simeone

14.40 Hansen P., Bruno Simeone’s Work in Clustering

10.20 Crama Y., Control and voting power in complex shareholding networks

Coffee break (15.40–16.10)

284

Session in memory of Bruno Simeone II (Wed D, Sala del Teatro)

Chairman: F. Ricca

16.10 Golumbic M., Graph sandwich problems

16.40 Boros E., Incompatibility graphs and data mining

17.10 Serafini P., Separating negative and positive points with the minimum

number of boxes

Thursday 16

Coloring (Thu A1, Sala del Teatro)

Chairman: P. Dell’Olmo

9.20 Calamoneri T. and B. Sinaimeri, Labeling of Oriented Planar Graphs

9.50 Petrosyan P. and R. Kamalian, Edge-chromatic sums of regular and bi-

partite graphs

10.20 Boehme T. and J. Schreyer, Local Computation of Vertex Colorings

Non deterministic systems (Thu A2, Sala S.S. Pietro e Paolo)

Chairman: S. Pickl

9.20 Faigle U. and A. Schoenhuth, Representations of Power Series over

Word Algebras

9.50 Pascucci F. and M. Carli, Sensor Network Localization Using Com-

pressed Extended Kalman Filter

10.20 Lozovanu D. and S. Pickl , Discounted Markov Decision Processes and

Algorithms for Solving Stochastic Control Problem on Networks

Coffee break (10.50–11.10)

285

Cuts and Flows (Thu B1, Sala del Teatro)

Chairman: F. Malucelli

11.10 Cullenbine C. , K. Wood and A. Newman, New Results for the Directed

Network Diversion Problem

11.40 Stephan R., Reducing the minimum T-cut problem to polynomial size

linear programming

12.10 Bauer J., One Minimum-Cost Network Flow Problem to Identify a

Graph’s Connected Components

12.40 Vanhove S. and V. Fack, Locally optimal dissimilar paths in road net-

works

Metaheuristics (Thu B2, Sala S.S. Pietro e Paolo)

Chairman: M. Sanguineti

11.10 Cano R. G., G. Kunigami, C.C. De Souza and P. J. De Rezende, Effec-

tive drawing of proportional symbol maps using GRASP

11.40 Touati-Moungla N. and D. Brockhoff, An Evolutionary Algorithm for

the Multiobjective Risk-Equity Constrained Routing Problem

12.10 Dell’Olmo P., R. Cerulli and F. Carrabs, The maximum labeled clique

problem

12.40 Gaudilliere A., A. Iovanella, B. Scoppola, E. Scoppola and M. Viale, A

Probabilistic Cellular Automata algorithm for the clique problem

Lunch (13.10–14.10)

Location (Thu C1, Sala del Teatro)

Chairman: P. Serafini

14.10 Tresoldi E., G. Righini and A. Ceselli, Combined Location and Routing

Problems in Drug Distribution

14.40 Puerto J., F. Ricca and A. Scozzari, Range minimization problems in

path-facility location on trees

10.20 Bruglieri M., P. Cappanera and M. Nonato, The gateway location prob-

lem for hazardous material transportation

286

Graph Theory 3 (Thu C2, Sala S.S. Pietro e Paolo)

Chairman: U. Faigle

14.10 Cerioli M.R., H. Nobrega and P. Viana, A partial characterization by

forbidden subgraphs of edge path graphs

14.40 Golovach P., M. Kaminski and D. Thilikos, Odd cyclic surface separa-

tors in planar graphs

15.10 Narayanan N., Minimally 2-connected graphs and colouring problems

Coffee break (15.40–16.10)

Combinatorial Optimization (Thu D1, Sala del Teatro)

Chairman: G. Felici

16.10 Hossain S., Computing Derivatives via Compression : An Exact Scheme

16.40 Amaldi E., C. Iuliano and R. Rizzi, On cycle bases with limited edge

overlap

Graph Theory 4 (Thu D2, Sala S.S. Pietro e Paolo)

Chairman: C. Snels

16.10 Scheidweiler R. and E. Triesch, Matchings in balanced hypergraphs

16.40 Torres L. and A. Wagler, The dynamics of deterministic systems from a

hypergraph theoretical point of view

Closing session (17.10 Sala del Teatro).

287

Authors Index

Index

Bauer J., 64

Abrardo A., 19

Adacher L., 23

Addis B., 27

Agnetis A., 32

Alba Martinez, M.A., 36

Albano, A., 40

Albrecht K., 44

Amaldi, E., 48, 52

Andonov R., 211

arbib, 56

Argiroffo, G., 60

Assiyatun H., 239

Böhme T., 76

Bı́na V., 72

Baskoro E.T., 239

Becker R.I., 1

Belleschi M., 19

Bermudo S., 68

Bonomo F., 80, 84

Boros E., 4

Brockhoff D., 263

Bruglieri M., 88

Calamoneri T., 93

Cano R. G., 97

Cappanera P., 88

Carello G., 27

Carli M., 101

Carrabs F., 146

Cello M., 105

Cerioli M., 109

Cerulli R., 146

Ceselli A., 113

Clautiaux, F., 36

Coniglio S., 118

Coniglio, S., 48

Cordone R., 122

Costa A., 126

Couturier J.F., 130

Crama Y., 8

Cullenbine C., 134

de Rezende P. J., 97

De Santis M., 138, 142

de Souza C. C., 97

Dell’Amico, M., 36

Dell’Olmo P., 146

Detti P., 19, 32

Do Lago, A.P., 40

Dyer D., 275

Fack V., 271

Factorovich P., 150

Faigle U., 44, 154

felici, 56

Fernau H., 68

Flamini M., 23

Gamst M, 158

Gaudilliére A., 162

Gnecco G., 105

Golovach p.A., 165

Golumbic M.C., 10

guarded vertex, 276

Guilherme K., 97

Hansen P., 11, 126, 235

Hossain S., 168

Iori, M., 36

Iovanella A., 162

Iuliano, C., 52

Kamalian R.R., 227

Kamiński M., 165

Kern W., 173

Kjeldsen N., 158

Klau G.W., 211

Kochol M., 177

Kosuch S., 180

Kratsch D., 130

Laurent M., 184

Lavor C., 189

291

Liberti L., 126, 189, 235

Lin B. M.T., 248

Lozovanu, 194

Lucidi S., 138, 142

Lulli G., 122

Méndez-Dı́az I., 198

Méndez-Dı́az I., 150

Malucelli F., 27

Marchese M., 105

Martineau P., 32

Masson B., 189

Milanic M., 203

Miranda-Bront J.J., 198

Monaci M., 207

Mucherino A., 189, 211

Narayanan N., 215

Newman A., 134

Nicoloso S., 219

Nobili P., 223

Nobrega H., 109

Nonato M., 88

Oriolo G., 80

Pascucci F., 101

Petrosyan P.A., 227

Pferschy U., 207

Pickl S., 194

Pietropaoli U., 219

Pranzo M., 32

Puerto J., 231

Qiu X., 173

Ricca F., 4, 231

Righini G., 113

Rinaldi F., 138, 142

Rizzi, R., 52

Roda F., 235

Salman S.W., 239

Sanguineti M., 105

Saputro S.W., 239

Sassano A., 223

Schönhuth A., 154

Schalekamp F., 267

Scheidweiler R., 244

Schreyer J., 76

Scoppola B., 162

Scoppola E., 162

Scozzari A., 231

Serafini P., 12

servilio, 56

Sevastyanov S., 248

Simanjuntak R., 239

Sinaimeri B., 93

Skupień Z., 252

Snels C., 80

Spinelli V., 4

Stephan R., 255

Szwarcfiter J. L., 84

Taccari, L., 48

Thilikos D.M., 165

Torres L.M., 259

Toth P., 198

Touati-Moungla N., 263

Tresoldi E., 113

Triesch E., 244

Uttunggadewa S., 239

van Zuylen A., 267

Vanhove S., 271

Varvitsiotis A., 184

Viale M., 162

Viana P., 109

Wagler A. K., 259

Wagler, A.K., 60

Williamson D. P., 267

Wohlers I., 211

Wood R.K., 134

Yaşar Diner Ö., 275

Zabala P., 150, 198

292

