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A PARTIAL CONDITION NUMBER FOR LINEAR LEAST SQUARES
PROBLEMS∗

MARIO ARIOLI† , MARC BABOULIN‡ , AND SERGE GRATTON‡

Abstract. We consider here the linear least squares problem miny∈Rn ‖Ay− b‖2, where b ∈ R
m

and A ∈ R
m×n is a matrix of full column rank n, and we denote x its solution. We assume that

both A and b can be perturbed and that these perturbations are measured using the Frobenius or
the spectral norm for A and the Euclidean norm for b. In this paper, we are concerned with the
condition number of a linear function of x (LT x, where L ∈ R

n×k) for which we provide a sharp
estimate that lies within a factor

√
3 of the true condition number. Provided the triangular R factor

of A from ATA = RTR is available, this estimate can be computed in 2kn2 flops. We also propose a
statistical method that estimates the partial condition number by using the exact condition numbers
in random orthogonal directions. If R is available, this statistical approach enables us to obtain a
condition estimate at a lower computational cost. In the case of the Frobenius norm, we derive a
closed formula for the partial condition number that is based on the singular values and the right
singular vectors of the matrix A.
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1. Introduction. Perturbation theory has been applied to many problems of
linear algebra such as linear systems, linear least squares, or eigenvalue problems [1,
4, 11, 18]. In this paper we consider the problem of calculating the quantity LTx,
where x is the solution of the linear least squares problem (LLSP) minx∈Rn ‖Ax−b‖2,
where b ∈ R

m and A ∈ R
m×n is a matrix of full column rank n. This estimation is a

fundamental problem of parameter estimation in the framework of the Gauss–Markov
model [17, p. 137]. More precisely, we focus here on the evaluation of the sensitivity
of LTx to small perturbations of the matrix A and/or the right-hand side b, where
L ∈ R

n×k and x is the solution of the LLSP.
The interest for this question stems, for instance, from parameter estimation

where the parameters of the model can often be divided into two parts: the variables
of physical significance and a set of ancillary variables involved in the models. For
example, this situation occurs in the determination of positions using the GPS sys-
tem, where the three-dimensional coordinates are the quantities of interest, but the
statistical model involves other parameters such as clock drift and GPS ambiguities
[12] that are generally estimated during the solution process. It is then crucial to
ensure that the solution components of interest can be computed with satisfactory
accuracy. The main goal of this paper is to formalize this problem in terms of a condi-
tion number and to describe practical methods to compute or estimate this quantity.
Note that as far as the sensitivity of a subset of the solution components is concerned,
the matrix L is a projection whose columns consist of vectors of the canonical basis
of R

n.
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The condition number of a map g : R
m �→ R

n at y0 measures the sensitivity of
g(y0) to perturbations of y0. If we assume that the data space R

m and the solution
space R

n are equipped, respectively, with the norms ‖.‖D and ‖.‖S , the condition
number K(y0) is defined by

K(y0) = lim
δ→0

sup
0<‖y0−y‖D≤δ

‖g(y0) − g(y)‖S
‖y0 − y‖D

,(1.1)

whereas the relative condition number is defined by K(rel)(y0) =K(y0)‖y0‖D/
‖g(y0)‖S . This definition shows that K(y0) measures an asymptotic sensitivity and
that this quantity depends on the chosen norms for the data and solution spaces. If
g is a Fréchet-differentiable (F-differentiable) function at y0, then K(y0) is the norm
of the F-derivative |||g′(y0)|||) (see [6]), where |||.||| is the operator norm induced by
the choice of the norms on the data and solution spaces.

For the full rank LLSP, we have g(A, b) = (ATA)−1AT b. If we consider the

product norm ‖(A, b)‖F =
√
‖A‖2

F + ‖b‖2
2 for the data space and ‖x‖2 for the solution

space, then [8] gives an explicit formula for the relative condition number K(rel)(A, b):

K(rel)(A, b) =
∥∥A†∥∥

2

(∥∥A†∥∥2

2
‖r‖2

2 + ‖x‖2
2 + 1

) 1
2 ‖(A, b)‖F

‖x‖2

,

where A† denotes the pseudoinverse of A, r = b−Ax is the residual vector, and ‖.‖F

and ‖.‖2 are, respectively, the Frobenius and Euclidean norms. But does the value of
K(rel)(A, b) give us useful information about the sensitivity of LTx? Can it in some
cases overestimate the error in components or on the contrary be too optimistic?

Let us consider the following example:

A =

⎛⎜⎜⎝
1 1 ε2

ε 0 ε2

0 ε ε2

ε2 ε2 2

⎞⎟⎟⎠ , x =

⎛⎝ ε
ε
1
ε

⎞⎠ , and b =

⎛⎜⎜⎝
3ε

ε2 + ε
ε2 + ε

2ε3 + 2
ε

⎞⎟⎟⎠ ,

where x is the exact solution of the LLSP minx∈R3 ‖Ax − b‖2. If we take ε = 10−8,
then we have x = (10−8, 10−8, 108)T and the solution computed in MATLAB using a
machine precision 2.22 ·10−16 is x̃ = (1.5 ·10−8, 1.5 ·10−8, 108)T . The LLSP condition
number is K(rel)(A, b) = 2.4 · 108 and the relative errors on the components of x are

|x1 − x̃1|
|x1|

=
|x2 − x̃2|

|x2|
= 0.5 and

|x3 − x̃3|
|x3|

= 0.

Then, if L =
( 1 0

0 1
0 0

)
, we expect a large value for the condition number of LTx because

there is a 50% relative error on x1 and x2. If now L = (0, 0, 1)T , then we expect that
the condition number of LTx would be close to 1 because x̃3 = x3. For these two
values of L, the LLSP condition number is far from giving a good idea of the sensitivity
of LTx. Note in this case that the perturbations are due to roundoff errors.

Let us now consider a simple example in the framework of parameter estimation
where, in addition to roundoff errors, random errors are involved. Let b = {bi}i=1,...,10

be a series of observed values depending on data s = {si}, where si = 10 + i, i =
1, . . . , 10. We determine a 3-degree polynomial that approximates b in the least
squares sense, and we suppose that the following relationship holds:

b = x1 + x2
1

s
+ x3

1

s2
+ x4

1

s3
with x1 = x2 = x3 = x4 = 1.
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We assume that the perturbation on each bi is 10−8 multiplied by a normally dis-
tributed random number and denote by b̃ = {b̃i}i=1,...,10 the perturbed quantity.

This corresponds to the LLSP minx∈R4 ‖Ax− b̃‖2, where A is the Vandermonde ma-
trix defined by Aij = 1

sj−1
i

. Let x̃ and ỹ be the computed solutions corresponding to

two perturbed right-hand sides. Then we obtain the following relative errors on each
component:

|x̃1 − ỹ1|
|x̃1|

= 2 · 10−7,
|x̃2 − ỹ2|

|x̃2|
= 6 · 10−6,

|x̃3 − ỹ3|
|x̃3|

= 6 · 10−5, and
|x̃4 − ỹ4|

|x̃4|
= 10−4.

We have K(rel)(A, b) = 3.1 · 105. Regarding the disparity between the sensitivity of
each component, we need a quantity that evaluates more precisely the sensitivity of
each solution component of the LLSP.

The idea of analyzing the accuracy of some solution components in linear algebra
is by no means new. For linear systems Ax = b, A ∈ R

n and for LLSP, [3] defines
so-called componentwise condition numbers that correspond to amplification factors
of the relative errors in solution components due to perturbations of data A or b and
explains how to estimate them. In our formalism, these quantities are upper bounds
of the condition number of LTx, where L is a column of the identity matrix. We also
emphasize that the term “componentwise” refers here to the solution components and
must be distinguished from the metric used for matrices and for which [21] provides
a condition number for generalized inversion and linear least squares.

For LLSP, [14] provides a statistical estimate for componentwise condition num-
bers due to either relative or structured perturbations. In the case of linear systems, [2]
proposes a statistical approach, based on [13] that enables one to compute the condi-
tion number of LTx in O(n2).

Our approach differs from the previous studies in the following aspects:
1. We are interested in the condition of LTx, where L is a general matrix and

not only a canonical vector of R
n.

2. We are looking for a condition number based on the F-derivative, and not
only for an upper bound of this quantity.

We present in this paper three ways to obtain information on the condition of LTx.
The first one uses an explicit formula based on the singular value decomposition (SVD)
of A. The second is at the same time an upper bound of this condition number and
a sharp estimate of it. The third method supplies a statistical estimate. The choice
between these three methods will depend on the size of the problem (computational
cost) and on the accuracy desired for this quantity.

This paper is organized as follows. In section 2, we define the notion of a partial
condition number. Then, when perturbations on A are measured using a Frobenius
norm, we give a closed formula for this condition number in the general case where
L ∈ R

n×k and in the particular case when L ∈ R
n. In section 3, we establish bounds

of the partial condition number in Frobenius as well as in spectral norm, and we show
that these bounds can be considered as sharp estimates of it. In section 4 we describe
a statistical method that enables us to estimate the partial condition number. In
section 5 we present numerical results in order to compare the statistical estimate
and the exact condition number on sample matrices A and L. In section 6 we give
a summary comparing the three ways to compute the condition of LTx as well as a
numerical illustration. Finally some concluding remarks are given in section 7.

Throughout this paper we will use the following notation. We use the Frobenius
norm ‖.‖F and the spectral norm ‖.‖2 on matrices and the usual Euclidean ‖.‖2 on
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vectors. The matrix I is the identity matrix and ei is the ith canonical vector. We
also denote by Im(A) the space spanned by the columns of A and by Ker(A) the null
space of A.

2. The partial condition number of an LLSP. Let L be an n × k matrix,
with k ≤ n. We consider the function

g : R
m×n × R

m −→ R
k,

A, b �−→ g(A, b) = LTx(A, b) = LT (ATA)−1AT b.
(2.1)

Since A has full rank n, g is continuously F-differentiable in a neighborhood of (A, b)
and we denote by g′ its F-derivative. Let α and β be two positive real numbers. In
the present paper we consider the Euclidean norm for the solution space R

k. For the
data space R

m×n × R
m, we use the product norms defined by

‖(A, b)‖F =

√
α2 ‖A‖2

F + β2 ‖b‖2
2, α, β > 0,

and

‖(A, b)‖2 =

√
α2 ‖A‖2

2 + β2 ‖b‖2
2, α, β > 0.

These norms are very flexible since they allow us to monitor the perturbations on A
and b. For instance, large values of α (resp., β ) enable us to obtain condition number
problems where mainly b (resp., A) are perturbed. A more general weighted Frobenius
norm ‖(AT, βb)‖F, where T is a positive diagonal matrix, is sometimes chosen. This
is the case, for instance, in [20], which gives an explicit expression for the condition
number of rank deficient linear least squares using this norm.

According to [6], the absolute condition numbers of g at the point (A, b) using
the two product norms defined above is given by

κg,F (A, b) = max
(ΔA,Δb)

‖g′(A, b).(ΔA,Δb)‖2

‖(ΔA,Δb)‖F

and

κg,2(A, b) = max
(ΔA,Δb)

‖g′(A, b).(ΔA,Δb)‖2

‖(ΔA,Δb)‖2

.

The corresponding relative condition numbers of g at (A, b) are expressed by

κ
(rel)
g,F (A, b) =

κg,F (A, b) ‖(A, b)‖F
‖g(A, b)‖2

and

κ
(rel)
g,2 (A, b) =

κg,2(A, b) ‖(A, b)‖2

‖g(A, b)‖2

.

We call the condition numbers related to LTx(A, b) partial condition numbers of the
LLSP with respect to the linear operator L. The partial condition number defined
using the product norm ‖(., .)‖F is given by the following theorem.
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Theorem 1. Let A = UΣV T be the thin singular value decomposition of A
defined in [7] with Σ = diag(σi) and σ1 ≥ σ2 · · · ≥ σn > 0. The absolute condition
number of g(A, b) = LTx(A, b) is given by

κg,F (A, b) =
∥∥SV TL

∥∥
2
,

where S ∈ R
n×n is the diagonal matrix with diagonal elements Sii = σi

−1√
σi

−2‖r‖2
2+‖x‖2

2

α2 + 1
β2 .

Proof. The demonstration is divided into three parts. In Part 1, we establish
an explicit formula of g′(A, b).(ΔA,Δb). In Part 2, we derive an upper bound for
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F
. In Part 3, we show that this bound is reached for a particular

(ΔA,Δb).
Part 1. Let ΔA ∈ R

m×n and Δb ∈ R
m. Using the chain rules of composition of

derivatives, we get

g′(A, b).(ΔA,Δb) = LT (ATA)−1ΔAT (b−A(ATA)−1AT b)

− LT (ATA)−1ATΔA(ATA)−1AT b + LTA†Δb,

i.e.,

g′(A, b).(ΔA,Δb) = LT (ATA)−1ΔAT r − LTA†ΔAx + LTA†Δb.(2.2)

We write ΔA = ΔA1 + ΔA2 by defining ΔA1 = AA†ΔA (projection of ΔA onto
Im(A)) and ΔA2 = (I−AA†)ΔA (projection of ΔA onto Im(A)⊥). We have ΔAT

1 r =
0 (because r ∈ Im(A)⊥) and A†ΔA2 = 0. Then we obtain

g′(A, b).(ΔA,Δb) = LT (ATA)−1ΔAT
2 r − LTA†ΔA1x + LTA†Δb.(2.3)

Part 2. We now prove that κg,F (A, b) ≤
∥∥SV TL

∥∥
2
. Let ui and vi be the ith

column of U and V , respectively.
From A† = V Σ−1UT , we get AA† = UUT =

∑n
i=1 uiu

T
i and since

∑n
i=1 viv

T
i = I,

we have ΔA1 =
∑n

i=1 uiu
T
i ΔA and ΔA2 = (I − AA†)ΔA

∑n
i=1 viv

T
i . Moreover, still

using the thin SVD of A and A†, it follows that

(ATA)−1vi =
vi
σ2
i

, A†ui =
vi
σi

, and A†Δb =

n∑
i=1

viu
T
i

Δb

σi
.(2.4)

Thus (2.3) becomes

g′(A, b).(ΔA,Δb) =

n∑
i=1

LT vi

[
vTi ΔAT (I −AA†)

r

σ2
i

− uT
i ΔA

x

σi
+ uT

i

Δb

σi

]

= LT
n∑

i=1

viyi,

where we set yi = vTi ΔAT (I −AA†) r
σ2
i
− uT

i ΔA x
σi

+ uT
i

Δb
σi

∈ R.

Thus if Y = (y1, y2, . . . , yn)T , we get ‖g′(A, b).(ΔA,Δb)‖2 =
∥∥LTV Y

∥∥
2

and then

‖g′(A, b).(ΔA,Δb)‖2 =
∥∥LTV SS−1Y

∥∥
2
≤

∥∥SV TL
∥∥

2

∥∥S−1Y
∥∥

2
.
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We denote by wi =
vT
i ΔAT (I−AA†)r

Siiσ2
i

− uT
i ΔAx
Siiσi

+
uT
i Δb

Siiσi
the ith component of S−1Y .

Then we have

|wi| ≤ α
∥∥vTi ΔAT (I −AA†)T

∥∥
2

‖r‖2

αSiiσ2
i

+ α
∥∥uT

i ΔA
∥∥

2

‖x‖2

αSiiσi
+ β|uT

i Δb| 1

βSiiσi

≤
(

‖r‖2
2

α2S2
iiσ

4
i

+
‖x‖2

2

α2S2
iiσ

2
i

+
1

β2S2
iiσ

2
i

) 1
2

× (α2
∥∥(I −AA†)ΔAvi

∥∥2

2
+ α2

∥∥uT
i ΔA

∥∥2

2
+ β2|uT

i Δb|2) 1
2

=
Sii

Sii
(α2

∥∥(I −AA†)ΔAvi
∥∥2

2
+ α2

∥∥uT
i ΔA

∥∥2

2
+ β2|uT

i Δb|2) 1
2 .

Hence

∥∥S−1Y
∥∥2

2
≤

n∑
i=1

α2
∥∥(I −AA†)ΔAvi

∥∥2

2
+ α2

∥∥uT
i ΔA

∥∥2

2
+ β2|uT

i Δb|2

= α2
∥∥(I −AA†)ΔAV

∥∥2

F
+ α2

∥∥UTΔA
∥∥2

F
+ β2

∥∥UTΔb
∥∥2

2

= α2
∥∥(I −AA†)ΔA

∥∥2

F
+ α2

∥∥UTΔA
∥∥2

F
+ β2

∥∥UTΔb
∥∥2

2
.

Since
∥∥UTΔA

∥∥
F

=
∥∥UUTΔA

∥∥
F

=
∥∥AA†ΔA

∥∥
F

and
∥∥UTΔb

∥∥
2

=
∥∥UUTΔb

∥∥
2
≤

‖Δb‖2, we get

∥∥S−1Y
∥∥2

2
≤ α2 ‖ΔA1‖2

F + α2 ‖ΔA2‖2
F + β2 ‖Δb‖2

2 .

From ‖ΔA‖2
F = ‖ΔA1‖2

F + ‖ΔA2‖2
F , we get

∥∥S−1Y
∥∥2

2
≤ ‖(ΔA,Δb)‖2

F and thus

‖g′(A, b).(ΔA,Δb)‖2 ≤
∥∥SV TL

∥∥
2
‖(ΔA,Δb)‖F .

So we have shown that
∥∥SV TL

∥∥
2

is an upper bound for κg,F (A, b).

Part 3. We now prove that this upper bound can be reached, i.e., that
∥∥SV TL

∥∥
2

=

‖g′(A,b).(ΔA,Δb)‖
2

‖(ΔA,Δb)‖F
holds for some (ΔA,Δb) ∈ R

m×n × R
m.

Let us consider the particular choice of (ΔA,Δb) defined by

(ΔA,Δb) = (ΔA2 + ΔA1,Δb) =

(
n∑

i=1

αi

α

r

‖r‖2

vTi +

n∑
i=1

βi

α
ui

xT

‖x‖2

,

n∑
i=1

γi
β
ui

)
,

where αi, βi, γi are real constants to be chosen in order to achieve the upper bound
obtained in Part 2.
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Since ΔAT
1 r = 0 and A†ΔA2 = 0, it follows from (2.3) and (2.4) that

g′(A, b).(ΔA,Δb) = LT (ATA)−1
n∑

i=1

αi

α
‖r‖2 v

T
i − LTA†

n∑
i=1

βi

α
ui ‖x‖2

+ LTA†
n∑

i=1

γi
β
ui

= LT
n∑

i=1

αi

ασ2
i

vi ‖r‖2 − LT
n∑

i=1

βi

ασi
vi ‖x‖2 + LT

n∑
i=1

γi
βσi

vi

=

n∑
i=1

LT vi

(
αi

ασ2
i

‖r‖2 −
βi

ασi
‖x‖2 +

γi
βσi

)
.

Thus by denoting ξi = [LT vi
‖r‖2

ασ2
i
,−LT vi

‖x‖2

ασi
, LT vi

βσi
] ∈ R

k×3, Γ = [ξ1, . . . , ξn] ∈ R
k×3n,

and X = (α1, β1, γ1, . . . , αn, βn, γn)T ∈ R
3n×1 we get

g′(A, b).(ΔA,Δb) = ΓX.(2.5)

Since ∀i, j trace(( r
‖r‖2

vTi )T ( r
‖r‖2

vTi )) = trace((ui
xT

‖x‖2
)T (ui

xT

‖x‖2
)) = δij , where δij is

the Kronecker symbol and trace(( r
‖r‖2

vTi )T (ui
xT

‖x‖2
)) = 0, then { r

‖r‖2
vTi }i=1,...,n and

{ui
xT

‖x‖2
}i=1,...,n form an orthonormal set of matrices for the Frobenius norm and we

get ‖ΔA‖F =
∑n

i=1(α
2
i + β2

i ). It follows that

‖(ΔA,Δb)‖2
F =

n∑
i=1

α2
i +

n∑
i=1

β2
i +

n∑
i=1

γ2
i = ‖X‖2

2 ,

and (2.5) yields

‖g′(A, b).(ΔA,Δb)‖2

‖(ΔA,Δb)‖F
=

‖ΓX‖2

‖X‖2

.

We know that ‖Γ‖2 = maxX
‖ΓX‖2

‖X‖2
is reached for some X = (α1, β1, γ1, . . . , αn, βn,

γn)T . Then for the (ΔA,Δb) corresponding to this X, we have
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F
=

‖Γ‖2.
Furthermore we have

ΓΓT = LT v1

(
‖r‖2

2

α2σ4
1

+
‖x‖2

2

α2σ2
1

+
1

β2σ2
1

)
vT1 L + · · · + LT vn

(
‖r‖2

2

α2σ4
n

+
‖x‖2

2

α2σ2
n

+
1

β2σ2
n

)
vTnL

= LT v1S
2
11v

T
1 L + · · · + LT vnS

2
nnv

T
nL

= (LTV S)(SV TL).

Hence

‖Γ‖2 =
√
‖ΓΓT ‖2 =

∥∥SV TL
∥∥

2
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and α1, β1, γ1, . . . , αn, βn, γn are such that
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F
=

∥∥SV TL
∥∥

2
.

Thus
∥∥SV TL

∥∥
2
≤ κg,F (A, b), which concludes the proof.

Remark 1. Let lj be the jth column of L, j = 1, . . . , k. From

SV TL =

⎛⎜⎝ S11v1
T

...
Snnvn

T

⎞⎟⎠ (l1, . . . , lk) =

⎛⎜⎝ S11v1
T l1 · · · S11v1

T lk
...

...
Snnvn

T l1 · · · Snnvn
T lk

⎞⎟⎠ ,

it follows that
∥∥SV TL

∥∥
2

is large when there exist at least one large Sii and an lj
such that vi

T lj 	= 0. In particular, the condition number of LTx(A, b) is large when A
has small singular values and L has components in the corresponding right singular
vectors or when ‖r‖2 is large.

Remark 2. In the general case where L is an n × k matrix, the computation
of κg,F (A, b) via the exact formula given in Theorem 1 requires the computation of
the singular values and the right singular vectors of A, which might be expensive in
practice since it involves 2mn2 operations if we use an R-SVD algorithm and if m 
 n
(see [7, p. 254]). If the LLSP is solved using a direct method, the R factor of the
QR decomposition of A (or equivalently, in exact arithmetic, the Cholesky factor of
ATA) might be available. Since the right singular vectors of A are also those of R,
the condition number can be computed in about 12n3 flops (using the Golub–Reinsch
SVD [7, p. 254]).

Using R is even more interesting when L ∈ R
n, since from∥∥LTA†∥∥

2
=

∥∥R−TL
∥∥

2
and

∥∥LT (ATA)−1
∥∥

2
=

∥∥R−1(R−TL)
∥∥

2
,(2.6)

it follows that the computation of κg,F (A, b) can be done by solving two successive
n× n triangular systems which involve about 2n2 flops.

2.1. Special cases and GSVD. In this section, we analyze some special cases
of practical relevance. Moreover, we relate the formula given in Theorem 1 for

κg,F (A, b)

to the generalized singular value decomposition (GSVD) (see [1, p. 157], [7, p. 466],
and [15, 19]). Using the GSVD of A and LT , there exist UA ∈ R

m×m, UL ∈ R
k×k

orthogonal matrices and Z ∈ R
n×n invertible such that

UT
AA =

(
DA

0

)
Z and UT

LLT =
(
DL 0

)
Z

with

DA = diag(α1, . . . , αn), DL = diag(β1, . . . , βk),

α2
i + β2

i = 1, i = 1, . . . , k, αi = 1, i = k + 1, . . . , n.

The diagonal matrix S can be decomposed in the product of two diagonal matrices

S = Σ−1D

with

Dii =

√
σi

−2 ‖r‖2
2 + ‖x‖2

2

α2
+

1

β2
.
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Then, taking into account the relations∥∥SV TL
∥∥

2
=

∥∥LTV S
∥∥

2
=

∥∥LTV Σ−1UTUD
∥∥

2
=

∥∥LTA†UD
∥∥

2
,

LTA† = UL

(
DL 0

)
ZZ−1

(
D−1

A 0
)
UT
A ,

we can represent κg,F (A, b) as

κg,F (A, b) =
∥∥∥TH̃D

∥∥∥
2
,

where T ∈ R
k×k is a diagonal matrix with Tii = βi/αi, i = 1, . . . , k, and H̃ ∈ R

k×n is

H̃ =
(
I 0

)
UT
AU.

Note that
∥∥LTA†∥∥

2
= ‖T‖2.

We also point out that the diagonal entries of T are the nonzero generalized
eigenvalues of

λATAz = LLT z.

There are two interesting special cases where the expression of κg,F (A, b) is simpler.
First, when r = 0, i.e., the LLSP problem is consistent, we have

D =

√
‖x‖2

2

α2
+

1

β2
I

and

κg,F (A, b) =
∥∥∥TH̃∥∥∥

2

√
‖x‖2

2

α2
+

1

β2
.

Second, if we allow only perturbations on b and if we use the expression (2.2) of the
derivative of g(A, b), we get

κg,F (A, b) =

∥∥LTA†∥∥
2

β
=

‖T‖2

β

(see Remark 4 in section 3).
Other relevant cases where the expression for κg,F (A, b) has a special interest are

L = I and L is a column vector.
In the special case where L = I, the formula given by Theorem 1 becomes

κg,F (A, b) =
∥∥SV TL

∥∥
2

= ‖S‖2 = max
i

Sii = σn
−1

√
σn

−2 ‖r‖2
2 + ‖x‖2

2

α2
+

1

β2
.

Since
∥∥A†∥∥

2
= σn

−1, we obtain that

κg,F (A, b) =
∥∥A†∥∥

2

√
‖A†‖2

2 ‖r‖
2
2 + ‖x‖2

2

α2
+

1

β2
.
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This corresponds to the result known from [8] and also to a generalization of the
formula of the condition number in the Frobenius norm given in [6, p. 92] (where only
A was perturbed).

Finally, let us study the particular case where L is a column vector, i.e., when g
is a scalar derived function.

Corollary 1. In the particular case when L is a vector (L ∈ R
n), the absolute

condition number of g(A, b) = LTx(A, b) is given by

κg,F (A, b) =

(∥∥LT (ATA)−1
∥∥2

2

‖r‖2
2

α2
+
∥∥LTA†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

.

Proof. By replacing (ATA)−1 = V Σ−2V T and A† = V Σ−1UT in the expression

of K = (
∥∥LT (ATA)−1

∥∥2

2
‖r‖2

2 +
∥∥LTA†∥∥2

2
(‖x‖2

2 + 1))
1
2 we get

K2 =
∥∥LTV Σ−2V T

∥∥2

2

‖r‖2
2

α2
+
∥∥LTV Σ−1UT

∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)

=
∥∥LTV Σ−2

∥∥2

2

‖r‖2
2

α2
+
∥∥LTV Σ−1

∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)

=
∥∥Σ−2V TL

∥∥2

2

‖r‖2
2

α2
+
∥∥Σ−1V TL

∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)
.

By writing z = V TL, where z = (z1, . . . , zn)T ∈ R
n, we obtain

K2 =

n∑
i=1

z2
i

σ4
i

‖r‖2
2

α2
+

n∑
i=1

z2
i

σ2
i

(
‖x‖2

2

α2
+

1

β2

)

=
n∑

i=1

z2
i

σ2
i

(
σ−2
i ‖r‖2

2 + ‖x‖2
2

α2
+

1

β2

)

=

n∑
i=1

S2
iiz

2
i

=
∥∥SV TL

∥∥2

2
,

and Theorem 1 gives the result.

3. Sharp estimate of the partial condition number in Frobenius and
spectral norms. In many cases, obtaining a lower and/or an upper bound of
κg,F (A, b) is satisfactory when these bounds are tight enough and significantly cheaper
to compute than the exact formula. Moreover, many applications use condition num-
bers expressed in the spectral norm. In the following theorem, we give sharp bounds
for the partial condition numbers in the Frobenius and spectral norms.

Theorem 2. The absolute condition numbers of g(A, b) = LTx(A, b) (L ∈ R
n×k)

in the Frobenius and spectral norms can be bounded, respectively, as follows:

f(A, b)√
3

≤ κg,F (A, b) ≤ f(A, b),
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f(A, b)√
3

≤ κg,2(A, b) ≤
√

2f(A, b),

where

f(A, b) =

(∥∥LT (ATA)−1
∥∥2

2

‖r‖2
2

α2
+
∥∥LTA†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

.

Proof. Part 1. We start by establishing the lower bounds. Let w1 and w′
1

(resp., a1 and a′1) be the right (resp., the left) singular vectors corresponding to the
largest singular values of LT (ATA)−1 and LTA†, respectively. We use a particular
perturbation (ΔA,Δb) expressed as

(ΔA,Δb) =

(
r

α ‖r‖2

wT
1 + εw′

1

xT

α ‖x‖2

,−ε
w′

1

β

)
,

where ε = ±1.
By replacing this value of (ΔA,Δb) in (2.2) we get

g′(A, b).(ΔA,Δb) =
‖r‖2

α
LT (ATA)−1w1 +

ε

α ‖x‖2

LT (ATA)−1xw′
1
T r

− LTA†r
wT

1 x

α ‖r‖2

− ε ‖x‖2

α
LTA†w′

1 −
ε

β
LTA†w′

1.

Since r ∈ Im(A)⊥ we have A†r = 0. Moreover we have w′
1 ∈ Ker(LTA†)⊥ and

thus w′
1 ∈ Im(A†TL), which can be written w′

1 = A†TLδ for some δ ∈ R
k. Then

w′
1
T r = δTLTA†r = 0. It follows that

g′(A, b).(ΔA,Δb) =
‖r‖2

α
LT (ATA)−1w1 −

ε ‖x‖2

α
LTA†w′

1 −
ε

β
LTA†w′

1.

From LT (ATA)−1w1 =
∥∥LT (ATA)−1

∥∥
2
a1 and LTA†w′

1 =
∥∥LTA†∥∥

2
a′1, we obtain

g′(A, b).(ΔA,Δb) =
∥∥LT (ATA)−1

∥∥
2

‖r‖2

α
a1 − ε

(
‖x‖2

α
+

1

β

)∥∥LTA†∥∥
2
a′1.

Since a1 and a′1 are unit vectors, ‖g′(A, b).(ΔA,Δb)‖2 can be developed as

‖g′(A, b).(ΔA,Δb)‖2
2 =

∥∥LT (ATA)−1
∥∥2

2

‖r‖2
2

α2
+
∥∥LTA†∥∥2

2

(
‖x‖2

α
+

1

β

)2

− 2ε
∥∥LT (ATA)−1

∥∥
2

‖r‖2

α

(
‖x‖2

α
+

1

β

)∥∥LTA†∥∥
2
cos(a1, a

′
1).

By choosing ε = −sign(cos(a1, a
′
1)) the third term of the above expression becomes

positive. Furthermore we have (
‖x‖2

α + 1
β )2 ≥ ‖x‖2

2

α2 + 1
β2 . Then we obtain

‖g′(A, b).(ΔA,Δb)‖2 ≥
(∥∥LT (ATA)−1

∥∥2

2

‖r‖2
2

α2
+
∥∥LTA†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

,
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i.e.,

‖g′(A, b).(ΔA,Δb)‖2 ≥ f(A, b).

On the other hand, we have

‖ΔA‖2
F =

∥∥∥∥ r

α ‖r‖2

wT
1

∥∥∥∥2

F

+

∥∥∥∥w′
1

xT

α ‖x‖2

∥∥∥∥2

F

+ 2 ε trace

((
r

α ‖r‖2

wT
1

)T (
w′

1

xT

α ‖x‖2

))

and ∥∥∥∥w′
1

β

∥∥∥∥2

2

=
1

β2

with∥∥∥∥ r

α ‖r‖2

wT
1

∥∥∥∥2

F

=

∥∥∥∥w′
1

xT

α ‖x‖2

∥∥∥∥2

F

=
1

α2
, trace

((
r

α ‖r‖2

wT
1

)T (
w′

1

xT

α ‖x‖2

))
= 0.

Then ‖(ΔA,Δb)‖F =
√

3 and thus we have
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F
≥ f(A,b)√

3
for a par-

ticular value of (ΔA,Δb). Furthermore, from ‖(ΔA,Δb)‖2 ≤ ‖(ΔA,Δb)‖F we get
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖2
≥ f(A,b)√

3
(for the same particular value of (ΔA,Δb)). Then we

obtain κg,F (A, b) ≥ f(A,b)√
3

and κg,2(A, b) ≥ f(A,b)√
3

.

Part 2. Let us now establish the upper bound for κg,F (A, b) and κg,2(A, b).
If ΔA1 = AA†ΔA and ΔA2 = (I − AA†)ΔA, then it comes from (2.3) that

∀(ΔA,Δb) ∈ R
m×n × R

m

‖g′(A, b).(ΔA,Δb)‖2 ≤
∥∥LT (ATA)−1

∥∥
2
‖ΔA2‖2 ‖r‖2

+
∥∥LTA†∥∥

2
‖ΔA1‖2 ‖x‖2 +

∥∥LTA†∥∥
2
‖Δb‖2

= Y X,

where

Y =

(∥∥LT (ATA)−1
∥∥

2
‖r‖2

α
,

∥∥LTA†∥∥
2
‖x‖2

α
,

∥∥LTA†∥∥
2

β

)

and

X = (α ‖ΔA2‖2 , α ‖ΔA1‖2 , β ‖Δb‖2)
T .

Hence, from the Cauchy–Schwarz inequality we get

‖g′(A, b).(ΔA,Δb)‖2 ≤ ‖Y ‖2 ‖X‖2 ,(3.1)

with

‖X‖2
2 = α2 ‖ΔA1‖2

2 + α2 ‖ΔA2‖2
2 + β2 ‖Δb‖2

2 ≤ α2 ‖ΔA1‖2
F + α2 ‖ΔA2‖2

F + β2 ‖Δb‖2
2

and

‖Y ‖2 = f(A, b).
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Then, since ‖ΔA‖2
F = ‖ΔA1‖2

F + ‖ΔA2‖2
F , we have ‖X‖2 ≤ ‖(ΔA,Δb)‖F and (3.1)

yields

‖g′(A, b).(ΔA,Δb)‖2 ≤ ‖(ΔA,Δb)‖F ‖Y ‖2 ,

which implies that

κg,F (A, b) ≤ f(A, b).

An upper bound of κg,2(A, b) can be computed in a similar manner: we get from (2.2)
that

‖g′(A, b).(ΔA,Δb)‖2 ≤ (
∥∥LT (ATA)−1

∥∥
2
‖r‖2 +

∥∥LTA†∥∥
2
‖x‖2) ‖ΔA‖2

+
∥∥LTA†∥∥

2
‖Δb‖2

= Y ′X ′,

where

Y ′ =

(∥∥LT (ATA)−1
∥∥

2
‖r‖2 +

∥∥LTA†∥∥
2
‖x‖2

α
,

∥∥LTA†∥∥
2

β

)
and

X ′ = (α ‖ΔA‖2 , β ‖Δb‖2)
T .

Since ‖X ′‖2 = ‖(ΔA,Δb)‖2 we have κg,2(A, b) ≤ ‖Y ′‖2. Then using the inequality(∥∥LT (ATA)−1
∥∥

2
‖r‖2 +

∥∥LTA†∥∥
2
‖x‖2

)2 ≤ 2
(∥∥LT (ATA)−1

∥∥2

2
‖r‖2

2 +
∥∥LTA†∥∥2

2
‖x‖2

2

)
we get ‖Y ′‖2 ≤

√
2 ‖Y ‖2 and finally obtain κg,2(A, b) ≤

√
2f(A, b), which concludes

the proof.
Theorem 2 shows that f(A, b) can be considered as a very sharp estimate of the

partial condition number expressed either in Frobenius or spectral norm. Indeed, it
lies within a factor

√
3 of κg,F (A, b) or κg,2(A, b).

Another observation is that we have

1√
6
≤ κg,F (A, b)

κg,2(A, b)
≤

√
3.

Thus even if the Frobenius and spectral norms of a given matrix can be very differ-
ent (for X ∈ R

m×n, we have ‖X‖2 ≤ ‖X‖F ≤
√
n ‖X‖2), the condition numbers

expressed in both norms are of the same order. The result is that a good estimate of
κg,F (A, b) is also a good estimate of κg,2(A, b).

Moreover (2.6) shows that if the R factor of A is available, f(A, b) can be com-
puted by solving two n × n triangular systems with k right-hand sides and thus the
computational cost is 2kn2.

Remark 3. We can check in the following example that κg,F (A, b) is not equal to
f(A, b). Let us consider

A =

⎛⎝ 2 0
0 1
0 0

⎞⎠ , L =

(
3 0
0 1

)
, and b =

⎛⎝ 2/
√

2

1/
√

2
1

⎞⎠ .
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We have

x = (1/
√

2, 1/
√

2)T and ‖x‖2 = ‖r‖2 = 1,

and we get

κg,F (A, b) =

√
45

4
< f(A, b) =

√
13

2
.

Remark 4. Using the definition of the condition number and of the product norms,
we can obtain tight estimates for the partial condition number for perturbations of
A only (resp., b only) by taking α > 0 and β = +∞ (resp., β > 0 and α = +∞)
in Theorem 2. In particular, when we perturb only b we have, with the notation of
section 2.1,

f(A, b) =

∥∥LTA†∥∥
2

β
=

‖T‖2

β
= κg,F (A, b).

Moreover, when r = 0 we have

f(A, b) =
∥∥LTA†∥∥

2

(
‖x‖2

2

α2
+

1

β2

) 1
2

= ‖T‖2

(
‖x‖2

2

α2
+

1

β2

) 1
2

.

Remark 5. In the special case where L = I, we have

f(A, b) =

(∥∥(ATA)−1
∥∥2

2

‖r‖2
2

α2
+
∥∥A†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

.

Since
∥∥(ATA)−1

∥∥
2

=
∥∥A†∥∥2

2
we obtain that

f(A, b) =
∥∥A†∥∥

2

√
‖A†‖2

2 ‖r‖
2
2 + ‖x‖2

2

α2
+

1

β2
.

In that case κg,F (A, b) is exactly equal to f(A, b) due to [8].
Regarding the condition number in the spectral norm, since we have

‖(ΔA,Δb)‖2 ≤ ‖(ΔA,Δb)‖F we get κg,2(A, b) ≥ f(A, b). This lower bound is sim-
ilar to that obtained in [6] (where only A is perturbed). As mentioned in [6], an

upper bound of κg,2(A) is κu
g,2(A) =

∥∥A†∥∥2

2
‖r‖2 +

∥∥A†∥∥
2
‖x‖2. If we take α = 1 and

β = +∞, we notice that f(A, b) ≤ κu
g,2(A) ≤

√
2f(A, b), showing thus that our upper

bound and κu
g,2(A) are essentially the same.

Remark 6. Generalization to other product norms:
Other product norms may have been used for the data space R

m×n × R
m.

If we consider a norm ν on R
2 such that c1ν(x, y) ≤

√
x2 + y2 ≤ c2ν(x, y), then we

can define a product norm ‖(A, b)‖F,ν = ν(α ‖ΔA‖F , β ‖Δb‖2). For instance, in [9],
ν corresponds to ‖.‖∞. Note that the product norm ‖(., .)‖F used throughout this
paper corresponds to ν = ‖.‖2 and that with the above notation we have ‖(A, b)‖F,2 =
‖(A, b)‖F . Then the following inequality holds:

c1‖(ΔA,Δb)‖F,ν ≤ ‖(ΔA,Δb)‖F ≤ c2‖(ΔA,Δb)‖F,ν .
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If we denote κg,F,ν(A, b) = max(ΔA,Δb)
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F,ν
, we obtain

κg,F,ν(A, b)

c2
≤ κg,F (A, b) ≤ κg,F,ν(A, b)

c1
.

Using the bounds for κg,F given in Theorem 2 we can obtain tight bounds for the
partial condition number expressed using the product norm based on ν and when the
perturbations on matrices are measured with the Frobenius norm:

c1√
3
f(A, b) ≤ κg,F,ν(A, b) ≤ c2f(A, b).

Similarly, if the perturbations on matrices are measured with the spectral norm, we
get

c1√
3
f(A, b) ≤ κg,F,ν(A, b) ≤ c2

√
2f(A, b).

The bounds obtained for three possible product norms (ν = ‖.‖∞, ν = ‖.‖2, and
ν = ‖.‖1) are given in Table 3.1 when using the Frobenius norm for matrices and in
Table 3.2 when using the spectral norm for matrices.

Table 3.1

Bounds for partial condition number (Frobenius norm on matrices).

Product norm ν, c1, c2 Lower bound Upper bound

(factor of f(A, b)) (factor of f(A, b))

max{α ‖ΔA‖F , β ‖Δb‖2} ‖.‖∞, 1√
2
, 1 1√

6
1√

α2 ‖ΔA‖2
F + β2 ‖Δb‖2

2 ‖.‖2, 1, 1 1√
3

1

α ‖ΔA‖F + β ‖Δb‖2 ‖.‖1, 1,
√

2 1√
3

√
2

Table 3.2

Bounds for partial condition number (spectral norm on matrices).

Product norm ν, c1, c2 Lower bound Upper bound

(factor of f(A, b)) (factor of f(A, b))

max{α ‖ΔA‖2 , β ‖Δb‖2} ‖.‖∞, 1√
2
, 1 1√

6

√
2√

α2 ‖ΔA‖2
2 + β2 ‖Δb‖2

2 ‖.‖2, 1, 1 1√
3

√
2

α ‖ΔA‖2 + β ‖Δb‖2 ‖.‖1, 1,
√

2 1√
3

2

4. Statistical estimation of the partial condition number. In this section
we compute a statistical estimate of the partial condition number. We have seen
in section 3 that using the Frobenius or the spectral norm for the matrices gives
condition numbers that are of the same order of magnitude. For the sake of simplicity,
we compute here a statistical estimate of κg,F (A, b).

Let (z1, z2, . . . , zq) be an orthonormal basis for a subspace of dimension q (q ≤ k)
that has been randomly and uniformly selected from the space of all q-dimensional
subspaces of R

k (this can be done by choosing q random vectors and then orthogo-
nalizing). Let us denote gi(A, b) = (Lzi)

Tx(A, b).
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Since Lzi ∈ R
n, the absolute condition number of gi can be computed via the

exact formula given in Corollary 1, i.e.,

κgi,F (A, b) =

(∥∥(Lzi)
T (ATA)−1

∥∥2

2

‖r‖2
2

α2
+
∥∥(Lzi)

TA†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

.(4.1)

We define the random variable φ(q) by

φ(q) =

(
k

q

q∑
i=1

κgi,F (A, b)2

) 1
2

.

Let the operator E(.) denote the expected value. The following proposition shows that
the root mean square of φ(q), defined by R(φ(q)) =

√
E(φ(q)2), can be considered as

an estimate for the condition number of g(A, b) = LTx(A, b).
Proposition 1. The absolute condition number can be bounded as follows:

R(φ(q))√
k

≤ κg,F (A, b) ≤ R(φ(q)).(4.2)

Proof. Let vec be the operator that stacks the columns of a matrix into a long
vector and let M be the k × m(n + 1) matrix such that vec(g′(A, b).(ΔA,Δb)) =

M
( vec(αΔA)

vec(βΔb)

)
. Note that M depends on A, b, L and not on the zi.

Then we have

κg,F (A, b) = max
(ΔA,Δb)

‖g′(A, b).(ΔA,Δb)‖2

‖(ΔA,Δb)‖F
= max

(ΔA,Δb)

‖vec(g′(A, b).(ΔA,Δb))‖2∥∥∥∥( vec(αΔA)
vec(βΔb)

)∥∥∥∥
2

= max
z∈Rm(n+1),z �=0

‖M z‖2

‖z‖2

= ‖M‖2 =
∥∥MT

∥∥
2
.

Let Z = [z1, z2, . . . , zq] be the k × q random matrix with orthonormal columns zi.

From [10] it follows that k
q

∥∥MTZ
∥∥2

F
is an unbiased estimator of the Frobenius norm

of the m(n + 1) × k matrix MT , i.e., we have E(kq
∥∥MTZ

∥∥2

F
) =

∥∥MT
∥∥2

F
.

From ∥∥MTZ
∥∥2

F
=

∥∥ZTM
∥∥2

F

=

∥∥∥∥∥∥∥
⎛⎜⎝ zT1 M

...
zTq M

⎞⎟⎠
∥∥∥∥∥∥∥

2

F

we get, since zTi M is a row vector,

∥∥MTZ
∥∥2

F
=

q∑
i=1

∥∥zTi M∥∥2

2
.

We notice that for every vector u ∈ R
k, if we consider the function gu(A, b) =

uT g(A, b), then we have
∥∥uTM

∥∥
F

= ‖g′u(A, b)‖ = κgu,F (A, b) and therefore∥∥zTi M∥∥
F

= κgi,F (A, b).
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Eventually we obtain

∥∥MT
∥∥2

F
= E

(
k

q

q∑
i=1

κgi,F (A, b)2

)
= E(φ(q)2).

Moreover, considering that MT ∈ R
m(n+1)×k and using the well-known inequality∥∥MT

∥∥
F√

k
≤

∥∥MT
∥∥

2
≤

∥∥MT
∥∥
F
,

we get the result (4.2). Then we will consider φ(q)
‖(A,b)‖F

‖LT x̃‖2
as an estimator of

κ
(rel)
g,F (A, b).

The root mean square of φ(q) is an upper bound of κg(A, b), and estimates

κg,F (A, b) within a factor
√
k. Proposition 1 involves the computation of the con-

dition number of each gi(A, b), i = 1, . . . , q. From Remark 2, it follows that the
computational cost of each κgi,F (A, b) is 2n2 (if the R factor of the QR decomposi-
tion of A is available). Hence, for a given sample of vectors zi, i = 1, . . . , q, computing
φ(q) requires about 2qn2 flops.

However, Proposition 1 is mostly of theoretical interest, since it relies on the
computation of the root mean square of a random variable, without providing a
practical method to obtain it. In the next proposition, the use of the small sample
estimate theory developed by Gudmundsson, Kenney, and Laub [10] gives a first
answer to this question by showing that the evaluation of φ(q) using only one sample
of q vectors z1, z2, . . . , zq in the unit sphere may provide an acceptable estimate.

Proposition 2. Using conjecture [10, p. 781], we have the following result: For
any α > 10,

Pr

(
φ(q)

α
√
k
≤ κg,F (A, b) ≤ αφ(q)

)
≥ 1 − α−q.

This probability approaches 1 very fast as q increases. For α = 11 and q = 3 the
probability for φ(q) to estimate κg,F (A, b) within a factor 11

√
k is 99.9%.

Proof. We define as in the proof of Proposition 1 the matrix M as the matrix
related to the vec operation representing the linear operator g′(A, b). From [10, eq.
(4), p. 781 and eq. (9), p. 783] we get

Pr

(∥∥MT
∥∥
F

α
≤ φ(q) ≤ α

∥∥MT
∥∥
F

)
≥ 1 − α−q.(4.3)

We have seen in the proof of Proposition 1 that κg,F (A, b) =
∥∥MT

∥∥
2
. Then we have

κg,F (A, b) ≤
∥∥MT

∥∥
F
≤ κg,F (A, b)

√
k.

It follows that, for the random variable φ(q), we have

Pr

(
κg,F (A, b)

α
≤ φ(q) ≤ ακg,F (A, b)

√
k

)
≥ Pr

(∥∥MT
∥∥
F

α
≤ φ(q) ≤ α

∥∥MT
∥∥
F

)
.

Then we obtain the result from

Pr

(
κg,F (A, b)

α
≤ φ(q) ≤ ακg,F (A, b)

√
k

)
= Pr

(
φ(q)

α
√
k
≤ κg,F (A, b) ≤ αφ(q)

)
.
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We see from this proposition that it may not be necessary to estimate the root
mean square of φ(q) using sophisticated algorithms. Indeed only one sample of φ(q)
obtained for q = 3 provides an estimate of κg,F (A, b) within a factor α

√
k.

Remark 7. If k = 1, then Z = 1 and the problem is reduced to computing
κg1(A, b). In this case, φ(1) is exactly the partial condition number of LTx(A, b).

Remark 8. Concerning the computation of the statistical estimate in the presence
of roundoff errors, the numerical reliability of the statistical estimate relies on an
accurate computation of the κgi,F (A, b) for a given zi. Let A be a 17×13 Vandermonde
matrix, b a random vector, and L ∈ R

n the right singular vector vn.
Using the Mathematica software that computes in exact arithmetic, we obtained

κ
(rel)
g,F (A, b) ≈ 5 · 108. If the triangular factor R form ATA = RTR is obtained by the

QR decomposition of A, we get κ
(rel)
g,F (A, b) ≈ 5 · 108. If R is computed via a classical

Cholesky factorization, we get κg,F (A, b)(rel) ≈ 1010.
Corollary 1 and Remark 2 show that the computation of κg,F (A, b)(rel) involves

linear systems of the type ATAx = d, which differs from the usual normal equa-
tion for least squares in their right-hand side. Our observation that for this kind of
ill-conditioned systems, a QR factorization is more accurate than a Cholesky factor-
ization is in agreement with [5].

5. Numerical experiments. All experiments were performed in MATLAB 6.5
using a machine precision of 2.22 · 10−16.

5.1. Examples. For the examples of section 1, we compute the partial condition
number using the formula given in Theorem 1.

In the first example we have

A =

⎛⎜⎜⎝
1 1 ε2

ε 0 ε2

0 ε ε2

ε2 ε2 2

⎞⎟⎟⎠ ,

and we assume that only A is perturbed. If we consider the values for L that are( 1 0
0 1
0 0

)
and L = (0, 0, 1)T , then we obtain partial condition numbers κ

(rel)
g,F (A) that are,

respectively, 1024 and 1.22, as expected since there is 50% relative error on x1 and x2

and there is no error on x3.
In the second example where A is the 10 × 4 Vandermonde matrix defined by

Aij = 1
(10+i)j−1 and only b is perturbed, the partial condition numbers κ

(rel)
g,F (b) with

respect to each component x1, x2, x3, x4 are, respectively, 4.5·102, 2·104, 3·105, 1.4·106,
which is consistent with the error variation given in section 1 for each component.

5.2. Average behavior of the statistical estimate. We compare here the
statistical estimate described in the previous section with the partial condition number
obtained via the exact formula given in Theorem 1. We suppose that only A is

perturbed and then the partial condition number can be expressed as κ
(rel)
g,F (A). We

use the method described in [16] in order to construct test problems [A, x, r, b] =
P (m,n, nr, l) with

A = Y

(
D
0

)
ZT ∈ R

m×n, Y = I − 2yyT , Z = I − 2zzT ,

where y ∈ R
m and z ∈ R

n are random unit vectors and where D = n−l diag(nl, (n−
1)l, . . . , 1).



A PARTIAL CONDITION NUMBER FOR LLSP 431

x = (1, 22, . . . , n2)T is given and r = Y
(

0
c

)
∈ R

m is computed with c ∈ R
m−n

random vector of norm nr. The right-hand side is b = Y
(
DZx
c

)
. By construction, the

condition number of A and D is nl.
In our experiments, we consider the matrices

A =

(
A1 E′

E A2

)
and L =

(
I
0

)
,

where A1 ∈ R
m1×n1 , A2 ∈ R

m2×n2 , L ∈ R
n×n1 , m1 + m2 = m, n1 + n2 = n, and E

and E′ contain the same element ep which defines the coupling between A1 and A2.
The matrices A1 and A2 are randomly generated using, respectively, P (m1, n1, nr1 , l1)
and P (m2, n2, nr2 , l2).

For each sample matrix, we compute in MATLAB

1. the partial condition number κ
(rel)
g,F (A) using the exact formula given in The-

orem 1 and based on the singular value decomposition of A;
2. the statistical estimate φ(3) using three random orthogonal vectors and com-

puting each κgi,F (A, b), i = 1, 3, with the R factor of the QR decomposition
of A.

These data are then compared by computing the ratio

γ =
φ(3)

κ
(rel)
g,F (A)

.

Table 5.1 contains the mean γ and the standard deviation s of γ obtained on 1000
random matrices with m1 = 12, n1 = 10,m2 = 17, n2 = 13 by varying the condition
numbers n1

l1 and n2
l2 of, respectively, A1 and A2 and the coupling coefficient ep.

The residual norms are set to nr1 = nr2 = 1. In all cases, γ is close to 1 and s is

about 0.3. The statistical estimate φ(3) lies within a factor 1.22 of κ
(rel)
g,F (A), which

is very accurate in condition number estimation. We notice that in two cases φ(3) is
lower than 1. This is possible because Proposition 1 shows that E(φ(3)2) is an upper
bound of κg,F (A)2 but not necessarily φ(3)2.

Table 5.1

Ratio between statistical and exact condition numbers of LT x.

Condition ep = 10−5 ep = 1 ep = 105

l1 l2 γ s γ s γ s

1 1 1.22 2.28 · 10−1 1.15 2.99 · 10−1 1.07 3.60 · 10−1

1 8 1.02 3.19 · 10−1 1.22 3.05 · 10−1 1.21 3.35 · 10−1

8 1 9 · 10−1 3 · 10−1 1.13 3 · 10−1 1.06 3.45 · 10−1

8 8 9.23 · 10−1 2.89 · 10−1 1.22 2.95 · 10−1 1.18 3.33 · 10−1

6. Estimates versus exact formula. We assume that the R factor of the QR
decomposition of A is known. We gather in Table 6.1 the results obtained in this
paper in terms of accuracy and flop counts for the estimation of the partial condition
number for the LLSP. Table 6.2 gives the estimates and flop counts in the particular
situation where

m = 1500, n = 1000, k = 50,

A1 =

(
2 0
0 1

)
, L1 =

(
3 0
0 1

)
,
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Table 6.1

Comparison between exact formula and estimates for κg,F (A, b).

κg,F (A, b) Flops Accuracy

Exact formula 12n3 Exact

n � m

Sharp estimate f(A, b) 2kn2 f(A,b)√
3

≤ κg,F (A, b) ≤ f(A, b)

k � n

Stat. estimate φ(q) 2qn2 φ(q)

α
√
k
≤ κg,F (A, b) ≤ αφ(q)

q � k Pr ≥ 1 − α−q for α > 10

Table 6.2

Flops and accuracy: exact formula versus estimates.

κ
(rel)
g,F (A, b) f(A, b)

‖(A,b)‖F
‖LT x̃‖2

φ(q)
‖(A,b)‖F
‖LT x̃‖2

2.09 · 102 2.18 · 102 11.44 · 102

12 Gflops 100 Mflops 6 Mflops

A =

⎛⎝ A1 0
0 In−2

0 0

⎞⎠ and b =
1√
2
(2, 1, . . . , 1)T , L =

⎛⎝ L1 0
0 Ik−2

0 0

⎞⎠ .

We see here that the statistical estimates may provide information on the condition
number using a very small amount of floating point operations compared with the
other two methods.

7. Conclusion. We have shown the relevance of the partial condition number
for test cases from parameter estimation. This partial condition number evaluates
the sensitivity of LTx, where x is the solution of an LLSP when A and/or b are
perturbed. It can be computed via a closed formula, a sharp estimate, or a statistical
estimate. The choice will depend on the size of the LLSP and on the needed accuracy.
The closed formula requires O(n3) flops and is affordable for small problems only.
The sharp estimate and the statistical estimate will be preferred for larger problems
especially if k � n since their computational cost is in O(n2).

REFERENCES
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