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A Partial-Current-Steering Biphasic Stimulation
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Abstract—This paper describes a novel partial-current-steering
stimulation circuit for implantable vestibular prostheses. The drive
hardware momentarily delivers a charge-balanced asymmetric
stimulus to a dummy load before steering towards the stimulation
electrodes. In this fashion, power is conserved while still gaining
from the benefits of current steering. The circuit has been designed
to be digitally programmable as part of an implantable vestibular
prosthesis. The hardware has been implemented in AMS 0.35 m
2P4M CMOS technology.

Index Terms—Artificial electrical stimulation, biphasic, bipolar,
continuous interleave sampling, current-steering, neural stimula-
tion, neuroprosthetic, vestibular prosthesis.

I. INTRODUCTION

A
RTIFICIAL electrical stimulation, a methodology be-

coming increasingly accepted in the medical community,

is providing engineers and medical professionals a reliable

method to interface to neural tissue. Neural prostheses are

already benefitting those with profound hearing loss, cardiac

arrythmia, loss of muscular function, hand grasp, foot drop,

bladder control, and soon those with loss of vision. A key com-

ponent in such systems is the neural interface and stimulation

drive hardware. Reliability and robustness are paramount, and

ensuring good efficiency and minimizing neural fatigue ensures

long-lasting rehabilitation.

Restoring the sensation of inertia in individuals with balance-

related impairments is achievable through development of an ar-

tificial vestibular prosthesis, based on the cochlear implant par-

adigm. The inner ear’s vestibular system provides cues about

self-motion and help stabilize vision during movement. Damage

to this system can result in dizziness, imbalance, blurred vision,

and instability in locomotion, a leading cause of death in the el-

derly. Restoration of balance can, therefore, be achieved by by-

passing a dysfunctional element in the vestibular pathway using

artificial stimulation. A vestibular prosthesis would incorporate
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miniature (MEMS-based) inertia sensors, suitable sensor inter-

facing circuits, a semicircular canal processor and stimulation

driver. Research in developing artificial vestibular prostheses

has recently gained much momentum, with a number of groups

[1]–[3] implementing discrete electronics for inertia sensing,

processing, and neural stimulation.

This work aims to implement an integrated hardware solu-

tion towards a single chip semicircular canal stimulator based on

techniques used within cochlear prosthetics. This paper presents

a novel CMOS-based integrated circuit for artificial neural stim-

ulation as part of an implantable vestibular prosthesis. The paper

is organized as follows—Section II provides some theoretical

background regarding stimulation parameters, while Section III

outlines the system architecture. Section IV describes the imple-

mentation at circuit level and Section V presents the measured

results. Finally, Section VI summarizes and discusses the var-

ious features of the presented work.

II. STIMULATION THEORY

Typically, in electrical neural stimulation, a minimum of two

electrodes are used to produce a nerve activation current. The

pair can be used in a monopolar (shared reference electrode)

or a bipolar (individual electrode pairs) configuration [4].

For applications requiring greater activation selectivity, the

bipolar scheme is preferred because each pair generates a more

localized field (compared to monopolar) [5], [6]. However,

bipolar stimulation schemes typically consume higher power

due to increased shunting currents. Stimulus pulse parameters

include frequency, amplitude and duration. The former affects

the smoothness of perceived sensation and needs to be adjusted

to prevent neural fatigue. The latter two parameters affect the

strength of the neural response and alter the charge injected.

Another issue to consider is the stimulus drive mechanism,

i.e., by what means the stimulus is delivered to the target

site. The three methods are: voltage-mode, current-mode, and

charge-mode [7]. Although different systems may be based on

different mechanisms, we consider this to be an implementation

issue; as the underlying goal is to deliver (and then remove) a

well-defined charge packet.

As established by [8], in order to avoid harmful electrochem-

ical processes, the stimulus waveform has to be biphasic. In

such a waveform the first pulse causes activation, followed by a

second one with opposite polarity to balance the charge deliv-

ered by the first [9]. However, it has been reported [10] that two

opposite pulses back to back could act to prevent the generation

of an action potential, or could require more energy to produce

an action potential. To overcome this, a short time delay needs to

be introduced between the pulses. This delay allows the action
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potential to propagate away from the stimulation site before the

electrode recovers the injected charge. Additionally, using an

extended anodic pulse with reduced amplitude can compensate

for charge distribution and thus reduce fatigue. The various as-

pects of the waveform profile are discussed in [11].

III. SYSTEM OVERVIEW

This system implements a 3-channel biphasic current-mode

stimulation drive with digitally programmable signal condi-

tioning for a fully-implantable vestibular prosthesis [12] using

a bipolar electrode configuration. Due to the close proximity

between adjacent stimulation sites, the system incorporates

a continuous interleave sampling (CIS) strategy to minimize

crosstalk. This strategy involves sequencing the stimulation

waveforms between the different channels such that only one is

active at any given time. Furthermore, we have chosen to imple-

ment an asymmetric (but charge-balanced biphasic) waveform

profile, to match natural neurophysiological response, thus

reducing fatigue of neural tissue. Although in general, CIS

stimulation strategy utilizes symmetrical stimulation pulses,

with same duration of positive and negative pulses, we have

chosen to utilize an asymmetrical stimulation pulses with 1:4

ratio. This implementation is limited in that fewer channels

can be utilized for interleaved stimulation, however, in the case

of the vestibular prosthesis, the maximum number of required

channels is limited to just 5, i.e. at the nerve endings of the

three semicircular canals and two otolith organs.

It should be mentioned that although extensive multipurpose

stimulators [13]–[21] have been developed, we have elected to

implement a simpler variant as the vestibular implant requires

to incorporate additional hardware (including MEMS and elec-

tronics) in as small as possible space. For the purposes of this ap-

plication, the telemetry link is not operated continually to stream

the stimulation data onto the device (self-motion information is

generated on chip) but rather in a one-off cycle simply to pro-

gramme the stimulation channel characteristics.

The chosen charge-delivery methodology is current-mode, as

this is the least effected by stimulation target impedance varia-

tion. Additionally, the system includes a short-duration current

steering phase, to avoid charge-buildup, and therefore glitching

at turn-on and turn-off, while reducing power consumption com-

pared to traditional current-steering systems [22]. A study [23]

recently reported that using current steering techniques can ad-

ditionally be considered for increased spectral resolution. Fi-

nally, as an added precaution, once each CIS cycle, all the stim-

ulation electrodes are grounded, such that any residual charge

that may have accumulated (due to device mismatch, electrode

variation, etc.) is removed, although this is expected to be at

least three orders of magnitude lower than the stimulus.

The target stimulation profile and current-steering method-

ology used is illustrated in Fig. 1. For one clock cycle before

and after each stimulation phase, the current is steered towards

a dummy load, such to achieve a smooth transition, thus min-

imizing charge buildup and spiking. Additionally, the current

magnitude is scaled with ratio 4:1 between cathodic and an-

odic pulses. Conversely, the pulse lengths are scaled 1:4, respec-

tively, to maintain charge balance. The corresponding current

Fig. 1. Stimulation profile (top) with annotated current-path for corresponding
phases.

paths flowing through the drive switches are also shown (cir-

cuit details are given later). Another feature is that there exists

a short pause between cathodic and anodic pulses.

IV. CIRCUIT IMPLEMENTATION

The top-level system schematic is shown in Fig. 2. This shows

the 3-channel stimulation drive incorporating a CIS strategy

[24], based on a modular design architecture, similar to [25].

The implementation and purpose of the various sub-blocks will

be discussed in the following subsections.

A. Stimulus Conditioning Circuit

The stimulation current levels required for a patient to just

about perceive a sensation (stimulation threshold) varies quite

significantly from patient to patient or even from electrode site

to electrode site within the same end-organ, in our case the

vestibule. This greatly depends on the number of surviving neu-

rons and the proximity of the electrodes to the nerves. Similarly,

the maximum comfortable stimulation level also has a large

variability. However, in all cases, the dynamic range between

the minimum threshold and the maximum comfortable level is

quite low, for example, in the cochlear ranging typically from

6 to 20 dB. Hence, good fitting is important if the most is to be

made of the limited dynamic range of the patient. Consequently,

for each stimulation channel, digital settings have been included

for programmability [19], [25], [26] of: 1) offset (3-bit); 2) gain

(4-bit); and 3) threshold (3-bit). These are intended to: 1) re-

move any static (operating point) offset caused by process vari-

ation and/or device mismatch in preceding hardware; 2) amplify

the input stimulus such that the dynamic range is maximized for
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Fig. 2. Top level circuit schematic for the 3-channel electrical stimulation circuit. The modular scheme allows for additional channels to be easily incorporated
within the CIS strategy.

Fig. 3. Current-mode mirror network to condition the stimulation current. Programmability includes 3-bit offset compensation (for tuning out mismatch-related
offset), 4-bit gain control and 3-bit stimulus threshold (for fitting patients threshold of sensation). Additionally, two input multiplexers are required to further scale
(�4) the threshold and gain during the cathodic phase to produce a correctly scaled asymmetric waveform. This is implemented for each stimulation channel. All
devices shown are high-V (thick oxide).

a particular channel/patient; and 3) provide the baseline stimula-

tion to match the onset of sensation of the patient. The fitting cir-

cuits consist of digitally controlled variable-width current mir-

rors, as shown in Fig. 3. The current mirror network produces a

stimulation current given by

(1)

where and are the cathodic and anodic current mag-

nitudes, is the input current, and are the threshold

and offset bias currents (corresponding to 1 LSB) and , ,

and are the threshold (0–7), offset (0–7), and gain (0–15)

discrete (digital) multipliers. Additionally, during the cathodic

phase, both the threshold and gain inputs (digital) are shifted

2-bits to the left, thus scaling the currents .

For a stimulus (biphasic pulse) period of 32 clock cycles, the

charge injected (i.e. for 5 clock cycles at 4 amplitude) and

removed (i.e. for 20 clock cycles at 1 amplitude) during each

stimulation phase is given by

(2)

where is the stimulus charge and is the clock frequency.

Cycling this stimulus at the CIS refresh rate, gives the fol-

lowing net charge transfer rate:

(3)

where is the number of CIS stimulation channels and the

1 term is to include the SHORT phase.

B. Patient Data Loading Circuit

In order to implement a feasible totally-implantable pros-

thesis, the requirement for digitally programmability is

paramount. One challenge in achieving such functionality is

the scheme used for data transmission and recovery. Typically,

medical implants use inductive schemes whereby patient set-

tings data is encoded onto a carrier signal that is inductively

coupled through the skin, to the subcutaneously implanted de-

vice where the data can be recovered [27], [28]. Implementing

robust hardware to extract patient settings data from a contin-

uous bitstream requires: 1) a temporary settings (shift) register

and method to precisely align the incoming bitstream to patient

settings register; 2) a method to reliably initiate a parallel

load from serial input to patient settings register; and 3) data
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Fig. 4. State machine for loading and storing patient settings using a single bitstream (to be recovered from inductive telemetry).

redundancy and error correction. The design implemented in

this system is shown in Fig. 4 (adopted from [25]). This work

however, does not include hardware for data redundancy and

error correction. It is envisaged that this can be implemented

within the data recovery circuits using standard coding tech-

niques, eg. hamming coding, parity check-bits, etc.

The hardware for loading the patient tuning data can be

divided into two sections; the registers that are specific to

each channel, and the state machine for determining when a

parallel-register-load occurs. This is illustrated in Fig. 4. The

input serial data stream passes through a serial shift register

into the state machine to check for the start sequence. Once

the start sequence is detected, this signifies the data within

the serial registers are perfectly aligned with the patient set-

tings register and a parallel register load can occur. These

input and patient registers are repeated (and cascaded) for

each channel, i.e. within a 3-channel system, each register

would be of

. The state machine, ap-

pended to the end of the combined shift-register interrogates the

incoming bitstream to match a multi-bit START-SEQUENCE

chosen to be: 111010101011. Finally, a ripple counter incre-

ments for every “0” received, and reset whenever a “1” is

received, thus checking for the occurrence of 64 successive 0’s.

The LOAD-DATA signal is therefore asserted when both these

conditions are met, i.e. the patient settings bitstream starts with

64 0’s followed by the START-SEQUENCE. The purpose of

the 64 0’s is to flush the serial shift register prior to loading the

patient settings, thus to ensure a partial data set cannot trigger

a parallel register load.

Fig. 5. Circuit schematic for H-bridge with current steering (to/from dummy
load) during turn-on/turn-off transitions. Dummy load (R1) is chosen to match
that of the stimulation electrodes and neural tissue (� 10 k
).

C. CIS Biphasic Waveform Generation Circuit

The CIS generator is the last of the signal conditioning

blocks that directly interfaces with the electrodes, via blocking

capacitors. The CIS generator converts the output of the patient

dynamic range mapping circuits into non-overlapping biphasic

pulses. A top-level block diagram of the CIS generator has

been shown in Fig. 2. As there are three channels in the il-

lustrated system, there are three output driver cells making up

the CIS generator. Each output driver cell includes a biphasic

waveform generation circuit, each of which includes a serial

shift register such that the stimulation control propagates down

the cascade. At the end of the chain (i.e. after the last channel)
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an extra flip-flop has been added so that it can provide an

extra pulse that shorts all electrodes to ground, as to remove

any residual charge. This is required to make absolutely sure

that no DC charge accumulates on the blocking capacitors, re-

ducing voltage compliance. Alternatively, techniques are being

developed [29]–[32] to avoid requiring blocking capacitors,

for example, using charge metering [20], [30], feedback DAC

calibration [31] and voltage monitoring [21], [32].

The biphasic waveform (shown previously in Fig. 1) is gen-

erated using a state machine; requiring a clock 32 higher than

the CIS clock. The state machine is based on a 32-bit serial shift

register, passing a single-bit token to trigger the various events,

using RS-latches specifically arranged to capture the individual

phases. For example, the anodic phase has been predefined to

start on clock cycle 12 and end after clock cycle 31. All the bits

from within this serial shift register are NOR’ed and the result

is fed round the loop to the input. This technique guarantees ro-

bustness as any extra active bits in the register are flushed out

after the first cycle. Beyond that the circuit can only have one

active flip-flop as it will only generate a new token once there

are none in the register.

These digital control signals generated above (after being

level-shifted to stimulation supply voltage), feed the current

control switches to form the H-bridge, shown in Fig. 5, the

functioning of which has been previously illustrated in Fig. 1.

In this, Q1 and Q7 drive the cathodic pulse, devices Q3 and Q5

drive the anodic pulse, devices Q2 and Q6 drive the dummy

load (steering), and devices Q4 and Q8 are used to ground the

stimulation electrodes, during the short/reset phase.

D. Integrated Circuit

The prototype chip was fabricated in AMS 0.35 m 2P4M

CMOS technology with a die size of 1.5 mm 0.9 mm. A mi-

crophotograph and floorplan of the complete chip is shown in

Fig. 6.

The padring has been organized into two sections, a 3.3-V

digital section for telemetry inputs (5 bondpads at top) and a

10-V analog section (using thick oxide devices) for the cur-

rent-mode inputs and stimulation outputs (15 bondpads along

sides and bottom). Although the power saved in having a lower

voltage logic supply is negligible (together with the added com-

plication of level shifting), this was chosen such that when the

battery supply is low, all the other supplies are cut off to prevent

complete discharge. Furthermore, in the event that the registry

power is completely cut off, on power up the system resets the

registry’s contents to ensure that the system comes up in a safe

state, i.e., all outputs are set to zero.

V. MEASURED RESULTS

The circuit was biased using off-chip current sources

(Keithley models 2602 and 6221) on a custom PCB test plat-

form. Bias currents are set to A and

nA, allowing for an input current range

of 0–10 A to provide the output within the desired range.

Fig. 6. Chip microphotograph and floorplan for the 3-channel stimulation
circuit.

Fig. 7. Measured response of the LOAD-DATA signal on an input serial data
stream. In the example, the patient settings data on all channels have been se-
lected to have maximum gain and threshold and zero offset correction.

A. Loading Patient Settings

The patient settings, i.e. serial bitstream and clock is gener-

ated (in the format previously described in Section IV-B) using

an off-the-shelf microcontroller. This confirms the correct oper-

ation of the state machine, illustrated in Fig. 7, where it can be

seen that the circuit issues a LOAD-DATA signal after complete

transmission of the settings data.
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Fig. 10. Measured stimulation profile of a channel with a 5-Hz sinusoidal input
stimulus.

Fig. 8. Measured stimulation output of the three channels illustrating the CIS
sequencing and biphasic (asymmetric, charge-balanced) waveform profile.

Fig. 9. Transient simulation results illustrating the current-steering technique.
Shown are: (a) stimulation current delivered to electrode and (b) current steered
through the dummy load.

B. Stimulation Output

Measurements are taken of the circuit’s output current

delivered to a 10 k load through a 100 nF blocking capac-

itor. This effectively resembles a high-pass response with

dB Hz. The measured stimulation outputs (at max-

imum threshold with zero input) are shown in Fig. 8. The

three biphasic waveforms are sequenced to the intended CIS

strategy and the SHORT pulse (leading each CIS cycle) illus-

trates the removal of any residual charge. Furthermore, the

Fig. 11. Measured variation in threshold linearity for I = 15 �A nor-
malized to 1 LSB.

TABLE I
TARGET DESIGN SPECIFICATIONS

�By tuning system clock, yExcluding stimulation drive

clean turn-on/turn-off transitions show that the chosen (partial)

current-steering approach is operating as intended.

The internal operation of the current steering to overcome

the turn-on and turn-off glitches can be illustrated through the

simulation results, shown in Fig. 9. This clearly shows how the

glitches are dissipated within the on-chip dummy loads.

The measured stimulation waveform for a sinusoidal (5 Hz)

input current of 10 A (ptp) is shown in Fig. 10. This illustrated

the effect of the threshold signal to offset the input stimulation

signal.

C. Process Variation

At design time, statistical Monte Carlo simulations had been

performed to ensure monotonicity in the patient settings, i.e., so

that any inaccuracies in current magnitudes due to technology/

process/mismatch variations remain below 1/2 LSB. For this,

the current mirror device sizes have been selected such that a

1/2 LSB current variation corresponds to . The measured

nonlinearity in threshold stimulus (i.e., variation in 1 LSB) is

in agreement with the intended design specifications, shown in

Fig. 11. The measured current variation, normalized to 1 LSB
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TABLE II
COMPARISON WITH OTHER WORK

2-bit per ch. range selection, 10-bit per ch. dynamic range (DR) mapping, minimum DR, 8-bit stimulation I/V monitoring/compensation

ranged from 14.32 to 17.6 A, tested on all 3 channels over

10 dies.

D. Power Consumption

The power consumption is largely dominated by the stim-

ulation supply and thus largely dependant on patient settings.

The total static current consumption has been measured to be

19.847 A (for A and nA). This con-

sists of a 4.667- A portion consumed by the logic supply and

15.15 A by the analog supply (in biasing the current mirrors).

E. System Specifications

These are given in Table I.

VI. CONCLUSION

In this paper, we have presented the an integrated circuit for

artificial electrical stimulation of neural tissue within the inner

ear for stimulation of the vestibular organ.

This system includes three (modular) stimulation channels,

each with full digital programmability, sequenced using the CIS

stimulation strategy and can be easily expanded to include more

channels. We have focused on achieving good reliability and ro-

bustness, specifically to ensure long-term stability, be minimally

invasive and guaranteeing that patient calibration settings are

uploaded in a safe manner. To this goal, we have implemented a

novel current-steering scheme to avoid charge-buildup-related

stimulation artifacts. This has designed to ensure all stimula-

tion transitions are smooth but sharp while maintaining good

power efficiency, compared to traditional current-steer systems.

Moreover, the system has been designed to generate an asym-

metric, charge-balanced waveform to maximize neural response

to electrical stimulus whilst minimizing fatigue of neural tissue.

A comparison of this work with other neural stimulator chips is

listed in Table II.
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