
A Partial-Order Based Active Cache
for Recommender Systems

Umar Qasim
New Jersey Institute of

Technology
Newark, New Jersey, USA

muq2@njit.edu

Vincent Oria
New Jersey Institute of

Technology
Newark, New Jersey, USA

oria@njit.edu

Yi-Fang Brook Wu
New Jersey Institute of

Technology
Newark, New Jersey, USA

wu@njit.edu

Michael E. Houle
National Institute of

Informatics
Tokyo, Japan

meh@nii.ac.jp

M. Tamer Özsu
University of Waterloo

Waterloo, Ontario, Canada
tozsu@cs.uwaterloo.ca

ABSTRACT
Recommender systems aim to substantially reduce informa-
tion overload by suggesting lists of similar items that users
may find interesting. Caching has been a useful technique
for reducing stress on limited resources and improving re-
sponse time. In this paper, we propose an ‘active caching’
technique for recommender systems based on a partial order
approach that not only benefits from popularity and tempo-
ral locality, but also exploits spatial locality. This approach
allows the processing of answers to neighboring non-cached
queries in addition to the reporting of cached query results.
Test results for several data sets and recommendation tech-
niques show substantial improvement in the cache hit ratio
and computational costs, while achieving reasonable recall
rates.

1. INTRODUCTION
By suggesting useful next steps for an information search,
recommender systems have a huge potential for reducing
information overload. It is expected that recommender sys-
tems will be an integral part of many future applications
[14]. The two most common technologies for recommender
systems are collaborative filtering (CF) and content-based
filtering (CB). The former generates recommendations based
on user evaluations and preferences, while the latter provides
recommendations based on the similarities of the content [9].
Recommender systems, being computationally-intensive in-
teractive applications, are highly vulnerable to access la-
tency, and as such require latencies on the order of at most
several seconds [11].

One well-established optimization technique with the po-
tential of improving the overall performance of information

retrieval in general, and recommender systems in particu-
lar, is that of caching. A cache is a temporary storage area
where popular or recently accessed data is stored for rapid
access. For traditional (passive) caching, the benefits of a
cache can only be achieved if the objects in the cache have a
high probability of being accessed in the future. The tempo-
ral locality principle states that this probability is higher for
recently-referenced data items. If as for many domains the
data follows Zipf’s probability distribution, the probability
is also higher for often-referenced (popular) data items. The
performance of caching has shown its effectiveness for web
search, where it has been applied to cope with redundant
data transmission, limited bandwidth availability, and slow
response times [7, 11, 13].

The performance of a cache can be further improved if it
is able to answer queries other than those whose results are
present in the cache, particularly if the stored result sets
overlap significantly with the result of the current query.
The spatial locality principle suggests that such ‘neighbor’
queries have a higher probability of being posed in the near
future [1]. Caches that can answer neighboring queries would
operate as limited query processors, and as such are referred
to in the research literature as ‘active caches’. Practical ac-
tive caching solutions have already been proposed for infor-
mation retrieval using keyword-based queries [3, 10].

In this paper we present an active caching method for top-
k similarity queries that is capable of efficiently synthesiz-
ing answers for ‘neighboring’ queries using the contents of
the cache. This approach uses the principle of monotonic-
ity of rank order in partial-order lists to construct results
for non-cached queries. Experimental results confirm that
our approach is comparable in performance with a baseline
approach that requires the more restrictive assumption of a
distance function defined over the data domain. We test our
method against the traditional caching approach using sev-
eral recommendation techniques. The results show substan-
tial improvement in terms of hit ratio and computational
cost while achieving reasonable recall values. Our active
caching approach is significant for several reasons. First, we
focus on the domain of recommender systems for which, to

the best of our knowledge, no research has been performed in
the past. Second, our active caching design uses monotonic-
ity in the partial order lists obtained from the cached query
results to synthesize new query results. Finally, we provide a
general active caching solution for all types of recommender
systems while utilizing only list ranking information.

2. PARTIAL-ORDER BASED ACTIVE
CACHING SOLUTION

We will take a simplified view of a recommender system as
one that accepts an object as the query, and returns a ranked
list of objects that are similar to it. More formally, let S be
a ranked list drawn from some database D. For every object
o ∈ S, we assume a unique ordering (o1, o2, . . . , o|S|) of the
objects of S, where i < j implies that oi is deemed more
relevant or similar to o than oj . With respect to o, the rank
of object oi ranges from 1 to |S|, and will be denoted by
rank(o, oi). In practical settings, the object most relevant to
o is generally o itself. Nevertheless, unless otherwise stated,
we will not require that rank(o, o) = 1.

2.1 Cache Implementation
Consider now the situation in which a main-memory cache

C(C, k)
4
= {Q(o, k) : o ∈ C} of top-k relevant sets is avail-

able for each object in a given subset C ⊆ S, for some fixed
k ∈ [1, |S|]. If each of the relevant sets is maintained as a
list of objects sorted from most relevant to least relevant,
the collection of relevant sets C(C, j) is also readily available
for all 1 ≤ j < k. We will accordingly refer to C(C, j) as a
sub-cache of C(C, k).

For a given u ∈ S, reverse relevant sets for u can also be
defined with respect to the cache C(C, k) as follows:

Q−1
C (u, k)

4
= Q−1(u, k) ∩ C = {o ∈ C : u ∈ Q(o, k)}.

The collection of all such reverse lists taken over all choices
of u ∈ S will be referred to as the reverse cache corre-

sponding to C(C, k), and will be denoted by C−1(C, k)
4
=

{Q−1
C (o, k) : o ∈ C}. For the remainder of the paper, we

will use the terms forward cache and forward relevant set to
refer to the original cache C(C, k) and its lists, and the term
cache loosely to refer to the set C taken together with its
forward and reverse relevant sets. For any object having a
forward relevant set available in the cache, the forward list
can serve as the result of future similarity queries, as in any
traditional caching approach. For an object without a for-
ward relevant set but having a reverse relevant set available
in the cache, our proposed algorithm will synthesize a query
result from the cache. If neither a forward relevant set nor
a reverse relevant set is available for an object, the results
of any similarity queries based at this object will be fetched
from the database. Figure 1 shows a simple example of a
cache structure with set size of 10, cache size of 3, and re-
verse lists constructed for the objects stored in the forward
lists.

2.2 Partial-Order Based Approach
We now describe our method for active caching of recom-
mender system results. The method does not make use of ac-
tual similarity values, instead relying only on the rank order

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1

9

3

4

2

1 11 11

5

10

2

4

8

5 5

5 5

5

8

5

2

7

10

88

8

8

8

Forward

List

Reverse

List

2-Dimensional Cache Structure

Figure 1: Cache data structures for a set of 10 ob-
jects in the 2-D plane. Top-5 lists are cached for 3
objects and reverse lists constructed accordingly.

information of query result lists. Our approach uses partial-
order list characteristics to compute results for queries that
are related to others explicitly stored in the cache. In or-
der to assess the impact of using rank information instead
of distance information for active caching, we also describe
and implement a distance-based variant of our method.

Let D be an object domain and l a ranked list objects drawn
from D. Let rank(l, o) denote the rank of the object o in the
list l. Given a query object o for which no result is cached,
our active cache method first generates two partial orderings
from each cached query result list containing o:

• the suffix list suff (l), defined as the sublist of l consist-
ing of items with ranks strictly higher than rank(l, o);
and

• the prefix list pref (l), defined as the sublist of l con-
sisting of items with ranks strictly less than rank(l, o),
taken in reverse order.

With respect to these two partial orderings, we define the
rank ranko(l, u) of object u ∈ l with respect to o to be the
rank that u holds in either pref (l) or suff (l) — note that u
cannot simultaneously be contained in both. More precisely,
this rank is defined to be the difference

ranko(l, u)
4
= |rank(l, u)− rank(l, o)|.

We next show how a query result can be synthesized from
the cached results of other queries. Let l be a cached for-
ward list with ranko(l, o1) > ranko(l, o2), for some pair of
objects o1, o2 ∈ D. If for a top-k query-by-example on o
an active cache method generates a ranked result list l′ con-
taining both o1 and o2, then ideally we would expect the
ranks of these objects in the synthesized result to satisfy
rank(l′, o1) > rank(l′, o2). The active caching method pro-
posed in this paper resolves conflicts in the partial order
information by aggregating the rank information across all
suffix lists and prefix lists available from the cache. The ag-
gregation can be performed with respect to such standard
operations as min, max, and avg.

Algorithm Query
Input: query object o, result size k;
Output: ranked top-k query-by-example result list Result .

1. Initialization:

(a) Assign list L← Q−1
C (o, k). L refers to the cached

forward lists containing object o.

(b) Initialize result object candidate set candset ← ∅,
and final result object set Result ← ∅.

2. For all lists l ∈ L do:

(a) For all objects u ∈ l do:

i. If u /∈ candset then insert u into candset , and
initialize rank value multiset rankset(u)← ∅.

ii. Insert an instance of the rank value ranko(l, u)
into the multiset rankset(u).

3. For all objects u ∈ candset do:

(a) Generate a score s for u by aggregating the rank
values stored in rankset(u) using the chosen ag-
gregation function (for example, max, min, avg,
etc.).

(b) Insert the object-score pair (u, s) into the result
list Result .

4. Sort the entries in the list Result according to their
score values, and return the objects of top k object-
score pairs. Ties can be broken arbitrarily, with the
exception that o is given priority over any other object
w 6= o in D.

If the object domain D is embeddable in a metric space M
with distance metric d, and these distance values are readily
computable, a distance-based variant of the proposed query
algorithm is possible: each instance of the rank ranko(l, u)
can simply be replaced by the distance value d(o, u). The
use of distance values in place of rank values can reasonably
be expected to lead to better performances in practice; how-
ever, as has been previously noted, a distance-based formu-
lation may not always be possible, especially in the context
of collaborative filtering systems.

3. EVALUATION
The performances of the proposed method is evaluated in
terms of three measures: hit ratio, recall and efficiency.
Given a schedule of queries, the hit ratio is defined to be
the proportion of queries that can be answered from the
cache. For our method, a hit occurs for any query based at
an object for which a forward list or reverse list is cached.
Consider now the item set retrieved by any given top-k query
operating on the cache. The recall of the query is defined
as the proportion of this result that would also appear in
a top-k query applied to the full database. The efficiency
is measured in terms of execution time to process all the
queries in the dataset, whether answered from the forward
cache, the reverse cache or the database.

3.1 Datasets
We used three datasets to test the performance of our pro-
posed solution. The first dataset is based on the Amsterdam
Library of Object Images (ALOI)[4]. The full dataset con-
sists of 110250 images of 1000 common objects taken from a
number of different angles under different lighting conditions
(for a detailed description of how the vectors were produced,
see [2]). We used the SASH approximate similarity search
structure [6] with Euclidean distances to compute a k-NN
matrix for this image collection. The Reuters Corpus Vol-
ume 1 (RCV1) is an archive consisting of 802,352 newswire
articles [8]. Again, we used a SASH to compute a k-NN ma-
trix using the cosine similarity measure. Both the ALOI and
RCV1 datasets were used to represent content-based recom-
mender systems. As an example of collaborative filtering,
we used the MovieLens dataset, which consists of 100,000
ratings (from 1 to 5) for 1682 movies from 943 users [5]. We
opted for a model-based approach to generate recommenda-
tions, and used MultiLens [12] to generate user-to-user and
count models for providing recommendations.

Both the distance-based and rank-based active caching meth-
ods were implemented in Microsoft C], and tested on IBM
desktop with processor speed of 3.0 GHz and 2 GB of RAM.
Microsoft SQL Server was used to store forward and reverse
cached lists.

3.2 Experimental Results
For the following experiments, various proportions of the
datasets were selected uniformly at random for inclusion in
the cache: for each item selected, its top-k similarity query
result was generated and stored. The experimental results
observed for the distance-based approach was in all instances
comparable to that of the rank-based approach. In this ver-
sion of the paper, we provide results only for the rank-based
active caching method using the max aggregation function.

3.2.1 Hit Ratio
The partial-order based active caching results achieved a
substantially-high hit ratio when compared with traditional
caching results, for all datasets tested. Figure 2 shows a hit
ratio comparison between active caching approach for each
recommendation technique and for traditional caching with
various data loads. Much higher hit ratios were achieved for
the content-based cases than the collaborative filtering cases.
This may be due to the small size of the MovieLens dataset
in both the number of users and the number of movies, or to
the high variability of the numbers of movie ratings provided
by the users.

3.2.2 Recall
For the various datasets and caching techniques, average re-
call rates were calculated by posing similarity queries based
at every object of the dataset, with the exception of the
Reuters dataset where only the first 10,000 objects served
as the basis of queries. The tests were conducted for sev-
eral different choices of the proportion of cached items. The
query size and cached list size were both fixed at k = 10. Our
proposed active caching solution attained high recall values
across the various cache sizes, as shown in Figure 3. Again,
the ALOI and RCV1 datasets showed better performance,
possibly due to their larger sizes and more uniform distribu-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Cache Size (%)

H
it
 R
a
ti
o

CB - Aloi

CB - Reuters

CF - Count Model

CF - User Model

Traditional Cache

Figure 2: Hit ratio comparison using various pro-
portions of cached data.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100

Cache Size (%)

R
e
c
a
ll

CB - Aloi

CB - Reuter

CF - Count Model

CF - User Model

Figure 3: Recall test for content-based and collabo-
rative filtering techniques using different data sets

tion of data. In practice, the recall can be even higher with
popular (repeated) queries loaded in the cache.

3.2.3 Efficiency
To test the efficiency and cost of computation, we cached
25% of the ALOI dataset and executed similarity queries
based at each of its 110,250 data objects. The execution
time taken was computed for three methods: traditional
caching, active caching, and retrieval from the database with
no caching. Figure 4 shows the superior performance of our
approach in terms of execution cost when compared with
traditional caching and cacheless approaches.

4. CONCLUSION
This paper presents a novel technique for the active caching
of top-k similarity queries for recommender systems. The
caching mechanism imposes no restriction on the result set
computation of the recommender system, as it relies solely
on the rank order of the lists produced by the system. This
approach is therefore suitable for metric as well as non-
metric similarity measures. The experimental results dis-
cussed in the previous section show a substantial improve-
ment in the cache hit ratio and computation costs as com-
pared to traditional caching solutions. The test results also
show reasonable effectiveness in terms of average recall val-
ues.

As with other caching solutions, our approach also incurs the
overheads associated with disk accesses in the case of cache
miss. However, this overhead is much lower for our method
due to the greatly reduced number of cache misses. Active
caching provides a substantial performance gain at the cost
of a marginal processor overhead due to the processing of
reverse lists.

1000

10000

100000

1000000

0 20 40 60 80 100

Queries (In Thousands)

C
P
U
 T
im
e

No Caching

Traditional Caching

Active Caching

Figure 4: Computational costs of caching for the
ALOI dataset, for top-10 similarity queries with
cached (forward) lists of size 10. The CPU time
is measured in milliseconds.

Acknowledgments
Partial support for this research was provided by the Na-
tional Science Foundation under grant DUE-0434998.

5. REFERENCES
[1] M. Bhatt. Locality of reference. Pattern Languages of

Programming, September 1997.
[2] N. Boujemaa, J. Fauqueur, M. Ferecatu, F. Fleuret,

V. Gouet, B. L. Saux, and H. Sahbi. Ikona: Interactive
generic and specific image retrieval. In Intern. Workshop
on Multimedia Content-Based Indexing and Retrieval
(MMCBIR), 2001.

[3] P. Cao, J. Zhang, and K. Beach. Active cache: caching
dynamic contents on the web. Distributed Systems
Engineering, 6(1):43–50, 1999.

[4] J. Geusebroek, G. Burghouts, and A. Smeulders. The
amsterdam library of object images. Int. J. Comput.
Vision, 611:103–112, 2005.

[5] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl.
Framework for performing collaborative filtering. In
Proceedings of the 1999 Conference on Research and
Development in Information Retrieval, Aug 1999.

[6] M. E. Houle and J. Sakuma. Fast approximate similarity
search in extremely high-dimensional data sets. In
International Conference on Data Engineering, pages
619–630, 2005.

[7] T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring
the bounds of web latency reduction from caching and
prefetching. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, December 1997.

[8] D. Lewis, Y. Yang, T. Rose, and F. Li. A new benchmark
collection for text categoriza-tion research. Journal of
Machine Learning Research, 5:361–397, 2004.

[9] Z. Li and I. Im. Recommender systems: A framework and
research issues. In Americas Conference on Information
Systems (AMCIS), 2002.

[10] Q. Luo and J. F. Naughton. Form-based proxy caching for
database-backed web sites. In Proceedings of the 27th
International Conference on Very Large Data Bases, pages
191–200, September 2001.

[11] E. Markatos. On caching search engine query results. In
Proceedings of the 5th International Web Caching and
Content Delivery Workshop, May 2000.

[12] B. N. Miller. Toward a personal recommender system. In
PhD Thesis. University of Minnesota, 2003.

[13] S. Nagaraj. Web Caching and Its Applications. Kluwer,
Norwell, 2004.

[14] J. Williams. Hot technologies with a purpose. Library
Journal, 127(2):50, Feb 2002.

