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ABSTRACT

We define a natural partial order on the orthogonal group
and completely describe the intervals in this partial order. The
main technical ingredient is that an orthogonal transforma-
tion induces a unique orthogonal transformation on each
subspace of the orthogonal complement of its fixed subspace.

Let V be an n-dimensional vector space over a field F and let OðV Þ be the
orthogonal group of V with respect to a fixed anisotropic symmetric bilinear
form h ; i. In this note we will define a natural partial order on OðV Þ and
completely describe the intervals in this partial order. The main technical
ingredient is that an orthogonal transformation A on V induces a unique
orthogonal transformation on each subspace of the orthogonal complement
of the fixed subspace of A.
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Recall that A 2 OðV Þ if A : V ! V is linear and satisfies hAð~vvÞ;Að~wwÞi ¼
h~vv;~wwi for all~vv; ~ww 2 V . For standard results on symmetric bilinear forms and
their associated orthogonal groups see[1], but note that we are making the
further assumption that the form is anisotropic.

For each A 2 OðV Þ, we define two subspaces of V , FðAÞ ¼ kerðA� IÞ
and MðAÞ ¼ imðA� IÞ, where I is the identity operator on V . We note that
FðAÞ is the þ1-eigenspace of A, sometimes called the fixed subspace of A. We
will write V ¼ V1 ? V2 whenever V is the orthogonal direct sum of sub-
spaces V1 and V2.

Proposition 1. V ¼ FðAÞ ? MðAÞ
Proof. Since the dimensions of FðAÞ and MðAÞ are complementary and the
form is anisotropic, it suffices to show that these subspaces are orthogonal.
So let ~xx 2 FðAÞ and ~yy 2 MðAÞ. Then ~xx ¼ Að~xxÞ and ~yy ¼ ðA� IÞ~zz for some
~zz 2 V. Thus

h~xx;~yyi ¼ h~xx; ðA� IÞ~zzi ¼ h~xx;Að~zzÞi � h~xx;~zzi ¼ hAð~xxÞ;Að~zzÞi � h~xx;~zzi ¼ 0:

q.e.d.

We will be concerned with how the dimensions of these subspaces
behave when we take products in OðV Þ. For notational convenience we will
write jU j for dimðUÞ.
Proposition 2. jMðABÞj � jMðAÞj þ jMðBÞj for A;B 2 OðV Þ.
Proof. Using the identities jUj þ jVj ¼ jUþ Vj þ jU \ Vj, FðAÞ \ FðBÞ �
FðABÞ and FðAÞ þ FðBÞ � V we find that

jFðAÞj þ jFðBÞj ¼ jFðAÞ þ FðBÞj þ jFðAÞ \ FðBÞj � nþ jFðABÞj;
from which the result follows. q.e.d.

This result is proved in a more general setting in.[2] However, from the
proof above we see that equality occurs if and only if

FðAÞ \ FðBÞ ¼ FðABÞ and FðAÞ þ FðBÞ ¼ V :

Thus, using the identities ½U þ V �? ¼ U? \ V? and U? þ V? ¼ ½U \ V �?
we get the following characterization.

Corollary 1. jMðABÞj ¼ jMðAÞj þ jMðBÞj , MðABÞ ¼ MðAÞ �MðBÞ.
Definition 1. We will write A � C if jMðCÞj ¼ jMðAÞj þ jMðA�1CÞj.
Proposition 3. The relation � is a partial order on OðV Þ and satisfies

A � B � C ) A�1B � A�1C:
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Proof. Reflexivity is immediate. To establish antisymmetry suppose A � C
and C � A. Then

jMðCÞj ¼ jMðAÞj þ jMðA�1CÞj ¼ jMðCÞj þ jMðC�1AÞj þ jMðA�1CÞj

giving FðC�1AÞ ¼ FðA�1CÞ ¼ V or A ¼ C.
To establish transitivity, suppose A � B and B � C. Then

jMðCÞj � jMðAÞj þ jMðA�1CÞj
¼ jMðAÞj þ jMðA�1BB�1CÞj
� jMðAÞj þ jMðA�1BÞj þ jMðB�1CÞj
¼ jMðAÞj þ fjMðBÞj � jMðAÞjg þ fjMðCÞj � jMðBÞjg
¼ jMðCÞj

So both of the inequalities are actually equalities. The first line gives A � C

and � is transitive. The third line gives the second assertion above. q.e.d.

The association of the subspace MðAÞ to an element A 2 OðV Þ defines
a map M from OðV Þ to the set of subspaces of V . The next sequence of
lemmas shows that the restriction of M to the interval ½I ;C� ¼ fA 2 OðV Þ j
A � Cg is a bijection onto the set of subspaces of MðCÞ.

In what follows we fix C and a subspace W of MðCÞ and we suppose
that A 2 OðV Þ satisfies MðAÞ ¼ W . We define U to be the unique subspace
of MðCÞ which satisfies jU j ¼ jW j and ðC � IÞU ¼ W . This is possible since
C � I is invertible when restricted to MðCÞ.
Lemma 1. If W � MðCÞ then V ¼ W? �U.

Proof. Since the subspaces have complementary dimensions it suffices to
show that their intersection is trivial. So let ~xx 2 W? \U. Then ~xx 2 W? and
ðC� IÞ~xx ¼ ~ww for some ~ww 2 W. Thus C~xx ¼ ~xxþ ~ww, with ~xx 2 W? and ~ww 2 W
so that

h~xx;~xxi ¼ hC~xx;C~xxi ¼ h~xxþ~ww;~xxþ~wwi ¼ h~xx;~xxi þ h~ww; ~wwi:

Thus ~ww ¼~00 since h ; i is anisotropic and~xx ¼~00 since C � I is an isomorphism
on MðCÞ. q.e.d.

Lemma 2. FðA�1CÞ � FðCÞ ? U.

Proof. Let ~xx 2 FðA�1CÞ. Then A�1C~xx ¼ ~xx, which implies C~xx ¼ A~xx and
ðC� IÞ~xx ¼ ðA� IÞ~xx. Using V ¼ FðCÞ ? MðCÞ we can express ~xx uniquely as
~xx ¼ ~yyþ~zz with ~yy 2 FðCÞ and ~zz 2 MðCÞ. Thus
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ðC � IÞ~zz ¼ ðC � IÞ~xx ¼ ðA� IÞ~xx 2 MðAÞ ¼ W ;

giving~zz 2 U . This gives FðA�1CÞ � FðCÞ þ U and the orthogonality of the
subspaces follows since U � MðCÞ. q.e.d.

Lemma 3. If MðAÞ ¼ W and A � C then FðA�1CÞ ¼ FðCÞ ? U.

Proof. Since A � C we have jMðA�1CÞj ¼ jMðCÞj � jMðAÞj so that

jFðA�1CÞj ¼ n� jMðA�1CÞj ¼ n� jMðCÞj þ jW j ¼ jFðCÞj þ jU j:

This dimension calculation can now be combined with Lemma 2. q.e.d.

It is now possible to give a formula for A. If V ¼ V1 � V2 we define the
projection ProjV2

V1
to be the linear transformation which coincides with the

identity on V1 and with the zero transformation on V2.

Lemma 4. If A � C and MðAÞ ¼ W then A ¼ Iþ ðC� IÞProjW
?

U .

Proof. If MðAÞ ¼ W then FðAÞ ¼ W? so that A coincides with I on W?.
Since FðA�1CÞ contains U by Lemma 3, A coincides with C on U. Thus
A� I coincides with the zero transformation on W? and with C� I on U,
giving A� I ¼ ðC� IÞProjW

?
U , by Lemma 1. q.e.d.

It is not at all clear from this formula that A is orthogonal. However
this is indeed the case.

Lemma 5. A ¼ Iþ ðC� IÞProjW
?

U 2 OðV Þ.
Proof. Let ~xx;~yy 2 V and use Lemma 1 to express ~xx ¼ ~xx1 þ~xx2, ~yy ¼ ~yy1 þ~yy2,
with ~xx1;~yy1 2 U and ~xx2;~yy2 2 W?. Then, using the fact that A coincides with I
on W? and with C on U,

hAð~xxÞ;Að~yyÞi ¼ hCð~xx1Þ þ~xx2;Cð~yy1Þ þ~yy2i
¼ hC~xx1;C~yy1i þ hC~xx1;~yy2i þ h~xx2;C~yy1i þ h~xx2;~yy2i
¼ h~xx1;~yy1i þ hC~xx1;~yy2i þ h~xx2;C~yy1i þ h~xx2;~yy2i
¼ h~xx;~yyi þ hðC � IÞ~xx1;~yy2i þ h~xx2; ðC � IÞ~yy1i
¼ h~xx;~yyi;

since both ðC � IÞ~xx1 and ðC � IÞ~yy1 lie in W . q.e.d.

We will call A the transformation induced by C on W . Combining the
above lemmas we get the following result.

Theorem 1. If C 2 OðV Þ and W is a subspace of MðCÞ then there exists a

unique A 2 OðV Þ satisfying A � C and MðAÞ ¼ W.
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The induced transformations are familiar objects for two special
classes of subspace.

Corollary 2. If W � MðCÞ is an invariant subspace of C, then the induced

transformation on W is the restriction of C to W.

Proof. In this case, U ¼ W and the projection in the formula for A becomes
an orthogonal projection. q.e.d.

Corollary 3. If charðFÞ 6¼ 2 and W is a one dimensional subspace of MðCÞ
then the orthogonal transformation induced by C on W is always the orthogonal

reflection in W?.

Proof. Since W is one-dimensional A must act on W by multiplication by a
scalar a. The orthogonality of A forces a2 ¼ 1 and W ¼ MðAÞ gives
a 6¼ 1. q.e.d.

The poset ðOðV Þ;�Þ is not a lattice, since distinct elements C1 and C2

with MðC1Þ ¼ MðC2Þ cannot have a common upper bound. However the
intervals are lattices and can be easily described.

Theorem 2. If A � C in OðV Þ and jMðCÞj � jMðAÞj ¼ m then the interval

½A;C� ¼ fB 2 OðV Þ j A � B � Cg is isomorphic to the lattice of subspaces of

Fm under inclusion.

Proof. The lattices of subspaces of Fm under inclusion is isomorphic to the
interval ½MðAÞ;MðCÞ� in the lattice of subspaces of V. The function
B 7! MðBÞ is a bijection from the interval ½A;C� to the latter interval by
Theorem 1. This map respects the partial orders by Corollary 1. To see that
the inverse map respects the partial orders suppose that
MðAÞ � W1 � W2 � MðCÞ. Let B1, B2 be the transformations induced on
W1, W2 respectively by C and let B0

1 be the transformation induced on W1

by B2. Then B0
1 � B2 � C gives B0

1 � C, but MðB1Þ ¼ MðB0
1Þ ¼ W1 so the

uniqueness part of Theorem 1 gives B1 ¼ B0
1 and B1 � B2. q.e.d.

Each chain in MðCÞ thus gives rise to a special factorization of C.

Corollary 4. If C 2 OðV Þ and W1 � W2 � � � � � Wk ¼ MðCÞ is a chain of

subspaces in MðCÞ then C factors uniquely as a product of k transformations

C ¼ B1B2; . . . ;Bk, with B1B2; . . . ;Bi � C and MðB1B2; . . . ;BiÞ ¼ Wi.

Proof. If we define Ci to be the transformation induced by C on Wi then
Bi ¼ ðCi�1Þ�1Ci. q.e.d.

The case where this chain is maximal gives a strong version of the
Cartan-Dieudonné theorem.
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Corollary 5. If charðFÞ 6¼ 2, C 2 OðV Þ with jMðCÞj ¼ k and W1 � W2 �
� � � � Wk ¼ MðCÞ is a maximal flag in MðCÞ then C factors uniquely as a

product of k reflections, C ¼ R1R2 � � �Rk, with MðR1R2 � � �RiÞ ¼ Wi.

Proof. Here the transformation Bi defined in Corollary 4 satisfies jMðBiÞj ¼ 1
so that Bi is a reflection by Corollary 3.

Note 1. Using similar methods one can prove analogs of all the above
results in the case of a unitary transformation over a finite-dimensional
complex vector space. In this case we deal with complex linear subspaces,
the induced transformations are unitary (and hence complex linear) and
complex reflections replace the above reflections.
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