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Insulin was discovered 60 years ago [1]; since then its 
structure has been determined by the pioneer work of 
Sanger [2] and by Hodgkin, Blundell and colleagues 
[3]. Moreover the principle effects of  insulin on carbo- 

hydrate, fat and protein metabolism have been well 
recognised, at least ingeneral terms, for some 20 years 
[4-7], yet, we do not have a satisfactory description at 
the molecular level of how this hormone brings about 
its wide range of effects on target cells. This is certain- 
ly not due to any lack of attention to the problem by 
research workers. The literature on this subject is vast 
and, in the absence of any generally acceptable hy- 
pothesis, it also tends to be rather confused and cer- 
tainly conflicting. Since it is quite unrealistic to survey 
the whole field, we make no apology for concentrat- 
ing on certain aspects in this article. 

Insulin has both long and short term effects on the 
metabolism of its target cells. The long term effects in- 
volve changes in both general and specific protein 
synthesis and breakdown, while short term effects are 
those brought about solely through changes in the ac- 
tivity of pre-existing enzymes and membrane trans- 
porters. To a large extent, we will neglect all aspects of 
long term regulation including protein synthesis and 
amino acid metabolism. In fact, advances in these 
areas have been delayed by the lack of satisfactory 
preparations suitable for probing the mechanisms in- 
volved in the specific induction and repression of en- 
zymes by insulin in vitro. This situation will probably 
change rapidly as a number of such preparations have 
been reported recently. Particularly promising are the 
3T3-L1 preadipocyte cell line [8, 9] and also the main- 
tenance liver cell cultures from young rats in which 
glucokinase activity has been shown to be rapidly in- 
duced on exposure to insulin in the presence of glu- 
cose [10]. 

In the rest of this review we will concentrate on 
those studies concerned with short term effects of in- 

sulin on carbohydrate and fat metabolism in the cells 
of  liver, muscle and, particularly, adipose tissue. All 
these cells have specific insulin receptors on the out- 

ward face of the plasma membrane but we will not be 
considering the nature of these receptors nor their in- 
teraction with insulin nor the mechanisms which may 
govern the number of insulin receptors. These aspects 
have all been well covered in other recent reviews 
[11-13]. We shall address ourselves to the problem of 
the process or processes whereby alterations in the 
level of occupancy of the plasma membrane insulin- 
receptors lead to a wide range of intracellular 
changes. The assumption will be made that neither 
the whole insulin molecule nor part of it needsto enter 
the cells of its target tissue to bring about the effects of 
insulin. There seems little doubt that insulin bound to 
its receptor can be "internalized" into liver and prob- 
ably other cells [14, 15], however, the process appears 
to be too slow to represent the means whereby insulin 
could bring about its short term effects. On the other 
hand, antibodies to the insulin receptor appear to in- 
itiate all the short term intraceUular effects of insulin 
itself [12, 16-21]. This supports the view, but perhaps 
not entirely conclusively, that the mechanism of ac- 
tion of insulin does not require the entry of any part of  
the insulin molecule. It would appear that the interac- 

tion of either insulin or the anti-insulin receptor anti- 
bodies with the insulin receptors on the cell mem- 
brane brings about changes in the receptors, perhaps 
including aggregation [11, 12], which initiate the se- 
quence of events leading to the observed intracellular 
effects. 

The short term effects of insulin on rates of fat and 
carbohydrate metabolism can be easily summarised 
[see also 4-7, 22]. The hormone stimulates glucose up- 
take into muscle and fat cells; in muscle, much of the 
increased glucose taken up is converted to glycogen 
while in fat cells it is mainly converted to the glycerol 
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Table 1. Stable changes in enzyme and carrier activity following short term exposure of tissues to insulin 

Enzyme or carrier Tissue Change in activity Possible mechanism References 

Glucose uptake 
Glucose transport W, (SM, H) increase (V*) ? translocation 26-30 

Cyclic AMP metabolism 
Phosphodiesterase (low Km) W, L increase (V*) ? (W); phosphorylation (L) 34~,4 
Protein kinase (Cyclic AMP dep.) W, SM decrease association of R and C subunits 4548 

(V + in W; Ka* in SM) 

Glycogen metabolism 
Glycogen synthase 
Phosphorylase kinase 
Phosphorylase 

Glycolysis and pyruvate oxidation 
Pyruvate kinase 

Pyruvate dehydrogenase 

Lipid metabolism 
Acetyl CoA carboxylase 

Hydroxymethyl glutaryl CoA reductase 
Triacylglycerol lipase 

H, SM, W, L increase ( K a * )  dephosphorylation 
L decrease (V +) dephosphorylation 
W, L decrease (Ka +) dephosphorylation 

49-54, 86 
51,55 
52, 53, 55-57, 86 

L, W increase dephosphorylation (L); ? (W) 58q52 
(Ks + in L; Ks* in W) 

W, B, L increase ( V * )  dephosphorylation 63-71 
(MG) 

W, B, L increase ( V * )  polymerisation 71-82 
and phosphorylation 

L increase ( V * )  dephosphorylation 83, 84 
W decrease (V +) dephosphorylation 85-86 

Column 2 and elsewhere: IV, white fat; B, brown fat; H, heart muscle; SM, skeletal muscle; L, liver; MG, mammary gland. Column 3: V, 
change in Vmax; Ks, change in Krn for substrate; Ka change in sensitivity to appropriate activator; * change in activity most marked in absence 
of other hormones; +, change in activity most marked under conditions of increased cell cyclic AMP concentrations 

and fatty acid moieties of triacylglycerol. In fat cells, 
insulin also inhibits lipolysis especially when this has 
been stimulated by other hormones. In addition, insu- 
lin has a range of important effects on liver cell metab- 
olism. These include the inhibition of glucose release 
and gluconeogenesis on the one hand and the promo- 
tion of glycogen storage and triacylglycerol synthesis 
on the other. We start this review by considering the 
key enzymes and membrane carriers which exhibit 
changes in activity following exposure of target cells 
to insulin. It seems reasonable to assume that if the 
molecular basis for these changes in activity is estab- 
lished then important clues to the mechanism of insu- 
lin action should emerge. 

Sites of Insulin Action on Carbohydrate 

and Fat Metabolism 

The first site of insulin action to be recognised was the 
transfer of glucose across the plasma membrane of 
muscle and fat cells [23-25]. Insulin causes an in- 
crease in the apparent maximum activity (Vmax) of the 
glucose carrier with little or no change in the apparent 
affinity (Km) of the carrier for glucose [see 26]. Despite 
many attempts it has not proved possible to demon- 
strate this effect by addition of insulin to broken cell 
preparations [26], although prior exposure of fat cells 
to insulin has been found to lead to an increase in the 
glucose transport activity of membrane vesicles pre- 

pared subsequently [27]. The molecular basis of the 
effect of insulin is still a matter of speculation but im- 
portant advances towards an understanding have 
been made by Czech and his colleagues. They have 
shown that the carrier may be solubilised with ap- 
propriate detergents, partially purified and then in- 
serted in an active form into phospholipid vesicles [26, 
28, 29]. Moreover, the effect of insulin appears to per- 
sist through these manipulations [29, 30] indicating 
that insulin may cause some covalent modification, 
for example a change in disulphide bonds [22] or 
phosphorylation of the glucose carrier. An alternative 
explanation, for which there is mounting evidence, is 
that insulin causes the recruitment of carrier mole- 
cules from intracellular sites to the plasma membrane 
[31-331. 

The change in glucose carrier activity is by no 
means the only stable change that persists into ex- 
tracts of cells previously exposed to insulin. A wide 
range of enzymes important in carbohydrate and fat 
metabolism also show this phenomenon and well-es- 
tablished examples are listed in Table 1. All these 
changes in activity appear to be essentially independ- 
ent of the effect of insulin on glucose transport since 
they can be observed in the absence of extracellular 
glucose. However, in a number of cases including gly- 
cogen synthase and acetyl CoA carboxylase, the ef- 
fects of insulin may be enhanced in the presence of 
glucose [50, 73]. In addition to the enzymes listed in 
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Table 1, insulin may also cause the activation of liver 
phosphofructokinase [87-90] and a number of the en- 
zymes involved in the esterification pathway of tri- 
acylglycerol synthesis in fat and liver cells [91-98]. 

Table 1 gives an indication of the nature of the 
change in activity. It should be noted that the changes 
in kinetic behaviour may involve changes in maxi- 
mum activity (Vmax) or changes in apparent affinity 
for substrate (Ks) or for an activator (Ka). Table 1 also 
shows the possible mechanisms although as we will 
be emphasising later direct evidence is often lacking. 
Since the changes in activity all persist into tissue ex- 
tracts it is to be expected that many of the effects will 
be  brought about by covalent modification. Indeed, 
in many instances the changes in kinetic behaviour o f  
the enzymes which persist in extracts of intact cells 
previously exposed to insulin are indistinguishable 
from those which have been found to occur with alter- 
ations in the extent of phosphorylation of the isolated 
enzymes. However, covalent modification is not the 
only possible explanation for changes in enzyme ac- 
tivity, since they may also be brought about by altera- 
tions in the amount of a tightly-binding effector asso- 
ciated with the enzyme or by association or dissocia- 
tion of enzyme subunits. Alterations in the activity of 
liver cell phosphofructokinase with glucagon and 
maybe insulin would appear to be examples of the 
former possibility since the changes in activity prob- 
ably involve changes in the amount of an activator 
(fructose 2,6-bisphosphate) bound to  the enzyme 
[87-90]. In contrast, changes in the activity of cyclic 
AMP dependent protein kinase observed in fat and 
other cells with adrenaline, insulin and other hor- 

�9 mones are probably caused by the dissociation of this 
enzyme into separate receptor and catalytic subunits 
which under appropriate conditions persist into tis- 
sue extracts [47]. Nevertheless, it is important to em-  
phasise that usually alterations in the activity of an en- 
zyme in an intact cell which are the result of changes 
in the concentration of substrate or effector acting di- 
rectly on the enzyme will not be apparent when the 
enzyme is subsequently assayed in a tissue extract. 

Taken together the changes in enzyme activity ob- 
served after exposure to insulin (Table 1) offer a rea- 
sonable explanation of many of the principle changes 
in carbohydrate and fat metabolism in cells. Thus the 
reciprocal changes in the activity of glycogen syn- 
thase and phosphorylase are presumably the basis o f  
the promotion of glycogen synthesis in a number of 
tissuesl The increased rate of fatty acid synthesis in 
white fat cells appears to involve the parallel activa- 
tion of pyruvate dehydrogenase, acetyl CoA carbox- 

�9 ylase and pyruvate kinase [99] and probably this will 
also prove to be the case for liver, brown fat and mam- 
mary tissue cells. Inhibition of fat cell lipolysis by in- 
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sulin clearly must involve inhibition of triacylglycerol 
lipase but the exact site or sites of insulin action in the 
stimulation of esterification is far less evident. Sagger- 
son and his colleagues have observed that exposure of 
fat cells to adrenaline leads to decreases in the activi- 
ties of fatty acyl CoA synthetase, glycerol phosphate 
acyltransferase, diacylglycerol acyltransferase and 
phosphatidate phosphohydrolase; these decreases 
are diminished in the presence of insulin [91-98]. It is 
possible that the changes in glycerol phosphate acyl- 
transferase are brought about by changes in phospho- 
rylation of the enzyme since Nimmo [100, 101] has 
shown this enzyme to be reversibly inhibited follow- 
ing treatment with cyclic AMP, ATP and protein ki- 
nase. However, it would also appear possible that 
some of the changes in activity reported by Sagger- 
son's group may be caused by the accumulation of 
fatty acids and fatty acyl CoA esters in the cells incu- 
bated with adrenaline [98]. 

A number of the effects of insulin on liver and fat 
cells are most apparent in the presence of hormones 
which increase the concentration of cyclic AMP in the 
target cells. Examples are the changes in the activities 
of phosphorylase, phosphorylase kinase, liver pyru- 
vate kinase and fat cell triacylglycerol lipase. These 
correlate with observations that the inhibition of gly- 
cogen breakdown, gluconeogenesis and triacylglycer- 
ol breakdown by insulin are, for the most part, only 
evident in the presence of another hormone which in- 
creases cyclic AMP such as glucagon (liver) or adren- 
aline (fat cells). Since all these enzymes have the po- 
tential for regulation either directly or indirectly by 
cyclic AMP dependent protein kinase, it would ap- 
pear likely that the decreases in tissue cyclic AMP 
which have often been found under these conditions 
may partially explain the action of insulin in these 
cases. However, even in these cases changes in cyclic 
AMP do not seem to offer an entirely adequate expla- 
nation (see below). 

Dephosphorylation of these and other enzymes 
may also involve an increase in the activity of phos- 
phoprotein phosphatase. One way this might be 
brought about is through a decrease in the inhibitory 
activity of "inhibitor- 1" [102-104]. This is a small pro- 
tein (subunit Mr about 25,000) which when phospho- 
rylated on a specific threonine by cyclic AMP de- 
pendent protein kinase inhibits the general phos- 
phoprotein phosphatase in many mammalian cells. 
Some evidence for a small diminution in the ability of 
this peptide to inhibit phosphoprotein phosphatase 
activity has been obtained following exposure of 
muscle to insulin [105, 106] but other studies [107, 108] 
were unable to detect any effect of the hormone. 

From the point of view of establishing the mech- 
anism of action of insulin, it seems reasonable to con- 
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centrate on those effects of insulin which are apparent 
under basal conditions (i. e. in the absence of other 
hormones). Under these conditions decreases in the 
tissue level of cyclic AMP are very small and usually 
undetectable [7, 22, 86, 109]. The best examples are the 
activation of glycogen synthase in muscle and pyru- 
vate dehydrogenase and acetyl CoA carboxylase in 
fat cells and some emphasis will be given in the re- 
mainder of this article to these enzymes. Other exam- 
ples in this group are the low Km form of cyclic nucle- 
otide phosphodiesterase and hydroxymethylglutaryl 
CoA reductase but the mechanisms regulating these 
enzymes are not so well understood at present, mainly 
because these enzymes are membrane bound and 
thus difficult to study. 

It is evident from Table l that many of the effects 
of insulin appear to be consistent with changes in the 
state of phosphorylation of specific enzymes - in most 
cases with dephosphorylation. However, it is obvi- 
ously important that the proposed changes in phos- 
phorylation are shown actually to occur in the cells 
exposed to insulin. As will become apparent in the 
next section this has not been directly demonstrated 
for the majority of the enzymes given in Table 1. 

Effects of Insulin on Specific Protein Phosphorylation 

in Intact Ceils 

The effects of hormones on the level of phosphoryl- 
ation of specific proteins within intact cells can be ex- 
plored by incubating the cells with medium contain- 
ing [32p]-phosphate and then separating the labelled 
phosphoproteins by a variety of techniques including 
sodium dodecyl sulphate-polyacrylamide gel (SDS) 
electrophoresis. Benjamin and Singer [110, 111] were 
the first to apply such techniques to the investigation 
of the effects of insulin on protein phosphorylation in 
rat fat cells. Since then this approach has been further 
developed by others including ourselves [112-115]. In 
particular, subcellular fractionation and specific im- 
munoprecipitation have been employed to separate 
and identify a number of the major labelled phos- 
phoproteins [18, 67, 112-117, 129]. 

Table 2 lists the principle alterations in protein 
phosphorylation which have been reported in fat cells 
exposed to insulin or adrenaline. From Table 1, it 
might have been expected that the common charac- 
teristic of insulin action would be the dephosphoryl- 
ation of a number of key intracellu!ar proteins. In fact, 
under basal conditions, the dephosphorylation of on- 
ly one protein has been demonstrated, namely of the 
a-subunit of the pyruvate dehydrogenase complex 
[67] which confirms the view that the activation of this 
mitochondrial enzyme in fat cells exposed to insulin 
results from a greater proportion of this enzyme being 
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present in its active non-phosphorylated form [67-71]. 
The most obvious effect of insulin is to cause an in- 
crease in the phosphorylation of at least five different 
proteins. Before discussing these phosphoproteins in 
more detail, it is necessary to be confident that the ob- 
served increases in the incorporation of p2P]-phos- 
phate into these intracellular phosphoproteins do in- 
deed represent increases in the overall level of phos- 
phorylation of the individual proteins. It is possible, 
in principle, that insulin might stimulate phosphopro- 
tein phosphatase activity and thus lead to the ob- 
served increase in [32p] incorporation simply because 
the turnover of certain phosphate groups would be in- 
creased. In such circumstances, increases in [32p] in- 

corporation could occur without any increase in the 
actual number of phosphate groups at the sites con- 
cemed. To ensure that this situation does not occur, 
differences in steady-state levels of incorporation of 
p2p] must be determined. Steady-state labelling of the 
intracellular phosphoproteins is reached after about 
60 min for isolated fat cells, then hormones are added 
and incubations continued until a new pattern of 
steady-state labelling is achieved (less than 10 min for 
both insulin and adrenaline). Confirmation that 
changes in turnover do not contribute to the observed 
alterations in [32p] incorporation requires that the hor- 
mone effects are reversible upon subsequent removal 
of the hormone. Recently it has been demonstrated 
that the two fold increases in phosphorylation of the 
proteins of subunit (M 0 130,000 (band 2) and 22,000 
(band 9) observed in small pieces of white adipose tis- 
sue exposed to insulin are essentially reversed on sub- 
sequently adding anti-insulin serum to the incubation 
medium (G. Belsham unpublished observations). 

The increased phosphorylation of a protein of 
subunit Mr of 130,000 was the first effect of insulin on 
specific protein phosphorylation in fat cells to be rec- 
ognised [110-113] mainly because this protein is pres- 
ent in particularly high concentrations in fat cells. 
More recently, immunoprecipitation has revealed 
that the protein is ATP-citrate lyase [122-124]. In- 
creased phosphorylation of this protein is also ob- 
served in cells exposed to adrenaline. The physiologi- 
cal role of these changes in phosphorylation remain a 
mystery as changes in phosphorylation have not been 
found to have any effect on the catalytic activity of 
ATP-citrate lyase [122-124, 133]. Studies in our labo- 
ratory have shown that insulin also causes very sub- 
stantial increases in the overall phosphorylation of 
two other smaller intracellular proteins with subunit 
Mr of 35,000 and 22,000 [18, 67, 114, 132]. The identity 
of these proteins has yet to be completely established. 

The protein of Mr 35,000 is associated with the 
"microsomal" fraction and may be the ribosomal pro- 
tein $6. Insulin has been reported to increase the phos- 

phorylation of this protein in cultures of 3T3-L1 cells 

[130, 13 l] but, maybe, decrease its phosphorylation in 
the liver [134]. The protein of Mr 22,000 may be of par- 
ticular importance in insulin action. It has a number 
of unusual properties in common with inhibitor-1 of 
the general phosphoprotein phosphatase mentioned 
in the previous section. For example, it is not precipi- 
tated by 2% trichloracetic acid or by boiling. It also 
has approximately the same subunit Mr as deter- 
mined by SDS-polyacrylamide gel electrophoresis 
[132]. As expected, increased phosphorylation of the 
protein is evident after exposure of the cells to adrena- 
line which increases cyclic AMP concentration [132]. 
The even greater degree of phosphorylation of this 
protein in cells exposed to insulin does not fit into cur- 
rent thinking about the role of inhibitor-1 [105, 106, 
135]. Either the labelled protein in fat cells is not 
inhibitor-1 but rather a closely related protein or pres- 
ent concepts concerning the regulatory role of inhibi- 
tor-I are incomplete. 

Detection of changes in the phosphorylation of a 
phosphoprotein (subunit Mr 85,000) which is most 
probably triacylglycerol lipase has been achieved by 
Belfrage and colleagues [127, 128]. Due to the high 
specific activity of this enzyme, its concentration in fat 
cells is very low compared with many other phos- 
phoproteins. 

So far we have only considered changes in overall 
incorporation of [32p] into specific intracellular pro- 
teins. Many proteins may be phosphorylated at more 
than one site and thus changes in overall phosphoryl- 
ation may give only limited information. Pyruvate de- 
hydrogenase and acetyl CoA carboxylase are both 
good examples; studies with purified preparations of 
these two enzymes have shown that they may be phos- 
phorylated at multiple sites [81,136-139]. In the case 
of pyruvate dehydrogenase, phosphorylation at three 
separate sites on the a-subunits (by the tightly bound 
kinase) has been demonstrated. Phosphorylation of 
only one of the three sites is required to achieve full in- 
activation of the enzyme [136]. Randle and his col- 
leagues have argued on the basis of studies on the en- 
zyme from heart muscle that the phosphorylation of 
the other two sites may serve as a means of regulating 
the activity of pyruvate dehydrogenase phosphatase 
[140-143]. Thus the possibility arises that the effect of 
insulin on fat cell pyruvate dehydrogenase activity 
could involve changes in the relative occupancy of the 
three sites. Techniques were therefore developed in- 
volving rapid immuno-isolation, trypsin digestion 
and separation of phosphopeptides which allow the 
relative level of phosphorylation of the sites to be as- 
sessed [67]. All three sites were shown to be phospho- 
rylated in intact fat cells but no evidence for any 
change in the relative occupancy of the three sites was 
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Fig. 1. Effects of insulin and adrenaline on the phosphorylation of 
specific sites on acetyl CoA carboxylase in rat epididymal fat cells. 
Fat cells were incubated with pzp] phosphate and hormones as ap- 
propriate and [32p]-acetyl CoA carboxylase isolated by immuno- 
precipitation [116, 117]. Following trypsin digestion the [3zP]-phos- 
phopeptides were separated by two-dimensional analysis on thin 
layer cellulose plates [139]. Dinitrophenyl-lysine (DNP-lysine) was 
used as an internal reference for mobility in the electrophoresis di- 
mension. In the chromatography dimension mobility is expressed 
as a fraction (RJ) of that of the solvent front. (DNP-lysine moved 
with an Rf of 0.8-0.9 in the chromatography dimension.) The [3ap]_ 
phosphopeptides were located by autoradiography, assigned to 
groups C, A or I according to observed mobility as indicated in the 
figure, and then quantified by densitometry. Results are expressed 
as mean _ SEM (ten observations) 

found following treatment with insulin and it was 
concluded that insulin decreases the level of phos- 
phorylation of all three sites in parallel [67]. Similar 
techniques have now been applied to acetyl CoA car- 
boxylase with markedly differing results. As indicat- 
ed in Figure 1, tryptic digestion of acetyl CoA carbox- 
ylase from fat cells gives rise to a number of different 
labelled phosphopeptides. After exposure of the cells 
to adrenaline, the activity of acetyl CoA carboxylase 
is diminished and this is associated with increased 

[32p]-labelling of certain phosphopeptides. These ap- 
pear to match those obtained with purified rabbit 
mammary gland enzyme phosphorylated with cyclic 
AMP dependent protein kinase [139]. In contrast, aft- 
er exposure to insulin (which increases the activity of 
acetyl CoA carboxylase), a marked increase in phos- 
phorylation of a single different peptide was apparent 
and no change was discernible in the phosphopep- 
tides principally affected by adrenaline. We conclude 
that inhibition of acetyl CoA carboxylase by adrena- 
line is probably brought about by the increased phos- 
phorylation of specific sites on the enzyme by the cy- 
clic-AMP dependent protein kinase. Activation by in- 
sulin also appears to be associated with increased 

phosphorylation but at a different site and presum- 
ably brought about by a different protein kinase. It 
seems reasonable to extend this line of thinking to the 
other phosphoproteins in fat cells which exhibit in- 
creased phosphorylation in the presence of both insu- 
lin and adrenaline (ATP-citrate lyase and proteins of 
subunit Mr of 61,000, 35,000 and 22,000). This has 
lead us to search for a cyclic AMP independent pro- 
tein kinase which might play a central role in insulin 
action and this will be discussed further below. 

Very few studies on the effects of insulin on specif- 
ic protein phosphorylation have been carried out us- 
ing cells other than isolated rat epididymal fat cells. In 
liver cells under basal conditions, it has been reported 
that insulin causes the increased phosphorylation of 
an unidentified cytoplasmic protein of subunit Mr 
46,000 [144] as well as ATP-citrate lyase (Mr 130,000) 
[145]. We know of no studies using insulin in muscle 
preparations although they are clearly technically 
possible [146-147]. Studies into the phosphorylation 
of glycogen synthase within muscle cells may be espe- 
cially illuminating. Extensive studies on the purified 
muscle enzyme have shown that it is possible to phos- 
phorylate a total of six to nine different sites on the 
protein [148-151]. In general terms, it has been found 
that as more sites are phosphorylated, the enzyme be- 
comes increasingly insensitive to activation by glu- 
cose 6-phosphate. Phosphorylation at specific sites 
on the purified muscle enzyme has been shown to be 
brought about by a number of different protein ki- 
nases including cyclic AMP dependent protein kinase 
and phosphorylase b-kinase [152] plus other less well 
characterised ldnases [1.48-151] including a Ca 2+ acti- 
vated protein kinase which can be distinguished from 
phosphorylase b-kinase [153]. Clearly studies con- 
cerned with establishing the mechanism of action of 
insulin on glycogen synthase would be more soundly 
based if the actual changes in phosphorylation of the 
various sites of the enzyme in muscle cells following 
exposure to insulin could be determined. It is even 
possible that insulin may lead to an increase in the 
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phosphorylation of a specific site or sites on glycogen 
synthase as found for acetyl CoA carboxylase in fat 

cells. 

Consideration of Some Hypotheses of Insulin Action 

Changes in Cyclic Nucleotides 

It is well established that under appropriate condi- 
tions, insulin can cause a diminution in the concentra- 
tion of cyclic AMP and a transient increase in the con- 
centration of cyclic GMP in fat and liver cells. How- 
ever, it is quite evident that these changes cannot offer 
a complete or satisfactory explanation for the mech- 
anism of action of insulin. Indeed, in muscle cells no 
changes in cyclic nucleotide concentrations have 
been found [7, 108, 154-156]. This field has been re- 
viewed extensively by others [7, 22, 86, 109, 157-159] 
and only an outline will be given here. 

Under basal conditions (i. e. in the absence of 
other hormones), little or no effect of insulin on cyclic 
AMP levels in fat or liver cells is found, although 
many effects of insulin are manifested under these 
conditions (Tables 1 and 2). Convincing decreases in 
cyclic AMP concentrations can be observed when 
these cells are incubated with other hormones which 
increase cyclic AMP. As mentioned earlier, these de- 
creases in cyclic AMP may offer a partial explanation 
of the ability of insulin to reverse the effects of adrena- 
line on lipolysis in fat cells and the effects ofglucagon 
on gluconeogenesis and glycogen breakdown in liver 
cells. However, the decreases, especially in fat cells, 
have often been shown to be insufficient to provide a 
complete explanation [86, 160, 161] but not always 
[162]. 

No role has been found for the transient rise in 
cyclic GMP observed in fat and liver cells exposed to 
insulin [22, 157]. Other agents such as carbachol and 
nor-adrenaline can bring about similar changes with- 
out having the characteristic effects of insulin [163, 
164]. In contrast, the rise in cyclic GMP with insulin is 
greatly diminished in fat cells incubated in Ca 2+ free 
medium but the metabolic effects of insulin remain 
essentially unaltered [ 163]. 

Although changes in the cyclic nucleotides might 
only play a rather minor role in bringing about the ef- 
fects of insulin, it is still important to establish the 
mechanisms underlying the changes since this may 
help to identify other perhaps more fundamental ele- 
ments in insulin action. To date, most of the emphasis 
has been focussed on the means whereby insulin de- 
creases the concentration of cyclic AMP. 

There have been reports of the inhibition of ade- 
nyl cyclase activity in plasma membrane preparations 

by insulin [165-168], but others have been unable to 
demonstrate such effiects [7]. In contrast, it has been 
found in many laboratories that exposure of fat or liv- 
er cells to insulin leads to an increase in the activity 
of a low Km particulate phosphodiesterase [34-44] 
(Table 1). However, the role of this activation is some- 
what mysterious as conditions which result in high 
levels of cyclic AMP in liver and fat cells also lead to 
activation of phosphodiesterase [36, 38-40]. In fact, it 
would appear that under the very conditions where 
insulin causes the most convincing diminution in lev- 
els of cyclic AMP, there is little or no effect of insulin 
on this phosphodiesterase. 

Marchmont and Houslay have recently reported 
evidence showing that the activity of phosphodiester- 
ase associated with liver plasma membranes is dou- 
bled upon incubation of the membranes with insulin 
in the presence of ATP and cyclic AMP [43]. It ap- 
pears that this doubling of activity is brought about by 
a cyclic AMP-dependent protein kinase embedded in 
the liver plasma membrane and regulated by insulin 
binding to its receptor [42-44[. The physiological im- 
portance of these very interesting findings remain to 
be established since the effects of insulin on the activi- 
ty and phosphorylation of this phosphodiesterase ac- 
tivity have yet to be demonstrated in intact liver cells. 
Moreover, activation of a cyclic AMP-dependent 
protein kinase does not seem to offer a satisfactory ex- 
planation for other intracellular effects of insulin. 

Changes in the Concentration of Calcium Ions (Ca e + ) 

It has been suggested that an increase in cytoplasmic 
Ca 2+ may be a key element in the mechanism of ac- 
tion of insulin [169, 170]. The principle evidence for 
this hypothesis has been obtained from the study of 
45Ca effiux from preloaded fat cells, although the ac- 
tual observations have been rather contradictory. 
Thus, Clausen and Martin [171] reported that insulin 
increases 45Ca efflux while Kissebah and co-workers 
found that insulin inhibited effiux especially in the 
presence of adrenaline [172, 173]. Amazingly, the two 
groups both came to the same conclusion, namely 
that insulin increases cytoplasmic C a  2+. Since, as 
mentioned above, extracellular Ca 2 + does not appear 
to be required for insulin action, it has to be assumed 
that any rise in cytoplasmic Ca 2+ must be brought 
about by the release of Ca 2 + from intracellular sites, 
perhaps on the plasma membrane. Further evidence 
that insulin may alter cell C a  2+ has been presented by 
Pershadsingh and McDonald who have found inhibi- 
tion of Ca2+-dependent ATPase activity in fat cell 
membranes on addition of insulin [174] or from insu- 
lin-treated cells [175]. However, the effects of insulin 
in these studies were rather modest and were only ob- 
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served with fat cell membranes at a very low magne- 
sium concentration. 

One attraction of this hypothesis is that a rise in 
cytoplasmic Ca 2+ would be expected to result in an 
increase in intramitochondrial Ca 2+ [176] which 

could explain the activation of pyruvate dehydrogen- 
ase since pyruvate dehydrogenase phosphate phos- 
phatase is activated by Ca 2+ [177]. The effect of  insu- 
lin on pyruvate dehydrogenase activity persists du- 
ring the preparation and subsequent incubation of 
mitochondria from fat cells [63, 64, 178, 179]. This 
phenomenon has allowed evidence to be obtained 
which strongly suggests that the effect of insulin does 
involve stimulation of the phosphatase (rather than 
inhibition of the kinase) [178]. 

The weakness of the hypothesis is the lack of evi- 
dence that a rise in cytoplasmic Ca 2+ could bring 
about any of the cytoplasmic effects of insulin. In 
contrast, such a rise would be expected to bring about 
a range of effects which are certainly not characteris- 
tic of  insulin, including an increase in glycogen break- 
down because of the activation of phosphorylase ki- 
nase. Indeed, in the rat liver, insulin opposes the ef- 
fects of phenylephrine on glycogen breakdown and 
gluconeogenesis-effects which are widely considered 
to be brought about by an increase in cytoplasmic 
Ca 2+ [180-182]. In any case, it is possible to envisage 

other mechanisms whereby insulin may increase the 
intramitochondrial level of Ca 2+ and thus perhaps in- 
fluence pyruvate dehydrogenase activity without the 
need for an increase in cytoplasmic Ca 2+. For exam- 
ple, exposure of cells to insulin could result in a 
change in the activity of one of the transport system s 
which determine the distribution of Ca 2+ across the 
inner mitochondrial membrane [183, 184]. Jarett and 
his colleagues have suggested that insulin may alter 
the relationship between bound and free forms of 
Ca 2+ associated with fat cell mitochondria [185]. 

Role of Hydrogen Peroxide (1-1202) 

It has been proposed that H202 may act as a second 
messenger for insulin. Modest concentrations of 
H202 bring about a range of effects on fat cell metabo- 
lism which are rather similar to those seen with insu- 
lin, including increases in the conversion of glucose to 
glyceride glycerol and fatty acids and inhibition of 
lipolysis [186, 187]. Insulin also increases the oxida- 
tion of formate in intact fat cells. This has been taken 
as indicating that insulin can initiate the formation of 
H202 [188] although as far as we are aware there is no 
evidence that the oxidation of formate necessarily in- 
volves H20> More direct evidence for the view that 
insulin may stimulate the formation of H202 has been 
given by Muckerjee and Lynn [189]. They have report- 

ed that exposure of a crude fat cell membrane prepa- 
ration to insulin results in the stimulation of a 
NADPH oxidase which forms H202 and that in- 
creased release of H202 could be detected in intact fat 
cells incubated with insulin [189]. However, these key 
observations have yet to be confirmed by others [see 
187, 188]. 

Another difficulty with the view that H202 acts in 
any sense as a second messenger for insulin is that it is 
far from obvious how an increase in cell H202 could 
initiate any of the range of insulin effects. It has been 
reported that exposure of intact mitochondria to low 
concentrations of peroxides can result in the activa- 
tion of pyruvate dehydrogenase [190] but we have 
been unable to obtain any activation which could not 
be accounted for simply by a decrease in the 
mitochondrial ADP/ATP ratio [J. McCormack, 
W. A. Hughes and R. M. Denton, unpublished ob- 
servations]. 

Role of a Peptide Mediator 

Lamer and colleagues have extracted hind limb mus- 
cle from control and insulin-treated rats with acetic 
acid. After boiling and removal of denatured protein, 
the components in the extract were then separated by 
paper and sephadex G-25 chromatography. Evidence 
was obtained that one fraction contained a substance, 
probably a small peptide of 10-20 amino acids, which 
not only inhibited cyclic AMP dependent protein ki- 
nase but also activated glycogen synthase phosphate 
phosphatase. The amount or activity of this substance 
was apparently greater in fractions derived from insu- 
lin treated tissue [154, 191]. These findings led Lamer 
and his group to suggest that "this peptide or peptide- 
like substance may constitute an insulin mediator" 
and that it might be released in some way from the 
plasma membrane following interaction of insulin 
with the insulin receptors [191]. If insulin caused the 
intracellular release of such a mediator it might ex- 

plain the activation of glycogen synthase in muscle 
which is assumed to involve dephosphorylation but 
occurs in the absence of any detectable change in the 
concentration of cyclic AMP [7, 108, 154-156]. Many 
aspects of this interesting hypothesis remain to be es- 
tablished. Most importantly, the "peptide" needs to 
be purified and characterised. Significantly, further 
purification using paper electrophoresis appears to 
have revealed the presence of two mutually antago- 
nistic agents in the fractions used in the original stud- 
ies [192]. There also may be a problem of stoichiome- 
try in this hypothesis which will be discussed in the fi- 

nal section. 
Seals, Jarett and colleagues have reported that 

they are able to demonstrate an effect of insulin on fat 
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cell pyruvate dehydrogenase in a cell free system 
comprising of fat cell plasma membranes and mito- 
chondria [193-200]. They have concluded that insulin 
causes the release of a factor from the plasma mem- 
branes, similar if not identical to that described by 
Larner's group, which is then capable of activating 
pyruvate dehydrogenase phosphate phosphatase and 
thus increasing the activity of pyruvate dehydrogen- 
ase in the mitochondria. These are potentially excit- 
ing findings but it is at present difficult to assess their 
physiological importance for a number of reasons in- 
cluding those outlined below. 

The treatment of the mitochondrial fraction (in- 
cluding freezing) probably resulted in the pyruvate 
dehydrogenase system no longer being entirely en- 
closed within an intact inner-mitochondrial mem- 
brane and thus might allow interactions which could 
not Occur in vivo. The actual changes in activity ob- 
served were small compared with those found in vivo, 
and also varied greatly between studies (compare 
[195, 196] and [199]). Moreover the changes in activity 
may not necessarily reflect alterations in phosphory- 
lation since estimates of the proportion of the total 
complex in its active form were not routinely made in 
these studies. Finally most of the studies were carried 
out at 50 ~tmol/1 calcium chloride and 50 gmol/1 
magnesium chloride so the phosphatase was prob- 
ably exposed to saturating concentrations of Ca 2+ but 
sub-optimal concentrations of magnesium: this is the 
reverse of the likely situation in vivo. 

Despite much effort, we have not found it possible 
to obtain any appreciable effect of insulin on pyrn- 
vate dehydrogenase activity in systems similar to 
those used in the studies of Seals and Jarett in this lab- 
oratory (W. A. Hughes, R. M. Denton, J. G. McCor- 
mack, unpublished observations). 

Activation o f  a Cyclic Nucleotide Independent Protein 

Kinase 

We have already emphasised that exposure of fat cells 
to insulin leads to an increase in phosphorylation of at 
least five different intracellular proteins (Table 2). 
The possibility must therefore be entertained that a 
fundamental aspect of the mechanism of action of in- 
sulin might be activation of a protein kinase presum- 
ably quite distinct from the better known C a  2+ and 
cyclic nucleotide sensitive protein kinases. 

The first evidence suggesting that such a kinase 
might exist was presented by Benjamin and Singer 
[111] who examined the ATP-dependent phosphoryl- 
ation of proteins in a high-speed supernatant fraction 
of adipose tissue previouSly incubated in the presence 
or absence of insulin. They found that the extent of 
phosphorylation of a protein of subunit Mr 140,000 

(now known to be ATP-citrate lyase) was increased in 
fractions from insulin-treated tissue. A similar type of 
approach has recently been employed to investigate 
the phosphorylation of the ribosomal protein $6 in 
3T3-L1 cell extracts. Again it was observed that phos- 
phorylation was enhanced in extracts derived from 
insulin treated cells [131]. In both instances, the cyclic 
AMP independent kinases involved have been partly 
characterised and they may phosphorylate these pro- 
teins at different sites from those phosphorylated by 
cyclic AMP dependent protein kinase [201,202]. Un- 
fortunately, the physiological importance of the phos- 
phorylation of both ATP-citrate lyase and the ribo- 

somal protein $6 remain obscure as no changes in ac- 
tivity or function have been observed with alterations 
in phosphorylation. Nevertheless, this pattern of 
phosphorylation fits in very well with our own recent 
studies on acetyl CoA carboxylase in fat cells de- 
scribed in an earlier section. 

It will be recalled that the phosphorylation of ace- 
tyl CoA carboxylase in fat cells appears to be in- 
creased following exposure of ceils either to insulin or 
to adrenaline. However, different sites are phospho- 
rylated and appear to cause the observed increase and 
decrease in activity respectively. The sites phospho- 
rylated in cells exposed to adrenaline appear to be the 
same as those phosphorylated by cyclic AMP de- 
pendent protein kinase [139]. We have searched for a 
separate protein kinase which might be involved in 
the action of insulin on this enzyme and have recently 
found such an activity - apparently associated with 
the plasma membrane. As indicated in Figure 2, incu- 
bation of acetyl CoA carboxylase with purified fat 
cell plasma membranes and ATP resulted in a marked 
increase in activity and this increase was associated 
with phosphorylation of the enzyme. The protein ki- 
nase appeared to be insensitive to cyclic nucleotides 
and Ca 2+ [80]. 

With the above findings as background we have 
formulated the simple working hypothesis indicated 
in Figure 3. The essential feature is that the binding of 
insulin to its plasma membrane receptors leads to the 
activation of a protein kinase associated with the plas- 
ma membrane without the need for the generation of 
an intracellular second messe.nger or mediator such as 
a cyclic nucleotide, metal ion or small peptide. The 
activated kinase would then bring about the increased 
phosphorylation of a range of intracellularproteins 
and enzymes involved directly or indirectly in bring- 
ing about the observed effects of insulin. The simplest 
means of activation we can envisage is that the kinase 
dissociates from specific sites on the inner face of the 
plasma membrane following the formation of insulin- 
receptor complexes. This form of activation is rather 
analogous to the dissociation of the catalytic subunits 
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Fig. 2. Activation of fat cell acetyl CoA carboxylase following phosphorylation by a plasma membrane-associated cyclic AMP independent 
kinase. Partially purified acetyl CoA carboxylase was incubated with the additions indicated. To determine phosphorylation, [y-3zP]-ATP 
was used and incorporation into acetyl CoA carboxylase measured following sodium dodecyl-sulphate-polyacrylamide gel electrophoresis. 
Fat cell plasma membranes were prepared as described by Belsham et al. [129]. Results taken from Brownsey et al. [80] where further details 
are given including the preparations of cyclic AMP dependent protein kinase and its inhibitor protein used. * * indicates control condition 
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of  the cyclic AMP dependent  protein kinase initiated 

by the binding of  cyclic AMP to the regulatory sub- 

units. Such a mechanism would explain why persist- 

ant increases in the ability of  high-speed supernatants 
to phosphorylate ATP-citrate lyase and the ribosomal 

protein $6 have been observed following the expo- 
sure of  cells to insulin. 

Epidermal growth factor may act in a similar fash- 
ion to that envisaged in Figure 3 for insulin. The bind- 

ing of  this growth factor to specific receptors on the 
outside of  A-431 epidermoid carcinoma cells has 

been shown to activate a membrane-bound protein 

kinase. This kinase appears to phosphorylate itself 

plus a range of  soluble proteins [203-205]. 

Several studies have been carried out in which 
the effects of the direct addition of  insulin on the ac- 
tivity of  protein kinases in plasma membrane prepa- 

rations have been investigated. Unfortunately, the re- 
suits, are rather confusing which no doubt reflects the 

inherent difficulties in this type of  study. Seals et al. 
report a decreased labelling of  a fat cell plasma mem- 

brane protein of subunit Mr 120,000 (in' addition to 
the changes in the labelling of  pyruvate dehydrogen- 
ase discussed above) [193, 194]. Tran and Desbuquois 
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found a small diminution in the overall phosphoryla- 
tion of proteins associated with rat liver plasma mem- 
branes apparently largely due to the decreased phos- 
phorylation of two proteins ofsubunit Mr 110,000 and 
60,000 [206]. However, Marchmont and Houslay have 
reported that incubation of rat liver plasma mem- 
branes with insulin in the presence of cyclic AMP 
causes the decreased phosphorylation of two integral 
proteins of subunit Mr 140,000 and 80,000 while in- 
creasing the phosphorylation of three peripheral 
membrane proteins (subunit Mr 52,000,  28,000 and 
14,000) [42]. Most compatible with the hypothesis un- 
der discussion are the studies of Walaas and col- 
leagues [207, 208]. These studies indicated that a plas- 
ma membrane fraction prepared from rat hind-limb 
muscle contained protein kinase activity which was 
activated on addition of insulin especially in the pres- 
ence of GTP (guanosne 5'-phosphate). The activated 
kinase phosphorylated both an endogenous substrate 
Mr 16,000) as well as added histone II a. In none of the 
above cases have the observed changes in phospho- 
rylation been shown to occur within intact cells incu- 
bated with insulin [129]. 

triglyceride lipase, and hydroxymethyl glutaryl CoA 
reductase in the cytoplasm and pyruvate dehydrogen- 
ase within mitochondria. To date, dephosphorylation 
following exposure of cells to insulin has only been 
demonstrated directly in intact cells for fat cell triacyl- 
glycerol lipase (in the presence of noradrenaline) [ 127, 
128] and for fat cell pyruvate dehydrogenase [67]. We 
would like to suggest that the phosphorylation of the 
protein of subunit Mr 22,000 observed in insulin treat- 
ed fat cells may turn out to play an important role in 
initiating the dephosphorylation of some cytoplasmic 
enzymes. The protein has very similar physical prop- 
erties to inhibitor-1 which upon phosphorylation by 
cyclic AMP dependent protein kinase inhibits the ac- 
tivity of the "general" phosphoprotein phosphatase. 
It does not seem unreasonable to suppose that the 
phosphorylation of a related protein or even the same 
protein on different sites might have exactly the oppo- 
site effect and activate this phosphatase. 
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Final Comments 

It can be estimated that the number of plasma mem- 
brane insulin receptors which need to be occupied to 
initiate a maximum response is in the range of t07-109 
for each txl of cytoplasm of liver, muscle and fat cells 
[11,209]. If it is assumed that only one molecule of a 
mediator or messenger of insulin action is generated 
and released into the cytoplasm for each occupied in- 
sulin receptor, the cytoplasmic concentration of the 
mediator would only be in the range 0.01 to 1 nmol/1. 
The concentrations of likely targets such as cyclic 
AMP dependent protein kinase, the general phos- 
phoprotein phosphatase, pyruvate dehydrogenase 
phosphatase, phosphorylase kinase, inhibitor-1 are 
far greater than this as all are probably present at 
more than 0.1 txmol/1. Therefore hundreds, if not 
thousands of copies of the mediator must be released 
per occupied insulin receptor or some other form of 
amplification is required. The release from the inside 
of the plasma membrane of a protein kinase able to 
phosphorylate many intracellular protein molecules 
clearly meets this requirement for amplification, 
whereas the direct release of a peptide mediator as en- 
visaged by Lamer [154, 191,192] would not. 

A major weakness with our working hypothesis 
(illustrated in Figure 3) is that it offers no immediate 
explanation for those effects of insulin which appear 
to involve the dephosphorylation of certain enzymes 
including glycogen synthase, phosphorylase kinase, 
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