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ABSTRACT

In a previous paper [J. R. Mannouch and J. O. Richardson, J. Chem. Phys. 153, 194109 (2020)], we derived a new partially linearized mapping-
based classical-trajectory technique called the spin partially linearized density matrix (spin-PLDM) approach. This method describes the
dynamics associated with the forward and backward electronic path integrals using a Stratonovich–Weyl approach within the spin-mapping
space. While this is the first example of a partially linearized spin-mapping method, fully linearized spin-mapping is already known to be
capable of reproducing dynamical observables for a range of nonadiabatic model systems reasonably accurately. Here, we present a thorough
comparison of the terms in the underlying expressions for the real-time quantum correlation functions for spin-PLDM and fully linearized
spin mapping in order to ascertain the relative accuracy of the two methods. In particular, we show that spin-PLDM contains an additional
term within the definition of its real-time correlation function, which diminishes many of the known errors that are ubiquitous for fully
linearized approaches. One advantage of partially linearized methods over their fully linearized counterparts is that the results can be system-
atically improved by re-sampling the mapping variables at intermediate times. We derive such a scheme for spin-PLDM and show that for
systems for which the approximation of classical nuclei is valid, numerically exact results can be obtained using only a few “jumps.” Addition-
ally, we implement focused initial conditions for the spin-PLDM method, which reduces the number of classical trajectories that are needed
in order to reach convergence of dynamical quantities, with seemingly little difference to the accuracy of the result.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0031173., s

I. INTRODUCTION

Trajectory simulations offer a computationally cheap, as well
as a physically motivated, approach for calculating dynamical
quantum-mechanical observables in condensed-phase systems.1

This explains the current popularity of methods such as Ehrenfest
dynamics2,3 and Tully’s fewest-switches surface hopping.4

Certain methods within this class can be rigorously derived
from a path-integral formulation of real-time quantum correlation
functions. Upon linearizing the difference between the forward and
backward nuclear paths, the resulting expression for such quantities
is ideally suited for evaluation with classical trajectories. In order
to simulate nonadiabatic processes, a quantum–classical approach

is needed, by which the electronic dynamics can also be described
within the same classical-trajectory picture.

One such category of quantum–classical approaches that fits
into this formalism contains the “fully linearized” methods so
called because the same linearization approximation used for the
nuclear paths is also applied to the electronic paths. Examples of
such methods are the linearized semiclassical initial-value repre-
sentation (LSC-IVR)5–8 and the Poisson-bracket mapping equation
(PBME)9,10 approaches, which both make use of the Meyer–Miller–
Stock–Thoss (MMST) mapping11,12 to describe the electronic
degrees of freedom, as well as fully linearized spin-mapping,13,14

which uses a Stratonovich–Weyl approach for describing the elec-
tronic dynamics within the spin-mapping space. Other forms of
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mapping also exist, from which fully linearized methods can be
derived.11,15–17 The spin-mapping formalism appears to result in
a more accurate fully linearized method than the MMST formal-
ism; for example, fully linearized spin-mapping almost always out-
performs LSC-IVR and PBME.13,14 However, we note that there
are alternative ways of improving fully linearized MMST mapping-
based techniques which make them comparable in accuracy to their
spin-mapping analogues.17–30

Another category of quantum–classical approaches also exists,
which encompasses the “partially linearized” methods,31 so called
because the electronic forward and backward paths, unlike the
nuclear paths, are explicitly described by separate dynamical vari-
ables. An exact solution of the quantum–classical Liouville equa-
tion (QCLE) in terms of independent trajectories does not exist,10,32

and hence, such methods necessarily provide only an approxi-
mate solution for the full dynamics of electrons coupled to clas-
sical nuclei. Most notable of these are the partially linearized
density matrix (PLDM)33–39 and the forward–backward trajectory
solution (FBTS)40–43 approaches, where the electronic dynamics
of the two paths are described using MMST mapping.11,12 In
Paper I,44 we developed a new partially linearized method, called
spin-PLDM, derived using the Stratonovich–Weyl transform to
describe the electronic dynamics within the spin-mapping space.
Based on results presented in that work, spin-PLDM appears to
reproduce real-time correlation functions with a greater accuracy
than other partially linearized methods.

Fully linearized and partially linearized quantum–classical
methods are derived using quite different approximations to the
underlying path integrals. It is therefore not a priori obvious which
one of these classes of mapping-based classical-trajectory tech-
niques will consistently produce the most accurate results, although
results in the literature suggest that PLDM and FBTS typically out-
perform PBME and LSC-IVR.45–48 Hence, one focus of the cur-
rent paper is to compare the terms entering the real-time cor-
relation functions for both spin-PLDM and fully linearized spin
mapping, in order to further understand the accuracy of comput-
ing dynamical observables with both methods. In particular, we
show in the proceeding analysis that spin-PLDM incorporates a
term with no analogue in the linearized method, which is con-
tained within the definition of the real-time correlation functions
of traceless operators. Including this term appears to diminish
many of the known errors that are ubiquitous for fully linearized
methods.

A clear advantage of partially linearized methods over their
fully linearized counterparts is that the accuracy of calculated
dynamical observables can be systematically improved to QCLE
results by re-sampling the mapping variables at intermediate times,
commonly referred to as employing “jumps.” Such schemes have
already been developed for partially linearized methods within
the MMST mapping space.33,41 While computationally expensive
to fully converge, such methods at least enable the error asso-
ciated with a calculated dynamical observable to be quantified,
which is to our knowledge not possible with fully linearized tech-
niques. In this paper, we obtain a jump spin-PLDM method
and show that typically only a few “jumps” are required to cor-
rect spin-PLDM results toward the QCLE solution due to the
improved accuracy of spin-PLDM over other partially linearized
methods.

One factor that often limits the efficiency and applicability of
suchmapping-based classical-trajectory methods is the issue of sam-
pling. Often a large number of trajectories are required in order
to converge results for dynamical quantities of interest, in particu-
lar for systems that contain a large number of degrees of freedom.
In previous work, focused initial conditions have been developed
for mapping-based techniques to alleviate this problem by restrict-
ing the sampling space of initial electronic mapping variables to
the region that corresponds to the population of a single initial
electronic state. These initial conditions have previously been suc-
cessfully implemented for fully linearizedMMSTmapping,9,20,21,29,49

fully linearized spin-mapping,13,14 and partially linearized MMST
mapping techniques33,41,50,51 and typically require an order of mag-
nitude fewer trajectories in order to reach the same level of conver-
gence. We show in this paper that similar focused initial conditions
can be rigorously derived and also easily implemented for spin-
PLDM. Importantly, the accuracy of spin-PLDM results is practi-
cally unaffected by this modification. We hence believe that spin-
PLDM is one of the most promising methods for accurately and
efficiently calculating dynamical quantities within condensed-phase
nonadiabatic systems.

II. SPIN MAPPING

A. Fully linearized spin mapping

Fully linearized spin mapping13,14 describes the electronic
dynamics by evolving a single set of classical variables that are con-
strained to the surface of a hypersphere, where the possible radii
of the hypersphere are determined by the Stratonovich–Weyl trans-
form. Within this method, the accuracy of any obtained dynamical
quantities, such as real-time correlation functions, depends strongly
on the spin-sphere radius that is used. In previous work, it has
been found that the so-called W-sphere consistently produces the
most accurate results for a wide range of model systems.13,14 This
sphere is also the most symmetric choice in the sense that it is
“self-dual.”

It is simplest to analyze the method and perform the calcu-
lations using the Cartesian representation for the spin variables.
In terms of Cartesian mapping variables, this fully linearized W-
sphere method, which we will refer to as spin-LSC, has the following
expression for the real-time correlation function:

CAB(t) ≙ ⟨AW(Z)BW(Z(t))⟩spin-LSC, (1)

where the t = 0 value is implied for any quantity for which time,
t, is not explicitly stated. In this expression, Z ≙ {Z1,Z2, . . . ,ZF}
are the Cartesian mapping variables for an F-level system, where
Zλ = Xλ + iPλ are complex numbers associated with the electronic
state λ. These mapping variables represent the electronic degrees
of freedom of the system. Along with the nuclear phase-space vari-
ables x and p, these quantities are initially sampled in the definition
of the real-time correlation function from the spin-LSC average,
defined as

⟨⋯⟩spin-LSC ≙ ∫ dx dpdZ⋯ρW(Z)ρb(x, p), (2)
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where dZ ≙ ∏λ dXλdPλ and ρb(x, p) is the Wigner transform of the
initial nuclear density matrix, normalized such that ∫dx dp ρb(x, p)
= 1. Additionally, ρW(Z) is the initial distribution for the electronic
Cartesian mapping variables, which constrains them to lie on the
surface of the W-sphere,

ρW(Z) ≙ F δ(∣Z∣2 − R2
W)

∫ dZ δ(∣Z∣2 − R2
W) , (3)

where the factor F ensures the correct normalization such that
⟨1⟩spin-LSC ≙ tr∥Î∥ ≙ F and tr[⋯] is the partial trace over the elec-
tronic degrees of freedom. Finally, RW is the radius of the W-sphere,

R
2
W ≙ 2

√
F + 1. (4)

Because the Cartesian mapping variables are sampled uniformly
from the hypersphere in Eq. (2), we refer to this as full-sphere initial
conditions for the electronic degrees of freedomwithin the spin-LSC
technique.

For the spin-LSC correlation function, given in Eq. (1), the
electronic operators Â and B̂ are represented by their Stratonovich–
Weyl W-functions. The spin-LSC method can also be applied to
real-time correlation functions where Â and B̂ contain nuclear oper-
ators, although we will not consider such correlation functions in
this paper. The W-function of operator Â is

AW(Z) ≙ tr∥ÂŵW(Z)∥, (5)

which is defined in terms of the Stratonovich–Weyl kernel, ŵW(Z),
whose matrix elements are

⟨μ∣ŵW(Z)∣λ⟩ ≙ 1

2
(ZμZ

∗
λ − γWδλμ). (6)

The Stratonovich–Weyl kernel contains a zero-point energy param-
eter, γW, which for the W-spin sphere is given by

γW ≙ 1

F
(R2

W − 2). (7)

Inserting Eq. (6) into Eq. (5) leads to an equivalent expression for
the W-function of operator Â,

AW(Z) ≙ 1

2
∑
λ,μ

⟨λ∣Â∣μ⟩(Z∗λ Zμ − γWδλμ). (8)

The spin-LSC correlation function [Eq. (1)] approximates the
B̂ operator at time t by evolving in time the Cartesian mapping vari-
ables,Z, for the electronic degrees of freedom. These variables, along
with the nuclear phase-space variables, are propagated under the
following equations of motion:

dZλ

dt
≙ −i∑

μ

⟨λ∣V̂(x)∣μ⟩Zμ,

dx

dt
≙ p

m
,

dp

dt
≙ F0(x) + Fe(Z, x),

(9)

which despite the different derivation are completely equivalent to
those of the MMST fully linearized mapping approaches and thus
recover the exact electronic dynamics for an isolated subsystem.13

This is not necessarily the case for other dynamical methods based
on spin analogies.17 Within these equations of motion, the poten-
tial energy surface as a function of nuclear configuration has been
partitioned into two components: V0(x) + V̂(x). The former is
a state-independent potential, whereas V̂(x) includes electron-
nuclear coupling and is defined such that tr∥V̂(x)∥ ≙ 0 for all values
of x. The corresponding nuclear forces are given by

F0(x) ≙ −∇V0(x), (10a)

Fe(Z, x) ≙ −∇Vm(Z), (10b)

where ∇ is the gradient, a vector of derivatives with respect to the
nuclear positions. It has been observed from numerical simulations
that spin-LSC generally gives rise to more accurate correlation func-
tions than fully linearized approaches based on MMST mapping, in
particular for Â ≙ Î in asymmetric systems, where CIB(t) does not
tend to zero in the long-time limit. For these identity-containing cor-
relation functions, it can be shown that within spin-LSC, they have
the following simple form:

CIB(t) ≙ ⟨BW(Z(t))⟩spin-LSC. (11)

This means that the identity operator is treated exactly (i.e., as the
number 1) within the spin-LSC method. Whereas this appears nat-
urally in fully linearized spin-mapping methods, a modification of
MMST mapping was required to obtain a similar result.18,19,52

B. Spin-PLDM

Within the spin-LSC method, the Stratonovich–Weyl kernels
are used to describe the observable electronic operators, Â and
B̂, that appear within the real-time correlation function. The elec-
tronic dynamics is thus described by a single set of Cartesian elec-
tronic mapping variables, Z ≙ {Z1,Z2, . . . ,ZF}. In contrast, the
spin-PLDM method, derived in Paper I,44 is a partially linearized
approach, where the Stratonovich–Weyl kernels are used to describe
the forward and backward real-time propagators. This leads to an
expression for the real-time correlation function that contains two
sets of Cartesian mapping variables, Z and Z

′,

CAB(t) ≙ ⟨tr[Âŵ†

W(Z′, t)B̂ŵW(Z, t)]⟩
spin-PLDM

. (12)

The initial sampling of the Cartesian mapping variables, Z and Z
′,

along with the nuclear phase-space variables, x and p, is defined by
the spin-PLDM average, given by

⟨⋯⟩spin-PLDM ≙ ∫ dx dpdZdZ′⋯ρW(Z)ρW(Z′)ρb(x, p). (13)

Because each set of Cartesian mapping variables in Eq. (13) is uni-
formly sampled from the surface of a hypersphere, as for spin-LSC,
we refer to this as full-sphere initial conditions for the electronic
degrees of freedom within the spin-PLDM technique.
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In the spin-PLDM correlation function, the time-evolved
W-kernel, ŵW(Z, t), can be obtained by applying the time-ordered
propagator, Û(t), to the left of the W-kernel, defined by Eq. (6),

⟨μ∣ŵW(Z, t)∣λ⟩ ≙ 1

2
(Zμ(t)Z∗λ − γW⟨μ∣Û(t)∣λ⟩), (14)

where

Û(t) ≙ e−iV̂(x(tN))ϵ⋯e−iV̂(x(t2))ϵ e−iV̂(x(t1))ϵ. (15)

In addition, tk = kt/N is the time at each time-step of the propaga-
tion, andN is the number of time-steps. As for all classical-trajectory
methods, we wish to approach the N → ∞ limit when perform-
ing numerical calculations. The variables are evolved in spin-PLDM
under the same equations of motion as Eq. (9) withZ′ treated equiv-
alently to Z, except that the expression for the electronic dependent
nuclear force is now given by

Fe(Z,Z′, x) ≙ −1
2
[∇Vm(Z) +∇Vm(Z′)]. (16)

Hence, the Cartesian mapping variables for the forward and back-
ward paths, Z and Z

′, respectively, are coupled in the equations of
motion via this nuclear force term.

As with all mapping-based classical-trajectory techniques, the
efficiency of these spin-mapping methods is often limited by the
number of trajectories one requires to converge the results. This
is potentially a greater issue for spin-PLDM because the initial
sampling now contains integrals over two sets of Cartesian map-
ping variables.53 However, such convergence issues can be allevi-
ated using focused initial conditions of the initial Cartesian mapping
variables, which we will first introduce for spin-LSC.

III. FOCUSED SAMPLING

A. Spin-LSC

Focused sampling has been previously implemented for spin-
LSC in Refs. 13 and 14. In this subsection, we present spin-LSC
focused initial conditions in a way that makes clear the connection
with focused sampling used in spin-PLDM, which will be introduced
in Sec. III B. For the case of real-time correlation functions with
an initial population operator, our approach becomes identical to
these previously implemented focused initial conditions but slightly
different if starting from non-diagonal operators.

The spin-LSC method described above makes use of the prop-
erties of the Stratonovich–Weyl kernel. In particular, the full-sphere
method relies on the fact that the trace of two operators can be
written as an integral over their corresponding W-functions,

tr∥ÂB̂∥ ≙ ∫ dZ ρW(Z)AW(Z)BW(Z), (17)

where ρW(Z) is the initial distribution for the Cartesian mapping
variables corresponding to the surface of the W-sphere [Eq. (3)]
and AW(Z) and BW(Z) are the W-functions of the corresponding
electronic operators [Eq. (8)].

This property is, however, also satisfied when using alternative
sampling distributions of the Cartesian mapping variables, such as
focused conditions,

tr∥ÂB̂∥ ≙ ∑
λ
∫ dZ ρ

(λ)
foc (Z)AW(Z)BW(Z). (18)

A proof showing that these focused conditions do satisfy this
W-function property and thus preserve all properties of the
Stratonovich–Weyl transform for any electronic operators Â and B̂
is given in Appendix A. These focused conditions are similar in form
to the full-sphere sampling of the initial Cartesian mapping vari-
ables, given by Eq. (17), but with the following differences. Instead
of simply constraining the mapping variables to lie on a hypersphere
defined by ∣Z∣2 ≙ R2

W, the mapping variables in the focused ini-

tial conditions are instead now constrained by ρ
(λ)
foc (Z), the focused

sampling distribution for the electronic state λ,

ρ
(λ)
foc (Z) ≙ δ(∣Zλ∣2 − γW − 2)∏μ≠λ δ(∣Zμ∣2 − γW)

∫ dZ δ(∣Zλ∣2 − γW − 2)∏μ≠λ δ(∣Zμ∣2 − γW) . (19)

This distribution, ρ
(λ)
foc (Z), still ensures the mapping variables are

on the surface of the hypersphere but also further constrains them
so that they entirely occupy the electronic state |λ⟩ in the sense that

∥∣μ⟩⟨μ∣∥W(Z) ≙ δμλ, (20)

for all Z with non-zero values of ρ
(λ)
foc (Z). Additionally, the factor

F within the definition of the full-sphere initial sampling in Eq. (2)
is now incorporated within the focused variant into the sum over
λ, a complete set of orthonormal electronic states onto which the
Cartesian mapping variables are focused.

From the definition of focused sampling in Eq. (18), the focused
spin-LSC correlation function then becomes

CAB(t) ≙ ⟨AW(Z)BW(Z(t))⟩focspin-LSC, (21)

where the focused spin-LSC average is defined as follows:

⟨⋯⟩focspin-LSC ≙ ∑
λ
∫ dx dpdZ⋯ρ(λ)foc (Z)ρb(x, p). (22)

The definition of this real-time correlation function is defined so
that the focusing, given by Eq. (22), is only performed at t = 0. This
is in contrast to the symmetrical quasi-classical (SQC) windowing
method, where windowing functions are used to essentially focus
trajectories at time t as well.20,21,29 For real-time correlation func-
tions with an initial population operator (i.e. Â ≙ ∣n⟩⟨n∣), the focused
initial sampling defined in Eq. (22) can be simplified as follows: using
the expression for the W-function of a population operator under
focused initial conditions, given by Eq. (20), the expression for this
focused spin-LSC correlation function then becomes

⟨∥∣n⟩⟨n∣∥W(Z)BW(Z(t))⟩focspin-LSC

≙ ∫ dx dpdZBW(Z(t))ρ(n)foc (Z)ρb(x, p), (23)
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which is identical to the expression used in Refs. 13 and 14. The
fact that only one term in the sum over λ in Eq. (22) contributes to
the spin-LSC real-time correlation function when Â ≙ ∣n⟩⟨n∣ means
that focused initial conditions are particularly simple in this case. To
treat correlations with off-diagonal (coherence) Â operators, how-
ever, one must include all of the terms in this sum over λ in Eq. (22).
Note that an alternative approach to implement focused initial con-
ditions more efficiently in this case was suggested in Refs. 13 and 54
by choosing a basis that diagonalizes the initial operator Â.

The constraints imposed within focused initial conditions can
easily be implemented using the following parameterization of the
Cartesian mapping variables:14

Zμ ≙ rμeiϕμ , (24)

where ϕμ is uniformly sampled from 0 to 2π, and when focused onto
λ, rμ is given by

rμ ≙√2δμλ + γW. (25)

In order to illustrate these focused conditions further, we consider
the case of a two-level system, in which the electronic state can be
described in terms of the expectation values of the Pauli spin matri-
ces and the identity operator. FromEq. (24), these expectation values
for focused initial conditions are

IW(Z) ≙ 1, (26a)

∥σx∥W(Z) ≙√γW(2 + γW) cos(ϕ2 − ϕ1), (26b)

∥σy∥W(Z) ≙√γW(2 + γW) sin(ϕ2 − ϕ1), (26c)

∥σz∥W(Z) ≙ ±1, (26d)

where the sign of the σz expectation value corresponds to the ini-
tial state for which the mapping variables are focused onto. Hence
each Cartesian mapping variable is focused onto one of two “polar
circles,” as illustrated in Fig. 1, and (ϕ2 − ϕ1) can be thought of
as the azimuthal angle around this circle, whereas (ϕ1 + ϕ2) is
an unimportant cyclic variable. In addition, the upper arctic cir-
cle satisfies ∥σz∥W(Z) ≙ 1, and the lower antarctic circle satisfies
∥σz∥W(Z) ≙ −1.

The focused initial conditions are basis-dependent, and hence,
there is a choice of which complete set of states to focus onto. Focus-
ing onto the electronic states that diagonalize the nuclear force oper-
ator guarantees that the nuclear dynamics are correct in the absence
of off-diagonal diabatic couplings. This is therefore advantageous for
systems far from the Born–Oppenheimer limit. Additionally, focus-
ing onto the adiabatic electronic states would be advantageous for
systems close to the Born–Oppenheimer limit. Note also that the
dynamics can be carried out equivalently in this representation.27

The model systems that we consider in this paper are all far from
the Born–Oppenheimer limit, as this is the regime that is tradition-
ally most difficult for mapping-based classical-trajectory techniques
to describe correctly. Hence, from now on, we will only use diabatic
focusing.

FIG. 1. Illustration of the two “polar circles” (red) on the W-spin sphere for
a two-level system, from which the Cartesian mapping variables are sampled
when using focused initial conditions. The upper arctic circle, having a latitude

cos θc ≙ 1/
√
3, corresponds to the electronic system solely occupying state |1⟩

[i.e. ∥σz∥W(Z) ≙ 1] and the antarctic circle to state |2⟩.

For the spin-LSC method, the difference in the converged
results between full-sphere and focused sampling was hardly notice-
able in our tests, but the latter required an order of magnitude fewer
trajectories. This is consistent with the results presented in Refs. 13
and 14, where the difference between computed correlation func-
tions using full-sphere and focused sampling within the spin-LSC
method (referred to in these papers as theW-method) is again hardly
noticeable. Note that this is by no means true of other mapping
approaches; for example, spin-mapping on the Q-sphere appears to
be fairly accurate when using full-sphere sampling but with focus-
ing reduces to Ehrenfest dynamics, which is known to be inaccurate.
From now on, the numerical results presented in this paper will only
be for the focused variant of spin-LSC. However, the proceeding
analysis and conclusions that we present are equally valid for both
full-sphere and focused variants.

B. Spin-PLDM

For spin-LSC, the key property required for a sampling scheme
is that it preserves the properties of the Stratonovich–Weyl kernel
in Eq. (17). For spin-PLDM, we require that the focused sampling
can correctly describe electronic quantum operators in terms of the
W-kernel. This is satisfied by the full-sphere sampling approach,

Â ≙ ∫ dZ ρW(Z)ŵW(Z)AW(Z) (27)

and also by the focused initial conditions,

Â ≙ ∑
λ
∫ dZ ρ

(λ)
foc (Z)ŵW(Z)AW(Z), (28)

J. Chem. Phys. 153, 194110 (2020); doi: 10.1063/5.0031173 153, 194110-5

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

as can be proved using the same arguments that are presented in
Appendix A. In spin-PLDM, two sets of Cartesian mapping vari-
ables are used, in order to represent both the forward and backward
electronic paths. Hence in focused spin-PLDM, both sets of map-
ping variables must be initially sampled independently using these
focused conditions. This leads to the following expression for the
correlation function:

CAB(t) ≙ ⟨tr[Âŵ†

W(Z′, t)B̂ŵW(Z, t)]⟩foc
spin-PLDM

, (29)

where the ensemble average now amounts to using focused condi-
tions for both sets of Cartesian mapping variables,

⟨⋯⟩focspin-PLDM ≙ ∑
λ,λ′
∫ dx dpdZdZ′⋯ρ(λ)foc (Z)ρ(λ

′)
foc (Z′)ρb(x, p).

(30)

Additionally, the factor of F2 within the definition of the spin-PLDM
full-sphere sampling, given in Eq. (13), is incorporated within the
focused variant by two independent sums over the complete set of
electronic states (|λ⟩ and |λ′⟩).

In contrast to the focused spin-LSC method, the focused spin-
PLDM method contains terms where the initial Cartesian mapping
variables for the forward and backward propagator paths are focused
onto different electronic states, |λ⟩ and |λ′⟩. Because fully linearized
methods only consider the average of these two paths, such con-
figurations cannot be represented in spin-LSC. The focused con-
ditions previously implemented for standard PLDM and FBTS41

also focus both the forward and backward paths onto the same ini-
tial electronic state, which can lead to poor results for long-time
dynamics or for systems with relatively strong electron-nuclear cou-
pling, degrading the results relative to standard PLDM/FBTS sam-
pling.33,41 Within the spin-PLDM approach, however, focusing leads
to almost the same result as with full-sphere sampling. Because
the Stratonovich–Weyl kernels are used to represent the forward
and backward propagators in spin-PLDM, rather than the observ-
able operators, none of the terms in the {λ, λ′} sum in Eq. (30) is
identically zero for the correlation function given in Eq. (29), even
when Â ≙ ∣n⟩⟨n∣. This means that although focused spin-PLDM is a
much more efficient method than performing spin-PLDMwith full-
sphere sampling, it still requires more terms to be calculated than for
spin-LSC.55

As for the spin-LSC focused conditions, the sampling of
focused spin-PLDM is now basis-dependent. However, using either
a diabatic or adiabatic basis seems the obvious choice, depending
on whether the system is close to or far away from the Born–
Oppenheimer limit. As stated before, we will only use diabatic
focusing in this paper.

IV. JUMP SPIN-PLDM

One advantage of partially linearized methods over their fully
linearized counterparts is that the associated results can be system-
atically approved toward an exact solution of the quantum–classical
Liouville equation. This can be achieved by re-sampling the Carte-
sian mapping variables at intermediate times, in order to relax

the approximations that were made within the derivation of stan-
dard PLDM/FBTS and spin-PLDM to describe the electronic
transition amplitudes in terms of continuous classical trajecto-
ries. Such schemes, called jump FBTS and iterative PLDM, have
already been implemented for standard PLDM/FBTS.33,41 While the
scheme is generally inefficient because the computational cost scales
exponentially with the number of “jumps,” the method can still
provide a useful way of quantifying the error associated with
dynamical quantities of interest, particularly because the computa-
tional cost for performing only a few jumps is relatively cheap.56

Following the derivation of jump FBTS, the analogous expression for
the real-time correlation function associated with jump spin-PLDM
is obtained as

CAB(t) ≙ ⟨tr
⎡⎢⎢⎢⎢⎣
Â(njump

∏
m≙0

ŵW(Z′m, tm))
†

B̂
njump

∏
m≙0

ŵW(Zm, tm)
⎤⎥⎥⎥⎥⎦
⟩
jump

spin-PLDM

,

(31)

where the product, ∏njump

m≙0 , places terms of successively increasing
m to the left of the previous terms. Equation (31) consists of per-
forming njump re-samplings or “jumps” for both sets of Cartesian
mapping variables after each time interval {t0, . . . , tnjump−1}. The time

intervals must be chosen to satisfy t ≙ ∑njump

m≙0 tm.
Because the sampling of Cartesian mapping variables using

either focused or full-sphere conditions allows any electronic opera-
tor to be exactly represented by a Stratonovich–Weyl kernel, as illus-
trated in Eqs. (27) and (28), either sampling scheme could be used to
perform the “jumps” within jump spin-PLDM. Due to the improved
convergence properties associated with focused conditions, this will
be used in our jump spin-PLDM scheme. This means that the jump
spin-PLDM average is defined as

⟨⋯⟩jump
spin-PLDM ≙ ∫ dx dp ρb(x, p)∫

njump

∏
m≙0

dZm dZ′m⋯

×
njump

∏
m≙0
∑
λm ,λ′m

ρ
(λm)
foc (Zm)ρ(λ′m)foc (Z′m), (32)

where Zm and Z
′
m correspond to the set of Cartesian mapping vari-

ables for the forward and backward propagation paths, respectively,
which are sampled at the beginning of the time interval tm and are
then time-evolved over the entire interval. The Cartesian mapping
variables for different time intervals are not independent from one
another due to the definition of the real-time correlation function in
Eq. (31), which contains matrix products of Stratonovich–Weyl ker-
nels associated with different time intervals. In contrast, the nuclear
phase-space variables within the jump spin-PLDM scheme are not
re-sampled at intermediate times. Additionally, using focused sam-
pling for the “jumps” within jump spin-PLDM means that for a
single trajectory, the electronic state discontinuously hops to the
various diabatic states λ at certain intermediate times, in close
analogy (but not equivalent)57 to Tully’s fewest-switches surface
hopping.4

In order to calculate a real-time correlation function up to time
t using njump jumps, the jump spin-PLDM method is implemented
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as follows: first, the time is split up into njump + 1 intervals, each of
length Δt = t/(njump + 1). For times 0 ≤ t′ < Δt, the real-time corre-
lation function is calculated using the standard spin-PLDMmethod,
with no jumps [i.e., Eq. (31) with t0 = t′ and njump = 0]. Then, for
times Δt ≤ t′ < 2Δt, the correlation function is calculated using
one jump within the jump spin-PLDM method, with t0 = Δt and
t1 = t′ −Δt. Performed in this way, the jumps are then always applied
at the end of every Δt time interval (except for the end of the last
interval). Practically, the real-time correlation function at all inter-
mediate times can be obtained by averaging over trajectories, each of
which is associated with a given instance of the njump sets of mapping
variables for the forward and backward paths, {Z0,Z1, . . . ,Znjump}
and {Z′0,Z′1, . . . ,Z′njump

}. While this is the simplest implementation
of the jump spin-PLDM scheme, more advanced schemes could be
used to improve the convergence of the method.41

Results for the jump spin-PLDM approach are given by Fig. 2,
which corresponds to the ⟨σx(t)⟩ expectation value for the sym-
metric low temperature spin-boson model considered previously in
Paper I.44 The ⟨σx(t)⟩ expectation value for this spin-boson model
was chosen as this was one of the few situations in which spin-PLDM
was seen to produce a significant error in the long-time limit. Fig-
ure 2 shows that as the number of jumps in jump spin-PLDM
is increased, the obtained results systematically converge toward
the numerically exact quasiadiabatic path-integral (QUAPI) result.
While the njump = 4 result still shows some deviation from the
numerically exact result, it is clear on comparison with results for
fewer jumps that this error will disappear when more jumps are
performed within the scheme. This is to be expected because the
spin-boson model contains a harmonic bath for which the lineariza-
tion approximation for the nuclear forward and backward paths
applied within the derivation of jump spin-PLDM is exact. The
fact that the jump spin-PLDM result is seen to approach conver-
gence to the numerically exact result with increasing number of

FIG. 2. Calculation of the ⟨σx (t)⟩ expectation value for jump spin-PLDM, for differ-
ent numbers of evenly spaced jumps. The results correspond to a low temperature

symmetric Ohmic spin-boson model [model (b) in Paper I].44 The system is ini-
tially prepared in the excited electronic state |1⟩. The dashed black line gives the
numerically exact result, obtained using QUAPI, and the blue line gives the stan-
dard PLDM/FBTS result. For tΔ ≥ 15, the njump = 4 result is not quite converged
with respect to the number of trajectories.

jumps further illustrates that the focused conditions implemented
within jump spin-PLDM are rigorous and do not constitute an addi-
tional approximation when used in conjunction with this method.
This is in contrast to focused conditions used for MMST mapping-
based approaches. Also shown in Fig. 2 is the standard PLDM/FBTS
result, which exhibits a much greater error than spin-PLDM, as
well as deviating from the numerically exact result at much shorter
times. This, therefore, implies that a fewer number of jumps will be
needed to converge jump spin-PLDM to the numerically exact result
compared to jump FBTS.

V. COMPARISON OF SPIN-PLDM WITH OTHER
RELATED APPROACHES

In spin-LSC, theW-kernels are used to represent the observable
operators, Â and B̂, within the definition of the real-time quan-
tum correlation function, while in spin-PLDM, the W-kernels are
used to represent the time-ordered propagators for the forward
and backward paths. Hence, because the spin-LSC and spin-PLDM
methods use the W-kernels to represent different objects within
the real-time correlation function, the associated underlying expres-
sions for both techniques, given by Eqs. (21) and (29), look quite
different. In order to compare the methods with each other, we
can re-express the spin-PLDM correlation function in terms of
the mapping-variable representations of the underlying operators
Â and B̂,

BW(Z,Z′) ≙ 1

2
∑
λ,λ′
⟨λ∣B̂∣λ′⟩(Z∗λ Z′λ′ − γWδλλ′). (33)

We choose this definition of the spin-PLDMoperator representation
so that it becomes identical to the standard PLDM operator repre-
sentation [Eq. (15) of Ref. 44] when γW = 0 and also identical to the
spin-LSC operator representation [Eq. (8)] when Z ≙ Z′.

Here, we only consider correlation functions CAB(t) that satisfy
tr∥B̂∥ ≙ 0 because any operator can be decomposed into a traceless
part and the identity and the correlation function CAI(t) is triv-
ially time-independent. However, CIB(t) carries important dynam-
ical information. To make the comparison, the identity-containing
correlation functions (with Â ≙ Î) and the correlation functions of
traceless operators (with tr∥Â∥ ≙ 0) are considered separately. This
separation is chosen because the expression for identity-containing
correlation functions can often be simplified by imposing Â ≙ Î

within the underlying derivation. This has already been success-
fully achieved for fully linearized MMST mapping, where employ-
ing an “identity-trick” was found to significantly increase the
accuracy of calculating such correlation functions.18,19,52 Because
correlation functions containing traceless operators decay to zero
in the long-time limit, calculating identity-containing correlation
functions accurately is important for obtaining the correct long-
time population relaxation. The discussion in this section can be
equally applied to either the full-sphere or focused variants of the
methods.

A. Identity-containing correlation functions

From Eq. (14), the time evolution of the spin-PLDM correla-
tion function in general does not just depend on the time-evolved
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mapping variables but also depends on the time-ordered electronic
propagator, Û(t). However, when Â ≙ Î, such identity-containing
correlation functions can be rewritten equivalently in terms of the
evolved mapping variables,

CIB(t) ≙ ⟨IW(Z,Z′)BW(Z′(t),Z(t))⟩spin-PLDM
+
γW

2
⟨FBW(Z′(t),Z(t))−BW(Z(t))−BW(Z′(t))⟩spin-PLDM,

(34)

as derived in Appendix B. In this expression, BW(Z) is the W-
function for an electronic operator B̂, given by Eq. (8), and
BW(Z,Z′) is the spin-PLDM expression for the same operator,
given by Eq. (33). The term IW(Z,Z′) ≙ 1

2
(Z∗ ⋅ Z′ − R2

W) + 1,
which is also defined by Eq. (33), acts as an “overlap factor” between
the Cartesian mapping variables for the forward and backward
electronic paths (Z and Z

′, respectively).
There are two noteworthy points of Eq. (34). First, if we

set the zero-point energy parameter, γW, to zero, the expression
for the identity-containing correlation function depends entirely
on the standard PLDM expressions for the underlying electronic
operators Im(Z,Z′) and Bm(Z′(t),Z(t)) defined in Paper I.44

This illustrates that spin-PLDM differs from standard PLDM not
just through the initial sampling of the Cartesian mapping vari-
ables, which are constrained to the hypersphere, but also through
the existence of a zero-point energy parameter. The existence of
a zero-point energy parameter results in additional terms being
present in the expression for the identity-containing correlation
function and results in improved long-time populations, as shown in
Paper I.44

Second, in the case where Z ≙ Z
′, the form of Eq. (34)

becomes similar to the expression for the identity-containing cor-
relation function within the spin-LSC method, given by Eq. (11),
which has only one set of mapping variables. This follows from
IW(Z,Z) ≙ IW(Z) ≙ 1 and BW(Z(t),Z(t)) ≙ BW(Z(t)). This
result is perhaps unsurprising because Eq. (11) can be derived as
an “identity trick”18,19 for spin-PLDM, as shown in Appendix B 1.
Hence spin-LSC and spin-PLDM treat the identity-containing cor-
relation functions in a similar way that results in more accurate
long-time populations than for standard PLDM.

B. Correlation functions of traceless operators

In general, the expression for the correlation functions of
traceless operators within spin-PLDM cannot be easily simplified,
although it is still simple to evaluate numerically. This is because
the evolution of the zero-point energy parameter within Eq. (14)
depends on the time-ordered electronic propagator, which cannot
be expressed directly in terms of the time-evolved Cartesian map-
ping variables. However, the correlation functions of traceless oper-
ators within spin-PLDM can be rewritten in a form that enables
further analysis,

CAB(t) ≙ 1

F + 1
⟨AW(Z,Z′)BW(Z′(t),Z(t))⟩spin-PLDM + ΔCAB(t),

(35)

as shown in Appendix C. In this expression ΔCAB(t) is defined as the
difference between the full spin-PLDM correlation function and the
first term. This separation is chosen such that ΔCAB(0) = 0 in general
and ΔCAB(t) = 0 in the absence of electron-nuclear coupling. While
a convenient and general expression for ΔCAB(t) is hard to obtain,
such an expression is easier to derive if just two-level systems are
considered.

For two-level systems, any operator can be written in terms of
a spin coherent state and a state orthogonal to it. We, therefore,
define a state, |ζ⟩, whose Cartesianmapping variables lie on the same
hypersphere as ∣Z⟩ but are also orthogonal to it,

2

∑
λ≙1

ζ∗λ Zλ ≙ 0. (36)

It can be shown that |ζ⟩ corresponds to the inversion of ∣Z⟩ in the
spin space, described mathematically as58

∥σj∥W(ζ) ≙ −∥σj∥W(Z), (37)

for any j = (x, y, z). This relationship between the Zλ and ζλ map-
ping variables is shown pictorially in Fig. 3. Using these two sets of
mapping variables, the term ΔCAB(t) can be rewritten as

ΔCAB(t) ≙ γW

12
(γW⟨AW(ζ, ζ′)BW(ζ′(t), ζ(t))⟩spin-PLDM

− (γW + 2)⟨AW(Z, ζ′)BW(ζ′(t),Z(t))⟩spin-PLDM
− (γW + 2)⟨AW(ζ,Z′)BW(Z′(t), ζ(t))⟩spin-PLDM
+ (γW + 4)⟨AW(Z,Z′)BW(Z′(t),Z(t))⟩spin-PLDM),

(38)

where the ζ′λ mapping variables are in the same way orthogonal to
Z′λ. The derivation of this expression is outlined in Appendix C.
Such a term has never been included within a mapping-based
classical-trajectory technique before. For example, Eq. (38) is zero

FIG. 3. Illustration of the ζλ mapping variables for an F = 2 system, which lie on
the same hypersphere as Zλ but are also orthogonal to it. The corresponding |ζ⟩
state is the inversion of ∣Z⟩ through the origin.
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when γW = 0, and hence, such a term is not present within
standard PLDM. In addition, the first term on the right hand side
of Eq. (35) has a similar form to the full spin-LSC correlation func-
tion [Eq. (1)] when Z ≙ Z

′, and therefore, spin-LSC also has no
analogue to ΔCAB(t). This additional ΔCAB(t) term, therefore, con-
stitutes the main difference between the spin-LSC and spin-PLDM
correlation functions, in addition to the fact that the latter contains
twice as many Cartesian mapping variables.

The presence of ζ and ζ′ Cartesian mapping variables in
Eq. (38) confirms that this additional term contains effects aris-
ing physically from propagating the electronic subsystem on the
opposite side of the spin-sphere to that of the coherent state from
which the nuclear force is calculated. Because such a term has
been rigorously derived within a Stratonovich–Weyl approach to
spin-mapping, this suggests that spin-mapping based techniques,
which only describe the electronic dynamics at a single point of
the spin-sphere, are in some sense deficient; electronic dynamics
at the “antipode” is therefore necessary in order to give a fuller
description of the dynamics within coupled electron-nuclear sys-
tems. In quantum mechanics, the nuclear degrees of freedom can
induce instantaneous excitations of the electronic subsystem, and
hence, the dynamics of the “antipode” do correspond to physical
allowed processes within the real system. Hence, spin-PLDM is able
to describe physical processes that are completely neglected in other
mapping-based classical-trajectory techniques.

For systems with an arbitrary number of electronic states, F, the
term ΔCAB(t) will involve propagation of a set of F − 1 states orthog-
onal to Z, and hence, this term physically corresponds to propagat-
ing all possible instantaneous excitations of the underlying coherent
state. In Sec. V C, the properties and effects of this additional term
will be investigated numerically.

C. Results

As in Ref. 18, we present results for CIσz(t) and Cσzσz(t). By
taking linear combinations of these two functions, one can recover
the more usual measures of state-to-state population transfer. To
illustrate the differences between the various methods analyzed in
this paper, we study the Ohmic spin-boson model used previously
in Refs. 18 and 46. This model is both asymmetric and at a rel-
atively low temperature. The parameters used for this spin-boson
model also correspond to an intermediate regime between strongly

incoherent decay and coherent oscillations, which makes it one of
the more challenging spin-boson models to study. All calculations
are performed with f = 100 nuclear degrees of freedom and 106 tra-
jectories. Additionally, numerically exact results are obtained using
the quasiadiabatic path-integral (QUAPI) technique.59

We begin by noticing that for both the CIσz(t) and Cσzσz(t)
correlation functions obtained with our spin-PLDM method, the
accuracy of the result is barely affected whether focused or full-
sphere initial conditions are used. This, therefore, illustrates that
spin-mapping focused conditions are no less rigorous than the full-
sphere version and do not constitute an additional approximation
when implemented within spin-PLDM. This is similar to what was
observed for spin-LSC in Refs. 13 and 14. For standard PLDM, how-
ever, focused conditions do constitute an additional approximation
to the original method, and hence, we only present results for the
most accurate non-focused variant.

For the identity-containing CIσz(t) correlation function, both
spin-LSC and spin-PLDM methods produce similarly accurate
results. This is not surprising as the expressions for the CIσz(t) cor-
relation functions for both of these methods, given by Eqs. (11)
and (34), have a similar form. Additionally, the spin-LSC expression
[given by Eq. (11)] can be derived from an “identity trick” applied
to spin-PLDM, as shown in Appendix B 1, which suggests that both
methods treat the identity-containing correlation functions on an
equal footing. Therefore, Fig. 4 shows that having two electronic
mapping variables in spin-PLDM only results in a small improve-
ment to the spin-LSCCIσz(t) correlation function for this parameter
regime. In contrast, the spin-mapping based method produces sig-
nificantly more accurate results than the standard PLDM, which has
the incorrect asymptote at long times. This illustrates a clear advan-
tage of sampling the initial Cartesian mapping variables from the
surface of a hypersphere.

For theCσzσz(t) correlation function, the dashed dark green line
shows the (focused) spin-PLDM result, given by Eq. (35), without
including the term ΔCσzσz(t). Hence, the only difference between
this result and the Cσzσz(t) correlation function for the spin-LSC
method is that the spin-PLDM expression contains two electronic
mapping variables. As for the identity-containing correlation func-
tions, having two sets of mapping variables only leads to a small
improvement in theCσzσz(t) correlation function for this model. The
main improvement of spin-PLDM over spin-LSC is hence contained
in the termΔCσzσz(t), which corrects for the overdamped coherences

FIG. 4. Comparison of the CIσz and
Cσzσz correlation functions for standard
PLDM, focused spin-LSC and spin-
PLDM in both full-sphere and (where
not otherwise indicated) focused vari-
ants. The results correspond to the
Ohmic spin-boson model with the follow-
ing parameters: ε = Δ, ξ = 0.2, βΔ = 10,
and ωc = 2.5Δ. The dashed black
lines give the numerically exact results,
obtained using QUAPI.
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observed in the correlation functions of traceless operators calcu-
lated using spin-LSC. Even more severe overdamping is observed in
correlation functions of traceless operators calculated using standard
PLDM, perhaps due to leakage out of the physical subspace.

VI. CONCLUSIONS

In this paper, we have provided a thorough analysis of the spin-
PLDM method by identifying the terms present in the real-time
correlation function that are responsible for its improved accuracy
compared to othermapping-based classical-trajectory techniques. In
addition, the spin-PLDMmethod derived in Paper I44 is made more
efficient by the introduction of focused initial conditions, which
require fewer trajectories to converge dynamical observables with
their associated accuracy seemingly unaffected. The rigorous nature
of these focused initial conditions is then demonstrated by using
them to obtain a jump spin-PLDM scheme, which is shown to sys-
tematically improve spin-PLDM results to those of the QCLE. Even
though this is a computationally intensive approach, such a scheme
can at the very least be used practically to quantify the error associ-
ated with calculated results,56 which is often difficult to do with other
mapping-based classical-trajectory techniques.

Spin-PLDM appears to be able to improve upon previously
derived fully linearized approaches such as spin-LSC and also upon
the standard PLDM approach based on MMST mapping. In par-
ticular, we have shown that spin-PLDM contains a term, which
is absent in spin-LSC and which appears to solve the problem of
“overdamped coherences” observed in the correlation functions of
traceless operators calculated using spin-LSC. Such a term is also
absent within standard PLDM, which also suffers with the same
problem of “overdamped coherences.” However, a more signifi-
cant improvement over standard PLDM by spin-PLDM is observed
in the identity-containing correlation functions, where confining
the Cartesian mapping variables to the surface of a hypersphere
in spin-mapping is shown to lead to a significant improvement
in the accuracy of such correlation functions in the long-time
limit.

Together with focused initial conditions and the jump scheme,
spin-PLDM is shown to be a powerful tool for accurately describ-
ing non-adiabatic dynamics in large condensed phase systems. Being
based on classical trajectories makes the method relatively com-
putationally cheap, while the ability to systematically improve the
accuracy of its results means it also retains some of the advantages
of more expensive numerically exact wavefunction based meth-
ods. While such a method cannot, at the moment, describe quan-
tum nuclear effects, there is promise that such effects could be
included in the future through a ring-polymer formulation of the
theory.60–63

Several questions still remain unanswered. First, is there some
framework by which the accuracy of mapping-based techniques can
be compared so that some definitive consensus can be made on
which techniques are the most reliable and accurate? Second, how
close can mapping-based classical-trajectory techniques involving
independent trajectories get to an exact solution of the QCLE? In
other words, what would be the ultimate mapping-based technique
and in what limits would it be able to exactly describe the dynamics
of systems?
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APPENDIX A: FOCUSED INITIAL CONDITIONS

Spin-mapping focused conditions were initially designed to
correctly satisfy the Stratonovich–Weyl property given by Eq. (18)
for purely diagonal population operators. In this Appendix, we
prove that the focused initial conditions introduced in Secs. III A and
III B satisfy this Stratonovich–Weyl property for any two operators
Â and B̂ and can therefore be rigorously used to initially sample the
Cartesian mapping variables for evaluating any spin-LSC and spin-
PLDM correlation function.While this additional proof is unimpor-
tant for spin-LSC when calculating correlation functions involving
an initial population operator, this is nevertheless necessary for spin-
PLDM because the W-kernels are used to represent the propagators
rather than the observable operators. In particular, we wish to show
that

Gmnn′m′ ≙ ⟨∥∣m⟩⟨n∣∥W(Z)∥∣n′⟩⟨m′∣∥W(Z)⟩focspin-LSC

≙ tr∥∣m⟩⟨n∣n′⟩⟨m′∣∥ ≙ δmm′δnn′ , (A1)

where these states are chosen to be a complete set of orthonor-
mal basis states for the electronic system (i.e., ⟨m|n⟩ = δmn). Addi-
tionally, the W-functions associated with these electronic opera-
tors, ∥∣m⟩⟨n∣∥W(Z), sampled with focused initial conditions can be
obtained from Eqs. (8) and (24) as

∥∣m⟩⟨n∣∥W(Z) ≙ 1

2
(rmrnei(ϕn−ϕm) − γWδmn). (A2)

where ϕm is an angle uniformly sampled from 0 to 2π, while rm
is given by Eq. (25), where λ is the diabatic state onto which the
Cartesian mapping variables are focused.

Terms in the ensemble average [Eq. (A1)] will only be non-
zero if no phase factors arising fromW-functions [Eq. (A2)] remain.
There are only two ways in which this can occur: either whenm = n
and m′ = n′ or when m = m′ ≠ n = n′. We thus consider the two
terms,

Gmmm′m′ ≙ 1

4
∑
λ

(r2m − γW)(r2m′ − γW), (A3a)

Gmnnm ≙ 1

4
∑
λ

r
2
mr

2
n for m ≠ n. (A3b)

In the first case, using Eq. (25) leads to the result Gmmm′m′

= δmm′ . In a similar way, the second case [Eq. (A3b)] can be rewritten
as

Gmnnm ≙ 1

4
{2γW(γW + 2) + (F − 2)γ2W}, (A4)
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when m ≠ n. The first term on the right hand side of this expression
comes from the two terms within the sum over λ where the Carte-
sian mapping variables are focused onto statesm and n. The second
term on the right hand side of Eq. (A4) then comes for the remain-
ing F − 2 terms within this sum over λ. The result in Eq. (A4) can be
further simplified by using the expression for the zero-point energy
parameter, γW, given by Eqs. (7) and (4), which leads to Gmnnm = 1.
All these results are consistent with Eq. (A1), and this, therefore,
proves that the focused initial conditions on theW-sphere do indeed
satisfy the Stratonovich–Weyl properties of the W-functions for any
two operators Â and B̂.

APPENDIX B: SPIN-PLDM IDENTITY-CONTAINING
CORRELATION FUNCTIONS

Within this paper, we show that the expression for the spin-
PLDM real-time correlation function can be simplified in the case
when Â ≙ Î such that the time-dependence of this correlation func-
tion only depends on the time evolution of the Cartesian mapping
variables. In order to show this, the following expression for the
W-kernel can be used:

ŵW(Z, t) ≙ 1

2

⎛
⎝∑λ,μ

Zμ(t)∣μ⟩⟨λ∣Z∗λ − γWÛ(t)⎞⎠, (B1)

which is simply an analogous expression to Eq. (14). Inserting
Eq. (B1) into the spin-PLDM identity-containing correlation func-
tion [Eq. (12), with Â ≙ Î] results in

CIB(t) ≙ ⟨IW(Z,Z′)BW(Z′(t),Z(t))⟩spin-PLDM
+
γWF

2
⟨BW(Z′(t),Z(t))⟩spin-PLDM

− γW

2
⟨tr[Û†(t)B̂ŵW(Z, t)]⟩

spin-PLDM

− γW

2
⟨tr[ŵ†

W(Z′, t)B̂Û(t)]⟩
spin-PLDM

− γ2W
4
⟨tr[Û†(t)B̂Û(t)]⟩

spin-PLDM
. (B2)

The first two terms on the right hand side of Eq. (B2) result from
replacing both W-kernels in the definition of the spin-PLDM corre-
lation function with the first term in the definition of the W-kernel,
given in Eq. (B1). The spin-PLDM representation of the operator
Î in terms of the Cartesian mapping variables, IW(Z,Z′), is given
by Eq. (33) and BW(Z′,Z) ≙ 1

2 ∑λλ′⟨λ∣B̂∣λ′⟩Z∗λ Z′λ′ because we have
chosen to only consider correlation functions for which tr∥B̂∥ ≙ 0.
This constitutes no loss of generality because correlation functions
of the form CAI(t) are time-independent and can thus be calculated
without requiring a dynamical method.

Additionally, because the trace is invariant to cyclic permuta-
tions, the last term on the right hand side of Eq. (B2) is zero, using
again that tr∥B̂∥ ≙ 0. To simplify the third and fourth term on the
right hand side of Eq. (B2), we make use of the following property
involving the W-kernel:

ŵW(Z, t)Û†(t) ≙ Û(t)ŵW(Z)Û†(t) ≙ ŵW(Z(t)), (B3)

which follows from Eq. (B1). Inserting Eq. (B3) into the third and
fourth term on the right hand side of Eq. (B2) shows that the
time-dependence of CIB(t) within spin-PLDM can be described
entirely by evolving the Cartesian mapping variables, Z(t) and
Z
′(t). Finally, using the definition of the W-function of operator

B̂ [Eq. (5)] results in the expression for CIB(t) given by Eq. (34).

1. The spin-PLDM “identity trick”

An alternative expression for the identity-containing correla-
tion function can also be obtained by using Â ≙ Î right at the
beginning of the derivation of the spin-PLDM correlation function.
In Paper I,44 it was shown that applying the linearization approxi-
mation to the nuclear degrees of freedom within the path-integral
representation of the real-time correlation function, CAB(t), leads to
the following expression:

CAB(t) ≃∑
λ,λ′
∑
μ,μ′
⟨λ∣Â∣λ′⟩⟨μ′∣B̂∣μ⟩∫ dx0 dp0 ρb(x0, p0)

×∫ dΔp0

(2π)f dxN
N−1

∏
k≙1

dxk
dpk
(2π)f dΔxk

dΔpk
(2π)f T

′
∥λ′ ,μ′∥T∥μ,λ∥e

iΔS0 .

(B4)

In the case where Â ≙ Î, the summation over the λ and λ′ indices
in Eq. (B4) can be performed explicitly. Hence, the contribution
to the real-time quantum correlation function from the electronic
transition amplitudes becomes

∑
λ

T∥μ,λ∥T
′
∥λ,μ′∥ ≃ ⟨μ∣e−iV̂(xN)ϵe− i

2
∇V̂(xN−1)ϵΔxN−1e−iV̂(xN−1)ϵ⋯

× e− i
2
∇V̂(x1)ϵΔx1e−iV̂(x1)ϵe+iV̂(x1)ϵe−

i
2
∇V̂(x1)ϵΔx1⋯

× e+iV̂(xN−1)ϵe− i
2
∇V̂(xN−1)ϵΔxN−1e+iV̂(xN)ϵ∣μ′⟩, (B5)

where we have used Î ≙ ∑λ ∣λ⟩⟨λ∣. This expression can then
be approximated in terms of Cartesian mapping variables by
inserting Î ≙ F

N ∫dZ0 ŵW(Z0)δ(∣Z0∣2 − R2
W) in between the

e±iV̂(x1)ϵ operators. Here, N is a normalization constant given by
N ≙ ∫dZ0 δ(∣Z0∣2 − R2

W). Performing the same steps as in
Paper I44 leads to the following expression:

∑
λ

T∥μ,λ∥T
′
∥λ,μ′∥ ≈ F

N
∫ dZ⟨μ∣ŵW(Z(t))∣μ′⟩δ(∣Z∣2 − R2

W)e−iSe .
(B6)

Now the time-dependence of the identity-containing correlation
function is completely described by the time-evolved Cartesian
mapping variables because time-ordered propagators are now posi-
tioned either side of the W-kernel, as in Eq. (B3). Additionally, the
electronic action is defined as

Se ≙
N−1

∑
k≙1

∇HW(Z(tk), xk)ϵΔxk, (B7)

where tk = kε is the time at time-step k. Hence, evaluating the identity
operator explicitly before inserting the Cartesian mapping variables
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now leads to an expression which contains a single set of Cartesian
mapping variables. Following the rest of the spin-PLDM derivation
with Eq. (B6) leads to an expression for the identity-containing cor-
relation function which is identical to that for spin-LSC, given by
Eq. (11). The fact that the form of the identity-containing correla-
tion function within spin-LSC can be derived from the underlying
spin-PLDM equations suggests that both spin-LSC and spin-PLDM
will predict the identity-containing correlation function with a simi-
lar accuracy. This is indeed in agreement with the spin-boson results
presented in Sec. V C.

Such an “identity trick” can also be performed for fully lin-
earized MMST mapping.18 For example, the same analysis per-
formed in deriving the spin-PLDM “identity trick” presented here
can be equally applied to the derivation of the identity-containing
correlation function within LSC-IVR (except that an additional lin-
earization approximation within the MMST mapping space must
also be performed). This results in the “single unity” method intro-
duced in Ref. 18, which was found to offer a significant increase in
accuracy when calculating identity-containing correlation functions
with fully linearized MMST mapping based techniques.18,19,52

APPENDIX C: SPIN-PLDM CORRELATION FUNCTIONS
OF TRACELESS OPERATORS

For the correlation functions of traceless operators within spin-
PLDM, the expression cannot, in general, be written entirely in
terms of the time-evolution of the Cartesian mapping variables,
Z(t) and Z

′(t). This is because the time-evolved W-kernel, given
by Eq. (B1), also contains a contribution from the time-ordered
propagator, Û(t), proportional to the zero-point energy parame-
ter, γW. In order to analyze this contribution from the time-ordered
propagator, we must first split the spin-PLDM correlation function
into a part whose time-dependence solely comes from the Cartesian
mapping variables and an additional term which depends explicitly
on Û(t). However, in numerical simulations, it is generally eas-
ier to evaluate the spin-PLDM correlation functions using Eq. (12),
without using this partitioning of terms, especially for systems
with F > 2.

In the absence of electron-nuclear coupling, the time-
dependence of the correlation functions of traceless operators can,
however, be given solely in terms of the time-evolution of the
Cartesian mapping variables,64

CAB(t) ≈ ∫ dx dpdΩdΩ′ ρb(x, p)⟨Ω∣Â∣Ω′⟩⟨Ω′(t)∣B̂∣Ω(t)⟩. (C1)

This is because PLDM, derived using a spin coherent state basis
without a zero-point energy parameter, is also exact in this case.
Equation (C1) is also always exact at t = 0 for any value of the
electron-nuclear coupling. In this expression, ∣Ω⟩ ≙ ∑F

λ≙1 cλ∣λ⟩ is
a spin coherent state, defined in terms of the amplitudes cλ. In
addition, dΩ is the integration element, defined as

dΩ ≙ F ∏λ dcλ δ(∑μ ∣cμ∣2 − 1)
∫ ∏λ dcλ δ(∑μ ∣cμ∣2 − 1) (C2)

and dcλ = dRe[cλ]dIm[cλ]. In this expression, the factor F appears
such that the spin coherent state integrals satisfy tr∥Î∥ ≙ ∫dΩ ≙ F.

Physically, the Dirac delta function in Eq. (C2) guarantees that the
coherent state |Ω⟩ is correctly normalized.

Equation (C1) can be rewritten in terms of Cartesian mapping
variables by using the relation cλ = Zλ/RW.13 This results in

CAB(t) ≈ 1

F + 1
⟨AW(Z,Z′)BW(Z′(t),Z(t))⟩spin-PLDM, (C3)

where we have additionally used the expression for the W-sphere
radius given by Eq. (4). The spin-PLDM representation of opera-
tor B̂ in terms of the Cartesian mapping variables, BW(Z,Z′), is
given by Eq. (33), and we have also made use of tr∥Â∥ ≙ tr∥B̂∥ ≙ 0.
Equation (C3) is the same as the first term in the relation for
the correlation functions of traceless operators, given by Eq. (35).
Equation (C3) is simpler than the spin-PLDM correlation function
because it does not explicitly contain the time-ordered propagator,
Û(t).

When t ≠ 0 or for systems with electron-nuclear coupling,
Eq. (C3) is no longer equivalent to the spin-PLDM correlation func-
tion and therefore constitutes an additional approximation to it. The
difference between Eq. (C3) and the spin-PLDM correlation func-
tion given by Eq. (12) can be incorporated into a term, ΔCAB(t),
which generally must be calculated in order to accurately obtain cor-
relation functions of traceless operators. By definition, this term is
hence given by

ΔCAB(t) ≙ ⟨tr[Âŵ†

W(Z′, t)B̂ŵW(Z, t)]⟩
spin-PLDM

− 1

F + 1
⟨AW(Z,Z′)BW(Z′(t),Z(t))⟩spin-PLDM, (C4)

which through the definition of the W-kernel in Eq. (B1) depends
on the time-ordered propagator, Û(t).

For the case of F = 2, Eq. (C4) can be further simplified.
First, the electronic identity operator can be expressed in terms of
Cartesian mapping variables,

Î ≙ 1

R2
W

⎛
⎝∑λ,μ Zμ∣μ⟩⟨λ∣Z∗λ +∑

λ,μ

ζμ∣μ⟩⟨λ∣ζ∗λ ⎞⎠. (C5)

The first term in this expression corresponds to the spin-coherent
state outer product, |Ω⟩⟨Ω|, as can be seen from the relation
cλ = Zλ/RW. The second term contains new Cartesian mapping vari-
ables, ζλ, which as defined in Eq. (36) are orthogonal to Zλ. Defined
in this way, the ζλ mapping variables correspond to the electronic
state on the opposite side of the spin-sphere to |Ω⟩, as illustrated
in Fig. 3. Hence, this second term is just the outer product of an
electronic state orthogonal to the coherent state, |Ω⟩. Applying the
time-evolved propagator, Û(t), to the left of Eq. (C5) leads to

Û(t) ≙ 1

R2
W

⎛
⎝∑λ,μ Zμ(t)∣μ⟩⟨λ∣Z∗λ +∑

λ,μ

ζμ(t)∣μ⟩⟨λ∣ζ∗λ ⎞⎠. (C6)

Inserting this expression for the time-evolved propagator into the
expression for the time-evolved W-kernel, given by Eq. (B1), leads
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to a new expression for the W-kernel solely in terms of Cartesian
mapping variables,

ŵW(Z, t)≙ 1

2R2
W

⎛
⎝(γW + 2)∑

λ,μ

Zμ(t)∣μ⟩⟨λ∣Z∗λ − γW∑
λ,μ

ζμ(t)∣μ⟩⟨λ∣ζ∗λ⎞⎠,
(C7)

where we have additionally used R2
W ≙ 2γW + 2, which is valid when

F = 2. Inserting Eq. (C7) into the definition of ΔCAB(t), given by
Eq. (C4), and expanding the terms leads to the expression for this
term given in Eq. (38). To do this, we note that R4

W ≙ 12 for F = 2
[Eq. (4)] and use the expression for the spin-PLDM representation of
operator B̂ in terms of the Cartesian mapping variables, BW(Z,Z′),
given by Eq. (33). We have again assumed tr∥Â∥ ≙ tr∥B̂∥ ≙ 0.
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