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Abstract

Twitter offers an unprecedented advantage on
live reporting of the events happening around
the world. However, summarizing the Twit-
ter event has been a challenging task that was
not fully explored in the past. In this paper,
we propose a participant-based event summa-
rization approach that “zooms-in” the Twit-
ter event streams to the participant level, de-
tects the important sub-events associated with
each participant using a novel mixture model
that combines the “burstiness” and “cohesive-
ness” properties of the event tweets, and gen-
erates the event summaries progressively. We
evaluate the proposed approach on different
event types. Results show that the participant-
based approach can effectively capture the
sub-events that have otherwise been shadowed
by the long-tail of other dominant sub-events,
yielding summaries with considerably better
coverage than the state-of-the-art.

1 Introduction

Twitter has increasingly become a critical source of
information. People report the events they are ex-
periencing or publish comments on a wide variety
of events happening around the world, ranging from
the unexpected natural disasters, regional riots, to
many scheduled events, such as sports games, po-
litical debates, local festivals, and even academic
conferences. The Twitter data streams thus cover
a broad range of events and broadcast these in-
formation in a live manner. Event summarization
in this paper aims to generate a representative and
concise textual description of the scheduled events

that are being lively reported on Twitter, providing
people with an alternative means of observing the
world beyond the traditional journalism. Specifi-
cally, we investigate scheduled events of different
types, including six of the NBA (National Basket-
ball Association) sports games and a representative
conference event, namely the Apple CEO’s keynote
speech in the Apple Worldwide Developers Confer-
ence (WWDC 2012)1. All these events have excited
great discussion among the Twitter community.

Summarizing the Twitter event is a challenging
task that has yet been fully explored in the past.
Most previous summarization studies focus on the
well-formatted news documents, as driven by the
annual DUC2 and TAC3 evaluations. In contrast,
the Twitter messages (a.k.a., tweets) are very short
and noisy, containing nonstandard terms such as ab-
breviations, acronyms, emoticons, etc. (Liu et al.,
2011b; Liu et al., 2012; Eisenstein, 2013). The
noisy contents also cause great difficulties to the tra-
ditional NLP tools such as NER and dependency
parser (Ritter et al., 2011; Foster et al., 2011), lim-
iting the possibility of applying finer-grained event
analysis tools. In nature, the event tweets are closely
associated with the timeline and are drastically dif-
ferent from a static collection of news documents.
The tweets converge into text streams that pulse
along the timeline and cluster around the important
moments or sub-events. These “sub-events” are of
crucial importance since they represent a surge of in-
terest from the Twitter audience and the correspond-

1https://developer.apple.com/wwdc/
2http://duc.nist.gov/
3http://www.nist.gov/tac/



Figure 1: Example Twitter event stream (upper) and par-
ticipant stream (lower). Event stream contains tweets
related to an NBA basketball game (Spurs vs Thunder)
scheduled on May 31, 2012; participant stream contains
tweets corresponding to the player Russell Westbrook in
team Thunder. X-axis denotes the timeline and y-axis
represents the number of tweets per 10-second interval.

ing key information must be reflected in the event
summary. As such, event summarization research
has been focusing on developing accurate sub-event
detection systems and generating text descriptions
that can best summarize the sub-events in a progres-
sive manner (Chakrabarti and Punera, 2011; Nichols
et al., 2012; Zubiaga et al., 2012).

In Figure 1, we show an example Twitter event
stream and one of its “participant” streams. The
event stream contains all the tweets related to an
NBA basketball game Spurs vs Thunder; while
the participant stream contains only tweets corre-
sponding to the player Russell Westbrook in this
game. Previous research on event summarization
focuses on identifying the important moments from
the coarse-level event stream. This may yield sev-
eral side effects: first, the spike patterns are not
clearly identifiable from the overall event stream,
though they are more clearly seen if we “zoom-in” to
the participant level; second, it is arguable whether
the important sub-events can be accurately detected
based solely on the tweet volume change; third, a
popular participant or sub-event can elicit huge vol-
ume of tweets which dominant the event discussion
and shield less prominent sub-events. For example,
in the NBA games, discussions about the key players
(e.g., “LeBron James”, “Kobe Bryant”) can heavily
shadow other important participants or sub-events,
resulting in an event summary with repetitive de-
scriptions about the dominant players.

In this work, we propose a novel participant-
based event summarization approach, which dynam-
ically identifies the participants from data streams,
then “zooms-in” the event stream to participant
level, detects the important sub-events related to
each participant using a novel time-content mixture
model, and generates the event summary progres-
sively by concatenating the descriptions of the im-
portant sub-events. Results show that the mixture
model-based sub-event detection approach can effi-
ciently incorporate the “burstiness” and “cohesive-
ness” of the participant streams, and the participant-
based event summarization can effectively capture
the sub-events that have otherwise been shadowed
by the long-tail of other dominant sub-events, yield-
ing summaries with considerably better coverage
than the state-of-the-art approach.

2 Related Work

Mining Twitter for event information has received
increasing attention in recent years. Many research
studies focus on identifying the trending events from
Twitter and providing a concise and dynamic visual-
ization of the information. The identified events are
often represented using a set of keywords. (Petro-
vic et al., 2010) proposed an algorithm based on
locality-sensitive hashing for detecting new events
from a stream of Twitter posts. (O’Connor et al.,
2010; Becker et al., 2011b; Becker et al., 2011a;
Weng et al., 2011) proposed demo systems to dis-
play the event-related themes and popular tweets,
allowing the users to navigate through their topic
of interest. (Zhao et al., 2011) described an effort
to perform data collection and event recognition de-
spite various limits to the free access of Twitter data.
(Diao et al., 2012) integrated both temporal infor-
mation and users’ personal interests for bursty topic
detection from the microblogs. (Ritter et al., 2012)
described an open-domain event-extraction and cat-
egorization system, which extracts an open-domain
calendar of significant events from Twitter.

With the identified events of interest, there is an
ever-increasing demand for event summarization,
which distills the huge volume of Twitter discus-
sions into a concise and representative textual de-
scription of the events. Many studies start with
the text summarization approaches that have been
shown to perform well on the news documents and



develop adaptations to fit these methods to a col-
lection of event tweets. (Sharifi et al., 2010b) pro-
posed a graph-based phrase reinforcement algorithm
to build a one-sentence summary from a collection
of topic tweets. (Sharifi et al., 2010a; Inouye and
Kalita, 2011) presented a hybrid TF-IDF approach
to extract one- or multiple-sentence summary for
each topic. (Liu et al., 2011a) proposed to use
the concept-based ILP framework for summarizing
the Twitter trending topics, using both tweets and
the webpages linked from the tweets as input text
sources. (Harabagiu and Hickl, 2011) introduced a
generative framework that incorporates event struc-
ture and user behavior information in summarizing
multiple microblog posts related to the same topic.

Regarding summarizing the data streams, (Mar-
cus et al., 2011) introduced a “TwitInfo” system to
visually summarize and track the events on Twit-
ter. They proposed an automatic peak detection and
labeling algorithm for the social streams. (Taka-
mura et al., 2011) proposed a summarization model
based on the facility location problem, which gener-
ates summary for a stream of short documents along
the timeline. (Chakrabarti and Punera, 2011) pro-
posed an event summarization algorithm based on
learning an underlying hidden state representation
of the event via hidden Markov models. (Louis and
Newman, 2012) presented a method for summariz-
ing a collection of tweets related to a business. The
proposed procedure aggregates tweets into subtopic
clusters which are then ranked and summarized
by a few representative tweets from each cluster.
(Nichols et al., 2012; Zubiaga et al., 2012) focused
on real-time event summarization, which detects the
sub-events by identifying those moments where the
tweet volume has increases sharply, then uses var-
ious weighting schemes to perform tweet selection
and finally generates the event summary.

Our work is different from the above research
studies in three folds: first, we propose to “zoom-
in” the Twitter event streams to the participant
level, which allows us to clearly identify the im-
portant sub-events associated with each participant
and generate a balanced event summary with com-
prehensive coverage of all the important sub-events;
second, we propose a novel time-content mixture
model approach for sub-event detection, which ef-
fectively leverages the “burstiness” and “cohesive-

ness” of the event tweets and accurately detects
the participant-level sub-events. Third, we evalu-
ate the participant-based event summarization sys-
tem on different event types and demonstrate that the
proposed approach outperforms the state-of-the-art
method by a considerable margin.

3 Participant-based Event Summarization

We propose a novel participant-centered event sum-
marization approach that consists of three key com-
ponents: (1) “Participant Detection” dynamically
identifies the event participants and divides the
entire event stream into a number of participant
streams (Section 3.1); (2) “Sub-event Detection” in-
troduces a novel time-content mixture model ap-
proach to identify the important sub-events associ-
ated with each participant; these “participant-level
sub-events” are then merged along the timeline to
form a set of “global sub-events”4, which capture
all the important moments in the event stream (Sec-
tion 3.2); (3) “Summary Tweet Extraction” extracts
the representative tweets from the global sub-events
and forms a comprehensive coverage of the event
progress (Section 3.3).

3.1 Participant Detection
We define event participants as the entities that play
a significant role in shaping the event progress. “Par-
ticipant” is a general concept to denote the event
participating persons, organizations, product lines,
etc., each of which can be captured by a set of
correlated proper nouns. For example, the NBA
player “LeBron Raymone James” can be represented
by {LeBron James, LeBron, LBJ, King James, L.
James}, where each proper noun represents a unique
mention of the participant. In this work, we automat-
ically identify the proper nouns from tweet streams,
filter out the infrequent ones using a threshold ψ,
and cluster them into individual event participants.
This process allows us to dynamically identify the
key participating entities and provide a full-coverage
for these participants in the event summary.

4We use “participant sub-events” and “global sub-events”
respectively to represent the important moments happened on
the participant-level and on the entire event-level. A “global
sub-event” may consist of one or more “participant sub-events”.
For example., the “steal” action in the basketball game typically
involves both the defensive and offensive players, and can be
generated by merging the two participant-level sub-events.



We formulate the participant detection in a hier-
archical agglomerative clustering framework. The
CMU TweetNLP tool (Gimpel et al., 2011) was used
for proper noun tagging. The proper nouns (a.k.a.,
mentions) are grouped into clusters in a bottom-up
fashion. Two mentions are considered similar if they
share (1) lexical resemblance, and (2) contextual
similarity. For example, in the following two tweets
“Gotta respect Anthony Davis, still rocking the uni-
brow”, “Anthony gotta do something about that uni-
brow”, the two mentions Anthony Davis and An-
thony are referring to the same participant and they
share both character overlap (“anthony”) and con-
text words (“unibrow”, “gotta”). We use sim(ci, cj)
to represent the similarity between two mentions ci
and cj , defined as:

sim(ci, cj) = lex sim(ci, cj)×cont sim(ci, cj)

where the lexical similarity (lex sim(·)) is defined
as a binary function representing whether a mention
ci is an abbreviation, acronym, or part of another
mention cj , or if the character edit distance between
the two mentions is less than a threshold θ5:

lex sim(ci, cj)=


1 ci(cj) is part of cj(ci)
1 EditDist(ci, cj) < θ
0 Otherwise

We define the context similarity (cont sim(·)) of
two mentions as the cosine similarity between their
context vectors ~vi and ~vj . Note that on the tweet
stream, two temporally distant tweets can be very
different even though they are lexically similar, e.g.,
two slam dunk shots performed by the same player
at different time points are different. We there-
fore restrain the context to a segment of the tweet
stream |Sk| and then take the weighted average of
the segment-based similarity as the final context
similarity. To build the context vector, we use term
frequency (TF) as the term weight and remove all the
stopwords. We use |D| to represent the total tweets
in the event stream.

cont sim|Sk|(ci, cj) = cos(~vi, ~vj)

cont sim(ci, cj) =
∑

k

|Sk|
|D|
× cont sim|Sk|(ci, cj)

5θ was empirically set as 0.2×min{|ci|, |cj |}

t w
W

zπ
|D|

μ σ θ θ'
K B

Figure 2: Plate notation of the mixture model.

Similarity between two clusters of mentions are de-
fined as the maximum possible similarity between a
pair of mentions, each from one cluster:

sim(Ci, Cj) = max
ci∈Ci,cj∈Cj

sim(ci, cj)

We perform bottom-up agglomerative clustering on
the mentions until a stopping threshold δ has been
reached for sim(Ci, Cj). The clustering approach
naturally groups the frequent proper nouns into par-
ticipants. The participant streams are then formed
by gathering the tweets that contain one or more
mentions in the participant cluster.

3.2 Mixture Model-based Sub-event Detection

A sub-event corresponds to a topic that emerges
from the data stream, being intensively discussed
during a short period, and then gradually fades away.
The tweets corresponding to a sub-event thus de-
mand not only “temporal burstiness” but also a cer-
tain degree of “lexical cohesiveness”. To incorporate
both the time and content aspects of the sub-events,
we propose a mixture model approach for sub-event
detection. Figure 2 shows the plate notation.

In the proposed model, each tweet d in the data
stream D is generated from a topic z, weighted by
πz . Each topic is characterized by both its content
and time aspects. The content aspect is captured by
a multinomial distribution over the words, param-
eterized by θ; while the time aspect is character-
ized by a Gaussian distribution, parameterized by µ
and σ, with µ represents the average time point that
the sub-event emerges and σ determines the duration
of the sub-event. These distributions bear similari-
ties with the previous work (Hofmann, 1999; Allan,
2002; Haghighi and Vanderwende, 2009). In addi-
tion, there are often background or “noise” topics
that are being constantly discussed over the entire



event evolvement process and do not present the de-
sired “burstiness” property. We use a uniform dis-
tribution U(tb, te) to model the time aspect of these
“background” topics, with tb and te being the event
beginning and end time points. The content aspect
of a background topic is modeled by similar multi-
nomial distribution, parameterized by θ′. We use the
maximum likelihood parameter estimation. The data
likelihood can be represented as:

L(D) =
∏
d∈D

∑
z

{πzpz(td)
∏
w∈d

pz(w)}

where pz(td) models the timestamp of tweet d under
the topic z; pz(w) corresponds to the word distribu-
tion in topic z. They are defined as:

pz(td) =
{
N(td;µz, σz) if z is a sub-event topic
U(tb, te) if z is background topic

pz(w) =
{
p(w; θz) if z is a sub-event topic
p(w; θ′z) if z is background topic

where both p(w; θz) and p(w; θ′z) are multinomial
distributions over the words. Initially, we assume
there are K sub-event topics and B background top-
ics and use the EM algorithm for model fitting. The
EM equations are listed below:

E-step:

p(zd = j) ∝
πjN(d;µj , σj)

∏
w∈d

p(w; θj) if j <= K

πjU(tb, te)
∏

w∈d

p(w; θ′j) else

M-step:

πj ∝
∑

d

p(zd = j)

p(w; θj) ∝
∑

d

p(zd = j)× c(w, d)

p(w; θ′j) ∝
∑

d

p(zd = j)× c(w, d)

µj =
∑

d p(zd = j)× td∑K
j=1

∑
d p(zd = j)

σ2
j =

∑
d p(zd = j)× (td − µj)2∑K

j=1

∑
d p(zd = j)

To process the data stream D, we divide the data
into 10-second bins and process each bin at a time.

The peak time of a sub-event was determined as
the bin that has the most tweets related to this sub-
event. During EM initialization, the number of sub-
event topics K was empirically decided by scanning
through the data stream and examine tweets in ev-
ery 3-minute stream segment. If there was a spike6,
we add a new sub-event to the model and use the
tweets in this segment to initialize the value of µ,
σ, and θ. Initially, we use a fixed number of back-
ground topics with B = 4. A topic re-adjustment
was performed after the EM process. We merge two
sub-events in a data stream if they (1) locate closely
in the timeline, with peaks times within a 2-minute
window; and (2) share similar word distributions:
among the top-10 words with highest probability in
the word distributions, there are over 5 words over-
lap. We also convert the sub-event topics to back-
ground topics if their σ values are greater than a
threshold β7. We then re-run the EM to obtain the
updated parameters. The topic re-adjustment pro-
cess continues until the number of sub-events and
background topics do not change further.

We obtain the “participant sub-events” by ap-
plying this sub-event detection approach to each of
the participant streams. The “global sub-events”
are obtained by merging the participant sub-events
along the timeline. We merge two participant sub-
events into a global sub-event if (1) their peaks are
within a 2-minute window, and (2) the Jaccard simi-
larity (Lee, 1999) between their associated tweets is
greater than a threshold (set to 0.1 empirically). The
tweets associated with each global sub-event are the
ones with p(z|d) greater than a threshold γ, where z
is one of the participant sub-events and γ was set to
0.7 empirically. After the sub-event detection pro-
cess, we obtain a set of global sub-events and their
associated event tweets.8

3.3 Summary Tweet Extraction
We extract a representative tweet from each of the
global sub-events and concatenate them to form an
informative event summary. Note that our goal in
this work is to identify all the important moments

6We use the algorithm described in (Marcus et al., 2011) as
a baseline and ad hoc spike detection algorithm.

7β was set to 5 minutes in our experiments.
8We empirically set some threshold values in the topic re-

adjustment and sub-event merging process. In future, we would
like to explore more principled way of parameter selection.



Event Date Duration #Tweets
Lakers vs Okc 05/19/2012 3h10m 218,313

N Celtics vs 76ers 05/23/2012 3h30m 245,734
B Celtics vs Heat 05/30/2012 3h30m 345,335
A Spurs vs Okc 05/31/2012 3h 254,670

Heat vs Okc (1) 06/12/2012 3h30m 331,498
Heat vs Okc (2) 06/21/2012 3h30m 332,223

Apple’s WWDC’12 Conf. 06/11/2012 3h30m 163,775

Table 1: Statistics of the data set, including six NBA bas-
ketball games and the WWDC 2012 conference event.

for event summarization, but not on proposing new
methods for tweet selection. We thus use the Hybrid
TF-IDF approach (Sharifi et al., 2010a; Liu et al.,
2011a) to extract the representative sentences from
a collection of tweets. In this approach, each tweet
was considered as a sentence. The sentences were
ranked according to the average TF-IDF score of the
consisting words; top weighted sentences were it-
eratively extracted, while excluding those that have
high cosine similarity with the existing summary
sentences. (Inouye and Kalita, 2011) showed the
Hybrid TF-IDF approach performs constantly better
than the phrase reinforcement algorithm and other
traditional summarization systems.

4 Data Corpus

We evaluate the proposed event summarization ap-
proach on six NBA basketball games and a repre-
sentative conference event, namely the Apple CEO’s
keynote speech in the Apple Worldwide Develop-
ers Conference (WWDC 2012)9. We use the het-
erogeneous event types to verify that the proposed
approach can robustly and efficiently produce sum-
maries on different event streams. The tweet streams
corresponding to these events are collected using
the Twitter Streaming API10 with pre-defined key-
word set. For NBA games, we use the team names,
first name and last name of the players and head
coaches as keywords for retrieving the event tweets;
for the WWDC conference, the keyword set contains
about 20 terms related to the Apple event, such as
“wwdc”, “apple”, “mac”, etc. We crawl the tweets
in real-time when these scheduled events are taking
place; nevertheless, certain non-event tweets could
be mis-included due to the broad coverage of the
used keywords. During preprocessing, we filter out

9https://developer.apple.com/wwdc/
10https://dev.twitter.com/docs/streaming-apis

Time Action (Sub-event) Score
9:22 Chris Bosh misses 10-foot two point shot 7-2
9:22 Serge Ibaka defensive rebound 7-2
9:11 Kevin Durant makes 15-foot two point shot 9-2
8:55 Serge Ibaka shooting foul (Shane Battier draws 9-2

the foul)
8:55 Shane Battier misses free throw 1 of 2 9-2
8:55 Miami offensive team rebound 9-2
8:55 Shane Battier makes free throw 2 of 2 9-3

Table 2: An example clip of the play-by-play live cov-
erage of an NBA game (Heat vs Okc). “Time” corre-
sponds to the minutes left in the current quarter of the
game; “Score” shows the score between the two teams.

the tweets containing URLs, non-English tweets,
and retweets since they are less likely containing
new information regarding the event progress. Ta-
ble 1 shows statistics of the event tweets after the
filtering process. In total, there are over 1.8 million
tweets used in the event summarization experiments.

We use the play-by-play live coverage collected
from the ESPN11 and MacRumors12 websites as ref-
erence, which provide detailed descriptions of the
NBA and WWDC events as they unfold. Table 2
shows an example clip of the play-by-play descrip-
tions of an NBA game. Ideally, each item in the live
coverage descriptions may correspond to a sub-event
in the tweet streams, but in reality, not all actions
would attract enough attention from the Twitter au-
dience. We use a human annotator to manually filter
out the actions that did not lead to any spike in the
corresponding participant stream. The rest items are
projected to the participant and event streams as the
goldstandard sub-events. The projection was man-
ually performed since the “game clock” associated
with the goldstandard (first column in Table 2) does
not align well with the “wall clock” due to the game
rules such as timeout and halftime rest. To evalu-
ate the participant detection performance, we ask the
annotator to manually group the proper noun men-
tions into clusters, each cluster corresponds to a par-
ticipant. The mentions that do not correspond to any
participant are discarded. The goldstandard event
summaries are generated by manually selecting one
representative tweet from each of the groundtruth
global sub-events. We choose not to use the play-
by-play descriptions as reference summaries since
their vocabulary is rather limited and do not overlap
with the tweet language.

11http://espn.go.com/nba/scoreboard
12http://www.macrumorslive.com/archive/wwdc12/



Example Participants - NBA game
westbrook, russell westbrook
stephen jackson, steven jackson, jackson
james, james harden, harden
ibaka, serge ibaka
oklahoma city thunder, oklahoma
gregg popovich, greg popovich, popovich
kevin durant, kd, durant
thunder, okc, #okc, okc thunder, #thunder

Example Participants - WWDC Conference
macbooks, mbp, macbook pro, macbook air,...
google maps, google, apple maps
wwdc, apple wwdc, #wwdc
os, mountain, os x mountain, os x
iphone 4s, iphone 3gs, iphone

Table 3: Example participants automatically detected
from the NBA game Spurs vs Okc (2012-5-31) and the
WWDC’12 conference.

5 Experimental Results

We evaluate the participant-based event summariza-
tion in a cascaded fashion and present results for
each of the three components, including the par-
ticipant detection (Section 5.1), sub-event detection
(Section 5.2), and quantitative and qualitative evalu-
ation of example event summaries (Section 5.3).

5.1 Participant Detection Results

In Table 3, we show example participants that were
automatically detected by the proposed hierarchical
agglomerative clustering approach. We note that the
clusters include various mentions of the same event
participant, e.g., “gregg popovich”, “greg popovich”,
and “popovich” are both referring to the head coach
of the team Spurs; “macbooks”, “macbook pro”,
“mbp” are referring to a line of products from Apple.
Quantitatively, we evaluate the participant detection
results on both participant- and mention-level. As-
sume the system-detected and the goldstandard par-
ticipant clusters are Ts and Tg respectively. We de-
fine a correct participant as a system detected par-
ticipant with more than half of its associated men-
tions are included in a goldstandard participant (re-
ferred to as the hit participant). As a result, we
can define the participant-level precision and recall
as below:

participant-prec = #correct-participants/|Ts|
participant-recall = #hit-participants/|Tg|

Note that a correct participant may include incor-
rect mentions, and that more than one correct par-

Figure 3: Participant detection performance. The upper
figures represent the participant-level precision and re-
call scores; while the lower figures represent the mention-
level precision and recall. X-axis corresponds to the six
NBA games and the WWDC conference.

ticipants may correspond to the same hit participant,
both of which are undesired. In the latter case, we
use representative participant to refer to the cor-
rect participant which contains the most mentions
in the hit participant. In this way, we build a 1-
to-1 mapping from the detected participants to the
groundtruth participants. Next, we define correct
mentions as the union of the overlapping mentions
between all pairs of representative and hit partici-
pants. Then we calculate the mention-level precision
and recall as the number of correct mentions divided
by the total mentions in the system or goldstandard
participant clusters.

Figure 3 shows the participant- and mention-level
precision and recall scores. We experimented with
different similarity measures for the agglomerative
clustering approach13. The “global context” means
that the context vectors are created from the entire
data stream; this may not perform well since dif-
ferent participants can share similar global context.
E.g., the terms “shot”, “dunk”, “rebound” can ap-
pear in the context of any NBA players and are not

13The stopping threshold δ was set to 0.15, local context
length is 3 minutes, and frequency threshold ψ was set to 200.



Participant-level Sub-event Detection Global Sub-event Detection
Event #P #S Spike MM #S Spike Participant + Spike Participant + MM

R P F R P F R P F R P F R P F

Lakers vs Okc 9 65 0.75 0.31 0.44 0.71 0.39 0.50 48 0.67 0.38 0.48 0.94 0.19 0.32 0.88 0.40 0.55
Celtics vs 76ers 10 88 0.52 0.39 0.45 0.53 0.43 0.47 60 0.65 0.51 0.57 0.72 0.18 0.29 0.78 0.39 0.52
Celtics vs Heat 14 152 0.53 0.29 0.37 0.50 0.38 0.43 67 0.57 0.41 0.48 0.97 0.21 0.35 0.91 0.28 0.43
Spurs vs Okc 12 98 0.78 0.46 0.58 0.84 0.57 0.68 81 0.41 0.42 0.41 0.88 0.35 0.50 0.91 0.54 0.68

Heat vs Okc (1) 15 123 0.75 0.27 0.40 0.72 0.35 0.47 85 0.41 0.47 0.44 0.94 0.20 0.33 0.96 0.34 0.50
Heat vs okc (2) 13 153 0.74 0.36 0.48 0.76 0.43 0.55 92 0.41 0.33 0.37 0.88 0.21 0.34 0.87 0.38 0.53

WWDC’12 10 56 0.64 0.14 0.23 0.59 0.33 0.42 43 0.53 0.26 0.35 0.77 0.14 0.24 0.70 0.31 0.43
Average 12 105 0.67 0.32 0.42 0.66 0.41 0.50 68 0.52 0.40 0.44 0.87 0.21 0.34 0.86 0.38 0.52

Table 4: Sub-event detection results on both participant and the event streams. “Spike” corresponds to the spike
detection algorithm proposed in (Marcus et al., 2011); “MM” represents our proposed time-content mixture model
approach. “#P” and “#S” list the number of participants and sub-events in each event stream.

discriminative enough. We found that adding the
lexical similarity measure greatly boosted the clus-
tering performance, especially on the mention-level,
and that combining the lexical similarity with the lo-
cal context is even more helpful for some events.
We notice that two events (celtics vs 76ers and
celtics vs heat) yield relatively low precision on both
participant- and mention-level. Taking a close look
at the data, we found that these two events acciden-
tally co-occurred with other popular events, namely
the TV program “American Idol” finale and the NBA
Draft. The keyword based data crawler thus includes
many noisy tweets in the event streams, leading to
some false participants being detected.

5.2 Sub-event Detection Results
We compare our proposed time-content mixture
model (noted as “MM”) against the spike detection
algorithm proposed in (Marcus et al., 2011) (noted
as “Spike”) . The spike algorithm is based on the
tweet volume change. It uses 10 seconds as a time
unit, calculates the tweet arrival rate in each unit,
and identifies the rates that are significantly higher
than the mean tweet rate. For these rate spikes, the
algorithm finds the local maximum of tweet rate and
identify a window surrounding the local maximum.
We tune the parameter of the “Spike” approach (set
τ = 4) so that it yields similar recall values as the
mixture model approach. We then apply the “MM”
and “Spike” approaches to both the participant and
event streams and evaluate the sub-event detection
performance. Results are shown in Table 4. A sys-
tem detected sub-event is considered to match the
goldstandard sub-event if its peak time is within a
2-minute window of the goldstandard.

We first apply the “Spike” and “MM” approach to

the participant streams. The participant streams on
which we cannot detect any meaningful sub-events
have been excluded, the resulting number of partic-
ipants are listed in Table 4 and denoted as “#P”.
In general, we found the “MM” approach can per-
form better since it inherently incorporates both the
“burstiness” and “lexical cohesiveness” of the event
tweets, while the “Spike” approach relies solely on
the “burstiness” property. Note that although we di-
vide the entire event stream into participant streams,
some key participants still own huge amount of dis-
cussion and the spike patterns are not always clearly
identifiable. The time-content mixture model gains
advantages in these cases.

We apply three settings to detect global sub-
events on the data streams. “Spike” directly ap-
plies the spike algorithm on the entire event stream;
the “Participant + Spike” and “Participant + MM”
approaches first perform sub-event detection on the
participant streams and then merge the detected sub-
events along the timeline to generate global sub-
events. Note that there are fewer goldstandard
sub-events (“#S”) on the global streams since each
global sub-event may correspond to one or multiple
participant-level sub-events. Because of the averag-
ing effect, spike patterns on the entire event stream
is less obvious than those on the participant streams.
As a result, few spikes have been detected on the
event stream using the “Spike” algorithm, which
leads to low recall as compared to other participant-
based approaches. It also indicates that, by dividing
the entire event stream into participant streams, we
have a better chance of identifying the sub-events
that have otherwise been shadowed by the domi-
nant sub-events or participants. The two participant-
based methods yield similar recall but “Participant



+ Spike” yields slightly worse precision, since it is
very sensitive to the spikes on the participant-level,
leading to the rise of false alarms. The “Participant +
MM” approach is much better in precision, which is
consistent to our findings on the participant streams.

5.3 Summarization Results

Summarization evaluation has been a longstanding
issue in the literature (Nenkova and Mckeown, 2011;
Liu and Liu, 2010). There are even less studies fo-
cusing on evaluating the event summaries generated
from data streams. Since the summary annotation
takes quite some effort, we sample a 10-minute seg-
ment from each of the seven event streams and ask
a human annotator to select representative tweets
for each segment. We then compare the system
summaries against the manual summaries using the
ROUGE-1 (Lin, 2004) metric. The quantitative re-
sults and qualitative analysis are presented in Table 5
and Table 6 respectively. Note that the ROUGE
scores are based solely on the n-gram overlap be-
tween the system and reference summaries, which
may not be the most appropriate measure for eval-
uating the Twitter event summaries. However, we
do notice that the accurate sub-event detection per-
formance can successfully translate into a gain of
the ROUGE scores. Qualitatively, the participant-
based event summarization approach focus more on
extracting tweets associated with the targeted partic-
ipants, which could lead to better text coherence.

6 Conclusion and Future Work

In this work, we made an initial attempt to gen-
erate event summaries using Twitter data streams.
We proposed a participant-based event summariza-
tion approach which “zooms-in” the Twitter event
streams to the participant level, detects the impor-
tant sub-events associated with each participant us-
ing a novel mixture model that incorporates both the
“burstiness” and “cohesiveness” of tweets, and gen-
erates the event summaries progressively. Results
show that the proposed approach can effectively cap-
ture the sub-events that have otherwise been shad-
owed by the long-tail of other dominant sub-events,
yielding summaries with considerably better cover-
age. Without loss of generality, we report results
on the entire event streams, though the proposed ap-
proach can well be applied in an online fashion.

Event Method R(%) P(%) F(%)

NBA Average
Spike 14.73 23.24 16.87
Participant + Spike 54.60 14.65 22.40
Participant + MM 54.36 23.06 31.53

WWDC Conf.
Spike 26.58 39.62 31.82
Participant + Spike 49.37 25.16 33.33
Participant + MM 42.77 31.73 36.07

Table 5: ROUGE-1 scores of summarization

Method Summary

Manual

Good drive for durant
Pretty shot by Duncan
Good 3 point tony parker
Nice move westbrook
Good shot Westbrook

Spike
Game 3. Spurs vs. OKC
Okc and spurs game.

Participant
+ Spike

OKLAHOMA CITY THUNDER vs san antonio
spurs!! YA
I hope okc win the series. Ill hate too see the heat
play San Antonio
we aint in San Antonio anymore.
NBA: SA 0 OKC 8, 9:11 1st.#TeamOkc
San antonio spurs for 21 consecutive win? #nba
Somebody Should Stop Tim Duncan.
Pass the damn ball Westbrook
Good 3 pointer tony parker!

Participant
+ MM

Tim Duncan shot is so precise
Tim Duncan is gettin started
Good 3 pointer tony parker!
Sefalosa guarding tony parker. Good fucking move
coach brooks
Westbrook = 2 Fast 2 Furious
Niggas steady letting Tim Duncan shoot
Westbrook mid range shot is automatic

Table 6: Example summaries for an event segment. Par-
ticipants are marked using italicized text.

There are many challenges left in this line of re-
search. Having a standardized evaluation metric for
event summaries is one of them. In the current work,
we employed ROUGE-1 for summary evaluation,
since it has been shown to correlate well with the hu-
man judgements on noisy text genres (Liu and Liu,
2010). We would like to explore other evaluation
metrics (e.g., ROUGE-2, -SU4, Pyramid (Nenkova
et al., 2007)) and the human evaluation in future.
We will also explore better ways of integrating the
sub-event detection and summarization approaches.
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