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A particle-field approach bridges phase separation
and collective motion in active matter
Robert Großmann 1,2, Igor S. Aranson 3✉ & Fernando Peruani 1,4✉

Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled

rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion,

and spatio-temporal chaos. In this work, we present a theoretical framework representing

active particles by continuum fields. This concept combines the simplicity of alignment-based

models, enabling analytical studies, and realistic models that incorporate the shape of self-

propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show

how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced

phase separation and facilitate orientational ordering, thereby connecting the realms of scalar

and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and

nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is

a dynamical property in active matter. The presented framework may represent various

systems including bacterial colonies, cytoskeletal extracts, or shaken granular media.
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I
nteracting self-propelled particles, termed active matter, are
the standard model of collective behavior out of thermo-
dynamic equilibrium1. Active systems become increasingly

popular in different disciplines studying diverse systems from
phoretic colloids2,3, self-organized collective swimming of bac-
teria4, and self-assembly in biomimetic systems5 to collective
animal behavior6,7.

The current theoretical understanding of active matter relies
on two cornerstones. One of these is the emergence of phase-
separated states in ensembles of self-propelled hard discs8–10 due to
the combined effect of self-propulsion and isotropic repulsion11,12.
This phenomenon, sharing similarities with vibrated granular
media13, was termed motility-induced phase separation (MIPS). Its
theoretical appeal stems from the potential mapping of the none-
quilibrium dynamics at large scales to an effective equilibrium
theory for the density field14–17. Despite various realizations of self-
propelled discs were designed2,18, experimental evidence of this very
type of active phase separation is still lacking. Furthermore, recent
experiments with active Janus colloids19 support the hypothesis that
torques leading to orientational ordering within clusters interrupt
MIPS. Note that torques among self-propelled discs are only neg-
ligible if tangential friction and dipole–dipole (electric or magnetic)
interactions are absent. Moreover, long-ranged hydrodynamic flows
can mediate nontrivial orientational interactions20 that substantially
depend on the geometry of the system and its boundary conditions;
for an in-depth analysis how hydrodynamic interactions suppress
MIPS, see ref. 21 and references therein.

Orientational symmetry breaking and the emergence of collective
motion due to velocity alignment is another cornerstone of active
matter22–27. Effective alignment interactions may occur, for example,
due to inelastic collisions of colloidal particles28 observed in ensemble
of vertically shaken discs18, due to hydrodynamic interactions20,21, or
by combined interactions such as hydrodynamic-electric ones in
Quicke rollers29 and hydrodynamic-magnetic ones in magnetic
rollers30,31. However, the most elemental and ubiquitous source of
alignment is given by the particle shape, i.e., by anisotropic repulsion
among spatially extended, self-propelled objects27,32. Recent numer-
ical studies unveiled a large variety of collective phenomena among
self-propelled, rod-shaped particles including mesoscale-turbulence33,
formation of bands and aggregates34, accumulation at confining
walls35, and a complex phase diagram depending on rigidity and
density36,37.

Beyond the inherent theoretical interest in the physics of self-
propelled rods, there exists a large number of applications: motile
bacteria in two-dimensions4,38–40, biomimetic systems like
motility assays41–43 as well as shaken granular rods44–46. Note in
this context that the collective dynamics of cells47, modeled by
soft deformable active particles48,49 or phase fields50, constitutes a
physically different class of systems due to the inherent coupling
of particle shape and the level of activity—for vanishing activity,
cells become circular and, thus, these models do not behave like a
system of passive rods in this limit; particularly, they do not
exhibit an isotropic-nematic transition expected to emerge as a
result of free energy minimization in passive liquid crystals51.

In short, particle shape controls the physics of active systems:
whereas active phase separation is expected for self-propelled
discs12, the coupling of self-propulsion and anisotropic volume
exclusion leads to collectively moving clusters27,32. A framework
encompassing all of these central phenomena can be considered
the basis for a theory of active matter. In this context, novel
theoretical concepts are called for as the application of tools from
equilibrium statistical mechanics to active matter, e.g., pressure52,
is limited to special cases.

The complexity of models for spatially extended, anisotropic
objects has hindered analytical studies and systematic coarse-
graining addressing their collective properties—the characterization

has been mainly carried out by numerical simulations27,32–37,53.
The derivation of hydrodynamic equations from microscopic
models has only been possible for particles with a prescribed
velocity-alignment rule54–59, based on symmetry considerations,
or heuristic interactions including Onsarger’s interaction argument
for rods in the limit of infinite aspect ratio60. Only recently,
the collective dynamics of self-propelled rods has been character-
ized by effective transport properties (collective speed and
rotational diffusion), which has allowed to assess numerically
the importance of motility-induced phase separation in those
systems61.

In this work, we present a modeling approach for self-driven
objects that brings the simplicity of alignment-based models and
enables analytical analysis. It provides a physically coherent,
realistic modelling of self-propelled objects with steric, repulsive
interactions: each individual entity is represented by an aniso-
tropic, smooth field whose mutual interactions are derived from
the minimization of overlap energy. Thus, the interaction force
and torque result from a single interaction principle, namely the
minimization of potential energy that depends explicitly on
particle shape. This approach yields a universal, simple, and
descriptive model that links different phenomena at the heart of
active matter. Within the same framework, it consistently
reproduces MIPS for self-propelled discs12 and predicts the
emergence of orientational order as well as polar clustering for
self-propelled hard rods27,32. Thereby, it contributes to the con-
nection of the realms of scalar and vectorial active matter37,61,62.
Combining numerical simulations and analytically derived
coarse-grained order parameter equations, we show how MIPS
breaks down for anisotropic objects due to the combined action
of self-propulsion and anisotropic repulsion. Therefore, it
underpins the specific interactions that are responsible for the
restabilization of homogeneous states for rod-shaped particles.
The resulting nonequilibrium stresses acting on the microscale
induce orientational alignment of different symmetries locally. In
this system, the rigidity of particles determines the symmetry of
ordered states: long-lived, giant moving clusters are observed if
particles strongly repel each other to prevent particle crossing,
whereas large-scale nematic order emerges for particles which can
slide past each other. We further report that those regimes are
separated by a bistable coexistence region, similar to the recently
reported ones in motility assays43. Thereby, we shed light on the
importance of anisotropic repulsion as a source of orientational
alignment, particularly on how the interrelation of particle shape,
rigidity, and self-propulsion determines emergent collective
behavior—key elements to be considered in the design of bio-
mimetic materials. Unifying seemingly different phenomena at
the heart of active matter within one theoretical framework is
expected to pave the way toward a comprehensive understanding
of soft and deformable active matter such as bacterial colonies4,63

or driven filaments41–43.

Results
Field representation of active particles. We represent individual
active particles by Gaussian fields with the principle axes l∥ and l⊥
as shown in Fig. 1, reminiscent of smoothed-particle hydro-
dynamics64 and Gaussian model potentials to describe molecular
interactions65. The main control parameter for the particle shape,
which in turn determines the collective properties of this active
system, is the anisotropy

ε ¼
l2k � l2?

l2k þ l2?
¼

ϕ2 � 1

ϕ2 þ 1
: ð1Þ

The parameter ε can equivalently be expressed by the aspect
ratio ϕ= l∥/l⊥. The basic idea of the particle-field representation
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is that particles repel each other to minimize their mutual overlap
upon encounter32,65. The Gaussian representation is advanta-
geous because the overlap of two particles can be calculated
analytically. In this way, we construct a repulsive binary
interaction energy that is a function of the overlap; for details
on the derivation of this energy and its explicit form, see
Methods. The interaction force f2 and torque m2 result from the
minimization of this interaction energy. The force

f2 Δr;φ;φ0ð Þ ¼ Mε Δr;φ;φ
0ð Þ � Δr; ð2Þ

between two rods is basically given by the relative position Δr of
their centers of mass, however, it is anisotropic in view of their
relative orientations, represented by the matrix Mε. Further, the
torque consists of two contributions

m2 Δr;φ;φ0ð Þ ¼ a sin 2 φ� αð Þ½ � þ b sin 2 φ0 � φð Þ½ �; ð3Þ

where α ¼ argðΔrÞ, and the prefactors a and b abbreviate
generalized interaction strengths; for symmetry considerations,
one can think of them as constants. The term with prefactor b is
the well-known nematic alignment of the body axes, proposed on
phenomenological grounds24,66 and analyzed within kinetic
theories57,59,67. The term proportional to a, which has not yet
been studied, couples the orientation of a rod to the relative
position of another one—it favors configurations where the
orientation ek φ½ � is perpendicular to the axis Δr which connects

the two centers of mass. We note in this context that nematic
alignment of the body axis of elliptical rods does not necessarily
avoid contact: two nematically aligned rods lying side-by-side
may marginally overlap in contrast to the situation where one rod
is behind the other one with respect to its direction of motion.
Another way of looking at this new torque term is that a rod
which approaches another one will turn away, thereby minimiz-
ing the potential overlap. We refer to this novel term as nematic
collision avoidance. Note that distance-dependent repulsion as
expected for soft spheres, though with a different symmetry, was
recently considered in a Vicsek-like model with nematic
alignment and velocity reversals59, i.e., in dry active nematics,
where repulsion was shown to play a central role for the emergent
macroscopic patterns at high density.

Self-propulsion breaks uniaxial nematic symmetry. We describe
the overdamped dynamics of spatially extended, active particles

via

_rk ¼ v0ek φk

� �

þ μ̂ φk

� �

�
X

j

f2 rk � rj;φk;φj

� �

þ ηkðtÞ; ð4Þ

_φk ¼ μφ
X

j

m2 rk � rj;φk;φj

� �

þ
ffiffiffiffiffiffiffiffi

2Dφ

q

ξk tð Þ : ð5Þ

The balance of dissipative and driving force leads to stochastic
motion with a mean speed v0 along the long particle axis e∥ in the
absence of interactions. The translational (μ̂) and rotational (μφ)
mobilities as well as the nature of fluctuations of position and
orientation, abbreviated by ηk(t) and ξk tð Þ, respectively, are
determined by the anisotropy of particles and the properties of
the surrounding medium. The noise terms ηk(t) and ξk tð Þ are
assumed to be Gaussian, unbiased and δ-correlated in time.
Fluctuations of the center of mass are generally anisotropic, even
if they were of thermal origin,

ηkðtÞ ¼
ffiffiffiffiffiffiffiffi

2Dk

q

ek φk

� �

ηk;kðtÞ þ
ffiffiffiffiffiffiffiffiffi

2D?

p

e? φk

� �

η?;kðtÞ; ð6Þ

where the diffusion coefficients parallel and perpendicular to the
rods’ orientation read D∥ and D⊥.

Notably, interaction, diffusion, steric repulsion, and friction
possess uniaxial (nematic) symmetry: they are invariant under the
transformation φj→ φj+ π for any particle by construction. Only

the self-propulsion term v0ek φj

h i

breaks this inversion symmetry

at the microscale as ek φj

h i

! ek φj þ π
h i

¼ �ek φj

h i

. For this

reason, self-propelled rods (v0 > 0) are inherently different from
systems without directed self-propulsion on the microscale (v0=
0), where the diffusive dynamics is invariant under inversions of
the orientation vector e∥, hence distinguishing self-propelled
objects from most active nematic models68.

In the equilibrium limit, when fluctuation–dissipation relations
hold and self-propulsion vanishes, Eqs. (4) and (5) describe
passive rods with nematic alignment, in line with Onsager’s
theory51.

Breakdown of MIPS. The shape of rigid self-propelled particles
determines their collective behavior (Fig. 2). In the limiting case
of self-propelled hard discs (l∥/l⊥= 1), we observe MIPS—the
formation of aggregates that display hexatic order, surrounded by
a disordered gas of active particles11,12,14–17,69. In this regime, the
observed phenomenology is consistent with previously reported

c d

e��[�k]

e��[�k]

�k

rk

x

y

2l��

4l��

2l�4l�

a b

Polar collision Antipolar collision

Fig. 1 Graphical illustration of the smooth-particle approach. The field representing one particle is shown as a three-dimensional illustration in panel

(a) and as a top view in panel (b), together with the particle extensions l∥, l⊥, its orientations ek;? φk

� �

and the center of mass position rk. Particles are

circular for ε= 0 (l∥/l⊥= 1) and become needle-shaped in the limit ε→ 1 (l∥/l⊥→∞). Here, l∥/l⊥= 4, ε= 15/17. Furthermore, a polar (acute) (panel c) and

an antipolar (obtuse) collision (panel d) of rigid rods is illustrated. The overlap upon collision is highlighted in color. After a polar collision, rods tend to

move in parallel such that their positions and orientations are highly correlated. In contrast, particles are quickly separated far from another after an

antipolar collision. Therefore, the probability to find two rods moving in parallel is enhanced; in short, polar collisions are the precursor for clustering. For

additional modeling details see Supplementary Note 1 and Supplementary Fig. 1. Supplementary Movies 5–8 illustrate various outcomes of binary

interactions.
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findings on self-propelled discs. In Fig. 2a, the enhancement of
density fluctuations in the phase-separated regime is evident.
Since the orientations of discs within an aggregate is disordered,
MIPS may be described by a scalar field theory for the particle
density only15.

Surprisingly, we find that MIPS aggregates melt for small
anisotropies (l∥/l⊥= 1.0424 in Fig. 2b): in contrast to the phase-
separated regime, we observe a drastic decrease of density
fluctuations and a reduction of local hexatic order. Phase
diagrams that quantify the behavior of the system in detail for
disc-like particles as well as for slightly anisotropic rods along
with measures for the level of hexatic order, both local and global,
are provided in Supplementary Note 2 and Supplementary
Figs. 2–4.

What is the mechanism behind the break up of aggregates? We
recall that phase separation of self-driven spheres arises due to the
slow down of particles as they collide11. Upon collision, their
orientations point towards the center of clusters such that
aggregates are surrounded by a polar boundary layer70— active
pressure keeps them together (Fig. 3a). Preparing an aggregate in
a slap geometry and performing a quench to slightly anisotropic
rods reveals that this polar boundary layer dissolves as a
deterministic torque rotates rods away from the boundary of
aggregates (Fig. 3b, c).

Similar observations were reported from numerical investiga-
tions of hard rods, implemented via a Gay–Berne potential, with
isotropic mobility tensor in the limit of infinite Péclet number62.
The breakdown of MIPS aggregates was attributed in ref. 62 to a
different mechanism from the one reported here, namely to a
reduction of force imbalance as a consequence of local alignment.
In contrast, our analysis (for theoretical considerations, see
below) suggests an anisotropic coupling of density gradients to
the polar order parameter field to stabilize the homogeneous state

for self-propelled rods. A decreased collision duration—implying
the reduction of the hindrance that is the basis of MIPS—for rod-
shaped objects due to torque had previously been described in
ref. 61. Overall, we conclude that the destabilization of MIPS is
not a model-dependent phenomenon, but rather a generic feature
of active systems with non-negligible torques, in line with recent
experimental findings19.

Emergence of orientational order. We observe the formation of
states with orientational order by increasing the aspect ratio of
particles beyond the breakdown of active phase separation
(Fig. 2c–e). At first, the system remains globally disordered.
Counterintuitively, large-scale domains with polar order are
observed32 if the anisotropy is increased further, though the
interaction potential is strictly nematic. Those macroscopic pat-
terns (Fig. 2d) are highly dynamic since polar order is inherently
related to mass transport, thereby inducing clusters to form,
merge and break in a nontrivial fashion27,32.

Along with polar domains, topological defects emerge due to
collisions of those structures (Fig. 2d). Examining the orientation
of the rod axis only, i.e. irrespective of the orientation of the self-
propulsion force with respect to the body axis, these defects have
a half-integer topological charge, familiar from active nematics68.
Defects may, however, be self-motile because of the polarity of
directional energy input at the level of individual rods: in Fig. 2d,
a black arrow indicates that rods push towards the center of a
þ 1

2
-defect thereby creating an active, anisotropic stress, which

results in a directed displacement of the defect position. This
mechanism of defect motion in ensembles of polarly driven
objects is different from defect motility in active nematics, both
dry44 and wet68. Furthermore, defects are created and disappear
in an intermittent way: due to strong density instabilities, defects

1 1.0424 1.21 1.96 4 l⎮⎮/l⊥

MIPS Global disorder
Global disorder &

local nematic order
Polar domains

Polar band &

local smectic order

0 0.04 0.19 0.59 0.88 �

ba c d e

�

Fig. 2 Snapshots of large-scale patterns for increasing particle anisotropy of rigid self-propelled objects. The top row shows the entire simulation box;

enlarged images (40 × 40) are plotted in the corresponding panels below. The anisotropy is varied keeping the particle size A∝ l∥l⊥ fixed by setting the

product l∥l⊥= 1. From left to right: a ε= 0, aspect ratio l∥/l⊥= 1; b ε ≈0.04, aspect ratio l∥/l⊥= 1.0424; c ε ≈0.19, aspect ratio l∥/l⊥= 1.21; d ε ≈0.59,

aspect ratio l∥/l⊥= 1.96; e ε ≈0.88, aspect ratio l∥/l⊥= 4. Color coding represents the orientation of the active force. The background shading indicates the

different physical regimes. See also Supplementary Movies 1–3. Simulation parameters (cf. Methods): energy functional F ξ½ � ¼ ξγ with energy scale κ= 1

and exponent γ= 3, active force Fa= v0/μ∥= 0.01, spatial diffusion D∥,⊥= 0, rotational fluctuations Dφ= 3 × 10−5μφ, systems size Lx,y= 250 and particle

number N= 5968. The anisotropic mobility matrix for ellipsoids dispersed in a liquid was used74.
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may vanish in the void or penetrate from the boundary of a dense
region—the topological charge is therefore not conserved.

We observe that polar domains may become system spanning
for intermediate system sizes for high anisotropy (Fig. 2e), in line
with the findings reported in refs. 27,34,36. These polarly ordered
structures are furthermore comprised of smectic particle
arrangements due to the nematic collision avoidance torque that
favors configurations where the orientation of rods is perpendi-
cular to the axis which connects the two centers of mass of
neighboring rods [cf. the discussion of Eq. (3)]. Order parameters
that quantify the local positional structure of bands are discussed
in Supplementary Note 2 (Supplementary Fig. 6). Note that
numerical data suggest the absence of long-range orientational
order in the thermodynamic limit34.

We stress that macroscopic order is polar, while the symmetry
of the interaction potential of rods is strictly nematic (uniaxial
symmetry). Accordingly, the symmetry of macroscopic order is
not imposed by the symmetry of the interaction potential, but
emerges spontaneously from the spatial dynamics of particles.
Similar behavior was observed in studies of myxobacteria38,71.

Our simulations reveal that the emergence of local polar order
—inherently related to convective mass transport—is accompa-
nied by strong density instabilities. However, this does not
imply that MIPS is reentrant with the aspect ratio. We underline
in this context the significant structural differences of the states
shown in Fig. 2a, d, e. Clusters are highly dynamic in the case of
self-propelled rods, and their persistence grows with cluster size.
On the contrary, aggregates formed by self-propelled discs via
MIPS move diffusively, with a diffusion coefficient that decreases
with system size (cf. Supplementary Note 2 and Supplementary
Fig. 5 for characterization of particle transport). Accordingly, the
shape of clusters and their dynamics differ. Note in this context
that aggregates formed via MIPS are surrounded by a polar
boundary layer (Figs. 2a and 3) of particles pointing toward the
center of the aggregate whereas rods are aligned parallel to the
band axis (parallel to the interface) in the case of rods (Fig. 2e). In
short, these patterns differ in their surface structure and dynamics
(see also Supplementary Note 2 and Supplementary Fig. 6 for
additional details).

Polar vs. nematic order and their coexistence. Generally, the
emergent patterns formed by active particles differ if particles can
slide past each other—implying that the self-propulsion force can
overcome repulsive interactions—compared to situations where
this is impossible37. To address this question, we now fix the
aspect ratio and ask what the influence of self-propulsion for this
system is by varying the speed v0. In the limit of high self-pro-
pulsion, particles may slide past each other upon encounter
whereas they are blocked by their interaction partners in the
opposite limit. Figure 4 depicts graphically the phenomenological

transition from weakly to strongly driven rods. Large-scale, polar
domains are observed for low self-propulsion. In the limit of high
activity, in contrast, particles arrange themselves in nematic
band-like structures as they are familiar from Vicsek-type, point-
like particles with nematic alignment24. In a small parameter
window, where the order of magnitude of the self-propulsion
force is comparable to repulsive forces, a bistable coexistence
region is observed: for intermediate values of the active speed,
both nematic bands and polarly ordered domains are observed
intermittently. The coexistence of polar and nematic order, along
with the explicit speed values v0 for which the respective states are
found, is detailed in Fig. 4. The stochastic switching from polar to
nematic states is revealed by anomalously high fluctuations of the
polar order parameter (Fig. 4b). The timescales of these stochastic
transitions are remarkable as they are several orders of magnitude
larger than timescales of the dynamics at the particle level.

The simultaneous existence of polar and nematic states has
recently been reported by Huber et al.43 for a motility assay
experiment. Those results were rationalized by simulations of self-
propelled, flexible filaments which are pulled at one side and
interact by a combination of polar and nematic alignment. In
contrast to this motility-assay system, the interaction of the self-
propelled particles considered here is strictly nematic; the global
nematic symmetry is solely broken by self-propulsion. Thus, our
results reveal for the first time that bistability of polar and nematic
structures can nevertheless be expected for simple self-propelled
rods despite purely nematic interaction symmetry, if the strength
of self-propulsion and repulsion are fine-tuned or happen to
coincide in a specific application. However, we do not expect the
bistability of globally polar and nematic states to be retained in the
thermodynamic limit as the diffusive motion of particles within
the nematic band is too slow to allow for long-range nematic
order34. We rather expect disconnected patches composed of
polarly or nematically aligned particles to emerge which coarsen in
a nontrivial way as they interact at the mesoscale.

Particle-anisotropy induces nonequilibrium stresses. Based on
the Fokker–Planck equation for the one-particle density corre-
sponding to the particle-based description (cf. Methods), we
analytically address the breakdown of MIPS for small particle
anisotropies (Figs. 2 and 3). As numerical simulations reveal that
this instability occurs for small particle anisotropy, it is sufficient
to keep leading orders in ε. In this limit, the force reduces to an
isotropic central body force. The torque, on the other hand,
possesses at leading order ε a contribution that results from the
novel nematic collision avoidance term

m2 rk � rj;φk;φj

� �

/ ε sin 2 φk � arg rk � rj

h i� �h i

: ð7Þ

This interaction mechanism has not been studied analytically
so far in the context of active matter to the best of our knowledge.

�̄y (x)
a b c

Time t1 Time t2 > t1 Time t3 > t2

�

Fig. 3 Unstable MIPS aggregate after a quench from discs to slightly anisotropic rods. A quench is performed from circular particles (panel a) to

ellipsoidal particles with the anisotropy l∥/l⊥= 1.21 (panels b, c). A cross-section of the density field and the px-component of the polar order parameter

field in a slap geometry is shown together with corresponding snapshots for three different times t1 < t2 < t3. The state shown in panel c is not a stationary

state, which is given by a flat density profile. Color coding represents the orientation, as indicated in the color bar. Simulation parameters (cf. Methods):

energy functional F ξ½ � ¼ ξγ with energy scale κ= 1 and exponent γ= 3, fixed particle surface area A= πl∥l⊥= π, active force Fa= v0/μ∥= 0.01, spatial

diffusion D∥,⊥= 0, rotational diffusion Dφ= 7.5 × 10−5, systems size Lx= 300 and Ly= 70, particle number N= 1671.
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Mobility and diffusion tensor of individual particles are simplified
to be isotropic for small ε: μ̂ � �μ1 and D0 = D∥ ≈ D⊥.

We begin the analysis by calculating the average force and
torque felt by a particle with orientation φ to first order in
gradients

F ’ �ζ0κek φ½ �ρ; ð8Þ

M ’ �εζ1κek φ½ � ^∇ρ ¼ �εζ1κ cosφ∂y � sinφ∂x

� �

ρ: ð9Þ

The parameters ζ0,1 are positive nonequilibrium transport
coefficients, given by integrals over the pair correlation function,
and ρ is the particle density; for details of the derivation, see
Methods and the Supplementary Note 3. Measurements of pair-
correlations in particle-based simulations reveal that the kinetics
of collisions leads to an enhancement of particle density in front
with respect to the direction of motion of a focal particle (aka
bulldozer effect): as particles move actively in a semi-dilute
environment, they tend to collide with others, and consequently
the probability to find a particle in front is higher than in the back
(see Fig. 5a). This phenomenon was reported in system of self-
propelled discs, where it was used to build a scalar field theory to
describe MIPS17,69.

According to Eq. (8), forces yield a speed reduction on average
in high density areas as particles bump into their neighbors. The
decrease of speed with particle density is the classical mechanism
underlying MIPS11,12. In Eq. (9), we report an important novel
element: a slight asymmetry of particle shape gives rise to a
torque, which induces a rotation away from high density
domains.

The physical effects of force and torque become evident at the
level of coarse-grained order parameters: the density ρ r; tð Þ and

the polar order parameter field p ¼ ek φ½ �
D E

. Equations for these

quantities are obtained by performing a mode expansion of the

Fokker-Planck equation for the one-particle density, which yields

∂tρ � �∇ � vðρÞp½ � þ D0Δρ; ð10Þ

∂tp � �∇ �
vðρÞ

2
Πþ

� �

�Dφp�
μφεζ1κ

2
Π� � ∇ρþ D0Δp:

ð11Þ

The convective term in Eq. (10) represents the density-dependent
speed reduction due to collisions via v ρð Þ ¼ v0 � �μζ0κρ. At the
field level, the torque is cast as an anisotropic, nonlinear flow of
the form _p / �εΠ� � ∇ρ with the tensors Π± ¼ ρ1±Q, where
Q r; tð Þ abbreviates the nematic order parameter field. Accord-
ingly, density gradients are counteracted by an opposing particle
flow due to torque. The coupling of the polar order parameter to
density gradients turns out to be a stabilizing mechanism of the
homogeneous, disordered state, that is also responsible for the
suppression of MIPS for self-propelled rods as argued below. That
is in stark contrast to the arguments given in ref. 62, where this
type of coupling is absent.

The time-independent solutions of these transport equations
imply the polar order parameter p to be collinear to the density
gradient ∇ρ, as p ¼ D0 ∇ρð Þ=v ρð Þ follows from Eq. (10), cf. the
phase-separated state in Fig. 3a. The theoretical analysis for
anisotropic particles reveals, however, that torques will destabilize
parallel arrangements of the orientation ek φ½ � and the density

gradient ∇ρ [see Eq. (9)]. Therefore, the torque, which is
proportional to the anisotropy ε, tends to dissolve the polar
boundary layer around aggregates—it induces locally anisotropic
stresses whenever density gradients and local order coexist on a
coarse-grained level [Eq. (11)], as we argued before based on
numerical simulations.

To substantiate these arguments, we investigated the linear
stability of the spatially homogeneous, isotropic state on the basis
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Fig. 4 Coexistence of polar and nematic order for self-propelled rods. The panels show snapshots of large-scale patterns observed in numerical

simulations of rods as a function of their self-propulsion speed for fixed repulsion strength and fixed anisotropy. If the self-propulsion is small, such that

repulsion forces cannot be overcome (panel a), polarly ordered domains are observed. In contrast, nematic bands—previously reported for Vicsek-type

particles with nematic velocity alignment24—emerge as the high self-propulsion force allows particles to glide over each other (panel c). Surprisingly, we

find a bistable coexistence of nematic bands and polar clusters for intermediate values of the self-propulsion force: the nematic order parameter
PN

j¼1 e
2iφj =N

	

	

	

	

	

	 fluctuates around a constant value, whereas the polar order parameter
PN

j¼1 e
iφj =N

	

	

	

	

	

	 switches stochastically between two values,

corresponding to one state with polar order (nonzero value of polar order parameter) to a nematic state where the polar order parameter fluctuates close

to zero (panel b); snapshots are shown as insets (see also Supplementary Movie 4). The lower panel shows the speed values v0 for which the respective

states are observed—bistability of polar and nematic structures, indicated by a hatched pattern, is expected for 2.37≲ v0≲ 2.5. Simulation parameters (cf.

Methods): fixed particle shape A∝ l∥l⊥ by l∥l⊥= 1, anisotropy ε≈ 0.88, aspect ratio l∥/l⊥= 4, energy functional F ½ξ� ¼ ξγ with energy scale κ= 1 and γ= 3,

spatial diffusion D∥,⊥= 0, rotational diffusion Dφ= 0.022, system size Lx,y= 500 in (a) and (c), Lx,y= 250 in (b), particle density ρ0= 0.08.
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of Eqs. (10) and (11), cf. Methods. Studying linear perturbations
around the homogeneous state, we derive the following necessary
conditions, analogous to the critical point, for the emergence of
MIPS to first order in ε

v0 > v� ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi

D0Dφ

q

þ εμφζ1κ
�ρ�0; ð12Þ

where κ* and ρ�0 denote the coupling strength and density at the
critical point, respectively. For ε= 0, this expression reduces to
the well-known result for self-propelled discs17. Accordingly, the
spinodal region within which MIPS emerges is shifted towards
higher speed values. According to Eq. (12), MIPS aggregates may
be restabilized by increasing the self-propulsion speed v0,
however, we stress that it is a necessary and not a sufficient
condition for MIPS. The phase diagrams, see Supplementary
Note 2 and Supplementary Fig. 4, do not show this type of
restabilization, indicating that MIPS does indeed not emerge
above a critical aspect ratio—there is a critical anisotropy beyond
which the polar boundary layer, which would keep an aggregate
together becomes unstable, in line with numerical observations
(Figs. 2 and 3). These findings, particularly the dissolution of
aggregates at very small anisotropies (l∥/l⊥≳ 1.04), put the
relevance of the classical phenomenon of MIPS for self-driven,
anisotropic particles, including self-propelled rods, into question.

Collision kinetics determines onset of orientational order. We
now examine the emergence of orientational order, as observed
numerically for large anisotropies (Fig. 2). As the interaction at
the particle level possesses nematic (uniaxial, front-tail) sym-
metry, one may naively expect the emergence of local nematic
order. We observe that the break up of MIPS is indeed followed
by a globally disordered phase with local nematic order. Inter-
estingly, local order becomes, counter-intuitively, polar if the
aspect ratio is increased even further. In order to identify and
understand the emergence of local orientational order at the
hydrodynamic level, we derived coarse-grained order parameter
equations where hydrodynamic transport coefficients are
expressed as integrals over the correlation functions. Here, we
concentrate on central, symmetry-breaking terms for the polar
and nematic order at the local level, i.e., we expand to lowest

order in spatial gradients:

_p ¼ σppþO ∇ð Þ; ð13Þ

_Q ¼ σnQþO ∇ð Þ: ð14Þ

If the transport coefficient σp is positive, the local polar order
parameter grows and, thus, ordered polar structures are expected
at local scales. In contrast, the nematic order parameter is relevant
at the local level if σp < 0 and σn > 0.

A mode expansion of the one-particle Fokker–Planck equation
yields the following expressions for the relevant transport
coefficients (cf. Methods)

σp ¼
ρμφ

2π

Z 1

0

dr r

Z 2π

0

dα

Z 2π

0

dφ sin φð Þ~m2 r; α;φð Þ � Dφ;

ð15Þ

σn ¼
ρμφ

π

Z 1

0

dr r

Z 2π

0

dα

Z 2π

0

dφ sin 2φð Þ~m2 r; α;φð Þ � 4Dφ:

ð16Þ

In these equations, we introduced ~m2 ¼ m2g2 which is the
product of the actual torque m2 between two particles and the
pair distribution function g2. It represents an effective mean-field
model. We implicitly assumed that the pair-distribution function
g2 is known and absorbed it into the definition of ~m2. Thereby,
the transport coefficients σp,n above still depend on the inter-
particle correlations and the collision kinetics.

In mean-field approximation, where g2 ≈ 1, the effect of
collisions and positional correlations is neglected—consequently,
the effective torque ~m2 is identical to the actual torque m2. In this
limit, the transport coefficient σp for the polar order parameter is
always negative; the integral in Eq. (15) vanishes for symmetry
reasons: σp=−Dφ. Hence, the emergence of polar order cannot
be described within mean-field theory, which can only predict the
existence of an isotropic-nematic transition60. An in-depth
comparison of Smoluchowski and Boltzmann approaches to
kinetic theories for self-propelled rods also predicted the
parameter σp to remain negative58 as a consequence of the
mean-field approximation or the molecular chaos assumption,
respectively.
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Accordingly, the emergence of polar order for low self-
propulsion is related to the collision kinetics and, in particular, to
the formation of polar clusters32 which is, in turn, reflected by
correlations. In this context, we recall that only the self-
propulsion force breaks the nematic symmetry of the microscopic
dynamics [Eqs. (4) and (5)].

To rationalize the numerically observed emergence of polar
order, we first give a heuristic argument along with the
illustration of polar and anti-polar collisions in Fig. 1. We
consider the limit where rods strongly repel each other such that
they cannot slide past each other as active forces are too weak. Let
us consider a collision under an acute angle: a rod-shaped particle
colliding with a cluster aligns its direction of motion to the local
mean orientation. Consequently, it will keep on moving in
parallel with this cluster for a significant time. Only rotational
diffusion may deflect its direction of motion away from the
boundary of the cluster. Therefore, polar clusters are stable and
may grow for low rotational noise. In contrast, nematic clusters
cannot exist: a particle that collides in an antipolar way with a
cluster will just slide off its boundary. As the distance of the
particle and the cluster increases over time, their positions
decorrelate for strongly repelling rods, as subsequent collisions
with other particles will induce deflections of the direction of
motion. Thus, we conclude that the probability to find rods
moving in parallel is higher than seeing antipolar arrangements
locally as a result of the collision kinetics. This can be verified
quantitatively by measuring the pair correlation function
numerically (Fig. 5b).

More rigorously, the effective, binary torque on the field level
~m2, which enters into the relevant hydrodynamic transport
coefficient σp, is given by the product of the model m2 and the
correlation function g2. Hence, the effective torque ~m2 depends
on the kinetics of collisions. Consequently, this quantity may
contain new terms with symmetries which are not present on the
particle level: the torque at the particle level contains nematic
alignment as m2 / sin 2 φ0 � φð Þ½ �, and the pair distribution
function contains a positive contribution g2 / cos φ0 � φð Þ as
the probability of parallel motion is enhanced. Thus, their
product contains effectively positive polar alignment terms
proportional to sin φ0 � φð Þ, contributing to the first Fourier

mode
R 2π
0 dφ sinðφÞ ~m2 r; α;φð Þ in the integral in Eq. (15), though

polar alignment is not explicitly present at the particle level.
In short, the presence of correlations renormalizes the

interaction parameters and even introduces new interaction
terms at the mesoscale. Therefore, the coefficient σp can turn
positive such that polar terms become relevant on the hydro-
dynamic level in a model with purely nematic interactions. These
arguments crucially depend on the presence of self-propulsion
which is the only term that breaks the global nematic symmetry.
Accordingly, polar order cannot emerge in the limit v0→ 0.

We investigated numerically how the transport coefficients σp
and σn depend on the anisotropy of particles by measuring the
pair distribution function g2 and evaluating the integrals in Eqs.
(15) and (16). Figure 6 shows the relevant hydrodynamic
coefficients together with the variance of the local density as a
measure for density fluctuations. On the basis of this semi-
analytical study, we distinguish the following parameter ranges,
which were introduced along with Fig. 2. Negative values of σp and
σn together with a high level of density fluctuations correspond to
MIPS as observed for isotropic particles. Increasing the anisotropy,
density fluctuations decrease rapidly as MIPS aggregates break up,
while σp and σn are negative (local disorder). Subsequently, σn
turns positive signaling local nematic order, followed by the
emergence of local polar order when σp becomes positive.

Symmetries of ordered states are emergent properties. The
symmetry of emergent patterns is essentially determined by the
spatial dynamics, namely whether rods can possibly slip past each
other or not37, cf. Fig. 4. If self-propulsion forces can overcome
repulsion, one can simplify Eq. (4) to _rk ’ v0e φk

� �

such that the
original rod model reduces to a Vicsek-type model with nematic
alignment24,37,66—the fact that particles push each other is of
minor importance in this parameter regime. Hence, the following
phenomenology is expected at low density: for low rotational
diffusion, a spatially homogeneous, nematic phase emerges at the
mesoscale (finite system size); by increasing the noise, the level of
nematic order decreases; close to the order–disorder transition, the
system demixes into a high density region which is nematically
ordered and a low-noise area where particles move in a disordered
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fashion. This reasoning explains the type of patterns observed in
numerical simulations as shown on the right of Fig. 4. We thus
conclude that the nematic alignment term in the torque [Eq. (3)]
dominates the large-scale dynamics in the limit of high activity.
Accordingly, corresponding mean-field theories for Vicsek-type
self-propelled rods57,67 account for the observed pattern forma-
tion phenomena, such as band formation and nematic ordering.
This implies that positional correlations are less relevant if parti-
cles move fast as the system becomes well-mixed, i.e., particle
positions decorrelate quickly when rods can slip over each other.

By decreasing the self-propulsion force or, equivalently,
increasing the repulsion strength, particles would, however, get
blocked upon encounter, positional correlations build up and the
pair-correlation function becomes increasingly relevant such that
mean-field arguments are not applicable. In this regime, the
symmetry of emerging patterns may differ from the symmetries of
the microscopic interaction. It is an open challenge for future work
beyond the present study to derive the pair correlation function of
anisotropic, self-propelled objects from first principles—analogues
to corresponding theories for self-propelled discs69 —including
nonlinear cross-coupling terms in the evolution of nematic and
polar order parameters57. The full account of the emergent
bistability of polar and nematic order would require to show how it
is possible to observe nematic order, polar order or their
coexistence, as all of these situations are possible for the studied
system of anisotropic, self-propelled particles. The magnitudes of
the nonlinear transport coefficients control whether nematic or
polar order prevails, or both coexist. This limit is most difficult to
assess analytically as standard series expansions fail and, moreover,
density instabilities and orientational order are intrinsically linked
such that a theoretical description in terms of scalar quantities
only, such as the particle density in the case of MIPS of self-
propelled discs, is not applicable for self-propelled rods once
vectorial or tensorial order parameters grow at the local level.

Discussion
In this novel modeling approach to active matter, individual
particles are represented by smooth fields, and their interactions
are derived from the minimization of energy that is a function of
the overlap between particles. Force and torque are analytically
obtained in contrast to rule-based algorithms, thereby enabling
both analytical investigations and a convenient numerical
implementation. Importantly, this modeling technique enables
studying the transition from self-propelled discs12, whose beha-
vior is reproduced consistently, to self-propelled rods27 by per-
forming continuous deformations of the shape. Here, we show
numerically and analytically how aggregates of circular particles
formed via MIPS become unstable for weakly anisotropic, self-
propelled objects. Specifically, the combined action of anisotropic
repulsion and self-propulsion leads to the emergence of an
effective torque, which—above a critical aspect ratio—dissolves
the polar boundary layer required to maintain motility-induced
aggregates. These findings provide an understanding of the role
played by particle anisotropy regarding the robustness of active
phase separation described in terms of scalar field theories for the
particle density. Our smooth-particle approach underpins the
restabilization of the disordered, homogeneous phase—respec-
tively, the breakdown of MIPS—to specific microscopic interac-
tion mechanisms, which, as we argue, are also involved in the
emergence of order, moving beyond previous studies that
reported the destabilization of MIPS based on numerical mea-
surements of effective transport coefficients61 or identified a
different destabilization mechanism62.

Furthermore, we show within the same theoretical framework,
that both, aspect ratio as well as the ratio of rigidity and self-

propulsion, control the symmetry of the pair correlation function,
in turn determining the onset of orientational order. Importantly,
the emerging order can be either of nematic or polar nature and is
therefore not dictated by the symmetry of the interaction potential
only. It depends on the emergent properties of the pair correlation
function. That is why polar and nematic structures can simulta-
neously coexist in a system of identical particles with purely nematic
interactions. Our analysis reveals that the symmetry of macroscopic
order is an emergent and dynamic property of active systems,
similar to recent findings from the analysis of a motility assay
experiment43. Thus, both polar and nematic order parameters shall
be taken into account on the hydrodynamic level.

In summary, the developed framework enables studying MIPS
for isotropic, self-propelled particles, its breakdown with particle
anisotropy, as well as the emergence of both polar and nematic
order, and their coexistence, for the same type of active particles.
Thus, this framework provides a comprehensive picture of most
relevant phenomena reported for active systems and, thereby,
contributes to linking scalar to vectorial active matter37,61,62.
Therefore, we expect our framework to shed light on a large
number of applications, including the growth of bacterial colonies
or self-organized patterns in systems of active filaments. Fur-
thermore, it could be utilized to assess the role of the particle
density in active matter, particularly for bulk phases close to the
percolation threshold. The simplicity of the proposed model may
also help to address the highly nontrivial effect of hydrodynamic
interactions on the collective dynamics of active systems. In
particular, it may provide insight into the question of different
routes to pattern formation via a blocking effect, comparable to
self-propelled discs12, or alignment-induced clustering of rod-
shaped particles27. Pioneering works in this direction indicate
how the alignment of self-propelled rods changes due to hydro-
dynamic flows that may act synergistically or antagonistically,
depending on the type of swimmer (pusher vs. puller)21,72. Fur-
thermore, natural extensions of the developed approach range
from the addition of spatially disordered environments to the
study of polydisperse systems or semi-flexible, filamentous par-
ticles73, among many others.

Methods
Interaction energy, force, and torque. Each particle is represented by an aniso-
tropic Gaussian field

ψk rð Þ ¼ e
�

ðr�rk Þ�ek φk½ �f g
2

2l2
k

�
ðr�rk Þ�e? φk½ �f g2

2l2
? :

ð17Þ

The overlap I kj ¼
R

d2rψk rð Þψj rð Þ of two particles can be calculated

analytically:

Ikj ¼ I 0ðφk;φjÞ e

�
rk�rjð Þ� 1�ε

2
Q φk½ �þQ φj½ �ð Þ½ �� rk�rjð Þ

2 1�ε2cos2 φk�φjð Þ½ � l2
k
þl2

?

� �

;
ð18Þ

where Q ¼ ek � ek � e? � e? and

I 0 ¼ I 0 φk;φj

� �

¼ πlkl?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ε2

1� ε2cos2 φk � φj

� �

v

u

u

t : ð19Þ

The fields ψk ∈ [0, 1] are not probability distribution functions, but shall rather
indicate where a rod is located in space, similar to a phase-field. Therefore, Eq. (17)
is not normalized like a Gaussian probability density. The normalization of ψk is
rather chosen such that the surface overlap of two particles with identical
orientations, φj= φk and identical centers of mass rj= rk is equal to the area of an
ellipse in two dimensions: I kl ¼ πlkl? .

The interaction energy U is defined as the sum of binary contributions:

U ¼ 1
2

PN
k;j u2 rk � rj;φk;φj

� �

. For passive systems, where strong overlapping

rarely occurs, the binary interaction energy u2 can directly be defined as an
increasing function of the overlap I kj

65. For active systems, however, or in contexts

where strong particle overlapping cannot be ignored, the dependency on I 0 has to
be discarded to ensure that the same interaction symmetry is maintained at all
densities (see Supplementary Note 1 and Supplementary Fig. 1 for a detailed
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discussion). Thus, we define u2 as

u2 Δr;φ;φ0ð Þ ¼ κF e

�
Δr� 1�ε

2
Q φ½ �þQ φ0½ �ð Þ½ ��Δr

2 1�ε2cos2 φ�φ0ð Þ½ � l2
k
þl2

?

� �

2

6

6

4

3

7

7

5

; ð20Þ

where Δr ¼ r0 � r is the relative position, κ is the interaction strength measured in
units of energy and F½ξ� is a monotonically increasing function of the overlap. In
this way, the energy increases as particles approach each other, hence inducing a
repulsive force. In particular, soft and hard objects can be described: if the energy is
finite for Δr→ 0, particles are soft whereas these objects can be considered hard if
the energy diverges in this limit.

The binary force f2 Δr;φ;φ0ð Þ ¼ �∇u2 Δr;φ;φ0ð Þ and torque m2 Δr;φ;φ0ð Þ ¼

�∂φu2 Δr;φ;φ0ð Þ exerted on a particle located at r with orientation φ by another

one at r0 with orientation φ0 are deduced from the potential energy by
differentiation with respect to its position and orientation, respectively.
Mathematical details of this derivation are provided in Supplementary Note 1.

Numerical Langevin simulations. The numerical integration of the Langevin
dynamics was performed via a stochastic Euler scheme. The interaction was sim-
plified for numerical purposes: the force and torque decay exponentially and are
thus practically zero beyond interparticle distances that are much larger than the
typical decay length. Therefore, we neglect interactions of particles which are
separated by more than five standard deviations, in terms of the characteristic
Gaussian decay of the interaction energy with particle separation Δr.

The number of model parameters can be reduced by identifying the intrinsic
scales of the system. The mass scale M is determined by the mass of individual
particles which is of minor relevance in the overdamped limit. As an intrinsic

length scale L we choose the geometric mean of l∥ and l⊥: L ¼
ffiffiffiffiffiffiffiffi

lkl?

q

. A third

independent parameter is the energy scale E ¼ κ of the binary interaction [Eq.

(20)]. Thus, the intrinsic timescale is determined by T ¼ L
ffiffiffiffiffiffiffiffiffiffiffi

M=E
p

and velocities

are measured in multiples of the intrinsic value V ¼
ffiffiffiffiffiffiffiffiffiffiffi

E=M
p

; scales for noise
amplitudes and mobilities follow accordingly. Throughout, we use dimensionless
quantities by rescaling time, length, and mass such that κ = 1 and the area A = π of
individual rods are fixed.

Kinetic theory. The main observable linking particle-based descriptions such as
Eqs. (4) and (5) and a field theoretical treatment is the one-particle density dis-
tribution

P r;φ; tð Þ ¼
XN

j¼1
δ r� rjðtÞ
� �

δ φ� φjðtÞ
� �D E

; ð21Þ

which determines the density of particles at a particular reference point in phase
space {r, φ}. Its dynamics

∂tP ¼ �∇ � v0e½φ� þ μ̂ φ½ � � Fð ÞP½ � þ ∇ � D φ½ � � ∇P½ �

� ∂φ μφMP
h i

þ Dφ∂
2
φP;

ð22Þ

is systematically derived from the N-particle Fokker-Planck equation corre-
sponding to the particle-based dynamics. In general, however, the equation of the
one-particle density is not closed but it depends on the pair correlation function g2
via the force and torque functionals:

F ¼

Z

d2r0dφ0f2 r� r0;φ;φ0ð ÞP r0;φ0; tð Þg2ðr; r
0;φ;φ0; tÞ; ð23Þ

M ¼

Z

d2r0dφ0m2 r� r0;φ;φ0ð ÞP r0;φ0; tð Þg2ðr; r
0;φ;φ0; tÞ: ð24Þ

All theoretical considerations in this work are based on this nonlinear Fokker-
Planck equation for the one-particle density P r;φ; tð Þ. Note that the binary
interaction f2 and m2, i.e., the force and torque, which one particle exerts on
another interaction partner [cf. Eq. (3)], are effectively renormalized by the
emergent correlations quantified by g2.

Coarse-grained order parameters. Both, in the context of the breakdown of
MIPS and for the emergence of orientational order, we considered a moment
expansion of the Fokker–Planck equation (22). This is generally done by temporal
differentiation of the respective order parameter

∂tρ r; tð Þ ¼

Z π

�π

dφ ∂tP r;φ; tð Þ ð25Þ

∂tp r; tð Þ ¼

Z π

�π

dφ ek φ½ �∂tP r;φ; tð Þ; ð26Þ

∂tQ r; tð Þ ¼

Z π

�π

dφQ φ½ �∂tP r;φ; tð Þ; ð27Þ

and insertion of the Fokker–Planck equation (22) on the right hand side. These
order parameters are directly related to the Fourier modes of P r;φ; tð Þ with respect
to the angular variable φ, thereby enabling a more direct calculation of the relevant
transport coefficients using Fourier transform. Technical details of the derivation of
Eqs. (13)–(16) are summarized in Supplementary Note 3.

Necessary condition for MIPS. For self-propelled spheres, the emergence of MIPS
is signaled by a long-wavelength instability of the density field17. Here, we examine
the stability of the isotropic state with respect to long-wavelength perturbations for
anisotropic particles. For this purpose, the dynamics of the polar order parameter
field is linearized first by inserting ρ= ρ0+ δρ and p= δp. As we are interested in
the onset of a long-wavelength instability, the linearized field δp can further be
adiabatically eliminated yielding

δp ’ �
ðv0 � 2�μζ0κρ0Þ þ εμφζ1κρ0

2Dφ

∇δρ: ð28Þ

To leading order, one thus obtains an effective diffusion equation ∂tδρ ≃ ΓΔδρ
for the fluctuations of the density around the spatially homogeneous state by
inserting this expression into Eq. (10), where the transport coefficient Γ reads

Γ ¼ D0 þ
v0 � �μζ0κρ0

 �

v0 � 2�μζ0κρ0

 �

þ εμφζ1κρ0

h i

2Dφ

: ð29Þ

A long-wavelength instability of the homogeneous state towards a phase-
separated regime occurs for Γ < 0. Following the procedure presented in ref. 17 for
self-propelled discs, we reformulate the instability condition Γ < 0 into the form of a
quadratic equation

2�μζ0κρ0

 �2

� p 2�μζ0κρ0

 �

þ q< 0; ð30Þ

where p ¼ 3v0 þ εμφζ1κρ0 and q ¼ 2ðv20 þ 2D0Dφ þ εμφζ1κv0ρ0Þ. The instability

region does only exist for p2 � 4q> 0; otherwise there are no physical parameters
satisfying Eq. (30). This inequality yields the condition discussed in the main text
[Eq. (12)].

Beyond the identification of the transition line towards MIPS, we note that Eq.
(29) could, in principle, be used to numerically quantify the transport properties of
the system, as it represents the collective diffusion coefficient of the density field61.
However, the validity of its derivation requires density fluctuations to be small
(expansion to linear order in δρ) and the dynamics of local order parameters to be
fast and enslaved to the density (adiabatic elimination of δp). Therefore, it can be
used for homogeneous states with diffusive transport in the absence of local order
and, thus, its applicability is limited in the context of self-propelled rods. That is
why we show the mean-squared displacement of particles in Supplementary
Note 2, a measure that quantifies the transport properties, beyond the disordered
states with diffusive transport, applicable to other collective states emerging in self-
propelled rods with local polar ordering.

Pair distribution functions. Our theoretical arguments are based on the
enhancement of the probability to find interaction partners in front with respect to
the direction of self-propulsion. This is reflected by the pair distribution function
g2, specifically by the Fourier component

g
ð0Þ
2 r� r0j j; arg r0 � rð Þð Þ ¼

1

2π

Z π

�π

dφ g2 r� r0j j; arg r0 � rð Þ;φð Þ ð31Þ

as shown in Fig. 5a for spherical particles, cf.17,69.
We argued further that the probability of parallel motion is enhanced on

average as a consequence of the anisotropic body shape32, see also the schematic
collisions in Fig. 1. This is reflected by the pair correlation function. In particular, a
positive contribution to the Fourier component

g
ð1cÞ
2 r� r0j j; arg r0 � rð Þð Þ ¼

1

π

Z π

�π

dφ cosðφÞ g2 r� r0j j; arg r0 � rð Þ;φð Þ ð32Þ

reflects that the probability of moving together in groups (φ � φ0) is larger than
moving in an anti-parallel fashion (φ � φ0 þ π). This argument has been verified
by numerical measurements of the respective part of the pair distribution function
(Fig. 5b).

Data availability
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