
A Particle Filter for Stochastic Advection by Lie

Transport (SALT): A case study for the damped and

forced incompressible 2D Euler equation∗

Colin Cotter, Dan Crisan, Darryl D. Holm, Wei Pan†, and Igor Shevchenko

Department of Mathematics, Imperial College London, London, SW7 2AZ,

UK

July 30, 2019

Abstract

In this work, we apply a particle filter with three additional procedures (model reduc-

tion, tempering and jittering) to a damped and forced incompressible 2D Euler dynamics

defined on a simply connected bounded domain. We show that using the combined al-

gorithm, we are able to successfully assimilate data from a reference system state (the

“truth”) modelled by a highly resolved numerical solution of the flow that has roughly

3.1 × 106 degrees of freedom for 10 eddy turnover times, using modest computational

hardware.

The model reduction is performed through the introduction of a stochastic advection

by Lie transport (SALT) model as the signal on a coarser resolution. The SALT approach

was introduced as a general theory using a geometric mechanics framework from Holm,

Proc. Roy. Soc. A (2015). This work follows on the numerical implementation for

SALT presented by Cotter et al, SIAM Multiscale Model. Sim. (2019) for the flow in

consideration. The model reduction is substantial: The reduced SALT model has 4.9×104

degrees of freedom.

Forecast reliability and estimated asymptotic behaviour of the particle filter are also

presented.
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1 Introduction

Data assimilation is the process by which observations (data) are integrated with mathematical

models so that inference or prediction of the evolving state of the system can be made. For

geoscience applications such as numerical weather prediction, it is an active area of research.

There the typical global-scale state space dimension is of order O(109), and observation data

of dimension O(107) are assimilated every 6 – 12 hours. Current established methods used in

operation centres include 4DVar, (various extended versions of) ensemble Kalman filter (EnKF)

and variational assimilation methods. However, for fully nonlinear systems and complex ob-

servation operators these approaches are unsatisfactory. Our work presented in this paper is

part of the wider effort to tackle high dimensional nonlinear geoscience problems using particle

filters, as can be seen from the survey paper [van Leeuwen et al., 2019] and the references

therein.

The idea of modelling uncertainty using stochasticity in geophysical fluid applications is well

established, see Buizza et al. [1999], Majda et al. [1999, 2001]. In this paper we work with the

stochastic advection by Lie transport (SALT) approach, first formulated in Holm [2015]. It can

be thought of as a framework for deriving stochastic partial differential equation (SPDE) models

for geophysical fluid dynamics (GFD). The stochasticity is introduced into the advection part of

the dynamics via a constrained variational principle called the Hamilton-Pontryagin principle.

What results is a stochastic Euler-Poincaré equation, in which the local acceleration part of the

transport operator is in the geometric form represented by the Lie derivative of velocity one-

form in the direction of a stochastic vector field (in the form of a Stratonovich semimartingale).

This approach for adding stochasticity into GFD models is different from the current state-

of-the-art in numerical weather prediction (NWP), where stochastic models of uncertainty is

introduced into the forcing; for example stochastic perturbation by physical tendencies (SPPT)

methodology, see Palmer [2018].

By adding stochasticity into the advection operator, one can model uncertain transport

behaviour. In particular, the SALT stochastic term can be thought of as a model on the
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resolvable scale for the subgrid unresolvable fluid scales for transport. The main advantage of

the SALT stochastic term is that it preserves the Kelvin’s Circulation Theorem (KCT). However

energy is not conserved by SALT because as one can show, an extra term called line stretching

results from the application of the Reynolds transport theorem to the time differential of the

energy; and the extra term contributes positively to the rate of change of the energy. An

alternative, energy conserving stochastic approach called Location Uncertainty (LU) has also

been developed Mémin [2014], but LU models do not preserve circulation.

A fundamental ingredient in SPDEs with SALT noise is the spectrum of the velocity-velocity

correlation tensor, with eigenvectors denoted by ξi, i ∈ N, which appears in the Eulerian

velocity field

dx = u(x, t)dt+
∑

i

ξi(x) ◦ dW
i
t . (1)

Cotter et al. [2017] showed that taking the diffusive limit of a flow with two timescales leads to

a stochastic differential equation in the form of (1), where ξi should be rigorously understood

as empirical orthogonal functions corresponding to the different modes of the fast flow.

For applications, the vector fields ξi need to be supplied a priori. A data driven calibration

methodology for obtaining ξi is described in Cotter et al. [2018, 2019], in which the authors

numerically investigated two example fluid systems: a damped and forced 2D Euler model with

no-penetration boundary condition, and a two-layer 2D quasi-geostrophic model prescribed on a

channel. In those works, the SPDE model is interpreted as a parameterisation for the antecedent

partial differential equation (PDE) model. Using statistical uncertainty quantification tests, it

is shown that by conditioning on a suitable initial prior, an ensemble of SPDE solutions is

able to effectively capture the large scale behaviour of the deterministic system on a coarser

resolution. It is important to stress the fact that the deterministic system has O(106) degrees

of freedom, whilst the coarse stochastic system has O(104) degrees of freedom. Capturing

large scale dynamics on coarse scales enables the reduction of the high resolution PDE system

to the coarse scale as an SPDE. This motivates further investigation of the performance of

SALT SPDEs using ensemble data assimilation algorithms, where the forecast model is the

SPDE prescribed on coarse scales. This is the theme of the present work, where we utilise the

calibrated ξi described in Cotter et al. [2019] in a data assimilation set-up for the damped and

forced 2D Euler dynamics.

For us, sequential data assimilation is mathematically formulated as a nonlinear filtering

problem, which can be tackled using a particle filter, see Bain and Crisan [2009], Reich and

Cotter [2015]. A particle filter proceeds by alternating between forecast and analysis cycles.

In each analysis cycle, observations of the current (and possibly past) state of a system are

combined with the results from a prediction model (the forecast) to produce an analysis. The

analysis step is typically performed either in the form of a “best estimate” or in terms of approx-

imating conditional distributions. The model is then advanced in time and its result becomes

the forecast in the next analysis cycle. However when applied to problems in high dimensions,

without additional techniques a basic particle filter algorithm would almost certainly fail. This

is due to the fact that in high dimensions the data are too informative.

In this paper, we describe three additional techniques: model reduction, tempering and jit-

tering, which are incorporated into the basic bootstrap particle filter. The combined algorithm

is applied to the damped and forced 2D Euler dynamics. These techniques are all necessary for

the successful assimilation of data obtained from the true state of the system, which is modelled

using a highly resolved numerical solution of 3.1× 106 degrees of freedom.
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The rest of the paper is structured as follows. In section 2 we describe the damped and

forced deterministic system and its SALT version. The deterministic system resolved on a fine

resolution spatial grid is viewed as the simulated truth. The reduction to the SALT version

is done via the variational approach formulated in Holm [2015]. The numerical calibration of

the subgrid parameters ξi and the numerical methodologies for solving the two systems are

described in Cotter et al. [2019].

In section 3 we formulate sequential data assimilation as a nonlinear filtering problem,

in which the SALT equations are used as the signal. We describe in detail each algorithm:

bootstrap particle filter, tempering and jittering, which are all required to tackle the high

dimensional nonlinear filtering problem.

In section 4 we present and discuss the numerical experiments and results. Two main sets of

experiments are considered. In the first set, which we call the perfect model scenario, the true

underlying state is a realisation of the signal. In the second set, which we call the imperfect

model scenario, data from the fine resolution true state is assimilated. All experiments were

run on a modest workstation which has two Intel Xeon processors totalling 32 logical cores

and 64Gb memory. Additionally, an effective method for generating initial ensembles for SALT

models is discussed.

Finally, section 5 concludes the present work and discusses the outlook for future research.

The following is a summary of the main numerical experiments contained in this paper:

• Using 100 particles, we ran the particle filter over a period of 10 eddy turnover times (ett,

see (46) for definition) separately for observation dimensions dy = 81 and dy = 289, and

assimilation intervals ∆ = 1/25 ett and ∆ = 1/5 ett. Each experiment was repeated 20

times. The mean square error (mse), ensemble spread (σNp
), effective sample size (ess,

see (31) for definition) and number of tempering steps for the average is shown, in figure

5 for the perfect model scenario and in figure 11 for the imperfect model scenario.

• Forecast reliability rank histograms for the particle filter using 100 particles, observation

dimension dy = 289 and assimilation interval 1/25 ett are shown in figures 6a and 6b for

the perfect model scenario, and in figures 12a and 12b for the imperfect model scenario.

The reliability rank histograms are also computed for the results from using observation

dimension dy = 81; this is shown in figure 7 for perfect model scenario and figure 13 for

the imperfect model scenario.

• Asymptotic particle filter behaviour was estimated using an experiment which ran over a

period of 50 ett, using 100 particles and assimilation period ∆ = 1/25 ett. This amounts

to a total of 1250 data assimilation steps. The results are shown in figures 8 – 10 for the

perfect model scenario, and figures 14 – 16 for the imperfect model scenario.

2 Deterministic and stochastic advection by Lie trans-

port GFD models

In this section, we describe the PDE and the SPDE models with Lie transport type stochastic

terms. For the theory on SALT SPDEs see for example Holm [2015], Crisan et al. [2018].

We follow Cotter et al. [2019] (also Cotter et al. [2018]) and use a data-driven approach to

numerically model the ξi’s. Thus information regarding the stochastic dynamics is complete
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except for initial and boundary conditions. Viewed as a parameterisation of the subgrid scales,

numerically the SPDE shall be prescribed on a coarse resolution grid and the PDE prescribed

on a fine resolution grid.

The spread of the SPDE dynamics from using ξi parameters calibrated with the data-

driven approach described in Cotter et al. [2019] adequately captures the large scale features

of the PDE dynamics. Those results indicate the feasibility of the calibrated SPDE as model

reduction, thus providing the foundation for the present work where we utilise the SPDE as

the signal process in a nonlinear filtering formulation. Nonlinear filtering will be the topic of

discussion in section 3.

In the following, the domain D = [0, 1]2 is assumed for both deterministic and stochastic

models.

2.1 Deterministic model

We consider the vorticity version of an incompressible Euler flow with forcing and damping.

Let u : D × [0,∞) → R
2, u (x, y, t) = (u1 (x, y, t) , u2 (x, y, t)) denote the velocity field. Let

ω = ẑ · curlu denote the vorticity of u, ẑ denotes the z-axis. Note that for incompressible

flows in two dimensions, ω is a scalar field. For a scalar field g : D → R, we write ∇⊥g =

(−∂yg, ∂xg) = ẑ × ∇g. Let ψ : D × [0,∞) → R denote the stream function. The stream

function is related to the fluid velocity and vorticity by u = ∇⊥ψ and ω = ∆ψ respectively,

where ∆ = ∂2x + ∂2y is the Laplacian operator in R
2. The existence of the stream function is

guaranteed by the incompressibility assumption.

We now write down the deterministic model,

∂tω + Luω = Q− rω (2)

u = ∇⊥ψ (3)

∆ψ = ω. (4)

We choose the forcing Q to be given by

Q (x, y) = α sin (βπx) , (x, y) ∈ D (5)

where α, β and r are constants having the following roles: α ≥ 0 controls the strength of the

forcing; β is an integer interpreted as the number of gyres in the external forcing; and r > 0

can be seen as the damping rate. Luω denotes the Lie derivative of ω with respect to the vector

field u. When applied to scalar fields, Lu is simply the directional derivative with respect to

u, see Chern et al. [1999]

Lu = u ·∇.

We consider a no-penetration spatial boundary condition

ψ|∂D = 0 (6)

to close the system. This system is a special case of a nonlinear, one-layer quasi-geostrophic

(QG) model that is driven by winds above.

2.2 Stochastic model

Consider the space Ω = C0([0,∞),Rm) of continuous function whose value at 0 is zero. It is

equipped with the Wiener measure P and its natural filtration {F∗}. Let {Wt : t ∈ [0,∞)}
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be the canonical Brownian motion on R
m, that is for γ ∈ Ω, Wt(γ) = γ(t) is the evaluation

map. We write W i
t to denote the i’th component of Wt. The SALT version of the Euler fluid

equation (2) as derived in Holm [2015]. Cotter et al. [2019] introduced damping and forcing

to facilitate statistical equilibrium in the underlying resolved system, leading to the following

stochastic partial differential equation (SPDE),

dq + Lvq dt+
m∑

i=1

Lξi
q ◦ dW i

t = (Q− rq) dt (7)

where the vector fields ξi represent scaled eigenvectors of the velocity-velocity correlation tensor

Cij = ξiξ
T
j .

Equation (7) arises from a time-scale separation assumption for the deterministic Eulerian

transport velocity u, leading to the following Stratonovich stochastic differential equation

dx̃t(x) = v(x, t)dt+
m∑

i=1

ξi(x) ◦ dW
i
t (8)

where v and ξi are divergence free vector fields, from which (7) may be derived. Here one can

intuitively think of v as the “large” scale mean part of u. In this present work since we are

interested in the practicality of (7) for data assimilation, we follow Cotter et al. [2019] and

make the approximation that the sum in (8) is finite. Hence the stochastic term in (7) also

consists of m terms.

Let ψ̃ denote the stream function of v, and let ζi denote the stream function of ξi, i.e.

ξi = ∇⊥ζi.

Note that ζi is constant in time. The ζi can be solved for and stored on the computer after the

ξi are obtained. For this the boundary condition

ζi|∂D = 0 (9)

is enforced for each i = 1, . . . ,m. Then (8) can be expressed in terms of ψ̃ and ζi,

dx̃ = ∇⊥
(
ψ̃dt+

m∑

i=1

ζi ◦ dW
i
t

)
. (10)

Expressing the transport velocity in this form is useful because it allows us to introduce stochas-

tic perturbation (i.e. terms with ◦ dW i
t ) via the stream function when solving the SPDE system

numerically, thereby keeping the discretisation of (7) the same as the deterministic equation

(2), see Cotter et al. [2019].

The full set of stochastic equations is

dq + Lvqdt+
m∑

i=1

Lξi
q ◦ dW i

t = (Q− rq) dt (11)

v = ∇⊥ψ̃ (12)

∆ψ̃ = q (13)

with boundary condition

ψ̃|∂D = 0. (14)

The forcing term is the same as the deterministic case.
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Remark 1. The Itô form of (7) is obtained from an application of the identity

∫ t

0

Lξi
q (s) ◦ dW i

s =

∫ t

0

Lξi
q (s) dW i

s +
1

2

〈
Lξi

q,W i
〉

t
(15)

where 〈., .〉t is the cross-variation bracket and

〈
Lξi

q,W i
〉

t
= Lξi

〈
q,W i

〉

t

= Lξi

〈
∫

{(Q− rq)dt− Lvqdt−
∞∑

j=1

Lξj
q ◦ dW j

t },W
i

〉

t

= Lξi

〈

−

∫ .

0

Lξi
q ◦ dW i

s ,W
i

〉

t

= Lξi

(

−

∫ t

0

Lξi
q (s) ds

)

= −

∫ t

0

L2
ξi
q(s)ds

Hence ∫ t

0

Lξi
q (s) ◦ dW i

s =

∫ t

0

Lξi
q (s) dW i

s −
1

2

∫ t

0

L2
ξi
q(s)ds

and (15) is thus

dq + Lvqdt+
m∑

i=1

Lξi
q dW i

t =
1

2

m∑

i=1

L2
ξi
q dt+ (Q− rq)dt (16)

where L2
ξi
q = Lξi

(
Lξi

q
)
= [ξi, [ξi, q]] is the double Lie derivative of q with respect to the

divergence free vector field ξi.

For the damped and forced stochastic system considered in this section, on the torus T2 a

global wellposedness theorem with the solution space W 2,2 (T2) is proved in Crisan and Lang

[2019]. In a forthcoming sequel to this work we also show the the wellposedness of the solution

on the bounded domain D with no-penetration boundary conditions. We make the following

important assumption.

A 1. The stochastic system (11) – (14) is wellposed in some solution space denoted by SSPDE

in the sense that a unique global in time, pathwise distributional solution1 exists.

Under assumption 1, it is useful to introduce the following. Let G : SSPDE × Ω → SSPDE

denote the Itô solution map of the stochastic system (11) – (14) so that

G(q0, γ)t = qt, q0 ∈ SSPDE. (17)

The solution map G is used in the next section where probability measures on the solution

space are defined as the push-forward of P using G.

3 Nonlinear Filtering

In this section, we formulate data assimilation as a nonlinear filtering problem in which the

aim is to utilise observed data to correct the distribution of predictive dynamics. We describe

1We refer to Crisan and Lang [2019] for the precise definition of these terms.
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a particle filter methodology which incorporates three additional techniques that are required

to effectively tackle this high dimensional data assimilation problem.

In nonlinear filtering terminology the predictive dynamics is often called the signal 2. The

signal in our setting corresponds to the SALT SPDE. Data is obtained via an observation

process which represents noisy partial measurements of the underlying true system state. The

goal is to determine the posterior distribution πt of the signal at time t given the information

accumulated from observations. This is known as the filtering problem. This is different to

inversion problems (also called smoothing problems), where one is interested in obtaining the

posterior distribution of the system’s initial condition, see for example Stuart, A M [2010].

The stochastic filtering framework enables us not just to provide a solution to the data

assimilation problem, but also offer a clear language in which to explain the details and the

intricacies of the problem. We detail below an elementary introduction to the filtering problem.

Let S denote a given state space, and let P(S) denote the set of probability measures on

the state space. In what follows the state space will be S = R
dx , where dx is the dimension

of the space. To avoid technical complications we will assume in the following that time runs

discretely t = 0, 1, . . . . We shall work in a Bayesian setting, in other words we will assume

that we know the distribution of the signal Xt for t = 0, 1, . . ., which will be denoted by pt for

t = 0, 1, . . .. We also assume that partial observations, denoted by Yt, of dimension Sobs = R
dy

with dy ≤ dx are available to us at times t = 0, 1, . . . and we wish to approximate the signal Xt

given the accumulated observations Y1, . . . , Yt. Of course we could aim to approximate Xt using

an arbitrary Yt-adapted estimator X̄t, where Yt is the σ-algebra Yt = σ(Y1, . . . , Yt). However,

the best estimator X̂t is the conditional expectation of Xt given Yt, X̂t = E[Xt|Yt]. In this

context, by the best estimator, we mean the minimiser of the mean square error MSE(X̄t) =

E[‖Xt − X̄t‖
2|Yt], where ‖ · ‖ is the standard Euclidian norm on R

dx . Of course we would not

just want to compute/estimate X̂t = E[Xt|Yt], but also the error that we would make if we

approximate Xt with X̂t, i.e., for t = 0, 1, . . ..

E[‖Xt − X̂t‖
2|Yt] = E[‖Xt‖

2|Yt]− E[‖Xt‖|Yt]
2.

The quantiles of the approximation error will also be of interest. Therefore, in general, the

filtering problem consists in determining the condition distribution of the signal given given Yt

denoted by πt. Once πt is determined, then its first moment (the mean vector) will give us X̂t,

its covariance matrix can be used to compute the mean square error MSE(X̂t), etc. So one

can adopt one of two different approaches of estimation the signal given partial observations.

• Develop a data assimilation algorithm that results in a a point approximation X̄t of the

signal using the data Y1, . . . , Yt. The approximation may or may not be optimal and only,

on rare occasions, an estimate of the error Xt − X̄t will be available.

• Develop a data assimilation algorithm that results in an approximation of πt the con-

ditional distribution of the signal Xt using the data Y1, . . . , Yt. This in turn will offer

an approximation of the optimal estimator X̂t as well as the approximation of the error,

quantiles, occupation mesures, etc.

Of course, algorithmically we expect the first problem to be a lot easier than the second.

The computation, of an estimator X̄t that is an element of Rdx would be expected to be a lot

2 Also known as the forecast model in statistics and meteorology literature, [see Reich and Cotter, 2015].
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easier that that of a probability measure over Rdx . The first one is a finite dimensional object

the latter is an infinite dimensional one. However, in the exceptional case when the signal is a

linear time-series and the observation has linear dependence on the signal and they are driven

by Gaussian noise the two approaches more or less coincide. The reason is that, in this case πt
is Guassian and one can explicitly write the recurrence formula for the pair (X̂t, Pt), where Pt is

the covariance matrix of πt. So on one hand one can compute directly the optimal estimator X̂t

and on the other hand the Gaussianity ensure that πt is fully described by (X̂t, Pt). This is the

so-called Kalman-Filter. There are numerous extensions of this method to non-linear filter that

attempt a similar methodology for the non-Gaussian conditional distribution. Such approaches

are not optimal in the sense that they don’t offer a point estimator that is the optimal one

and the corresponding “covariance” matrix that is produced is not the covariance matrix of πt.

The existing literature in this direction is vast, we cite here [Reich and Cotter, 2015, Evensen,

2009, Ljung, 1979].

Particle filters are a class of numerical methods that can be used to implement the second

approach. They have been highly successful for problems in which the dimension of the state

space dx has been low to medium. However, in recent works [Kantas et al., 2014, Beskos et al.,

2017, 2014] they have been shown to also work in high dimensions dx. In this paper, we tackle

a state space with dimension of order O(106). For a filtering perspective, we overcome here one

other hurdle as we explain below.

Let us denote by pt ∈ P(Rdx × . . .× R
dx

︸ ︷︷ ︸

(t+1)−times

), t = 0, 1, . . . the (prior) distribution of the signal

on the path space (X0, X1, . . . , Xt). The prior distribution of the signal pt and the observations

Ys, s = 0, 1, . . . , t are the building blocks of πt, t = 0, 1, . . .. To be more precise, one can show

that there exists a mapping

(p, y0, . . . yt) 7→ Ξ(p, y0, . . . yt) : P(Rdx × . . .× R
dx

︸ ︷︷ ︸

(t+1)−times

)× R
dy × . . .× R

dy
︸ ︷︷ ︸

(t+1)−times

7→ P(Rdx), (18)

such that πt = Ξ(pt, Y0, . . . Yt). Under very general condition on the signal and the observation,

this mapping is jointly continuous on the product space P(Rdx × . . .× R
dx

︸ ︷︷ ︸

(t+1)−times

)×R
dy × . . .× R

dy
︸ ︷︷ ︸

(t+1)−times

.

This would mean that πt will give a reasonable approximation of the conditional distribution

of the signal as long as the distribution (X0, X1, . . . , Xt) does not differ significantly from the

one used to construct πt. The same will happen when the true law of the observation does not

differ significantly from the chosen model. This property of the posterior distribution is crucial,

see section 3.1.1 for details.

In the rest of this section we consider only the space-time discretised SPDE signal, of spatial

dimension dx. The observation process is given by noisy spatial evaluations of an underlying

true system state at discrete time steps. We consider two scenarios for the underlying true

system state, henceforth called the truth.

In the first scenario, we aim to compute the conditional distribution of the signal given par-

tial observations of a single realised trajectory of the SPDE system. In this case the predictive

dynamics and the truth are from the same dynamical system. We call this the perfect model

scenario (or twin experiment, see Reich and Cotter [2015]).

In the second scenario, we use instead noisy spatial evaluations of a space-time discretised

solution corresponding to the PDE system (2) – (6). We call this the imperfect model scenario.

The truth in this case is computed on a more refined grid than solutions of the SPDE. Nev-

ertheless the solution of the SPDE converges to that of the PDE as the coarser grid converge,
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see Cotter et al. [2019]. Similarly the corresponding observations will converge (provided the

observation noise does not change). This ensures the successful assimilation of PDE data into

the SPDE model, assurance from the uncertainty quantification tests shown in Cotter et al.

[2019] is necessary to numerically guarantee that the mis-match between state spaces remains

small.

To our knowledge, this is the first application of particle filters to the case where the signal is

described by a SALT SPDE system. As we explain below a straight application of the classical

bootstrap particle filter algorithm fails. To succeed we implement and incorporate the following

procedures.

• Model reduction – approximate a high dimensional system using a low dimensional sys-

tem via stochastic modelling, the result of which can be further reduced by choosing a

projection of the noise process onto a submanifold. This was accomplished in Cotter et al.

[2019].

• Tempering – compute a sequence of intermediate measures πk
t parameterised by a finite

number of temperatures that control the smoothness of the density of πk
t . This procedure

eases the problem of highly singular posteriors in high dimensions, which come from the

fact that high dimensional observations are too informative.

• Jittering – a Markov chain Monte Carlo (MCMC) based technique for recovering lost

population diversity in particle filter algorithms.

These techniques are added to the basic bootstrap particle filter, and are demonstratively

necessary, theoretically consistent and rigorously justified. In addition, we shall pay particular

attention to the initialisation of the particle filter, though this is discussed in section 4.1.

Before proceeding to the problem formulation, we insert an important remark.

Remark 2. Our spatial discretisations for the PDE and SPDE fields are defined on appropriate

finite element spaces, see Cotter et al. [2019] for details of the numerical methods we use for the

models under consideration. Under assumption 1, it is important to understand that instead

of the finite state space S = R
dx, the actual problem involves measures defined on infinite

dimensional function spaces, in particular it is highly plausible that in theory the state space

for the SPDE is Sobolev W k,2(D) for k ≥ 2. Discussions of these technical complications are

not the focus of this work. And since in practise we work with numerical solutions anyhow, we

setup our filtering problem in a finite dimensional setting. However, the methods we use are all

theoretically consistent in the limit, see Stuart, A M [2010], Dashti and Stuart [2017].

In light of remark 2, henceforth we drop the word “discretised” when describing the state

space, signal and observation processes.

3.1 Filtering problem formulation

Consider discrete times Λ = {t0, t1, . . . , tn, . . . }. Let X : Λ×Ω → S be a discrete time Markov

process called the signal. Let Y : Λ → Sobs be a discrete time process called the observation

process. We assume Y (t0) = 0 almost surely (a.s.). We consider Eulerian data assimilation

where the observations correspond to fixed spatial points Yt = (Y 1
t , . . . , Y

dy
t ) ∈ D, for all t ∈ Λ.

As already mentioned in the section introduction, we denote the dimensions of S and Sobs by

dx and dy respectively.
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We take X and Y to correspond to the velocity vector field. Mathematically we could also

consider the vorticity field or the stream function, but in real world scenarios those fields may

be difficult to observe directly. We denote by Xi:j and Yi:j the path of the signal and of the

observation process from time ti to time tj,

Xi:j = (Xti , Xti+1
, . . . , Xtj), Yi:j = (Yti , Yti+1

, . . . , Ytj).

Let xi:j and yi:j denote particular trajectories of Xi:j and Yi:j. For notational convenience, we

may write in the subscripts i to mean ti.

It is useful to introduce the following standard notation in the case when µ is a measure

and f is a measurable function, and K is a Markov kernel

µf ,

∫

fdµ, µK(A) ,

∫

K(x,A)µ(dx), Kf(x) ,

∫

f(z)K(x, dz).

The marginal distribution of the signal changes according to

P(Xt ∈ A |Xt−1 = xt−1) =

∫

A

kt(xt−1, dxt) (19)

for A ∈ B(S), and kt is a probability transition kernel defined by the push-forward of P using

the (discretised) SPDE solution map G from assumption 1.

In standard filtering theory the observation process is defined by

Yt = h(Xt) + ǫt, t ∈ Λ (20)

where h : S → Sobs is a Borel-measurable function, and for t ∈ Λ, ǫt : Ω → Sobs are mutually

independent Gaussian distributed random vectors with mean zero and covariance matrix α2.

Thus

P(Yt ∈ B|Xt = xt) =

∫

B

gt(yt − h(xt))dyt (21)

for B ∈ B(Sobs) and Gaussian density gt. For convenience, define g
yt
t (x) , gt(yt − h(xt)) which

is commonly referred to as the likelihood function.

We can now define the filtering problem.

Problem (Filtering Problem). For t ∈ Λ, we wish to determine the conditional distribution of

the signal given the information accumulated from observations, i.e.

πtϕ , E [ϕ(Xt)| Yt] , Yt = σ(Y0:t) (22)

for all bounded measurable functions ϕ ∈ B (S), with π0 being the given initial probability

distribution on the state space (S,B(S)). In particular when ϕ = 1A for A ∈ B(S) we have

πt1A = πt(A) = P(Xt ∈ A |Yt).

In statistics and engineering literature, πt is often called the Bayesian posterior distribution.

Note that πt is a random probability measure. For arbitrary y0:t, denote

πy0:t
t ϕ , E [ϕ(Xt)|Y0:t = y0:t] , πy0:t

t (A) = P(Xt ∈ A |Y0:t = y0:t).

We also introduce predicted conditional probability measures pt and p
y0:t
t defined by

p
y0:t−1

t ϕ , E [ϕ(Xt)|Y0:t−1 = y0:t−1] , p
y0:t−1

t (A) = P(Xt ∈ A |Y0:t−1 = y0:t−1).

11



We have P-almost surely the following Bayes recurrence relation, see Bain and Crisan [2009].

For t ∈ Λ and A ∈ B(S),

pt(A) , πt−1kt(A) =

∫

kt(xt−1, A)πt−1(dxt−1) prediction (23)

πt(A) = C−1
t pt g

Yt

t (A) = C−1
t

∫

A

gYt

t (xt)pt(dxt) update (24)

where

Ct , pt g
Yt

t =

∫

S

gYt

t (xt)pt(dxt)

is a normalising constant. Due to (24), we may also write dπt

dpt
∝ gYt

t , thus πt = pt
dπt

dpt
.

In the general case for any bounded measurable function ϕ ∈ B(S), we have for problem 3.1

the recurrence relation

pt ϕ = πt−1 kt ϕ prediction (25)

πt ϕ = C−1
t pt g

Yt

t ϕ update (26)

Except for a few rare examples of the signal, it is extremely difficult to directly evaluate πt
because there are no “simple” expressions. In section 3.2 we shall describe the particle fil-

ter methodology that we employ to tackle the filtering problem. Note that in statistics and

engineering literature, particle filters are often called sequential monte carlo (SMC) methods.

3.1.1 Two observation scenarios

For the numerical experiments, we consider two scenarios for the truth.

1. Perfect model: the observations correspond to a single path-wise solution of the SPDE.

In this scenario the filtering problem formulation we have described follows through.

2. Imperfect model: the observations correspond to the solution of the PDE, i.e. (20) is

changed to

Yt = h(X†
t ) + ǫt

where X†
t corresponds to the coarse grained PDE velocity field. Coarse graining is ex-

plained in section 4. Here there is mismatch between the truth and the signal. As shown

in Cotter et al. [2019], the law of the SPDE discretised on the chosen grid converges to

the law of the PDE as the discretisation grid gets refined. Implicity also the law of the

sequence of true observations (Y0, . . . Yt) is close to the law of the model observations. As

stated in (18), πt is a continuous function of the law of the signal and the observations

(Y0, . . . Yt) so we expect a reasonable approximation of πt even when we don’t use the

true law of the signal3 but the model law.4

3The true law of the signal is the push-forward of π0, the initial distribution of the signal X0. In the case

when X0 is deterministic then the distribution of the signal is a Dirac delta distribution.
4For continuous time models, this property is called the robustness of the filter. See Clark and Crisan [2005]

for results in this direction.
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3.2 Particle filter

Particle filter methods are among the most successful and versatile methods for numerically

tackling the filtering problem. A basic algorithm implements the Bayes recurrence relation by

approximating the measure valued processes πt and pt by N -particle empirical distributions.

The position of each particle is updated using the signal’s transition kernel. At the same time,

individual weights are kept up-to-date in accordance with the updated particle positions. It

is in the weights updating step that we take into account the information provided by the

observations: particles are reweighted using the likelihood function. A new set of particle

positions can be sampled based on the updated weights and the procedure iterates.

Due to the high dimensional nature of the systems in consideration, additional techniques

are necessary in order to make the basic algorithm work effectively. We provide a concise

presentation of the algorithms employed, and note that these methods are all mathematically

rigorous. For more thorough discussions we refer the reader to Bain and Crisan [2009], Reich

and Cotter [2015], Dashti and Stuart [2017], Kantas et al. [2014], Beskos et al. [2014].

3.2.1 Bootstrap particle filter

The basic algorithm, called the bootstrap particle filter or the sampling importance resampling

(SIR) algorithm, proceeds in accordance with the Bayes recurrence relation (23) – (24) by

repeating prediction and update steps. To define the method, we write an N -particle empirical

approximation of πt. Thus at each t = ti ∈ Λ, we have

πt ≈ πN
t ,

1
∑N

m=1w
(m)
t

N∑

n=1

w
(n)
t δ(x

(n)
t ) =

N∑

n=1

w̄
(n)
t δ(x

(n)
t ) (27)

where δ denotes Dirac measure. The discrete measure πN
t is completely determined by particle

positions x
(n)
t ∈ S and weights w

(n)
t ∈ R, n = 1, . . . , N . We define the update rule

{x(n)t , w
(n)
t }Nn=1 → {x(n)t′ , w

(n)
t }Nn=1, t′ = ti+1, t

′ ∈ Λ

for advancing πN
t to pNt′ to be given by the numerical implementation of the SPDE solution

map G, see (17),

x
(n)
t′ = G(x

(n)
t , ω(n))t′ , ω(n) ∈ Ω. (28)

Note that each particle position x
(n)
t is updated independently.

For the weights, suppose the particles x
(n)
t , n = 1, . . . , N are independent samples from πt

then we have equal weighting for each particle

πN
t =

1

N

N∑

n=1

δ(x
(n)
t ).

This does not change in the prediction step, thus

pNt′ =
1

N

N∑

n=1

δ(G(x
(n)
t , ω(n))t′) =

1

N

N∑

n=1

δ(x
(n)
t′ ). (29)

To go from pNt′ to πN
t′ , the weights w

(n)
t′ need to be updated to take into account the observation

data yt′ at time t′. This is done using the likelihood function (21),

w̄
(n)
t′ ∝ g

yt′
t′ (x

(n)
t′ ),

∑

n

w̄
(n)
t′ = 1. (30)
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Using (27) but with the collection of updated particle positions and normalised weights {x(n)t′ ,

w̄
(n)
t′ }Nn=1 we obtain πN

t′ .

In the above we assumed to have started with independent samples from πt before proceed-

ing with prediction and update. Thus after we obtain πN
t′ we have to generate independent

(approximate) samples from πt′ in order to iterate the above prediction and update steps for

future times. This is done via selection and mutation steps. Otherwise the non-uniform weights

are carried into future iterations until resampling is required.

Selection In high dimensions, πN
t′ can easily become singular due to the observations being too

informative. This means after the update step, most of the normalised weights are very

small. Thus with a finite support, πN
t′ does not have enough particle positions in around

the concentration of the true distribution πt′ . Therefore it is desirable to add a resampling

step so that particles with low weights are discarded, and replaced with (possibly multiple

copies of) higher weighted particles. This selection is done probabilistically; for example,

one could draw uniform random numbers in the unit interval and select particles based

on the size of w̄
(n)
t′ , see Bain and Crisan [2009], Reich and Cotter [2015].

Mutation Since the resampling step can introduce duplicate particle positions into the en-

semble, without reintroducing the lost diversity, repeated iterations of resampling will

eventually lead to a degenerate distribution (i.e. measures whose support are singletons).

To tackle this issue we apply jittering after every resampling step. Jittering is based on

Markov Chain Monte Carlo (MCMC) whose invariant measure is the target πN
t′ . The

jittering step shifts duplicate particle positions whilst preserving the target distribution.

We discuss this in section 3.3.

After resampling is applied, we obtain a new ensemble x̂
(n)
t′ , n = 1, . . . , N with equal weights

1/N , i.e.

πN
t′ =

1

N

N∑

n=1

δ(x̂
(n)
t′ ).

When we do not resample, then the particles in the ensemble keep the weights given by w̄
(n)
t′ ,

and use (27) for πN
t′ .

The resampling step should be done only when necessary to reduce computational cost,

because the jittering step requires evaluating the solution map G. Therefore we employ a

test statistic to quantify the non-uniformity in the weights and only resample when the non-

uniformity becomes unacceptable. For this we use the effective sample size (ess) statistic. It is

defined by the inverse l2-norm of the normalised weights w̄ = (w̄(1), . . . , w̄(N)),

ess (w̄) , ‖w̄‖−2
l2 =

1
∑

n(w̄
(n))2

. (31)

The ess statistic measures the variance of the weights. If the particles have near uniform weights

then the ess value is close to N. On the other hand if only a few particles have large weights then

the ess value is close to 1. In practice we resample whenever (31) falls below a given threshold

ess < Nthresh.

Algorithm 1 summarises the bootstrap particle filter. The algorithm starts with an empirical

approximation of the initial prior πt0 and steps forward in time, assimilates observation data

in repeating cycles of prediction-update steps. The ess statistic is employed. When resampling

is required, selection-mutation steps are applied.
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Algorithm 1 Bootstrap particle filter

Draw independent samples x
(n)
0 ∼ π0, i = 1, . . . , N and set weights w̄

(n)
0 = 1/N

1: for j = 1, 2, . . . do

2: Compute x
(n)
j = G(x

(n)
j−1, ω

(n))j, n = 1, . . . , N with tj, tj−1 ∈ Λ.

3: Obtain observation data yj and compute weights w̄
(n)
j ∝ w̄

(n)
j−1g

yj
j (x

(n)
j ), n = 1, . . . , N

using (30).

4: if ess < Nthreshold then

5: Sample x̂
(n)
j , n = 1, . . . , N according to the weights w̄

(n)
j .

6: Set the weights to be w̄
(n)
j = 1/N .

7: Apply jittering if there are duplicates in {x̂(n)j }Nn=1 to obtain the jittered set x̃
(n)
j , n =

1, . . . , N .

8: Set x
(n)
j = x̂

(n)
j = x̃

(n)
j , n = 1, . . . , N .

9: end if

10: Move on to the next For loop cycle.

11: end for

3.3 MCMC and jittering

In this section we describe an effective Metropolis-Hastings MCMC based method called jitter-

ing with the proposal step chosen specifically for our signal. Jittering reintroduces lost diversity

due to resampling by replacing an ensemble of samples that contain duplicates x
(n)
t ∼ πt, n =

1, . . . , N with a new ensemble x̂
(n)
t , n = 1, . . . , N without duplicates, such that the distribution

πt is preserved.

MCMC is a general iterative method for constructing ergodic time-homogeneous Markov

chains u(m), m ≥ 0 with transition kernel K(u, ·), that are invariant with respect to some

target distribution π, i.e.

πK(·) =

∫

K(u, ·)π(du) = π(·).

By the Birkhoff’s ergodic theorem, we have the following identity

∫

f(u)π (du) = lim
n→∞

1

n

n∑

k=1

f (uk) a.s.

for any integrable and measurable function f. Practically, this means starting from an initial

u(0), each u(m) with m ∈ N can be treated as samples from the target distribution π.

A generic Metropolis-Hastings MCMC algorithm is described in algorithm 2. A Markov

transition kernel K defined on the state space is used to generate proposals. Together with

the right conditions on the acceptance probability function a to guarantee detailed-balance, the

algorithm produces a Markov chain with kernel that is reversible with respect to the target

measure µ, see Dashti and Stuart [2017]. In the Gaussian case, a classic and widely used choice

for K and a is

K(u(m), ) = ρu(m) +
√

1− ρ2ζ, ζ ∼ N (0, C)

a(u, v) = 1 ∧
exp(−Φ(v))

exp(−Φ(u))

(32)

for any appropriate covariance operator C and log likelihood function Φ, see Kantas et al. [2014].

The parameter ρ controls the local exploration size of the Markov chain. In practise for high
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dimensional problems ρ needs to be very close to 1 in order to achieve a reasonable average

acceptance probability (an acceptance probability of 0.234 is reasoned to be optimal in Neal

et al. [2006]). For bad choices of ρ the MCMC chain may mix very slowly and would require a

burn-in step size that makes the whole algorithm computationally unattractive.

Algorithm 2 Generic Metropolis-Hastings MCMC, see Dashti and Stuart [2017]

Let µ be a given measure on the state space. Let u(0) ∼ µ. Generate a µ-invariant Markov

chain u(m), m > 0 as follows

1: Propose

ũ ∼ K(u(m), du) (33)

2: Accept u(m+ 1) = ũ with probability

a(u(m), ũ), (34)

otherwise u(m+ 1) = u(m).

3: m→ m+ 1 and repeat.

With (32), algorithm 2 is known as the Preconditioned Crank Nicolson (pCN) and is well-

posed in the mesh refinement limit, see Dashti and Stuart [2017], Kantas et al. [2014]. Thus

when applied to discretised problems the algorithm is robust under mesh-refinement. It is

commonly applied in Bayesian inverse problems where the posterior is absolutely continuous

with respect to a Gaussian prior on Banach spaces. It is important to note that here the de-

sign of the algorithm is important because in high dimensions measures tend to be mutually

singular, but for Metropolis-Hastings algorithms the acceptance probability is defined as the

Radon-Nikodym derivative given by the stationary Markov chain transitions.

Our choice (55) for the prior is not Gaussian. The distribution (19) is also not Gaussian

for any t ∈ (0, T ]. The distribution of the SPDE solution is investigated numerically in Cotter

et al. [2019], in which it is noted that non-Gaussian scaling is interpreted as intermittency in

turbulence theory. Because of this, pCN is not feasible here. Therefore it is important to choose

K and a such that the following properties hold.

(i) Robustness under mesh refinement. Although we are considering finite dimensional state

spaces, in the limit the state spaces under assumption 1 are infinite dimensional function

spaces.

(ii) The chain should mix and stablise sufficiently quickly so that the number of burn-in steps

required is reasonable.

Then with the appropriately chosen K and a, we apply algorithm 2 as a jittering step to shift

apart duplicate particles introduced into the ensemble by the resampling step.

Given these considerations, we use directly the SPDE solution map G (17) to define the

transition kernel K. Let the target distribution be the posterior distribution πtk , tk ∈ Λ. With

a slight abuse of the notation introduced in (17), we write

G(u,Wk−1:k)tk

to mean the solution of the SPDE at time tk along a realised Brownian trajectory over the

time interval [tk−1, tk] starting from position u ∈ S. When we consider u ∈ S and interval

∆k := tk − tk−1 as fixed, then we view Gu,∆k
(W ) := G(u,Wk−1:k) as a function on Ω.
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Let πN
tk

be the empirical approximation of πtk with N particles u
(n)
k , n = 1, . . . , N . We

consider each particle u
(n)
k a child of some parent u

(n)
k−1 at time tk−1 ∈ Λ for a realised Brownian

trajectory W over the interval [tk−1, tk], i.e.

u
(n)
k = G

u
(n)
k−1,∆k

(W )k.

To jitter u
(n)
k , set W (0) = W and u(0) = u

(n)
k (see algorithm 2). At the m-th MCMC iteration,

m ≥ 1, propose

ũ = G
u
(n)
k−1,∆k

(ρW (m−1) +
√

1− ρ2Z(m−1))k (35)

where Z(m−1) is a Brownian trajectory over [tk−1, tk] generated independently from W (m−1).

We use the canonical Metropolis-Hastings accept-reject probability function

a(u(m− 1), ũ) = 1 ∧
gy(ũ)

gy(u(m− 1))
(36)

where gy is the likelihood function, see (24). The proposal (35) is accepted with probability

(36) independently of (ũ, u(m− 1)). In this case set

u(m) = ũ and W (m) = ρW (m−1) +
√

(1− ρ2)Z(m−1).

Otherwise the proposal is rejected, in which case set

u(m) = u(m− 1) and W (m) = W (m−1)

and go to the next iteration in algorithm 2.

Algorithm 3 summarises our MCMC procedure. The algorithm includes tempering scaling

φk of the accept-reject function (36). Tempering is explained in the next subsection. Practically,

to save computation, we may apply jittering to just the duplicated particles after resampling,

and run each jittering procedure for a fixed number of steps.

Proposition 1. With the proposal (35) and accept-reject function (36), the Markov chain

generated by algorithm 2 is reversible with respect to πy0:t
t .

Proof. The generic Metropolis-Hastings algorithm 2 defines the following Markov transition

kernel

Q(u, dv) = K(u, dv)a(u, v) + δu(dv)

(∫

(1− a(u, w))K(u, dw)

)

. (37)

Since πt = pt
dπt

dpt
, if K is such that it satisfies the detailed balance condition with respect to pt

pt(du)K(u, dv) = pt(dv)K(v, du), (38)

then using the accept-reject function (36)

a(u, v) = 1 ∧
gytt (v)

gytt (u)

we have Q(u, ·) is a Markov kernel that is πt-invariant, see Dashti and Stuart [2017].

Let γ denote the Wiener measure. Note that for a Brownian path W ∼ γ it is standard to

show that the noise proposal in (35)

W ′ := ρW +
√

1− ρ2Z ∼ γ
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for Z ∼ γ independent of W . Thus due to the prediction formula (23) and Markov transition

(19) for the signal, conditioned on the value ut−1 ∈ S, we have for u = Gut−1,∆(W )t ∼ πt−1kt =

pt, a sample v obtained using the proposal (35) is thus

v = Gut−1,∆(W
′)t ∼ πt−1kt = pt, with ut−1 ∼ πt−1

i.e. conditioned on ut−1, we have

pt(du)K(u, dv) = pt(du)pt(dv)

which is symmetric in the pair (u, v) giving us detailed balance (38).

Algorithm 3 MCMC jittering for the 2D damped and forced SALT Euler dynamics

Let ti ∈ Λ, ∆i = ti − ti−1. Given the ensemble of equal weighted particle positions
{

x
(n),k
ti

}

n=1,...,N
corresponding to the k’th tempering step with temperature φk, and proposal

step size ρ ∈ [0, 1], repeat the following steps.

1: for n = 1, . . . , N do

2: Let particle x
(n),k
ti be such that x

(n),k
ti = G

x
(n)
i−1,∆i

(W ), for an initial condition x
(n)
ti−1

∈ S and

a realised Brownian path W (ti−1 : ti) over the time interval [ti−1, ti].

3: Set u0 = x
(n),k
ti and W 0(ti−1 : ti) = W (ti−1 : ti).

4: for m ≥ 1 do

5: Propose v ∼ K(u(m− 1), ·) given by

v = G
x
(n)
i−1,∆i

(W ′)

where

W ′ = ρWm−1 (ti−1 : ti) +
√

1− ρ2Z (ti−1 : ti)

for Z a Brownian path independent of Wm−1.

6: Accept v with probability

a(u(m− 1), v) = 1 ∧

(

g
yti
ti (v)

g
yti
ti (u(m− 1))

)φk

(39)

where g
yti
ti is the likelihood function and yti is the observation at time ti, in which case set

um = v and Wm = W ′. Otherwise set um = um−1 and Wm = Wm−1.

7: end for

8: end for

3.4 Tempering

Empirical approximations of πt defined on high dimensional space can very quickly become

degenerate, which is indicated by low effective sample size (ess) statistic. In order to facilitate

smoother transitions between posteriors, so that ensemble diversity is improved, we employ the

tempering technique, see Neal [2001], Kantas et al. [2014], Beskos et al. [2017, 2014]. Use of

other techniques such as nudging and space-time particle filter (see Beskos et al. [2017]) will be

explored in future research work.
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We employ tempering when the ess value for an posterior ensemble, falls below an apriori

threshold Nthreshold. The idea of tempering is to artificially scale the log likelihoods by a number

φ ∈ (0, 1] called the temperature, which in effect increases the variance of the distribution so that

the apriori ess threshold is attained. Once this done resampling can be applied (with MCMC

if required) which leads to a more diverse ensemble. Of course particles in this new ensemble

are samples of the altered distribution which is not what we desire, therefore the procedure is

repeated by finding the next temperature value in the range (φ, 1]. This is repeated until the

temperature scaling is 1 so that the original distribution is recovered.

More precisely, let

0 = φ0 < φ1 < · · · < φR = 1 (40)

be a sequence of temperatures. Let

πt,r(A) , C−1
t,r pt(g

Yt

t )φr(A) (41)

be called the tempered posterior at the r-th tempering step or simply the r-th tempered pos-

terior, where Ct,r = pt(g
Yt

t )φr (compare with the recurrence formula (24)). Note that πt,R = πt
and πt,0 = pt. Thus with

dπt,r
dπt,r−1

∝ (gYt

t )φr−φr−1

we have

πt = pt
dπt,1
dπt,0

. . .
dπt,R
dπt,R−1

which suggests the iterative procedure,

πt,r−1 7−→ πt,r ∝ πt,r−1(g
Yt

t )φr−φr−1 , r = 1, . . . , R. (42)

Empirically this means, for each r = 1, . . . , R, assume we have equal weighted particle positions

{x(n)t }n=1,...,N that give us the empirical (r − 1)-th tempered posterior

πN
t,r =

1

N

N∑

n=1

δ(x
(n)
t ),

we compute unnormalised tempered weights

w
(n),r
t (φr) , (gytt (x

(n)
t ))φr−φr−1 , n = 1, . . . , N (43)

to obtain the empirical r-th tempered posterior

πN
t,r =

N∑

n=1

w̄
(n),r
t (φr)δ(x

(n)
t ).

Then we resample according to πN
t,r and apply the MCMC jittering algorithm 3 (see remark 3)

to separate apart any duplicated particles before going to the r + 1’th iteration step.

The sequence of temperatures φr is chosen so that at each tempering iteration r, the em-

pirical tempered distribution πN
t,r attains the apriori ESS threshold Nthreshold, i.e.

ess(w̄r(φr)) ≥ Nthreshold (44)

where w̄r(φr) = (w̄(1),r, . . . , w̄(N),r)(φr) are the normalised weights corresponding to (43). This

way the choice for the temperatures can be made on-the-fly by using search algorithms such as

binary search at each tempering iteration.
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Remark 3. Proposition 1 shows the MCMC jittering algorithm preserves the target distribution

πt with the accept-reject function (36). The same argument shows the algorithm preserves the

tempered posteriors as long as the accept-reject function is chosen to be (39). The Markov

transition kernel K satisfies the detailed balance condition with respect to pt independent of

tempering.

Using tempering to smooth out the transition between consecutive filtering measures (i.e.

from πtk to πtk+1
) ensures that the importance weights in (41) exhibit low variance, so that no

small group of particles are favoured much more than the rest when resampling, see Kantas

et al. [2014], thus leading to a more diverse population.

In algorithm 4 we summarise the complete procedure for one filtering step, i.e. from πN
ti−1

to πN
ti
, incorporating adaptive tempering and MCMC jittering for SALT into the bootstrap

particle filter.

Algorithm 4 One step particle filter for SALT with adaptive tempering and MCMC jittering

Consider the i’th filtering step corresponding to ti ∈ Λ. Given the ensemble of equal weighted

particle positions {x(n)i−1}n=1,...,N that defines the empirical posterior πN
i−1, we wish to assimilate

observation data yi at time ti to obtain a new equally weighted ensemble {x(n)i }n=1,...,N that

defines πN
i . Define

ess(φ·, {x
(n)
i }n=1,...,N) , |w̄(n),·

i (φ·)|
−1
l2

for φ ∈ (0, 1], and w̄
(n)
i are the normalised values of the unnormalised tempered weights (43).

1: Compute x
(n)
i = G(x

(n)
i−1,W )i−1, n = 1, . . . , N .

2: Set φ0 = 1, r = 1, x
(n),0
i = x

(n)
i each n.

3: while ESS(φr−1, {x
(n),r−1
i }) < Nthreshold do

4: Find (using e.g. binary search) the largest φr ∈ (φr−1, 1) such that ESS(φr, {x
(n),r−1
i }) ≥

Nthreshold.

5: Resample according to w̄(n),r (φr) to obtain a new set {x(n),ri }.
6: Apply jittering algorithm 3 to any duplicated particles.

7: end while

8: Set R = r. Do steps 5. and 6. with φR = 1 and set x
(n)
i = x

(n),r
i , n = 1, . . . , N to obtain

πN
ti
.

4 Numerical setup and experiment results

The setup for the numerical experiments follow on the ξ calibration and uncertainty quantifi-

cation work presented in Cotter et al. [2019]. Thus the parameter choices for the models are

as follows: forcing strength α = 0.1, number of gyres β = 8 and damping rate r = 0.01.

The PDE (2) and SPDE (7) are prescribed on mesh of size 512 × 512 cells and 64 × 64

cells respectively for the spatial domain. We use a Galerkin finite element discretisation for

the spatial variable and a third order stability preserving Runge-Kutta for the time stepping,

see Cotter et al. [2019] for details. This means spatially each mesh cell contains six grid

points. Thus the PDE and SPDE velocity fields are of 3145728 and 49152 degrees of freedom

respectively. Henceforth we shall refer to the PDE spatial dimension as fine resolution and the

SPDE spatial dimension as coarse resolution5.

5However since we are using an explicit in time method for solving the SPDEs, the coarse time step may
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The time step for the fine resolution is chosen in accordance with the CFL condition and

in this case is ∆f = 0.0025. The CFL time step for the coarse resolution is ∆c = 0.02.

The reference fine resolution PDE trajectory was spun-up from the initial configuration

ωspin = sin(8πx) sin(8πy) + 0.4 cos(6πx) cos(6πy)

+ 0.3 cos(10πx) cos(4πy) + 0.02 sin(2πy) + 0.02 sin(2πx)
(45)

until some energy equilibrium state, see Cotter et al. [2019]. We call the equilibrium state’s

corresponding time point the initial time t0.

We use eddy turnover time (abbrev. ett) as the time dimension for the PDE system. It

describes the time scale of flow features correponding to a given length scale, and is defined by

τl ,
l

|ū|
(46)

where |ū| is the magnitude of the stablised mean velocity6, and l ∈ [0, L] a length scale. Here

L = 1 corresponds to the axis length of the domain D. For our experiments, we choose l = 1
2
.

It is estimated that 1 ett roughly equals to 2.5 numerical time units, or 1000 (fine resolution)

CFL numerical time steps. Since the SPDE is thought of as a stochastic parameterisation for

the PDE, we shall use the same eddy turnover time dimension for the SPDE. Thus 1 ett is 125

coarse resolution CFL numerical time steps.

For the SPDE model, we use the calibrated EOFs ξi, i = 1, . . . , Nξ, from Cotter et al. [2019]

with Nξ corresponding to 50% of the total spectrum. This choice is informed by uncertainty

quantification tests and amounts to Nξ = 51 when the SPDE is prescribed on a mesh of size

64× 64 cells.

We consider two scenarios for the filtering problem, a perfect model scenario and an imper-

fect model scenario, see section 3.1.1. In the imperfect model scenario, since the SPDE solution

is meant to capture the large-scale features of the deterministic fine resolution dynamics that

are resolvable at the coarse resolution, we should obtain observations from the coarse grained

PDE solution. For coarse graining, we use the inverse Helmholtz operator

H ,
(
Id−

1

k2
∆
)−1

(47)

and apply H to the PDE stream function (4) to average out its small scale features. The

boundary condition we impose on the coarse grained stream function is the same Dirichlet

condition as for (4). The value k in the definition of H corresponds to the coarse resolution,

in this case k = 64. To obtain the coarse grained PDE velocity field, apply the linear operator

∇⊥ to the coarse grained stream function. The coarse grained PDE velocity field is then used

to generate the observation data in the imperfect model filtering scenario. It is important to

note that this coarse graining procedure is only applied when we obtain observation data, the

underlying fine resolution dynamics is unchanged.

In both scenarios the observations are defined as noisy point measurements of the truth’s

velocity field. The observation locations (thought of as “weather stations”) are given by a

uniform regular grid of dimension dy = 81; see section 3.1 for the problem’s mathematical

formulation. We also investigate the impact of increasing the number of weather stations to

dy = 289. For this paper we only consider fixed uniform geometry for the weather stations.

need to be smaller to accommodate the fact that Brownian increments are unbounded.
6Our PDE system is spun-up from (45) to an energy stable state, thus |ū| is constant in time.
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Further the 81 weather stations are a subset of the 289 weather stations. Figure 1a visually

illustrates a snapshot of the coarse grained numerical PDE solution velocity vector field overlaid

with the positions of the 81 weather stations.

Remark 4. The dimension of the observation space compared to the dimension of the under-

lying truth is minute. Using 289 weather stations amounts to 1.18% of the overall degrees of

freedom in the perfect model scenario, and 0.01837% of the overall degrees of freedom in the

imperfect model scenario. These parameter choices are the best we can do given our computa-

tional hardware, so that we can obtain numerical results in a reasonable amount of time. For

reference, all numerical experiments for this paper were run on a workstation equipped with two

Intel Xeon CPUs totalling 32 logical processors, and 64GB of memory.

The observation error covariance α (see (20) for definition) is calibrated by computing

the standard deviation of the fine resolution PDE velocity field within coarse cells, and then

averaged along the time axis. More precisely, let SPDE denote the discretised PDE state space.

Let Xt ∈ SPDE denote a snapshot in time of the PDE velocity field. Let superscript indices

denote vector component. Define X̄t ∈ SPDE by

X̄ ik
t =

1

card(j : Xj
t ∈ coarse cell k)

∑

j:Xj
t∈coarse cell k

Xj
t , ik ∈ {i : X i

t ∈ coarse cell k}

for coarse cells corresponding to the coarse resolution mesh. Thus X̄ i
t are the local coarse cell

averages of Xt. Then we define α by

α = λ
1

M

M∑

i=1

((
Xti − X̄ti

)
⊗
(
Xti − X̄ti

))1/2
(48)

where λ is a weight we can use to add control over α. Throughout the rest of the paper, we set

λ = 10. The idea is α at the observation locations represent the local variability of the truth

at the observation locations. The α computed this way is a vector field defined on the fine

resolution grid. It is evaluated at the observation locations when used as part of (20).

Figure 1b visually illustrates the magnitude of α overlaid with the observation locations.

We use the same calibrated α in both problem scenarios.

In the perfect model scenario, the truth from which we obtain the observations is a single

simulated realisation of the SPDE. The initial condition for the SPDE truth is a particular

sample from π0, see figure 2 for a visualisation of the SPDE truth without observation noise

at the initial time t0. We discuss what π0 is and how we sample from it in section 4.1. In the

imperfect model scenario the truth is the coarse grained PDE velocity field. Figure 3 shows a

visualisation of the PDE truth without observation noise at the initial time t0.

We use an ensemble size of Np = 100 particles. Each particle’s initial condition is a sample

from the initial distribution π0. Also we do not assimilate at t0 since the initial distribution is

assumed given, see section 3.1. The error metrics we shall look at for the numerical experiments

are

• the mean square error (mse) between the ensemble mean X̂t =
1
Np

∑Np

i=1X
i
t , which ap-

proximates the posterior mean E(Xt|Yt), and the truth X†
t ,

mse(t) = ‖X̂t −X†
t ‖

2
L2 , (49)
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(a) Snapshot of the coarse grained PDE veloc-

ity field at a t ∈ Λ overlaid with observation

locations (yellow dots) which are defined by a

grid of (8× 8) cells.

(b) Magnitude of the calibrated observation

error α (see (48)) overlaid with observation

locations (yellow dots) which are defined by a

grid of (8× 8) cells.

Figure 1: Observation locations and observation error magnitude.

Figure 2: Perfect model scenario. Visualisation of the vorticity scalar field (left) and

the velocity vector field (right) of the SPDE truth at the initial time t0. The different

colours of the vorticity field reflect the clockwise and anti-clockwise directions of the

velocity vectors. The velocity vectors are visualised using arrows, the size of which

reflect their magnitude. This initial condition is obtained by applying the deformation

procedure described in section 4.1 to the PDE truth shown in figure 3, for 104 fine

resolution numerical time steps.
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Figure 3: Imperfect model scenario. Visualisation of the PDE truth at the initial time

t0. Here the top row correspond to the fine resolution visualisation of the vorticity

scalar field (left) and velocity vector field (right). The bottom row correspond to

the coarse grained version of the top row using the coarse graining operator (47).

The different colours of the vorticity fields reflect the clockwise and anti-clockwise

directions of the velocity vectors. The velocity vectors are visualised using arrows,

the size of which reflect their magnitude.
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• the ensemble standard error σNp

σ2
Np
(t) =

1

Np − 1

Np∑

i=1

‖X i
t − X̂t‖

2
L2 , (50)

• the effective sample size (ess) statistic (31) for measuring the variance of the ensemble

weights,

• and rank histograms for assessing the reliability of the particle filter, see Broecker [2018],

Reich and Cotter [2015]. This is a standard measure of ensemble reliability. At any

reference grid location, given the ensemble values {xit}i=1,...,Np
that corresponds to the

forecast distribution p
Np

t (23), and an observation value yt, define the rank function

R(yt, {x
i
t}i=1,...,Np

) = k if xjt ≤ yt for j < k, and xjt > yt for j ≥ k. (51)

The rank function R takes values in {0, 1, . . . , Np}. If the ensemble forecast is reliable

then R is a uniform random variable, meaning the verification and the ensemble members

are indistinguishable. Thus collecting the rank values over time t ∈ Λ, we should obtain

a “flat” histogram plot if the particle filter gives reliable results. Further it is shown in

Broecker [2018] that the rank statistic R is of χ2 distribution with Np degrees of freedom.

Table 1 shows the mean square error, ensemble standard error and ess values for the 100

initial ensemble particles generated using the deformation procedure in section 4.1. We choose

the ess threshold Nthreshold to be 80% of the ensemble size Np. For the initial ensemble, the ess

values are computed for reference only. We do not weight the initial ensemble using observa-

tions.

ess mse σNp
‖X†‖2L2

perfect model scenario 84.04% 2.3585× 10−8 1.2269× 10−3 2.2043× 10−3

imperfect model scenario 83.83% 1.2385× 10−8 1.2269× 10−3 2.2033× 10−3

Table 1: An initial ensemble is generated using the deformation procedure described

in section 4.1 and contains Np = 100 particles. In this table we report the effective

sample size (according to 81 observation locations), mean square error and ensemble

standard error statistics, averaged over 50 independent repeats, for both the perfect

model scenario and the imperfect model scenario. The truth X† in the perfect model

scenario at time t0 is also generated using the deformation procedure. We use this

initial ensemble for both scenario experiments. Percentage values are shown in the

ess column. We have chosen the ess threshold to be 80% of the ensemble size. Thus

this initial ensemble attain the chosen threshold. For reference, the squared L2 norm

of the truths are shown in the last column of the table. The ensemble standard errors

(50) are the same in both scenarios since σNp
does not depend on X†.

4.1 Initial distribution

The initial distribution π0 comes from the following construction which we call deformation,

see Cotter et al. [2019]. Let ωtruth be a fine resolution PDE vorticity field. Using the coarse
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graining operator H (defined in (47)), define operator K : SPDE × R → SSPDE by

K(u, β) = ∇⊥H(∆−1ωu,β) (52)

where ωu,β is the (vorticity) solution of the linear PDE

∂tω + β u ·∇ω = 0 (53)

ω0 = ωtruth (54)

β ∼ N (0, ǫ), is a centered Gaussian weight with an apriori variance parameter ǫ, and u ∼
U (SPDE) is random draw from a uniform distribution on SPDE. β and u are independent. Then

π0(A) , P (K(u, β) ∈ A) A ∈ B(SSPDE) (55)

Remark 5. Practically, we randomly draw a vorticity field from the energy stable period prior to

the initial data assimilation time point t0. The drawn vorticity state is then used to compute its

corresponding stream function by inverting the Laplacian and using the same Dirichlet condition

as for (4). The velocity field u in (53) is then obtained from the stream function. Thus for the

linear system (53) the boundary condition is supplied via the sampled u.

For the initial ensemble (see table 1 for diagnostics), the deformation equation (53) param-

eters are set as follows. ωtruth is set to be the imperfect model scenario initial condition (see

figure 3 for visualisations). For the weighting parameter β, we set ǫ = 0.25. Equation (53) is

solved independently 100 times to obtain Np = 100 ensemble members. Each time, equation

(53) is solved over a time period that attains the chosen ess threshold. For the results shown

in table 1, this amounts to a time period of 0.26 or equivalently 104 fine resolution CFL time

steps.

In Hamiltonian mechanics, the conservation laws associated with relabelling symmetries are

called Casimirs. In lemma 2 we show our choice for the prior distribution is physical in the

sense that any sample generated by the procedure K(u, β) preserves the Casimirs of the truth

ωtruth.

Definition 1 (Casimir, see Gay-Balmaz and Holm [2013]). For 2D incompressible ideal fluid

motion, the Casimirs are

CΦ =

∫

D

Φ(ω)dx

for any Φ ∈ C∞(R,R).

Lemma 2 (Preservation of Casimirs). Let the domain D be bounded with piecewise smooth

boundary. Assume the sampled vector field u ∈ SPDE is divergence free and u ·n̂ = 0 with n̂

being the normal to the boundary ∂D, then ωu,β preserves the Casimir values of ωtruth.

Proof. We have

d

dt
CΦ =

∫

D

d

dt
Φ(ω)dx

=

∫

D

Φ′(ω)∂tω dx = −

∫

D

Φ′(ω)β u ·∇ω dx

= −

∫

D

β u ·∇Φ(ω) dx = 0

where the last equality follows from integration by parts and the conditions assumed on u.
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Figure 4: Histogram showing log-likelihood ln gYt(·) weights for an ensemble of 100

particles that define the forecast distribution at time t1 with t1− t0 = 1 eddy turnover

time. The highly right skewedness of the bins and the numerical range of log-likelihood

values demonstrate the singular nature of π
Np

t1 and the requirement of tempering

and MCMC jittering techniques to make the basic bootstrap particle filter work.

Otherwise resampling would lead to degenerate posteriors π
Np

t .

Before discussing experiment results, figure 4 shows a histogram of the log-likelihood ln gYt(·)
values for an ensemble of 100 particles that defines the forecast distribution p

Np

t1 , with t1−t0 = 1

ett. It shows straightforwardly the singular nature of π
Np

t1 and that without tempering and

MCMC jittering, a plain bootstrap particle filter algorithm would fail in the sense that particle

diversity would be lost very quickly, leading to degenerate posteriors π
Np

t .

4.2 Perfect model scenario

A single realisation of the SPDE was used as the truth for the experiments in this scenario. The

data assimilation experiments are defined by the following parameters: time interval between

assimilations ∆ and observation data dimension dy. We ran experiments for the following

parameter sets using ensemble size 100 and experiment period 10 ett:

1. ∆ = 1/25 ett, dy = 81;

2. ∆ = 1/25 ett, dy = 289;

3. ∆ = 1/5 ett, dy = 289.

Note that 10 eddy turnover times is equivalent to 10000 fine resolution time steps. We compare

the results of parameter set 1) with those of 2) to see the impact of increased observation data.

We compare the results of parameter set 2) with those of 3) to see the impact of more frequent

assimilations.

For each parameter set, the data assimilation experiment was repeated 20 times, but all

using the same truth. However the observation errors were independent between repeats. Figure

5 shows the results of mse, σNp
, number of tempering steps and ess for the averages.
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Figure 5: Perfect model scenario. The four figures show the mean square error (tl :

top-left), ensemble standard error (tr : top-right), number of tempering steps (bl :

bottom-left) and ess (br : bottom-right), averaged over 20 independent experiment

runs, conditioned on the same truth. However we did not condition on the same ob-

servation noise. The x-axis shows the number of data assimilation steps corresponding

to the assimilation interval ∆ = 1/25 ett (0.1 time units). In all experiments the en-

semble size is 100. Three plots are shown in each figure. The black lines correspond

to particle filter parameter choices of ∆ = 1/25 ett and 81 weather stations. The red

lines correspond to ∆ = 1/25 ett and 289 weather stations. The blue lines correspond

to ∆ = 1/5 ett and 289 weather stations. For the black and red lines, the parameter

choices mean a total of 250 data assimilation steps. For the blue lines, it means a

total of 50 data assimilation steps. See section 4.2 for discussion.
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The experiments were run for a period of 10 ett. For parameter sets 1 and 2 this means

a total of 250 data assimilation steps. For parameter set 3 this means a total of 50 data

assimilation steps.

The same initial ensemble was used in all experiments. Thus the ess and σN plots all start

from the same values (c.f. table 1). The ess statistic depends on the observation dimension dy.

The initial ensemble was sampled to have an ess value above 80% for dy = 81. For dy = 289

the ess values are expectly worse and start between 60% and 65%.

The mse results show that by increasing the number of fixed weather stations to 289 from

81, the resulting mse is reduced by 50%. But we get less accurate results if we assimilate

less frequently (parameter set 3). However parameter set 3 still gives 1/3 error reduction over

parameter set 1. Note that 81 weather stations amount to 0.3296% of the total degrees of

freedom, compared to 1.176% from using 289 weather stations, see remark 4.

Taking into account the σNp
results, we see although parameter set 3 (observe more data,

but less frequently) gives better mse results than parameter set 1, its ensemble spread is larger

than parameter set 1’s ensemble. This suggests that, whilst over a longer assimilation interval

the posterior ensemble spreads out more, using more observation data gave more accurate

results. Parameter set 2 gives the best results out of the three sets.

Both the ess and the number of tempering steps results reflect the features seen in the mse

results. As the error increased, a drop in ess value is observed. This led to the tempering

procedure increasing the number of intermediate tempering steps. Further, the initial ess value

can be preserved, only if one assimilates adequately often. Otherwise the spread gets “too”

large, which makes it difficult for tempering and jittering to maintain a diverse ensemble in and

around the concentration of the posterior measure. In such cases, one may need to introduce

additional techniques such as nudging to obtain better ensembles. We look to investigate such

techniques in future work.

For one particular experiment run using 100 particles and parameter set 2, figures 6a and

6b show the rank histogram plots at nine reference grid locations for the velocity x-component

and y-component respectively. The plots do not show features of strong bias, under-dispersion

or over-dispersion indicating that the filter is producing reliable results over the experiment

period of 10 ett.

However, when using a fewer number of weather stations (parameter set 1), in practise we

observed it is more likely that the particle filter will give less reliable results. Figure 7 shows

the result from an experiment using 100 particles and parameter set 1. We see evidence of skew

at some of the plotted grid locations.

Estimated asymptotic results and discussion

To estimated the asymptotic behaviour of the particle filter, we ran an experiment using 100

particles and parameter set 2 for 50 eddy turnover times. This period length is equivalent to

50000 fine resolution time steps, and for the filter it amounts to 1250 data assimilation steps.

The results are shown in figure 8. There, we have compared the results produced by the filter

with that of the N -particle approximation of the prior distribution, i.e. P(Xt) without any data

assimilation, c.f. section 3.1. The results show the asymptotic behaviour of the normalised mse

stays bounded. However over this extremely long period of 50 ett, based on only the normalised

mse results, the prior ensemble over the long run gives just as good results as the particle filter

posterior ensemble. This is probably because this amount of data only makes a small change
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(a) Velocity x-component

(b) Velocity y-component

Figure 6: Perfect model scenario. Forecast reliability rank histogram plots at nine

grid locations, for a single run using the parameters: 100 particles, assimilation period

∆ = 1/25 ett, and 289 weather stations. Experiment period: 10 ett. Grid locations

are shown above the plots. See section 4.2 for discussion.
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Figure 7: Perfect model scenario. Velocity x-component rank histogram plots at nine

grid locations, for a single run using the parameters: 100 particles, assimilation period

∆ = 1/25 ett, and 81 weather stations. Experiment period: 10 ett. Grid locations

are indicated above the plots. See section 4.2 for discussion.

to the equilibrium distribution of the posterior distribution versus the prior. However, over

the intermediate long term (pre step 500, ∼ 20 ett) though, the results show the particle filter

working well, bearing in mind that we are controlling the system using information from only

1.18% of the total degrees of freedom, see remark 4. We see that assimilating data slows down

the convergence to equilibrium.

Remark 6. For the approximate asymptotic results shown in figure 8 we compute the prior en-

semble using only the SPDE solver, starting from the same initial ensemble used for the particle

filter. The ess values for the prior ensemble is computed using the Gaussian likelihood func-

tion (21) at each assimilation time. This is done to gauge the “quality” of the prior ensemble

members against observation data at each assimilation step.

From the results we see that the filter’s ensemble has much higher ess values than the prior’s

ensemble. However, the ess value for the filter’s ensemble is not maintained after 400 steps.

This could be because of a number of issues. Not enough observation data is being assimilated,

i.e. dy is too small. We have seen from the results shown in figure 5 how a small increase from

81 weather stations to 289 is able to provide a big improvement in terms of error reduction.

Additional techniques can be introduced to the particle filter, such as nudging, space-time

particle filter and localisation. One of the aims of this paper is to provide a working benchmark

algorithm for high dimensional data assimilation using SALT parameterisation. With additional

techniques, we aim to improve upon the results we have shown. Further, impact of numerical

errors have so far been ignored and omitted. When looking at the asymptotic behaviour,

we cannot ignore the impact of numerical errors. The SALT formulation is special in that

the stochastic term preserves the dynamics’ underlying geometric structure. In the non ideal

setup (i.e. with forcing and damping) considered in this paper, the important Casimir values
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which define the coadjoint orbits7 of the system are no longer preserved. However, it is not

difficult to show that the Casimirs in our setup satisfies a noise independent equation. Since the

methodology used in the generation of the initial ensemble is Casimir preserving, this means

that all the particles in theory should have the same Casimir values throughout.

As supplement to the long term results shown in figure 8, we show in figures 9 and 10 the

Eulerian trajectories of the velocity x-component at four randomly sampled spatial locations.

The results together show the empirical mean and the ensemble spread of the prior stablise

beyond 500 data assimilation steps, which suggest the time for the SPDE to reach its invariant

measure. Figure 9 shows that the filter lost track of the truth at certain Eulerian locations.

Comparing figure 9 with figure 8, the size of the realised observation errors further suggests we

do not observe enough data, i.e. the observed data are not informative enough asymptotically.

However increasing the number of weather stations will require much more computational effort.

4.3 Imperfect model scenario

We repeated the numerical experiments in section 4.2 for the fine resolution PDE truth. As

discussed in the beginning of section 4, in this scenario the observations come from the coarse

grained PDE solutions.

The same particle filter parameter sets from section 4.2 were used. In this scenario ob-

servation data from 289 weather stations correspond to only 0.018% of the truth state space.

To have the same observation to state space dimension ratio of 1.18% as in the perfect model

scenario, the observation state space dimension in this scenario would need to be dy = 36992.

To have comprehensive numerical results using this many weather stations is not feasible given

our computational resources.

Figure 11 shows the results of mse, σNp
, number of tempering steps and ess for each parame-

ter set, averaged over 20 independent repeats. The same PDE truth was used in all repeats, but

for independent observation noises. As in figure 5 for the perfect model scenario, for parameter

sets 1 and 2 there are 250 data assimilation steps, for parameter set 3 there are only 50 data

assimilation steps stretched over the same experiment period of 10 ett.

All experiments started with the same initial ensemble generated using the deformation

procedure described in section 4.1, where ωtruth in (53) is the imperfect model scenario PDE

truth vorticity field at the initial time t0. The uncertainty quantification results from Cotter

et al. [2019] indicate that the initial ensemble covers the coarse grained truth. See table 1

for a summary of the statistics for the initial ensemble. Note that the ess value of 83.83% is

computed using 81 weather stations. For dy = 289 the initial ess drops to around 60% see figure

11. Please note that the initial ess value is only used as a reference, we do not assimilate at t0.

All ensemble members thus have equal weights at t0.

It is to be expected that the results would not be comparable to those from the previous

section. In addition to the sources of errors discussed in section 4.2, in this scenario the truth

is from a different dynamical system (PDE) to the signal process (SPDE), see the discussion

around (18). Additional degrees of freedom are thus introduced into the error of the particle

filter algorithm, see Clark and Crisan [2005]. Further, using 81 weather stations (parameter set

1) amounts to observing 0.00515% of the truth state space in this scenario. This percentage is

improved to 0.01837% when using 289 weather stations in parameter sets 2 and 3. In either case,

7See Marsden and Ratiu [2013] for an exposition of geometric mechanics.
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Figure 8: Perfect model scenario, approximate asymptotic diagnostics. The four

figures correspond to the mean square error (tl:top-left), ensemble standard error

(tr: top-right), number of tempering steps (bl:bottom-left) and ess (br: bottom-

right). The x-axis shows the number of data assimilation steps corresponding to the

assimilation interval ∆ = 1/25 ett (0.1 time units). The blue plots correspond to

the mean of πN
t , with ensemble size 100, ∆ = 1/25 ett and 289 weather stations.

Experiment period is 50 ett. The gold plots correspond to the mean of the empirical

prior distribution. Both sets of ensemble start from the same initial ensemble. The

prior distribution does not assimilate data. The bl subfigure thus contains only the

blue plot. However, ess values are computed for the prior distribution ensemble for

reference. No observation data was used in the ess calculations at the initial time t0
which is why the initial ensemble ess is showing 100%. See section 4.2 for discussion

of these results.
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Figure 9: Perfect model scenario, approximate asymptotic trajectory at four randomly

sampled Eulerian grid locations from a single experiment run. The solid red plots

correspond to the truth. The pink regions correspond to the realised observation

values, i.e. truth plus realised observation noise. The blue plots are of the mean

corresponding to πN
t , with 100 ensemble members, ∆ = 1/25 ett and 289 weather

stations. Experiment period is 50 ett, totalling 1250 data assimilation steps. The

gold plots are of the mean corresponding to the empirical prior distribution. Both

sets of ensemble start from the same initial ensemble. See section 4.2 for discussion.
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Figure 10: Perfect model scenario, approximate asymptotic trajectory at four ran-

domly sampled Eulerian grid locations from a single experiment run. The solid red

plots correspond to the truth. The pink regions correspond to the realised observa-

tion values, i.e. truth plus realised observation noise. The blue plots are of the mean

corresponding to πN
t , using 100 ensemble members, ∆ = 1/25 ett and 289 weather

stations. Experiment period is 50 ett, totalling 1250 data assimilation steps. The gold

plots are the trajectories of 25 empirical prior distribution ensemble members, out of

an ensemble of size 100. Both sets of ensemble start from the same initial ensemble.

See section 4.2 for discussion.
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Figure 11: Imperfect model scenario. The four figures show the mean square error

(tl : top-left), ensemble standard error (tr : top-right), number of tempering steps (bl :

bottom-left) and ess (br : bottom-right), averaged over 20 independent experiment

runs, conditioned on the same truth. However we did not condition on the same ob-

servation noise. The x-axis shows the number of data assimilation steps corresponding

to the assimilation interval ∆ = 1/25 ett (0.1 time units). In all the experiments the

ensemble size is 100. Three plots are shown in each figure. The black lines correspond

to particle filter parameter choices of ∆ = 1/25 ett and 81 weather stations. The red

lines correspond to ∆ = 1/25 ett and 289 weather stations. The blue lines correspond

to ∆ = 1/5 ett and 289 weather stations. For the black and red lines, the parameter

choices mean a total of 250 data assimilation steps. For the blue lines, it means a

total of 50 data assimilation steps. See section 4.3 for discussion.
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we have two orders of magnitude less information about the truth state than the experiments

in section 4.2.

The features in the results from the perfect model scenario are observed here too. In figure

11, the results show increasing the observation state space dimension led to improvement in mse.

A reduction of about 25% is observed when comparing parameter set 1 mse to parameter set

2. Parameter set 3 results show that if we assimilate more information but less frequently, the

improvement in mse is less substantial, and the ensemble spread is larger. As the performance

of the filter deteriorates over time, the tempering procedure introduced more intermediate

tempering steps. However the algorithm was not able to maintain the initial ess levels. The ess

values were better maintained for parameter sets 1 and 2. For parameter set 3 the ess started

at about 60% and ended at below 20%, suggesting the filter lost track of the truth. Without

using additional techniques such as nudging, the results highlight the need to assimilate enough

information about the truth as often as possible in order to have reliable results from the filter.

Using the results here as a basis, we will investigate the capability of additional techniques in

future work.

Figures 12a and 12b show the rank histogram plots at nine reference grid locations of the

velocity x-component and y-component respectively for one particular experiment run using

100 particles and parameter set 2. There are evidence suggesting bias, and under-dispersion at

some of the plotted grid locations. The problem becomes more prominent if we use even fewer

observations (parameter set 1). Figure 13 shows the velocity x-component rank histogram for

an experiment using parameter set 1. Strong evidence for bias is observed at grid location [0.75,

0.75].

Estimated asymptotic results and discussion

Since we assimilated so little information about the truth state at each step in this scenario, the

asymptotic behaviour of the particle filter is also estimated in order to understand the stability

of the mse. We ran an experiment using 100 particles and parameter set 2 for 50 eddy turnover

times. This length of period is equivalent to 50000 fine resolution time steps, and for the filter

it amounts to a total of 1250 data assimilation steps. The results are shown in figure 14. As

in section 4.2, we have compared the results produced by the filter with that of the N -particle

approximation of the prior distribution, i.e. P(Xt) without any data assimilation.

The results in figure 14 show that the estimated asymptotic mse is bounded. However over

this extremely long period of 50 ett, the long term prior ensemble mean gives better mse results

than the particle filter posterior ensemble mean. Over the intermediate long term (pre step

500, ∼ 20ett) the filters results show good promise. Bearing in mind that we are controlling

the system using information from only 0.018% of the total degrees of freedom. The ess results

suggest that the posterior ensemble lost track of the truth beyond step 500. But the quality of

the posterior ensemble, measured by the ess statistic, is still better than the prior ensemble.

The discussion about the asymptotic results in section 4.2 applies here too. This scenario is

further complicated by the presence of model error. One could also aim to base the choice for

the ξ parameters on the data assimilation results, but this is beyond the scope of this paper.

In the bottom left subfigure in figure 15 we see an example of an Eulerian location at which

the truth moves outside the support of the empirical prior. Thus this imperfect model test case

really is pushing the algorithm beyond its theoretical limit.

As supplement to the estimated asymptotic results shown in figure 14, we show in figures 15
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(a) velocity x-component

(b) velocity y-component

Figure 12: Imperfect model scenario. Forecast reliability rank histogram plots at nine

grid locations, for a single run using the parameters: 100 particles, assimilation period

∆ = 1/25 ett, and 289 weather stations. Experiment period: 10 ett. Grid locations

are shown above the plots. See discussion in section 4.3.
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Figure 13: Imperfect model scenario. Velocity x-component rank histogram plots at

nine grid locations, for a single run using the parameters: 100 particles, assimilation

period ∆ = 1/25 ett and 81 weather stations. Experiment period 10 ett. Grid

locations are indicated above the plots. See discussion in section 4.3.

and 16 the Eulerian trajectories of the velocity x-component at four randomly chosen spatial

locations. In three of the subfigures we see that the ensemble mean of the filter lost track of

the truth at around step 750, but were able to recover afterwards. This time point coincides

with the peak mse error shown in figure 14. The time point also coincides with the time

point in figure 16 at which the truth moves outside the uncertainty region defined by the prior

ensemble.

5 Conclusion

In this work we used a particle filter which included three additional procedures (model reduc-

tion, tempering and jittering) in a high dimensional data assimilation (DA) case study. We

interpreted the task as solving a filtering problem with a continuous time signal via discrete

observations. The “truth” was modelled by a highly resolved numerical solution of a damped

and forced incompressible 2D Euler equation which had roughly 3.1× 106 degrees of freedom.

The data consisted of a time series of 250 discrete observations of the fluid velocity measured

on a sparse spatial grid which varied in size from 81 to 289. The model reduction involved the

addition of a stochastic parametrisation of the above equation solved on a coarser grid of about

4.9× 104 degrees of freedom. We showed that the data assimilation can be successfully carried

out using modest computational hardware by employing all of the above additional procedures

to a system of 100 particles. The resulting approximations compared favourably with the true

trajectory. We also tested the reliability of the resulting forecast with no bias, under dispersion

or over dispersion observed.

In a sequel to this work we aim to incorporate additional procedures (nudging, space-time
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Figure 14: Imperfect model scenario, approximate asymptotic diagnostics. The four

figures correspond to the mean square error (tl:top-left), ensemble standard error

(tr: top-right), number of tempering steps (bl:bottom-left) and ess (br: bottom-

right). The x-axis shows the number of data assimilation steps corresponding to the

assimilation interval ∆ = 1/25 ett (0.1 time units). The blue plots correspond to the

mean of πN
t , with an ensemble of size 100, ∆ = 1/25 ett and 289 weather stations.

Experiment period is 50 ett. The gold plots correspond to the mean of the empirical

prior distribution. Both sets of ensemble start from the same initial ensemble. The

prior distribution does not assimilate data. The bl subfigure thus contains only the

blue plot. However, ess values are computed for the prior distribution ensemble for

reference. See section 4.3 for discussion.
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Figure 15: Imperfect model scenario, approximate asymptotic trajectory at four ran-

domly sampled Eulerian grid locations from a single experiment run. The solid red

plots correspond to the truth. The pink regions correspond to the realised observa-

tion values, i.e. truth plus realised observation noise. The blue plots are of the mean

corresponding to πN
t , using 100 ensemble members, ∆ = 1/25 ett and 289 weather

stations. Experiment period is 50 ett, totalling 1250 data assimilation steps. The gold

plots are of the mean corresponding to the empirical prior distribution. Both sets of

ensemble start from the same initial ensemble. See section 4.3 for discussion.
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Figure 16: imperfect model scenario, approximate asymptotic trajectory at four ran-

domly sampled Eulerian grid locations from a single experiment run. The solid red

plots correspond to the truth. The pink regions correspond to the realised observa-

tion values, i.e. truth plus realised observation noise. The blue plots are of the mean

corresponding to πN
t , using 100 ensemble members, ∆ = 1/25 ett and 289 weather

stations. Experiment period is 50 ett, totalling 1250 data assimilation steps. The

gold plots are the trajectories of 25 prior distribution ensemble members, out of an

ensemble of size 100. Both sets of ensemble start from the same initial ensemble. See

section 4.3 for discussion.

data assimilation) to the ones discussed here to further refine the performance of the particle

filter discussed here.

Code and data availability

All Python implementation code and experiment data files are available from the corresponding

author upon request.

Acknowledgements

The authors thank The Engineering and Physical Sciences Research Council (EPSRC) for

their support of this work through the grant EP/N023781/1. The authors also thank Nikolas

Kantas, Peter Korn, Sebastian Reich, Paul-Marie Grollemund for the many useful, constructive

discussions held with them throughout the preparation of this work.

42



References

Alan Bain and Dan Crisan. Fundamentals of stochastic filtering, volume 3. Springer, 2009.

Alexandros Beskos, Dan O Crisan, Ajay Jasra, and Nick Whiteley. Error bounds and normal-

ising constants for sequential Monte Carlo samplers in high dimensions. Advances in Applied

Probability, 46(1):279–306, 2014.

Alexandros Beskos, Dan Crisan, Ajay Jasra, Kengo Kamatani, and Yan Zhou. A stable particle

filter for a class of high-dimensional state-space models. Advances in Applied Probability, 49

(1):24–48, 2017.

Jochen Broecker. Assessing the reliability of ensemble forecasting systems under serial depen-

dence. Quarterly Journal of the Royal Meteorological Society, 144(717):2666–2675, October

2018. doi: 10.1002/qj.3379. URL http://centaur.reading.ac.uk/78201/.

Roberto Buizza, M Milleer, and Tim N Palmer. Stochastic representation of model uncertainties

in the ECMWF ensemble prediction system. Quarterly Journal of the Royal Meteorological

Society, 125(560):2887–2908, 1999.

S S Chern, W H Chen, and K S Lam. Lectures on Differential Geometry. WORLD SCIEN-

TIFIC, 1999. doi: 10.1142/3812. URL https://www.worldscientific.com/doi/abs/10.

1142/3812.

J.M.C. Clark and D. Crisan. On a robust version of the integral representation formula of nonlin-

ear filtering. Probability Theory and Related Fields, 133(1):43–56, Sep 2005. ISSN 1432-2064.

doi: 10.1007/s00440-004-0412-5. URL https://doi.org/10.1007/s00440-004-0412-5.

C. Cotter, D. Crisan, D. Holm, W. Pan, and I. Shevchenko. Numerically modeling stochastic

Lie transport in fluid dynamics. Multiscale Modeling & Simulation, 17(1):192–232, 2019. doi:

10.1137/18M1167929. URL https://doi.org/10.1137/18M1167929.

C. J. Cotter, G. A. Gottwald, and D. D. Holm. Stochastic partial differential fluid equations as

a diffusive limit of deterministic Lagrangian multi-time dynamics. Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 473(2205):20170388, 2017. doi:

10.1098/rspa.2017.0388. URL https://royalsocietypublishing.org/doi/abs/10.1098/

rspa.2017.0388.

Colin Cotter, Dan Crisan, Darryl D Holm, Wei Pan, and Igor Shevchenko. Modelling uncer-

tainty using circulation-preserving stochastic transport noise in a 2-layer quasi-geostrophic

model. arXiv preprint arXiv:1802.05711, 2018.

Dan Crisan and Oana Lang. Well-posedness for a stochastic 2D Euler equation with transport

noise. arXiv preprint arXiv:1907.00451, 2019.

Dan Crisan, Franco Flandoli, and Darryl D. Holm. Solution properties of a 3D stochastic Euler

fluid equation. Journal of Nonlinear Science, Oct 2018. ISSN 1432-1467. doi: 10.1007/

s00332-018-9506-6. URL https://doi.org/10.1007/s00332-018-9506-6.

Masoumeh Dashti and Andrew M Stuart. The Bayesian approach to inverse problems. Handbook

of Uncertainty Quantification, pages 311–428, 2017.

43

http://centaur.reading.ac.uk/78201/
https://www.worldscientific.com/doi/abs/10.1142/3812
https://www.worldscientific.com/doi/abs/10.1142/3812
https://doi.org/10.1007/s00440-004-0412-5
https://doi.org/10.1137/18M1167929
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0388
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0388
https://doi.org/10.1007/s00332-018-9506-6


Geir Evensen. Data assimilation: the ensemble Kalman filter. Springer Science & Business

Media, 2009.

François Gay-Balmaz and Darryl D Holm. Selective decay by Casimir dissipation in inviscid

fluids. Nonlinearity, 26(2):495, 2013.

Darryl D. Holm. Variational principles for stochastic fluid dynamics. Proceedings of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471

(2176), 2015. ISSN 1364-5021. doi: 10.1098/rspa.2014.0963. URL http://rspa.

royalsocietypublishing.org/content/471/2176/20140963.

Nikolas Kantas, Alexandros Beskos, and Ajay Jasra. Sequential Monte Carlo methods for high-

dimensional inverse problems: A case study for the Navier–Stokes equations. SIAM/ASA

Journal on Uncertainty Quantification, 2(1):464–489, 2014.

Lennart Ljung. Asymptotic behavior of the extended Kalman filter as a parameter estimator

for linear systems. IEEE Transactions on Automatic Control, 24(1):36–50, 1979.

Andrew J Majda, Ilya Timofeyev, and Eric Vanden Eijnden. Models for stochastic climate

prediction. Proceedings of the National Academy of Sciences, 96(26):14687–14691, 1999.

Andrew J Majda, Ilya Timofeyev, and Eric Vanden Eijnden. A mathematical framework for

stochastic climate models. Communications on Pure and Applied Mathematics: A Journal

Issued by the Courant Institute of Mathematical Sciences, 54(8):891–974, 2001.

Jerrold E Marsden and Tudor S Ratiu. Introduction to mechanics and symmetry: a basic

exposition of classical mechanical systems, volume 17. Springer Science & Business Media,

2013.
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