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Abstract 

A Bayesian track-before-detect particle filter is proposed. The 
filter provides a sample based approximation to the distribution of 
the target state directly from pixel array data. The filter als0 
provides a measure of the probability that a target is present. 

(iii) The solution is valid for structured and / or non- 
Gaussian background noise, although the distribution of this 
structured noise must be known (and, admittedly, in many 
practical cases this is unlikely to be available). 

(iv) An extended target and/or the effects of a point 
spread function can be accommodated. 

1 Introduction 

In the usual approach to target tracking, one or a small 
number of position measurements are extracted via sensor signal 
processing and are then passed to the tracking function. 
Measurement extraction is usually via some thresholding process 
which inevitably results in a loss of information. This is of little 
consequence if the target signal-to-noise (S/N) ratio is high, so that 
a good probability of detecting the target can be achieved while 
maintaining a low false alarm rate.  However, for small S/N ratios 
information loss may be significant, so that in principle it would be 
better for the tracking function to operate directly on the raw 
sensor signal. For an electro-optical (EO) staring array, this means 
that the grey-scale levels from every pixel should be available to 
the tracking function. This approach of avoiding an explicit 
detection stage is known as track-before-detect and is typically 
solved via dynamic programming or maximum likelihood 
techniques. 

In this study, the track-before-detect problem has been 
approached via a Bayesian particle filter. Until the advent of 
particle filtering methods, it was not computationally feasible to 
implement a full Bayesian track-before-detect scheme (also see 
Ballantyne et al [1]). This approach has a number of potential 
advantages relative to many previous methods: 

(i) The method provides a probability distribution for the 
target state (i.e. a measure of uncertainty) rather than only a point 
estimate. 

(ii) The possibility of a target appearing in the sensor field- 
of-view (FOV) is explicitly modelled, so that the probability of a 
target being present is available from the filter. 

(v) The method is not restricted to constant velocity 
trajectories - some stochastic target manoeuvre can be 
accommodated. 

The track-before-detect particle filter has been 
demonstrated for the special case of a manoeuvring point 
target with high levels of background noise (when the 
appearance and movement of the target cannot be detected by 
a human observer). 

2 Problem formulation 

A staring EO sensor observers a region of the x-y 
plane. Each pixel or resolution cell of the sensor corresponds 
to a square region of dimension AxA, and the sensor array 
consists of NxM pixels. It is assumed that at time step k, the 
output of all NM resolution cells are read co-incidently and 
the measured intensity of pixel (i,j) is denoted z ij(k). Thus, 
following the notation of Tonissen and Bar-Shalom [2], the 
complete sensor measurement at time step k is denoted: 

Z (k )=  { z i j ( k ) : i =  1 ..... N , j = I  ..... M }. 

If a target is present and its centroid is at position 
(x, y), it may contribute to the pixels in that vicinity. The 
contribution of the target to pixel (i,j) is denoted fs(i,j,x,y) and 
this is assumed to be known. This could be due to the extent 
of the target or to the sensor point spread function. If the 
target is a point object, the target intensity will be distributed 
over the surrounding resolution cells according to the sensor' s 
point spread function. A truncated 2-D Gaussian density with 
circular symmetry is a common model for such a function. 
Thus for a point target of intensity I at position (x,y), the 
contribution to pixel (i,j) may be approximated by 

E-mail address: djsalmond@dera.gov.uk 
H Birch is now with the Research and Development Department of the British Broadcasting Corporation 

©British Crown copyright 2001. Published with the permission of the Defence Evaluation and Research Agency on behalf of 
the Controller of HMSO. 

0-7803-6495-3/01/$10.00 © 2001 AACC 3755  



f ( i , j , x , y )  = 

( i A - x )  2 ( j A - y )  2 ] for l i A - x l < 3  A 21 exp - 
271;S 2 2S 2 2s 2 and I j A - y l < 3  

0 otherwise. 

Here the parameter s represents the extent of blurring. Note that 
this expression is a somewhat crude approximation to the integral 
of the point spread function over a pixel, and smearing due to 
target motion is not represented. Also the approximation is only 
useful for s:~A - see [2] for a more complete discussion. Note 
that as s/A--+0 and the point spread function tends to a delta 
function, a point target will only contribute to the resolution cell in 
which it falls. 

It is assumed that the sensor pixels are corrupted by a 
background noise of known distribution. This noise may be 
structured - for example, the noise may have a non-zero mean 
which varies between pixels. However, the distribution of the 
noise for each pixel is assumed to be known; also the noise process 
is assumed independent between pixels and from frame to frame. 
Thus, although our solution relaxes the usual assumption that 
background noise is identically distributed amongst pixels, the 
distribution of the background clutter is assumed to be available. 

At most one target at a time may be present in the 
sensor's scanned region. Initially, at time step k=0, no target is 
present so that the pixel grey levels are solely due to background 
noise. A target may appear at any time step and at any point in 
the scanned region. The initial distribution of the target state 
vector is assumed to be known (for example, uniform over the 
field-of-view). Following its appearance, the target then proceeds 
on a trajectory until it disappears (i.e. no signal is present) or 
passes out of the scanned region. Following common practice, the 
birth / death of a target is modelled as a Markov process with 
parameter )v. )v=-I indicates that a target is present, otherwise L=0. 
A transition from L=0 to )~=1 occurs with probability 
PB=Pr{)Vk+I=I I ~k- -0}  for all k___0. For a target within the scanned 
region, a transition from L-=I to £=0 occurs with probability 
PL=Pr{)Vk+~=0 I )Vk=l} for all k>0. If a target passes out of the 
scanned region, the target is assumed to die and ~, becomes 0 with 
probability 1. PB and PL define the birth / death behaviour of 
targets within the observation region and are assumed to be known. 
In particular, the average lifetime of a target within the observation 
region is I/(1-PL) time steps and the average period between the 
death of one target and the birth of another is I/(1-P B) time steps. 

When a target is present, it is assumed to move according 
to a known dynamics model of the form Xk+l = f ~ k ,  Wk) where 
w k is an independent noise process of known pdf and Xk is the 
target state vector. This is equivalent to knowledge of the 
transition density P~k+l I Xk)" The filter described in this paper is 
applicable to any Markov model of this form - there is no 
restriction to linear-Gaussian dynamics. 

3 F o r m a l  B a y e s i a n  so lu t ion  

From a Bayesian perspective, a complete solution of 
the above problem is given by the posterior pdf of Q~k , ~'k)" 

P(~.k, ~'k [ Z'(k)), where Z'(k) denotes the complete set of all 
past images, Z'(k) = { Z(k), Z(k-1) ..... Z(1)}. 

The construction of this posterior pdf depends on the 
transition density between time steps and the measurement 
likelihood. First consider the transition between time steps" 

P (Xk+l '  ~bk+l I X k , ~k ) -- 

P (Xk+ 1 I X k , ~ k '  ~'k+l ) P (Xk÷l I x k , ~'k ) " 

Apart from the possibility of an existing target passing out of 
the sensor field-of-view, the transition of )~ is independent of 
X k and is defined by the birth/death Markov model, i.e. PB 
and PL. If )V k+l=O, the target is not present and x k+l is 
undefined, otherwise the pdf of Xk+ ~ conditional x k and )v k is 
given by: 

P(Xk. IX k) 
P(Xk÷ 1 ] X k '  ~ k '  ( ~ k + l = l ) )  "- pB (Xk+l) 

for )~k = 1 

for )v k = 0 , 

where the transition density P(.~.k+l [ X k )  is defined by the 
target dynamics model and PB(.) is the initial pdf of a target on 
its appearance. 

The likelihood p(Z(k) I X  k , ~ k ) of the state given 
the pixel measurements is given by (omitting the time 
index k): 

1-I PS+N (Zij [ X,  y) for )v = 1 
p ( Z  I x ,  ~ )  = i,j 

1-I PN(Zij ) for )V -- 0 . • . l,j 

Here, p y(Z ij) is the pdf of the background noise in pixel (i,j) 
and p s+y(Zij [ x,y) is the pdf of the target signal + noise in 
pixel (i,j) given that the target is located at (x,y). Note that 
given the target location, the S+N distributions in each pixel 
are independent (as are the pure noise pixels), hence the 
product of the pdfs in the above likelihood. If the presence of 
the target only affects a (small) clump of pixels in the vicinity 
of (x,y), then 

p (Z  I x , £=1)  = l - I  PS÷N(Zij[ x , y )  = 
i,j 

1-I PS÷N(Zo I x'Y ) l ' I  PN(Zij)  ' 
i,j~ C(x) i,j~ C(x) m m 

where C ~ is the set of subscripts of pixels affected by the 
target (with state vector x_). It is assumed that p y(Z 0) and 
p S+N(Zij I x,Y) are known for all i,j. 
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I m p l e m e n t a t i o n  of  Bayesian solution v i a  

particle  filters 

We propose to implement the Bayesian solution to this problem 
via a particle filter technique (see [3] and [4]). This is a means of 
implementing a general Bayesian recursive filter without the usual 
linear-Gaussian restrictions. The update stage of the filter 
incorporating measurement information is achieved via weighted 
resampling - the weight for a particle being proportional to its 
likelihood. Thus for the p~ particle, ~*(p) , )~*(p)), the 
resampling weight q(p) ~: p(Z I x_.*(p), )~*(p)) - where the asterisk 
indicates the prior value of the particle before resampling. Since 
the weights are only required up to proportionality, we may divide 

through by I-I PN( Zij ) and set: 
i , j  

q(p)  o~ 
H 

i ,  3 ~ C ( x "  ( p ) )  

1 

~(Zij lx*(p) ,y*(p))  for )~*(p) = 1 

for )~*(p) = 0 ,  

where l~(zij I x , y )  - Ps+N(Zij [ x , y ) / p N ( Z i j )  , the likelihood 
ratio in pixel (i,j) for a target at (x,y). Thus the weight of each 
particle for ~ 1 only depends on the product of likelihood ratios in 
the vicinity of the particle. This simple (and rather obvious) trick 
greatly reduces the computational requirement of the particle filter 
implementation. For example, for a 20x20 (N=M=20) array of 
pixels, the brute force approach of setting q(p) = p(Z I x_*(p), )~*(p)) 
would entail the evaluation of 400 pixel likelihoods rather than a 
few likelihood ratios in the vicinity of the particle - an important 
consideration for a filter employing a large number of particles. 

Note that, in principle, the filter can accommodate 
structured noise / clutter (i.e. p y(Z ij) may depend on i,j) provided 
its distribution is known over the pixel array. This could be useful, 
for example, if it were possible to calibrate the array to some fixed 
background clutter or detector response (including so-called "dead 
pixels"). For instance, for a "stationary" scene it would be possible 
to learn the background distribution by extended observation of the 
target-free scenario. 

The prediction phase of the filter k--~k+l is fairly 
standard. The particle set is divided into two parts; those for ~ 1  
and those for X=0, corresponding to target present and target 
absent. In the transition from k to k+l,  )~ k " -  1 particles either 
transition to )~* k+l = 0 (target dies) with a probability PL or remain 
at ~*k+l = 1 with probability 1-P L . The process is similar for ~k=0 
particles. The transition is effected for individual particles via a 
random number generator. If )~* k+l(P)=0, then the target does exist 
for particle p and X_* k+l(p) is undefined. If )~* k+l(P)=l and )~k(p)=l, 
then x_.* k+l(P) = f (_~.k(P) , Wk(P)) where Wk(P) is a random sample 
drawn from the known pdf of the system driving noise. Note that 
if this prediction sends the target out of the sensor field-of-view, 
then the target is assumed to have died and )~* k+~ is set to 
zero. If )~* k+l(P)=l and ~k(P)=0, then for this particle the 
target was born during the transition k---~k+l and so x_.* k+l(P) is 
drawn from the pdf of the target birth distribution PB(.~.). 

5 Illustrative results 

To illustrate the operation of the filter, we have 
simulated the particular case of a point target with no sensor 
blurring. Thus, the target only activates the pixel in which it 
falls: 

f 
I for l i A - x l < A / 2  and I j A - y I < A / 2  

f ( i , j , x , y )  
L 0 otherwise, 

where I is the known intensity of the target. The background 
noise for this example is assumed to be zero mean Gaussian 
with variance o -2 for all pixels, i.e. p N(Z ij)=N(z 0 " 0, cy a) for all 
i,j. If the point target is present in pixel (i,j), the pixel 
response is assumed to be the sum of the target intensity and 
the background noise, i.e. p s+y(Zij I x,y)=N(zij • I, {52). Thus 
the likelihood ratio is given by 

exp l  - I  (I -2z i j )  ] for l i A - x .  <A/2 
1]( z~j I x ,y)  = 2 (y2 and IjA - yl < A/2 

1 otherwise. 

Also, since the set C (Z.) consists solely of the pixel in which 
the point target falls, the particle weights are given by 

I - I  (I -2z~j) ] for )~*(p) = 1 
exp ~y~. j and liA - x *(p)l < A/2 

q (p) o~ 2 and Ij A - y *(p) l < A/2 

1 otherwise. 

A sequence of 30 frames of data has been simulated. 
Each frame consists of an array of 20x20 pixels. The standard 
deviation of the background noise level in each pixel is 

(y = 10 units. A target was introduced in frame 6 and deleted 
in frame 22. The intensity level of the target was I=20, 

resulting in a signal-to-noise ratio of (I/{5) 2 =4 = 6dB.  Thus, 
for the 400 pixels in a frame, one would expect about 9 noise 
pixels to exceed the target signal level. When present, the 
target motion was simulated according to a second order 
model of the form 

/i/x li 1 0 0 1/2 0 w x 
" -  4-  . 

0 1 1  | 0  1 Wy k 
k*l 0 0 1 k 0 1/2 

The state vector here is the target position and velocity in 
units of pixels and frame rate, and k is the frame number. 
The driving noise is a zero mean Gaussian process of variance 
q = E[ Wx 2 ] = E[ Wy2 ] = 0.052" 
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Six frames of the data sequence (frame numbers 1, 5, 9, 
13, 17 and 21) are shown in fig 1. Individual pixel intensity is 
shown as a grey scale in 64 (linear) levels, with white indicating 
the highest intensity. The 64 levels are a linear scale between the 
dimmest and the brightest pixel in the full 30 frame sequence. The 
position of the target, if present, is marked by a circle. It is clearly 
(visually) difficult to detect the appearance of the target at this 
signal-to-noise level. 

The track-before-detect particle filter has been applied to 
this data set. The filter state vector consists of the position and 
velocity of the target augmented with the target present / absent 

flag: ( x ,  :~, y ,  j,, )~)k" The dynamics model employed by the 
filter is the same as the above target generation model, so the filter 
is perfectly matched to the data in this respect. The probability of 
the target appearing on a particular frame is set to P B = 0.1 and the 
probability of the target dying is also P L = 0.1. The initial pdf of 
the target's location, given that it has just appeared and prior to 
any measurements, is uniform over the sensor field-of-view. The 
initial prior pdf of its velocity is assumed to be uniform over 
[-1, 1] in the x and y directions, i.e. 

pB(x) - Un( x ; 0 .5 ,20.5 ) pB(:~) - Un( :~ ; - 1 , 1  ) 

PB(Y) - Un ( y ; 0 .5 ,20.5 ) PB(Y) = Un ( y ; - 1 , 1  ) . 

The initial information at k=l  is that the target is not present, i.e. 
p(;~l=0)=l, so all prior particle filter samples are initialised at 
~l*(p)=0 for p=l ..... Ns. The filter has been run with Ns=30000 
samples. To alleviate the problem of sample degeneracy, a 
"roughening" procedure was used with K=0.2 (see [3]). 

S u b s e t s  o f  t a r g e t  s a m p l e s  

(Xk(P) ' Yk(P) [ )~k(P) = 1, p e  SC{1 ..... Ns} ) from six of the data 
frames are shown in fig 2. Note that initially samples appear to 
"swirl" randomly over the observation plane. Eventually, several 
time steps after the target has appeared, the particles begin to learn 
the target location and to cluster around it. When the track is well 
established, a tight clump of particles is formed. Note that the 
filter is able to exploit information on the shape of the pixels - see 
frame 21 of fig 2 where the straight edge in the target location 
distribution is due to the pixel boundary. 

Fig 3 shows the "track" produced by the filter. This is 
simply the mean of the set of target samples. The target track is 
shown as a dashed line if the filter's assessment of the probability 
of the target being present is below 0.6. The sample mean in this 
case wanders near the centre of the field-of-view, as would be 
expected if no target were present. The continuous line shows the 
track when the probability is greater than 0.6. The continuous 
track follows the actual target path reasonably well. (Note that 
actual target trajectory is not a constant velocity path - although 
admittedly the manoeuvre is gentle.) The probability of the target 
being present is plotted in fig 4. It takes about seven frames 
following the appearance of the target before this probability rises 
above 0.6. The track is well established by frame 15. 
Subsequently, the probability remains above 0.9 until frame 25, 
after which the target disappears. Within two time steps the 
probability falls below 0.6 and the mean of the sample set reverts 
back to the centre of the field-of-view (see fig 3). 

6 Conclusions 

A particle filter has been used to implement a 
Bayesian approach to the track-before-detect problem. The 
operation of the filter has been demonstrated for the case of a 
low signal-to-noise point target against a background of 
Gaussian noise. However, the filter can also be applied to 
non-Gaussian background noise and extended targets (or point 
targets that have been blurred by the sensor). Also, the filter 
could be applied with any shape of pixel. Extensions of the 
method to multiple targets and unknown target intensity should 
be pursued. 

7 References 

D.J.Ballantyne, Y.Chan and M.A.Kouritzin, (2000), 
"A novel branching particle method for tracking", 
SPIE Signal and data processing of small targets, 
Vol 4048, April 2000. 

S.M.Tonissen and Y.Bar-Shalom, (1998), "Maximum 
likelihood track-before-detect with fluctuating target 
amplitude", IEEE Trans on Aerospace and 
Electronic Systems, Vol 34, No 3, July 1998. 

N.J Gordon, D.J. Salmond and A.F.M. Smith, 
(1993), "Novel approach to non-linear/non-Gaussian 
Bayesian state estimation problems", lEE 
Proceedings on Radar, Sonar and Navigation, Vol 
140, No 2, pages 107-113, 1993. 

A.Doucet, J.F.G. de Freitas and N.J.Gordon 
(editors), (2001), Sequential Monte Carlo methods in 
practice, Springer-Verlag, to be published, 2001. 

Acknowledgement 

This research was sponsored by the UK MOD Corporate 
Research Programme, TG3. 

3758  



Frame 1 Frame 5 Frame 9 

Frame 13 
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Frame 17 

Fig 1" Six frames from the data sequence, pixel intensity indicated by grey scales 
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Fig 2: Subsets of target samples from the particle filter, circle indicates target position 
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Fig 3" Target track: mean of target samples 
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