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This paper introduces an on-line particle-filtering (PF)-based framework for fault diagnosis and
failure prognosis in non-linear, non-Gaussian systems. This framework considers the imple-
mentation of two autonomous modules. A fault detection and identification (FDI) module uses
a hybrid state-space model of the plant and a PF algorithm to estimate the state probability
density function (pdf) of the system and calculates the probability of a fault condition in real-
time. Once the anomalous condition is detected, the available state pdf estimates are used as
initial conditions in prognostic routines. The failure prognostic module, on the other hand,
predicts the evolution in time of the fault indicator and computes the pdf of the remaining
useful life (RUL) of the faulty subsystem, using a non-linear state-space model (with unknown
time-varying parameters) and a PF algorithm that updates the current state estimate. The
outcome of the prognosis module provides information about the precision and accuracy of
long-term predictions, RUL expectations and 95% confidence intervals for the condition under
study. Data from a seeded fault test for a UH-60 planetary gear plate are used to validate the
proposed approach.

Key words: failure prognosis; fault detection; fault identification; particle filtering.

1. Introduction

Critical aircraft assets (exhibiting attributes of reliability, robustness and high
confidence under a variety of flight regimes) are required to be available when
needed, and maintained on the basis of their current condition rather than on the basis
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of scheduled maintenance practices. Moreover, condition-based maintenance (CBM)
requires that the health of critical components/systems be monitored and diagnostic/
prognostic strategies be developed to detect and identify incipient failures – fault
detection and identification (FDI) – and predict the remaining useful life (RUL) of the
failing component. New and innovative technologies must be developed and
implemented to address these concerns.

The complexity of the problem indicates that it is appropriate to combine model-
based and state-estimation techniques to implement on-line FDI/prognostic
approaches. In this sense, recursive Bayesian algorithms are well suited to solve the
problem of real-time estimation since they incorporate process data (in the form of
sequential observations) into the a priori state estimate by considering the likelihood of
measured values (Doucet et al., 2001). Particularly, sequential Monte Carlo (SMC)
methods – also referred to as particle filtering (PF) – provide a solid and consistent
theoretical framework to handle model non-linearities or non-Gaussian process/
observation noise. Founded on the concept of sequential importance sampling (SIS)
and Bayesian theory, PF has been the subject of an intensive amount of research over
the past years in many diverse disciplines including economics, biostatistics and
statistical signal processing problems in the engineering domain such as time series
analysis, target tracking and communications (Arulampalam et al., 2002).

The underlying principle of the methodology is the approximation of the
conditional state probability distribution p(x0:t|y0:t) by a swarm of points called
‘particles’. These particles contain samples from the state-space and a set of weights –
associated with them – representing discrete probability masses. Particles can be easily
generated and recursively updated given a non-linear process model (which describes
the evolution in time of the system under analysis), a measurement model, a set of
available measurements Y ¼ fYt, t 2 Ng, and an initial estimation for the state
probability density function (pdf), p(x0). Furthermore, PF allows information from
multiple measurement sources to be fused in a principled manner, which is an
attribute of decisive significance for fault detection/diagnosis purposes.

Although several applications of PF for FDI may already be found in literature
(de Freitas, 2002; Kadirkamanathan et al., 2002; Koutsoukos et al., 2002; Li and
Kadirkamanathan, 2001; Verma et al., 2003, 2004), little work has been done in the
prognosis arena. In this sense, this paper introduces a general framework where hybrid-
state dynamic models are used to represent the behaviour of the system under no-fault
and faulty operating conditions, and real-time PF algorithms are utilized to estimate the
state pdf. These pdf estimates directly indicate the probability of each faulty mode and
are also used as initial conditions in a two-level procedure for failure prognosis.

The organization of the paper is as follows. Section 2 provides the theoretical
background for Bayesian estimation and PF and it also indicates the state-of-the-art for
the application of these methods in FDI and prognosis. Section 3 introduces the
proposed approach for on-line FDI and presents the results obtained for a real
application example. Section 4 focuses on the prognosis issue, provides the theoretical
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foundation, shows an illustrative example and analyses the results obtained for the
prediction of axial crack growth in an UH-60 planetary carrier plate. Main conclusions
and final remarks are stated in Section 5.

2. Theoretical background

2.1 Bayesian estimation and PF

Non-linear filtering is the process of using noisy observation data to estimate
at least the first two moments of a state vector governed by a dynamic non-linear,
non-Gaussian state-space model (Haug, 2005). Although in principle the estimation
procedure may be implemented on continuous-time systems, the present paper is
solely focused on discrete-time systems since the streaming measurement data is sent
(and received) through digital devices in most of the applications relevant to FDI and
prognosis.

Mathematically speaking, let X ¼ fXt, t 2 Rg be a R
nx-valued Markov process

characterized both by its initial distribution p(x0) and the transition probability
p(xt|xt�1). Moreover, let p(xt|xt�1) be defined by (1), where {!t}t�0 is a sequence of
independent random variables, not necessarily Gaussian.

xt ¼ ftðxt�1,!tÞ ð1Þ

Noisy observations Y ¼ fYt, t 2 Ng are assumed to be conditionally independent,
given X ¼ fXt, t 2 Ng. Equation (2) defines the marginal distribution p(yt|xt), where
{�t}t�0 is a sequence of independent random variables.

yt ¼ gtðxt, �tÞ ð2Þ

Let x0:t ¼
�
fx0, . . . , xtg and y1:t ¼

�
fy1, . . . , ytg denote, respectively, the signal and the

observations up to time t. It is of interest to estimate the posterior distribution p(x0:t|y1:t),
the marginal distribution p(xt|y1:t), and the expectations (3) for any function
ft : R

nx ! R
nft integrable with respect to p(x0:t|y1:t), (Doucet et al., 2001).

IðftÞ ¼ Epðx0:tjy1:tÞ½ftðx0:tÞ� ¼
�
Z

ftðx0:tÞpðx0:tjy1:tÞdx0:t ð3Þ

This task can be basically achieved by performing two sequential steps, namely
prediction and filtering (Arulampalam et al., 2002). On one hand, prediction uses both the
knowledge of the previous state estimate and the process model to generate the a priori
state pdf estimate for the next time instant:

pðx0:tjy1:t�1Þ ¼

Z
pðxtjxt�1Þpðx0:t�1jy1:t�1Þdx0:t�1 ð4Þ
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On the other hand, the filtering step, which can be implemented by using the recursion
formula (5), generates the posterior state pdf, by using Bayes formula:

pðx0:tjy1:tÞ / pðytjxtÞ � pðxtjx0:t�1Þ � pðx0:t�1jy1:t�1Þ ð5Þ

Expressions (3), (4) and (5) do not have analytical solution in most cases. In this sense,
SMC algorithms (particle filters) make feasible their evaluation through the use of
efficient sampling strategies (Arulampalam et al., 2002; Doucet et al., 2000).

2.2 SMC methods: PF

Consider a sequence of probability distributions {�t(x0:t)}t�1, where it is assumed that
�t(x0:t)can be evaluated pointwise up to a normalizing constant. SMC methods, also
referred to as particle filters, are a class of algorithms designed to approximately
obtain samples sequentially from {�t}, ie, to generate a collection of N� 1 weighted
random samples fwðiÞt ,xðiÞ0:tgi¼1,...,N, wðiÞt � 0, 8t � 1, satisfying (Andrieu et al., 2001):

XN
i¼1

w
ðiÞ
t ’tðx

ðiÞ
0:tÞ �!N!1

Z
’tðx0:tÞ�tðx0:tÞdx0:t, ð6Þ

where ’t is any �t–integrable function.
In the particular case of the Bayesian Filtering problem, the target distribution

�t(x0:t)¼ p(x0:t|y1:t) is the posterior pdf of X0:t, given a realization of noisy observations
Y1:t¼ y1:t. Using (1) and (2), �t(x0:t) may be written as (Doucet et al., 2000)

�tðx0:tÞ ¼ pðx0Þ
Yt
k¼1

fkðxkjxk�1ÞgkðykjxkÞ ð7Þ

Let a set of N paths fxðiÞ0:t�1gi¼1,...,N be available at time t�1. Furthermore, let these paths
distribute according to qt�1(x0:t�1), also referred to as the importance density function at
time t�1. Then, the objective is to efficiently obtain a set of N new paths (particles)
f ~xðiÞ0:tgi¼1,...,N approximately distributed according to �tð ~x0:tÞ (Andrieu et al., 2001).

For this purpose, the current paths x
ðiÞ
0:t�1 are extended by using the kernel

qtð ~x0:tjx0:t�1Þ ¼ �ð ~x0:t�1 � x0:t�1Þ � qtð ~xtjx0:t�1Þ, ie, ~x0:t ¼ ðx0:t�1, ~xtÞ. The importance sam-
pling procedure generates consistent estimates for (3), by approximating (7) with the
empirical distribution (Andrieu et al., 2001)

~�Nt ðx0:tÞ ¼
XN
i¼1

w
ðiÞ
0:t�ðx0:t � ~x

ðiÞ
0:tÞ ð8Þ

where w
ðiÞ
0:t / w0:tð ~x

ðiÞ
0:tÞ and

PN
i¼1 w

ðiÞ
0:t ¼ 1.

The most basic SMC implementation – the SIS particle filter – computes the value of
the particle weights wðiÞ0:t, by setting the importance density function equal to the
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a priori pdf for the state, ie, qtð ~x0:tjx0:t�1Þ ¼ pð ~xtjxt�1Þ ¼ ftð ~xtjxt�1Þ. In that manner, the
weights for the newly generated particles are evaluated from the likelihood of new
observations. The efficiency of the procedure improves as the variance of the
importance weights is minimized. The choice of the importance density function is
critical for the performance of the particle filter scheme and hence, it should be
considered in the filter design.

2.3 Resampling step: SIR particle filter

One of the main difficulties that must be addressed in the implementation of SIS
particle filters is the degeneracy problem (Doucet, 1998) since, after a few iterations, all
but one particle have a negligible weight (Andrieu et al., 2001; Arulampalam et al.,
2002; Doucet et al., 2000). Several authors have proposed methods to overcome this
problem (Kong et al., 1994; Liu, 1996) measuring the degeneracy in the particle
population with N̂eff, an estimate of the effective sample size Neff (Doucet et al., 2000).

Neff ¼ N � 1þ var�ð�jy0:tÞðw0:tÞ
� ��1

, N̂eff ¼
XN
i¼1

ðw
ðiÞ
t Þ

2

 !�1
ð9Þ

Whenever N̂eff � Nthres, a fixed threshold, a resampling algorithm (Arulampalam et al.,
2002; Doucet et al., 2000; Pitt and Shephard, 1999; Van der Merwe et al., 2006) is
performed to eliminate particles with small weights, concentrating the computational
efforts in those having large ones. Considering the latter, the algorithm for the
sampling importance resampling (SIR) particle filter is as follows (Doucet et al., 2000):

Sequential Importance Sampling Resampling (SIR) Particle Filter
1. Importance sampling
� For i¼1,. . .,N, sample ~x

ðiÞ
t 	 �ðxtj ~x

ðiÞ
0:t�1, y0:tÞ and set ~x

ðiÞ
0:t ¼

�
ðx
ðiÞ
0:t�1, ~x

ðiÞ
t Þ.

� Evaluate the importance weights

wð ~x
ðiÞ
0:tÞ ¼ w

ðiÞ
0:t�1 �

pðytj ~x
ðiÞ
t Þpð ~x

ðiÞ
t jx

ðiÞ
0:t�1Þ

qtð ~x
ðiÞ
t jx

ðiÞ
0:t�1Þ

ð10Þ

w
ðiÞ
0:t ¼ wð ~x

ðiÞ
0:tÞ �

XN
i¼1

wð ~x
ðiÞ
0:tÞ

 !�1
ð11Þ

2. Resampling algorithm
If N̂eff � Nthres

� x
^ðiÞ

0:t ¼ ~x
ðiÞ
0:t for i¼ 1, . . . , N; otherwise

� For i¼ 1, . . . , N, sample an index j(i) distributed according to a discrete distribution satisfying
PðjðiÞ ¼ lÞ ¼ w

ðlÞ
t for l¼ 1, . . . , N.

� For i¼1,. . .,N, x
^ðiÞ

0:t ¼ ~x
jðiÞ
0:t and w

^ ðiÞ

t ¼ N�1
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After the resampling procedure, the new particle population fx
^ðiÞ

0:tgi¼1,...,N is an
independent and identically distributed (i.i.d.) sample of the empirical distribution
(12), and thus the weights are reset to w

^ ðjÞ

t ¼ N�1.

�
^N

t ðx0:tÞ ¼
1

N

XN
i¼1

N
ðiÞ
t �ðx0:t � ~x

ðiÞ
0:tÞ ¼

1

N

XN
i¼1

�ðx0:t � x
^ðiÞ

0:tÞ ð12Þ

2.4 PF in real-time diagnosis applications

PF has a direct application in the arena of FDI. Indeed, once the current state of the
system is known, it is natural to implement FDI procedures by comparing the process
behaviour with patterns regarding normal or faulty operating conditions.

Approaches introduced in Koutsoukos et al. (2002) and de Freitas (2002) make use
of PF not only as a tool for state estimation, but also as a means of obtaining the
probability of a determined fault mode in a system. This attribute is also found in
other interesting results published in the literature, and it is of paramount importance
for the present work, since it sets the foundations for a procedure aimed at including
customer specifications in the design.

In this sense, two applications of PF algorithms for FDI purposes are of particular
interest. These approaches are based on the concept of hybrid dynamic models
and the inclusion of risk functions for the allocation of particles among discrete states.
The variable resolution particle filter (VRPF; Verma et al., 2003, 2004) incorporates the
concept of ‘abstract particles’ in Markov Chain processes, where each particle may
represent a single state or a set of similar states. This algorithm has the advantage that
only a limited amount of particles is needed to represent large portions of the state-
space, when measurements indicate that the likelihood is low. Moreover, once the
likelihood of an abstract particle increases, it is possible to specialize the state-space
representation to include more specific states, considering a bias–variance trade-off.

The risk sensitive particle filter (RSPF; Thrun et al., 2001), on the other hand,
incorporates a cost model in the importance distribution to generate more particles in
high-risk regions of the state-space (Verma et al., 2003). This methodology has proven to
be very helpful in improving the tracking of states that are critical to the performance of
a six-wheel robot (Verma et al., 2003). An important drawback of this approach, though,
is the fact that it needs the inclusion of exogenous models to evaluate the risk associated
with every fault mode, task that may prove to be difficult to implement.

2.5 PF in real-time prognosis applications

Prognosis may be understood as the result of the procedure where long-term (multi-step)
predictions – describing the evolution in time of a fault indicator – are generated with the
purpose of estimating the RUL of a failing component/subsystem. Several approaches
related to prognosis may be found in the literature. Few of them, however, offer
appropriate tools for real-time estimation of the RUL as a continuous function of time.
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The most comprehensive effort in establishing an on-line prognosis framework can
be found in applications associated with the use of filtering techniques for the study of
fatigue crack dynamics (Ray and Tangirala, 1996). The filtering concept enhances the
deterministic crack growth modelling standpoint, based on the application of Paris’
Equation (Patrick et al., 2007; Ray and Tangirala, 1996), and keeps a close relationship
with the physics of the problem. Efforts have been made to employ Markov processes
and extended Kalman filters (EKF) to estimate the first two moments of a Gaussian
state pdf of the system, also assuming independence between measurement noise and
uncertainties in material properties. In this case, the obtained Gaussian pdf is
afterwards projected in time and used to test M disjoint statistical hypothesis, which
divide the feasible range for crack length values.

Regarding particle filters, most authors have visualized this technique as a tool for
detection, but not for prognosis. This is mainly because there are no clear indications
about how to project the particle population in time, when model non-linearities
and non-Gaussian noise structures are assumed. In specific applications, such as
chaos prediction, the absence of both process and measurement noise is assumed for
prediction purposes (Gustafsson and Hriljac, 2003), thus obtaining a long-term
prediction with minimum variance. Each particle is then used as an initial condition
for deterministic models to be used for decision theory, risk calculations and other
statistical approaches. The implications of these assumptions, though, could be
significant in real processes, especially in the presence of vibration signals and,
therefore, they must be evaluated with care.

3. Particle filter-based fault diagnosis

A fault diagnosis procedure involves the tasks of FDI and fault identification
(assessment of the severity of the fault). In this sense, the proposed particle-filter-
based diagnosis framework aims to accomplish these tasks, under general assump-
tions of non-Gaussian noise structures and non-linearities in process dynamic models,
using a reduced particle population to represent the state pdf. The method also allows
fusing and utilizing information present in a feature vector (measurements) to
determine not only the operating condition (mode) of a system, but also the causes for
deviations from desired behavioural patterns. This compromise between model-based
and data-driven techniques is accomplished by the use of a particle filter-based
module built upon the non-linear dynamic state model (13):

xdðtþ 1Þ ¼ fb xdðtÞ þ nðtÞð Þ

xcðtþ 1Þ ¼ ftðxdðtÞ, xcðtÞ,!ðtÞÞ

FeaturesðtÞ ¼ htðxdðtÞ, xcðtÞ, vðtÞÞ

8>>>><
>>>>:

ð13Þ
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where fb, ft and ht are non-linear mappings, xd(t) is a collection of Boolean states
associated with the presence of a particular operating condition in the system (normal
operation, fault type #1, #2, etc.), xc(t) is a set of continuous-valued states that describe
the evolution of the system given those operating conditions, !(t) and v(t) are non-
Gaussian distributions that characterize the process and feature noise signals
respectively. Since the noise signal n(t) is a measure of uncertainty associated with
Boolean states, it is recommendable to define its probability density through a random
variable with bounded domain. For simplicity, n(t) may be assumed to be zero-mean
i.i.d. uniform white noise.

A PF approach based on model (13) allows statistical characterization of both
Boolean and continuous-valued states, as new feature data are received. As a result, at
any given instant of time, this framework provides an estimate of the probability
masses associated with each fault mode, as well as a pdf estimate for meaningful
physical variables in the system. Once this information is available within the FDI
module, it is conveniently processed to generate proper fault alarms and to inform
about the statistical confidence of the detection routine. Furthermore, pdf estimates for
the system continuous-valued states (computed at the moment of fault detection) may
be also used as initial conditions in failure prognostic routines, giving an excellent
insight about the inherent uncertainty in the prediction problem. As a result, a swift
transition between the two modules (FDI and prognosis) may be performed, and
more-over, reliable prognosis can be achieved within a few cycles of operation after the
fault is declared. This characteristic is, in fact, one of the main advantages of the
proposed particle-filter-based diagnosis framework. The following application example
helps to illustrate most of the implementation aspects that must be taken into account
when applying this methodology, as well as the type of results that can be achieved.

3.1 Detection of crack growth in a UH-60 planetary gear carrier plate

Consider the case of a seeded fault test on a carrier plate, a critical component of the
planetary gear transmission system that transmits mechanical power from the engines
to the main rotor blades of the helicopter. During this test, a cyclic load profile is
applied to the plate to analyse how it affects the growth of an axial crack. Given the
existence of a fault condition is known in a seeded fault test, the main objective of this
case study is to determine when this crack increases along its axis. Customer
specifications include early detection of changes in the growth rate, and a desired
statistical confidence level. It is important to note that in this application, it is possible
to use features based on the ratio between the fundamental harmonic and the
sidebands of the vibration signal spectrum to compute a noisy estimate of the crack
length (Patrick et al., 2007).

Thus, two main operating conditions are distinguished: the normal condition
reflects the fact that the crack is growing very slowly or not growing at all, meanwhile
the faulty condition indicates an abrupt change in the growth rate. In this case,

228 Particle-filtering approach



a PF-based FDI module is implemented using non-linear model (14) to describe the
expected rate of growth in the crack, where xd,1 and xd,2 are Boolean states that indicate
normal and faulty conditions respectively, xc is the continuous-valued state that
represents the crack length, � is a time-varying model parameter dependent on the
loading profile that is being applied to the gearbox, and where !(t) and v(t) have been
selected as zero mean Gaussian noises for simplicity. The initial crack length in the
data set used for this analysis is 3.4’’, which determines the initial condition of (14).

Besides detecting the faulty condition, it is desired to obtain some measure of the
statistical confidence of the alarm signal. For this reason, two outputs will be extracted
from the FDI module. The first out is the expectation of the Boolean state xd,2, which
constitutes an estimate of the probability of fault. The second output is the statistical
confidence needed to declare the fault via hypothesis testing (H0: ‘the crack is not
growing’ vs H1: ‘The crack is rapidly growing’). The latter output needs another pdf
to be considered as the baseline. In this case, historical data has been collected to
define this baseline as a Normal distribution Nð�, �2Þ.

xd, 1ðtþ 1Þ

xd, 2ðtþ 1Þ

" #
¼ fb

xd, 1ðtÞ

xd, 2ðtÞ

" #
þ nðtÞ

 !

xcðtþ 1Þ ¼ xcðtÞ þ � � xcðtÞ � xd, 2ðtÞ þ !ðtÞ

yðtÞ ¼ xcðtÞ þ vðtÞ

fbðxÞ ¼
1 0
� �T

, if x� 1 0
� �T��� ��� � x� 0 1

� �T��� ���
0 1
� �T

, else

8><
>:

xd, 1ð0Þ xd, 2ð0Þ xcð0Þ
� �T

¼ 1 0 3:4
� �T

ð14Þ

One way to generate an indicator of statistical confidence for the detection procedure
is to consider the sum of the weights of all particles i such that xðiÞc ðTÞ � z1��,�, �2 ,
where � is the desired test confidence and T is the detection time, which is essentially
equivalent to an estimate of (1–type II error), or equivalently the probability of
detection. If additional information is required, it is possible to compute the value of
the Fisher’s Discriminant Ratio, as in (15).

FindexðTÞ ¼ ��
XN
i¼1

w
ðiÞ
T �x

ðiÞ
c ðTÞ

�����
�����
2

� �2þ
XN
i¼1

w
ðiÞ
T � xðiÞc ðTÞ�

XN
j¼1

w
ðjÞ
T �x

ðjÞ
c ðTÞ

 !2
0
@

1
A
�1

ð15Þ

Figure 1 shows the results obtained when the proposed FDI approach was applied to
the problem of crack growth detection in the planetary gear plate, using the state-space
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model (14) and 500 particles to describe crack evolution in time. By comparing the trend

of the vibration-based crack estimate over time, it is clear that no significant increment
in the crack length happened before the 100th ground–air–ground (GAG) cycle. The

FDI algorithm only needs 35 additional GAG cycles from this point to detect a change in

the crack growth rate, with a confidence level of nearly 70% (type II error 
30%).
It must be noted that, in this approach, no particular specification about the

detection threshold has to be made prior to the actual experiment. Customer

specifications are translated into acceptable margins for the type I and II errors in the

detection routine. The algorithm itself will indicate when the type II error (false

negatives) has decreased to the desired level.
Figure 1 shows three indicators that are simultaneously computed. The first

indicator, depicted as a function of time, shows the probability of a determined failure

mode, and it is based on the estimate of the Boolean state xd,2 in model (14). FDI

alarms may be triggered whenever this indicator reaches a pre-determined threshold.

If more information is needed, the value of the Fisher’s Discriminant Ratio or the type

II detection error (second and third indicators, respectively) may be considered. The
vertical line that discriminates between the two pdfs in Figure 1 is fixed by the desired

50 100 150 200 250
3

3.5

4

4.5
PF detection routine: GAG=135

50 100 150 200 250
0

0.5

1

Probability of failure

2.5 3 3.5 4 4.5
0

2

4

× 10−3 Type I Error=5%. Type II Error=30.5786%

Fisher discriminant ratio=3.5529

Figure 1 Particle filter-based FDI module. Changes in growth rate
in a UH-60 planetary carrier plate
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type I detection error (probability of false positives), considering the data used as
a baseline for detection purposes.

4. PF for prognosis in stochastic non-linear systems

Prognosis may be essentially understood as the generation of long-term predictions
for a fault indicator, made with the purpose of estimating the RUL of a failing
component. This paper presents a two-level procedure that has been developed, and
subsequently tested, to address the issue of failure prognosis. This procedure reduces
the uncertainty associated with long-term predictions by using the current state pdf
estimate, a process noise model and a record of corrections made to previously
computed predictions. In a first prognosis level, p-step ahead predictions are
generated based on an a priori estimate, adjusting their associated probabilities
according to the noise model structure. A second prognosis level uses these
predictions and the definition of critical thresholds to estimate the RUL pdf, also
referred to as the time-to-failure (TTF) pdf, and simultaneously implements
a correction model (outer correction loop) to compensate for all main error sources.
A detailed description of each level is now presented.

4.1 First prognosis level: generation of long-term predictions

The first prognosis level is related to the generation of a p-step ahead long-term
prediction for the state pdf, which can be obtained in a recursive manner using both
the model update Equation (1) and the current state estimate, as shown in (16).

~pðxtþpjy1:tÞ ¼

Z
~pðxtjy1:tÞ

Ytþp
j¼tþ1

pðxjjxj�1Þdxt:tþp�1



XN
i¼1

w
ðiÞ
t

Z
� � �

Z
pðxtþ1jx

ðiÞ
t Þ

Ytþp
j¼tþ2

pðxjjxj�1Þdxtþ1:tþp�1

ð16Þ

The evaluation of these integrals, though, may be difficult and/or may require
significant computational effort. To illustrate the latter, consider the predicted condi-
tional state pdf p̂ðxðiÞtþkjx̂

ðiÞ
tþk�1Þ, which describes the state distribution at the future time

instant tþ k (k¼ 1, . . . , p) when the particle x̂
ðiÞ
tþk�1 is used as initial condition. Assuming

that the current weights {wt
(i)}i¼1,. . .,N are a good representation of the state pdf at time t,

then it is possible to approximate the predicted state pdf at time tþ k, by using the law of
total probabilities and the particle weights at time tþ k� 1, as shown in (17):

p̂ðxtþkjx̂1:tþk�1Þ 

XN
i¼1

w
ðiÞ
tþk�1 � p̂ðx

ðiÞ
tþkjx̂

ðiÞ
tþk�1Þ; x̂

ðiÞ
t ¼ ~x

ðiÞ
t ; k ¼ 1, . . . , p ð17Þ
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To evaluate (17), the weight of every particle should be modified (at each prediction
step) to take into account the fact that noise and process non-linearities could change
the shape of the state pdf as time passes. However, since the weight update procedure
is needed as part of a prediction problem, it cannot depend on the acquisition of new
measurements. Additionally, before proceeding with the next prediction step, it is
necessary to allocate a new set of particles within the domain of the probability
distribution (17). To overcome most of these difficulties, two main approaches are
proposed.

4.1.1 P-step ahead long-term predictions – first approach: This first approach
predicts the evolution in time of each particle by successively taking the expectation
of the model update Equation (1) for every future time instant, considering the state
value associated to that particle as initial condition, as shown in (18).

x̂
ðiÞ
tþp ¼ E½ftþpð ~x

ðiÞ
tþp�1,!tþpÞ�; x̂

ðiÞ
t ¼ ~x

ðiÞ
t ð18Þ

In this sense, the first approach for long-term prediction is the simplest in terms of
computational effort. Basically, it states that the error that can be generated by
considering the particle weights invariant for future time instants is negligible with
respect to other sources of error that may appear in practical applications, such as
model inaccuracies or even in the assumptions made for process and measurement
noise parameters.

Therefore – from this standpoint – (18) is considered sufficient to extend the
trajectories x̂

ðiÞ
0:tþk, while the current particle weights are propagated in time without

changes. The computational burden of this method is significantly smaller and, as it
will be shown in simulation results, the method still offers a satisfactory view about
how the system behaves in practical applications.

4.1.2 P-step ahead long-term predictions – second approach: The second approach
for long-term prediction proposes a solution for the problem of uncertainty
representation at future time instants, which is especially useful if the prediction
time horizon is large. Instead of recalculating the particle weights, it proposes that
uncertainty for future transitions may be incorporated by simply resampling the
predicted state pdf (17).

Thus, the information about the distribution of the state for future time instants is
now given by the position of the particles, not by the particle weight value. The
implementation of this methodology, however, must ensure that the resampled
population is representative of (17). A computationally affordable solution for this
predicament is proposed, based on the assumption of uncorrelated process noise
(diagonal covariance matrix for !(t)) and the use of kernel transitions to describe the
state pdf before the resampling step, as it is also done in the case of the regularized
particle filter (RPF; Musso et al., 2001).
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Consider, in this sense, a discrete approximation (19) for the predicted

state pdf (17), where K(�) is a kernel density function, which may correspond to

the process noise pdf, a Gaussian kernel or a rescaled version of the Epanechnikov

kernel (21).

p̂ðxtþkjx̂1:tþk�1Þ 

XN
i¼1

w
ðiÞ
tþk�1Kh xtþk � E x

ðiÞ
tþkjx̂

ðiÞ
tþk�1

h i� 	
ð19Þ

Kh ¼
1

hnx
K

x

h

� 	
, hopt ¼ A �N�

1
nxþ4,A ¼ 8c�1nx

� ðnx þ 4Þ � 2
ffiffiffi
�
p� �nx� 	 1

nxþ4

ð20Þ

KðxÞ ¼

nxþ2
2cnx

1� xk k2
� �

if xk k51

0 otherwise

8<
: ð21Þ

where cnx is the volume of the unit sphere in R
nx . It is reasonable to try to

represent the uncertainty present in (19), instead of just projecting the

conditional expectations of the state variables. One way to achieve this task is to

generate a new population of equally weighted particles for the time instant tþ k,

1� k� p, performing an inverse transform resampling procedure for the particle

population. This method obtains samples distributing according to (19), selecting

N realizations of u(i)	U(0,1) and interpolating a value for x̂
ðiÞ
tþk from the cumulative

state distribution FðXtþk � xtþkÞ ¼
R xtþk
�1

p̂ðxtþkjx̂1:tþk�1Þdxtþk in accordance with
x̂ðiÞtþk ¼ F�1ðuðiÞÞ.

The inherent randomness present in the inverse transform resampling method,

however, may lead to unrepresented areas in the domain of the cumulative state
distribution function, situation that is difficult to correct in long-term predictions,

since there are no measurements available that may be used for this purpose.

To overcome this difficulty, a two-step procedure is proposed.
The first step in the resampling strategy performs a simplified version of the

inverse transform resampling procedure, which will focus in representing the growth

of uncertainty present in (19). In this sense, samples distributing according to (19) are

obtained by selecting u(i)
¼ i�(Nþ 1)�1 (i : 1, . . . , N) and interpolating a value for x̂ðiÞtþk

from the cumulative state distribution FðXtþk � xtþkÞ ¼
R xtþk
�1

p̂ðxtþkjx̂1:tþk�1Þdxtþk in

accordance with x̂
ðiÞ
tþk ¼ F�1ðuðiÞÞ.

To avoid loss of diversity among particles, an additional step inspired by the RPF is

performed. In this sense, it is assumed that the state covariance matrix Ŝtþk equal to

the empirical covariance matrix of x̂tþk and that a set of equally weighted samples for

x̂tþk�1 is available, in such a way that the efficiency in the use of Epanechnikov kernels

for pdf approximation is maximized.
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In consequence, considering all of the above, the regularization algorithm (Musso
et al., 2001) when applied for long-term predictions is as follows:

Long-term predictions: second approach
� Apply modified inverse transform resampling procedure. For i¼ 1, . . . , N w

ðiÞ
tþk ¼ N�1

� Calculate Ŝtþk, the empirical covariance matrix of E x
ðiÞ
tþkjx̂

ðiÞ
tþk�1

h i
,wðiÞtþk

n oN
i¼1

� Compute D̂tþk such that D̂tþkD̂
T
tþk ¼ Ŝtþk

� For i¼1, . . . , N, draw "i 	 K, the Epanechnikov kernel and assign x̂
ðiÞ�
tþk ¼ x̂

ðiÞ
tþk þ h

opt
tþkD̂tþk"

i,
where h

opt
tþk is computed as in (20)

It is important to notice that the assumption of uncorrelated process noise is only
included for the sake of reducing the computational effort of the resampling
procedure. In fact, there are no theoretical restrictions for the application of this
methodology in the presence of correlated process noise.

4.2 Second prognosis level: estimation and statistical characterization of the RUL of
equipment

The final outcome for any prognosis algorithm is an estimate for the system RUL pdf,
which is intrinsically entangled with the probability of failure at future time instants.
This probability can be obtained from long-term predictions, when the empirical
knowledge about critical conditions for the system is included in the form of
thresholds for main fault indicators, also referred to as the hazard zones.

In real applications, it is expected for the hazard zones to be statistically determined
on the basis of historical failure data, defining a critical pdf with lower and upper
bounds for the fault indicator (Hlb and Hup, respectively).

Since the hazard zone specifies the probability of failure for a fixed value of the
fault indicator, and the weights fwðiÞtþkgi¼1,...,N represent the predicted probability for the
set of predicted paths, then it is possible to compute the probability of failure at any
future time instant (namely the RUL pdf) by applying the law of total probabilities, as
shown in (22). Once the RUL pdf is computed, combining the weights of predicted
trajectories with the hazard zone specifications, it is well known how to obtain
prognosis confidence intervals, as well as the RUL expectation.

p̂TTFðttfÞ ¼
XN
i¼1

Pr FailurejX ¼ x̂
ðiÞ
ttf,Hlb,Hup

� 	
� w
ðiÞ
ttf ð22Þ

Expression (22) provides a solution for the RUL pdf estimation problem that is
suitable for on-line applications. As it depends on the predicted trajectory weights,
though, it is subject to uncertainty and it may be sensitive to modelling errors.
Moreover, uncertainty inherent to RUL expectations increases as the prediction
horizon grows. This issue is of special interest in prognosis, since the estimation of the
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RUL must be done immediately after the fault condition has been detected, and hence

most of the prediction horizons involve long time periods.
In particular, to reduce the uncertainty inherent to a particle filter-based

failure prognosis and improve the accuracy of the RUL expectation, an additional
outer correction loop has been included as part of the proposed second prognosis level,

see Figure 2.
This outer loop is basically a data-driven learning paradigm. It computes a series

of correction terms Cj (j¼ 1, . . . , k) that measure the difference between the

RUL expectation computed at the current time t¼ j and the one that was computed

in the previous iteration of the prognosis algorithm. Once k correction terms

are obtained, a linear autoregressive model is built to establish a relationship

between all past correction terms. The obtained linear autoregressive model is then

used to generate an estimate for all future corrections Ĉkþ1, . . . , ĈRUL that would

be applied to the current RUL expectation if measurement data were to be acquired
until the failure time, assuming that both process and measurement noises are wide

sense stationary (WSS).
Finally, the current RUL expectation is corrected, obtaining RUL(c). In simple words,

the proposed outer correction loop intends to capture the pattern of past measurement-

driven prediction updates inside a simple model, which can be used afterwards to

estimate and correct for the accuracy of the current prediction.
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RUL(c) = RUL − CjΣ ^
j<RUL

j=k+1

Figure 2 Illustration of outer correction algorithm for RUL
expectation
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The learning scheme proposed here is just an example about how the combination
of model-based and data driven techniques in an outer correction loop can significantly
improve the prognosis algorithm accuracy. Other approaches may be also imple-
mented as a manner of incorporating information from past instances: additional outer
correction loops may also help to reduce prediction uncertainty by modifying both the
structure and parameters of process noise in the dynamic model. These topics will be
considered for future research efforts.

4.3 Illustrative example: RUL statistical characterization

Consider the problem of RUL estimation in a process for which the evolution in time
of a known failure condition (for instance, a crack in a material) is described by the
model (23), where !2(t) is zero mean Gaussian noise.

x1ðtþ 1Þ ¼ x1ðtÞ þ 3 � 10�4 0:05þ 0:1 � x2ðtÞð Þ
3
þ!1ðtÞ

x2ðtþ 1Þ ¼ x2ðtÞ þ !2ðtÞ

8<
:
yðtÞ ¼ x1ðtÞ þ vðtÞ

!1ðtÞ 	 Gamma ð0:15, 0:3Þ

vðtÞ 	
1

4
Nð�0:5, 0:25Þ þ

3

4
Nð0:5, 0:25Þ

ð23Þ

Furthermore, to analyse the effect that inaccuracies and model errors imply in RUL
estimates, let us assume that noise is believed to be Gaussian. In that case, the first two
moments of both process and observation noises may be estimated using historical
data, obtaining:

!1ðtÞ 	 N ð0:045, 0:1162Þ, vðtÞ 	 N ð0:25, 0:5Þ: ð24Þ

The hazard zone, which in real applications must be defined on the basis of customer
specifications or ground truth failure data, is defined here as a normal pdf with
parameters m¼ 9.0 and �¼ 0.3. The main objective is to generate a 95% confidence
interval for the RUL of the process, 40 cycles after the fault condition is detected.
In addition to the techniques described in Sections 4.1 and 4.2, an Extended Kalman
Filter (EKF)-based prognosis procedure has also been considered as a means for both
comparison and performance evaluation for the proposed PF-based techniques.

Results are summarized in Figure 3, where the light–dark and black lines represent,
respectively, the noisy measurements and the process output estimation obtained
from an SIR particle filter, and where the dotted line shows the actual evolution of the
failure condition for future time instants (information that is unknown when the RUL
estimation is performed).
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Figure 3 provides valuable information that may be used to evaluate the capability

of the algorithm to predict the evolution in time of the state probability distribution,

particularly when some metrics (such as precision and accuracy) are invoked to assess

the algorithm performance.
Results show that the PF–based second approach for long-term predictions is

capable of overcoming the bias introduced by model errors, because of its ability to

represent the state probability space. The combination of resampling techniques and

Epanechnikov kernels for pdf approximation in long-term predictions is able to

simultaneously reduce the impact of model inaccuracies and provide a balanced result

in terms of accuracy and precision in the RUL estimate. Furthermore, the actual fault
indicator (unknown when the long-term predictions were performed) reaches the

previously defined hazard zone inside the 95% confidence interval, validating the

RUL pdf estimate.
Finally, it must be noted that when the outer loop correction scheme – introduced as

part of the second prognosis level – is applied to the PF-based second approach for

long-term prediction generation, it allows improving the estimate of the RUL
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expectation to the extent that the corrected estimate time-to-failure (TTF) coincides

with the time instant where the actual failure growth reaches the mean of the hazard

zone (9’’) (Figure 3).

4.4 Case study: UH-60 planetary carrier plate. Analysis of axial crack growth

Consider the case of prognosis for the evolution of an axial crack on the plate of the

UH-60 planetary gearbox, shown in Figure 4.
Although this fault mode can lead to a critical failure condition in the aircraft, there

was no certain way to determine its existence save by a detailed off-line inspection of

this piece of equipment – a procedure that obviously involves large financial cost.

Under this scenario, the use of algorithms capable of estimating the RUL by only analy-

sing vibration-based features becomes extremely attractive and would help to dramati-

cally decrease operational and maintenance costs as well as avoid catastrophic events.
With the purpose of testing the feasibility and efficiency of such techniques,

a seeded fault test was conducted to collect fault data under a fixed known loading

profile. In this test, the crack was artificially grown until it reached a total length of
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Figure 4 ANSYS model of the planetary gear plate, showing
crack location
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1.34’’, after that the gearbox was forced to operate emulating load changes that vary
from 20% to 120% in a three (min) GAG cycle (Figure 5). Given the fact that the initial
crack length was perfectly known in this case, a deterministic prognosis approach was
considered at first to estimate bounds for the failure time.

From material structure theory, it is well known that the crack growth evolution
may be explained by using an empirical model such as the Paris’ Equation (25), given
the proper set of coefficients (Patrick et al., 2007):

dL

dn
¼ C � UðnÞ ��KðnÞð Þ

m
ð25Þ

where L is the total crack length, C and m are material related coefficients, n is the
cycle index, UðnÞ is a parameter that models the effect of crack closure during cycle n
and �K(n) is the crack tip stress variation during the cycle n, measured in (MN/m3/2).
Although simple, model (25) requires the computation of two critical parameters to be
used in any prognosis routine: �K(n) and UðnÞ. The stress K(n) may be estimated for a
constant load (usually 100%) by using finite element analysis (FEA) tools such as
ANSYS, for different crack lengths and crack orientations.

Considering a proportional relationship between the stress in the tip of the crack
and the load percentage, it is in fact possible to construct a mapping relating both the
current crack length and load variation per cycle with �K(n).

Albeit the former piece of information is helpful, it is insufficient to estimate the
evolution of the crack length. On one hand, the closure effect parameter U(n) cannot be
efficiently measured and only empirical approximations exist for certain materials,
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such as Ti-6A1-4V. Even in the case of that material, only upper and lower
bounds may be computed, and thus it is impossible to compute expectations and/or
determine statistically the validity of confidence intervals. On the other hand, the crack
length has to be first estimated to come up with an approximate value for �K(n) and
therefore any estimation error will affect tremendously the accuracy of the long-term
prediction. In this sense, long-term predictions and bounds generated by means of a
deterministic model are reasonably good for regular maintenance scheduling, though
insufficient for the on-line determination of confidence intervals and on-flight
corrective actions.

The inclusion of process data, measured and pre-processed in an on-line fashion,
improves tremendously the prospect of what can be achieved in terms of RUL
estimation and prognosis in general. Indeed, the use of features based on the ratio
between the fundamental harmonic and the sidebands in the vibration data spectrum
(Patrick et al., 2007) gives the basis for the implementation of any of the PF-based
prognosis methodologies introduced in Section 4. Consequently, under this new appro-
ach, not only it is possible to estimate the expected growth of the crack, but also the
unknown closure parameter in the crack growth model (25) and the RUL pdf, enabling
the computation of any statistics such as expectations, confidence intervals, etc.

The following crack growth state model (based on Paris’ Equation) has been
implemented for purposes of on-line state and model parameter estimation:

Lðtþ 1Þ ¼ LðtÞ þ C � �ðtÞ � �Kinboard ðtÞð Þ
m
þ �Koutboard ðtÞð Þ

m
� �

þ !1ðtÞ

�ðtþ 1Þ ¼ �ðtÞ þ !2ðtÞ

�Kinboard ðtÞ ¼ finboard LoadðtÞ,LðtÞð Þ

�Koutboard ðtÞ ¼ foutboard LoadðtÞ,LðtÞð Þ

8>>>>><
>>>>>:
FeatureðtÞ ¼ hðLðtÞÞ þ vðtÞ

ð26Þ

where L(t) is the total crack length estimation at GAG cycle t, �(t) is an unknown time-
varying model parameter to be estimated (unitary initial condition), C and m are model
constants related to material properties, �K is the variation in crack tips stress related to
the load profile and the current crack length (estimated through off-line analysis of the
system with ANSYS) and !1(t), !2(t) and vðtÞ are non-Gaussian white noises.

Process model (26) necessitates a noisy estimate of the crack length based on the
value of the feature data point to be used in on-line applications. This requirement is
easily satisfied via a non-linear mapping h(�), which is corrected or improved
according to the ground truth crack length data that is acquired (at specific and very
limited time instants) from strain gages sensors allocated on the surface of the
planetary gear plate.

As a result, in the proposed scheme, two update loops run in parallel. The first one,
referred to as the inner loop, basically uses the feature data and the previous state pdf
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estimate to update the crack length and model parameter estimates and thus, the RUL
pdf estimate through the prognosis approaches discussed in Sections 4.1 and 4.2.
On the other hand a second loop, namely the outer loop, revises the non-linear
mapping h(�) between the vibration-based feature value and the crack length every
time it gets an update from the strain gages allocated on the plate. It is expected, for
future on-line applications, that the non-linear mapping h(�) would be still valid, save
for minor adjustments.

At any given time instant, each particle from the current particle population
determines both an initial condition for a long-term prediction and a probability
associated with that prediction, see Figures 6 and 7 where each plausible long-term
prediction is depicted with a different colour.

The time instant when each predicted trajectory reaches a given threshold defines a
probable failure time and thus, a realization of the RUL pdf. RUL expectations, 95%
confidence interval for long-term predictions and �3 sigma intervals may be
computed once the RUL pdf is estimated through the described procedure.

Table 1 shows the results for this particular case study, comparing all the statistics
for long-term prediction with the ground truth data that was supplied from strain
gages allocated on the surface of the plate.

Ground truth data points, ie, strain gages crack length measurements, shown in
Table 1 were provided incrementally up to 650 GAG cycles in a ‘blind’ test format.
Thus, for instance, the prediction result of Table 1 for GAG #36 (1.60’’) has been
obtained at GAG #0 knowing only the initial crack length. Subsequently, the predicted
value for GAG #100 (2.40’’) has been obtained at GAG #36 after the ground truth data
value of 2.00’’ was used to adjust the non-linear mapping h(�). Analogously, the
prediction for GAG #230 was made at GAG #100. The rest of the table was constructed
in the same manner.

Every time a new point of ground truth data is included, a more accurate initial
condition for the prediction algorithm is estimated, and hence the overall precision of
the algorithm is enhanced. The modularity of the proposed approach allows even
modifying the set of thresholds considered in the analysis, every time that it is
required to increase the hazard level. Compare, for example, the different thresholds
that are shown in both Figures 6 and 7.

To illustrate this fact more clearly, consider that the prediction algorithm is
launched at GAG cycle 100. Crack length thresholds at 3.0’’, 3.5’’ and 4.5’’ may be
established at that time. Given this scenario, the prediction algorithm provides
answers to the question: what are the expected (in a probabilistic sense) times at which
the crack will reach the corresponding lengths of 3.0’’, 3.5’’ and 4.5’’?

By estimating the RUL pdf, the algorithm supplies the RUL expectation (mean time)
and the 95% confidence interval for each case. As the crack length evolves in time,
however, the hazard thresholds can be easily modified to continue the analysis of its
growth, eventually reaching the condition of Figures 7 and 8, where only one remaining
hazard threshold is of interest (	 6.2’’) with a TTF expected value of 713 GAG cycles,
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or equivalently an expected RUL of 325 GAG cycles, which is extremely close to the

value of 714 GAG cycles that was provided in the ground truth data set for the time of

failure. The accuracy of the algorithm has been validated at every step of the ‘blind’ test,
confirming the robustness of the approach with respect to changes in the load profile

Figure 6 PF-based approach for prognosis; crack growth in a
planetary carrier plate
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(depicted in Figure 5) and/or in the signal-to-noise ratio of the feature-based noisy
crack length estimate, which steadily improved as the crack length increased.

Given the PF-based pdf state estimate, additional information about the operating
conditions of the system may be also extracted. For instance, consider the estimate of
the parameter �(t) in model (26) (Figure 9). Sudden changes in the parameter estimate
are indicators of changes in the testing operating conditions, as in GAG cycle #320,
where the maximum value of the load, applied to the carrier plate, was reduced.

Finally, it is important to mention that the proposed methodology has been
compared with an EKF-based approach for long-term prediction. Other approaches

Table 1 Prediction results for PF-based approach for prognosis

Measured crack length Confidence intervals

Gag Crack length
(inches)

�3� �95% Mean þ95% þ3�

0 1.34 N/A N/A 1.34 N/A N/A
36 2.00 0.74 1.03 1.60 2.17 2.46
100 2.50 1.93 2.09 2.40 2.71 2.87
230 3.02 2.73 2.79 2.90 3.01 3.07
400 3.54 3.41 3.54 3.80 4.06 4.19
550 4.07 3.85 4.11 4.30 4.60 4.75
650 4.52 4.20 4.48 4.71 5.08 5.70
750 6.78 6.38 6.42 6.61 6.76 6.84

Figure 7 Prediction results for a single hazard threshold
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such as IMM or Unscented Kalman Filter were not considered, since they implied
a significantly higher computational burden than the proposed approach. Results
were always favourable for the proposed PF-based prognosis scheme in terms of
accuracy and precision of the RUL pdf estimate.
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Figure 9 Time-varying model parameter vs GAG cycles

Figure 8 Prediction results for a unique hazard zone at 6.2’’
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The PF framework for the prediction of the RUL may be easily implemented in real
time on-board a HUMS or other health monitoring platform for on-line applications;
in fact, an integrated architecture that combines vibration data processing, feature
extraction, fault diagnosis and failure prognosis based on this concept is described in
Patrick et al. (2007).

5. Conclusions

This paper introduces an architecture for the development, implementation, testing
and assessment of a PF-based framework for failure FDI and prognosis. The FDI
framework has been successful in pinpointing abnormal conditions, such as changes
in the growth rate of an axial crack (UH-60 gear plate). Regarding prognosis, the
proposed method was successfully tested in an illustrative example. Furthermore,
it was shown that a prediction method based on a combination of a
resampling scheme and Epanechnikov kernels (for pdf approximation in long-term
predictions) is able to simultaneously reduce the impact of model errors and provide a
balanced result in terms of accuracy and precision in the RUL estimates. It was also
shown that an approach simply based on the expectation of the long-term prediction
provides acceptable results, and that it is suitable for on-line implementation.
In particular, a successful case study has been presented to illustrate the performance
of a simple implementation (SIR particle filter and an expectation-based long-term
prediction generation). This application example used real failure data from a seeded
fault test in a UH-60 planetary carrier plate, providing an excellent insight about the
effect of model inaccuracies and customer specifications (eg, hazard zone definition,
desired prediction window) in the algorithm performance.

References

Andrieu, C., Doucet, A. and Punskaya, E.
2001: Sequential Monte Carlo methods
for optimal filtering. In Doucet, A., de
Freitas, N. & Gordon, N., editors. Sequential
Monte Carlo methods in practice.
Springer-Verlag.

Arulampalam, M.S., Maskell, S., Gordon, N.
and Clapp, T. 2002: A tutorial on particle
filters for online nonlinear/non-Gaussian
Bayesian tracking. IEEE Transactions on
Signal Processing 50, 174–88.

de Freitas, N. 2002: Rao-Blackwellised particle
filtering for fault diagnosis. IEEE Aerospace
Conference Proceedings (Cat. No. 02TH8593),
pt. 4, 1767–72.

Doucet, A. 1998: On sequential Monte Carlo
methods for Bayesian filtering. Technical
Report, Engineering Department, University
of Cambridge.

Doucet, A., de Freitas, N. and Gordon, N.
2001: An introduction to Sequential Monte
Carlo methods. In Doucet, A., de Freitas, N.
& Gordon, N., editors. Sequential Monte Carlo
methods in practice. Springer-Verlag.

Doucet, A., Godsill, S. and Andrieu, C. 2000:
On Sequential Monte Carlo sampling meth-
ods for Bayesian filtering. Statistics and
Computing 10, 197–208.

Gustafsson, F. and Hriljac, P. 2003: Particle
filters for system identification with

Orchard and Vachtsevanos 245



application to chaos prediction. 13th IFAC
Symposium on System Identification, Rotterdam.
The Netherlands.

Haug, A.J. 2005: A tutorial on Bayesian esti-
mation and tracking techniques applicable to
nonlinear and non-Gaussian processes.
MITRE Technical Report, MTR 05W0000004,
The MITRE Corporation.

Kadirkamanathan, V., Li, P., Jaward, M.H.
and Fabri, S.G. 2002: Particle filtering-based
fault detection in non-linear stochastic
systems. International Journal of Systems
Science 33, 259–65.

Kong, A., Liu, J.S. and Wong, W.H. 1994:
Sequential imputations and Bayesian miss-
ing data problems. Journal of the American
Statistical Association 89, 278–88.

Koutsoukos, X., Kurien, J. and Zhao, F. 2002:
Monitoring and diagnosis of hybrid systems
using particle filtering models. International
Symposium on Mathematical Theory of Networks
and Systems.

Li, P. and Kadirkamanathan, V. 2001: Particle
filtering based likelihood ratio approach to
fault diagnosis in nonlinear stochastic sys-
tems. IEEE Transactions on Systems, Man, and
Cybernetics – Part C: Applications and Reviews
31, 3.

Liu, J.S. 1996: Metropolized independent sam-
pling with comparison to rejection sampling
and importance sampling. Statistics and
Computing 6, 113–19.

Musso, C., Oudjane, N. and Le Gland, F. 2001:
Improving regularised particle filters. In
Doucet, A., de Freitas, N. & Gordon, N.,

editors. Sequential Monte Carlo methods in
practice. Springer-Verlag.

Patrick R., Orchard, M., Zhang, B., Koelemay,
M., Kacprzynski, G., Ferri, A. and
Vachtsevanos, G. 2007: An integrated
approach to helicopter planetary gear fault
diagnosis and failure prognosis. 42nd Annual
Systems Readiness Technology Conference,
AUTOTESTCON 2007, Baltimore, MD,
September 2007.

Pitt, M.K. and Shephard, N. 1999: Filtering
via simulation: auxiliary particle filters.
Journal of the American Statistical Association
94, 590–99.

Ray, A. and Tangirala, S. 1996: Stochastic
modeling of fatigue crack dynamics
for on-line failure prognosis. IEEE
Transactions on Control Systems Technology 4,
443–51.

Thrun, S., Langford, J. and Verma, V. 2001:
Risk sensitive particle filters. Neural
Information Processing Systems (NIPS),
December 2001.

Van der Merwe, R., Doucet, A., de Freitas, N.
and Wan, E. 2006: The unscented particle
filter. Technical Report CUED/F-INFENG/
TR 380, Cambridge University Engineering
Department.

Verma, V., Gordon, G., Simmons, R. and
Thrun, S. 2004: Tractable particle filters for
robot fault diagnosis. IEEE Robotics &
Automation Magazine 11, 56–66.

Verma, V., Thrun, S. and Simmons, R. 2003:
Variable resolution particle filter. Proceedings
of the International Joint Conference of Artificial
Intelligence.

246 Particle-filtering approach


