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ABSTRACT

In a previous work we discussed the action for a massless relativistic point particle with
a gauged N-extended worldline supersymmetry that yields, upon quantization, a relativistic
wave equation for pure spin N/2. Here we present further details, emphasizing the N = 2
particle modcl for which a wave funclion with (2} charge ¢ can be interpreted as the ficld
strength of a (q-1)-form gauge potential. We present extensions of this model that yield
field equations for massless and massive anlisymmelric tensors in arbiirary space-time
dimension d. We show how to obtain chirality and generalized self-duality conditions.
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1. Introduction

Relativistic free ficld equations lor massless particles of arbitrary spin can be obtained
from the quantization of point particle models. The Klein-Gordon equation comes from the
spinless particle, the Klein-Gordon operalor p? being the generalor of reparametrizations
of the particle worldline. The Dirac cquation is similarly obtained from the spinning
particle action which has ¥ = | worldline supersymmetry [1,2]. The anticommuting
classical variables A" become the Dirac matrices on quaniization and the gencrator of
supersymmetry transformations hecomes the Dirac operator. This model can be extended
to describe particles of spin greater than L [3, 4, 5. T'he extended model has local N-
extended worldline supersymmetry and a local O(N) gauge invariance. For a particle

moving in Minkowski space-time with coordinates ## and momentum the first-order
F1

form of the action is

1 : .
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G = / dt 2zt Pu + 5/\: )li Niyew — 5(!7” Pubv — 21/),'/\5 Py — EIUA: ’\j 1],“,} ’ (11)
G

where the Af'(t) i = I,..N arc the supersymmetry partners of 2#(1), eft) and ¥;({) are
“worldline supergravity fickds” and f;; (1} is the SO(N) gauge “ficld”. The gauge ficlds
e, ¥, and fi; are the Lagrange multipliers for the constraints which, when imposed on
the particle’s quantum wave function, yield a relativistic wave equation for a pure spin
N/2 particle (in four dimensions). Because the action also has a d-dimensional conformal
invariance these wave equalions arc in fact the conformal wave equations for arbitrary spin.
This has been noted independently by Sicgel [6], who has further shown that all conformal
wave equations are oblained in this way.

In this paper we shall einphasize the N = 2 model. In this case we can add to the

action {1.1) a “Chern-Simons” term proportional to

1
/ dt el fi; (1.2)
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which is not possible for N > 2 because the inlernal symmetry group is then non-Abelian.
Without the Chern-Simons term, the N = 2 wave-function is necessarily a %-form, which
is further constrained to be harmonic. This means that for d odd the wave-function
must vanish. As we shall show, this can be undersiood in the context of path-integral
quantization as a consequence of a global SO(2) anomaly. With the inclusion of (1.2) with
coefficient (¢ — %) the wave-function becomes a harmonic g-form. Since g is an inlcger
this means that for d odd a non-vanishing wave-function requires a non-vanishing Chern-
Simons coefficient. Since the Chern-Simons term breaks (G(2) to SO(2) and conformal
invariance to dilatation invariance, the global anomaly for d odd can be viewed as a clash
between the rigid O(2) and conformal symmetrics and the local SO(2) invariance.
Another property of the N = 2 model is Lhat it can be formulated in superspace
(whereas the required auxiliary fields are vot known for N > 2). Particle models for
massive antisymmetric tensor fields in d dimensions can be obtained by a particle mechanics
analogue of dimensional reduction & Ja Scherk and Schwarz [7] from the N = 2 massless
model in (d + 1) dimensions. If space-time has a compact isomelry group G the point
particle action will have a rigid G-invariance. If this symmetry is gauged, the particle’s
wave function will have Lo salisfy the additional constraint that it be a G-singlet. The
simplest case is when G is the U(I,) isomelry group associaled with translation around
an §! factor of a (d + 1)-dimensional spacetime. Yhen the requirement that the wave
function be a U(1) singlet effects an (ordinary) dimensional reduction, producing a set
of d-dimensional massless wave equations. Because U(1) is Abelian a modification of the
particle action is possible for which the wave-function acquires a non-zero U(1) charge.
The resulting d-dimensional equations are those of a massive antisymmetric tensor.
Siegel and Zwiebach have mentioned how a chirality constraint on a Dirac spinor can
be incorporated into a particle model [8] by including extra generalors that enlarge the

N = 1 supersymmetry algebra *. At the quantum level the new algebra becomes that of an

* A slightly different approach was described in [9]
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N = 2 supersymmetry (bul the wavefunction remains a spinor, rather than the bispinor
of the N = 2 models that we have been discussing above). We show how this can be
extended to the N = 2 models for antisymmetric iensors in d == 2 mod 4 to incorporate
a self-duality constraint on a g—--form wave function. The algebra has six Grassman odd
generators in general and is easily investigated in the language of differential forms. For
d = 2 the algebra reduces to an N = 4 supcrsymmetry algebra with an additional gauged

Q(1,1) invariance.

2. Particle actions for arbitrary spin

Quantization of the particle with action (1.1) leads to the (anti)commutation relations

(=", p,] = 164 | {AL A} =965 . (2.1)

‘The A-relations can be realized by matrices in the space ®V I where, supposing d to be
. d . . . . .
even, H is the 22-dimensional space of Dirac spinors. If 4% are the usual y-matrices for

H, and

42 a1

o=z Ayt (2.2)
which satisfies y7 = 1 and {7, 7"} = 0, we can represent the operators A by

I
M=y ®. 071 olo.. Q0 (2.3)

‘=7 (i)

where FE’;.) can be chosen, for cach value of 7 = ,..., N, to be cither v# or iy,v".

With this realization of the anticommutation relations the wave function is a multi-

spinor ¥y, a,. The O(N} gauge ficld fi; imposes the algebraic constraint
(7;;1-.‘7#)““1].‘I,rt,‘.‘rr,»...a,-...a;v =0 y (24)

where I' is any Dirac matrix (with entries I'#). We arc using here the notation that

[ef — oo I.# with C the charge conjugation matrix. Let us introduce the further notation
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1) for any of the I'~matrices y"'-#»; then (I'*N*? is symmetric or antisymmetric in

spinor indices, depending on N and d. From the identily

N PO = (=) (d — 2n)1'(™) (2.5)

we see that (2.4) yiclds the constraints

(M) %5 W0, niagean =0 P FE S (2)
For d odd the representation (2.3) fails because v, will commuie with 4#. By taking v*
to be a reducible matrix representation of the Clifford algebra gencrators we could find a
suitable replacement for 5, but the constraint (2.6) would still hold and this implics that
¥ = 0 for d odd. We shall see shortly that for N = 2 these difliculties can be overcome,
and that allowing for an $0O(2) Chern-Simons terin enables us to obtain the wave cquation
for antisymmectric tensors of arbitrary rank in any spacelime dimension.

The supergravily ficlds e and ¢; impose the dynamical constraints

p2¢01...nN =)
(2.7)
/’ﬂ?iwﬂ]...ﬂi...(rN — U V ?-

on the wave function. For d = 4 these are the massless Bargmann-Wigner relativistic wave
equations for a purc spin % fickl strength. In particular, for N = 2 the wave [unction
is F,, (the Maxwell field strength tensor), and the cquations (2.7) are cquivalent lo the
Bianchi “identity” , F,,; = 0 and the field cquation »IF,, = 0.
For N = 2M in four dimensions, the wave funciion can be expressed in the equiva-
(2M.2)

lent form U}, davan nas vy With antisymmetry in each pair, and lolal symmetry under

interchange of pairs. In addition it is totally traceless and salislies

W{mifuuz]ffn.---‘#l-mVM =0 . (28)
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The differential constrainits are then

oo (2A, 2} _
d l‘puvn.ﬂzyz,---.nnf!/nr =0

2.9
a, w2 =0 (29

AV oV e AL EAE

For N = 4, for example, we recover the hnearized Finstein equalions expressed in
terms of the Weyl tensor. More generally, in d = 2n dunensions and N = 2M . the basic
index “block” has n antisymmetrized indices, and the wavefunctions are symmetrized on

M blocks, 1.e.

g (2Min) — gl2An) (2.10)

B Mn 2B dar g ([ ppin B2, vzan s ltarvara]) 0

where the symmetrization refers to the blocks of n indices. In addition

(20f,n)
[evr-mrmma1 ) tan ot artfarn

=0 . (2.11)

Again, the ¥(?M:")’s arc totally traceless and obey cquations similar to (2.9) . These forms
for the wave-functions can be summarized by the (O(n) Young tableaux with n rows and
N/2 columns, where irreducibility also implies tracelessness. For N = 2M + 1 in d = 2n
dimensions the wavefunction is a tensor-spinor with tensor indices of the same form as

W(2M.n)  In this case there is also the y-traceless condition

pin (2 +1,n) =0 . (2.12)

b Bt i 21 2y AL A

We shall now consider the ¥ = 2 casc in more delail. The aclion is

> 3 I3 N l .
5= /‘“ {W”Pu + ‘z‘f\f'/\fﬂnn — —z—cn’wmm — i Al pu+

. (2.13)

ORI '
+f ('—551,\5 /\jn.nu -"(q-— 5))}

This action differs from the specialization of (1.1) to N = 2 by the addition of the (¢ —

g*) term. This addition is consistent with supersymineiry because the supersymmetry

5



variation of f vanishes. Il is also consistenl with worldline difflcomorphism and S0O(2)
invariance because for these symmetrics §f is a lotal derivative. For N > 2 the SO(N)
variation of f;; is not a total derivative, so this modification is no longer possible. We
are using units with i = 1 here; if we were to restore i, then the Chern-Simons term
—f(g—d/2) would be multiplicd by & and would therefore vanish in the classical limit. Note
that, with the exception of the Chern-Simons term, all terms of the aclion are invariant
under ((2), rather than SO(2); the additional transformation is o) — Xy, Ag ~ —Xg, ¥y —
Yi,¥2 > —Yr,e— e, f o[,z 2,p—op
It will prove convenient to introduce the variables

o L il
=V f

b= s ki) D =it (2.14)

O +idg) & =2\ ~iAy)

S

in terms of which the action reads

. o o B |
S = [di{z"ﬂu i€, — ipErp, — iYE p, — 5‘3 p2

+f(%[£ﬂs év]'?ﬂ.rf ~{g— g))} . (2.15)

Upon quantization, the £, variables satisfy the anticonmmutation relations
{611, Er;} — {E'u,g'rf} =0
) (2.16)
{¢", ¢ =n"

Since the £* are a sel of mutnally anticommuling operators they can be diagonalized on a

basis of eigenstates |@) for which the cigenvalues & of € arc anlicommuting. Thus
E8ay = atja) . (2.17)

We are using herc the notation of [10] to which we refer for further details of properties of

the fermion coherenl states |@). The wave function of the N = 2 particle is

((z] @ ()] ¥} = ¥(z,0) , (2.18)
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which can be expanded as a power series in o, Thus

1
¥ =F(z)+ a" F,(z)+ Ea"'rr” Foo(x) + ...
(2.19)

1 ! .
+ Efx"‘...a"” Fuip, (@) +. ma‘”...n”d Foal(2)

i.e. ¥ can be viewed as an inhomogencous differential form on Minkowski space. The

constraint imposed by f can now be written in the form
(E-E-gl¥)=0 (2.20)

which states that. |¥) has O(2) charge ¢. Equation (2.20) is equivalent to

a"a—i‘zIW(m,rx) = q¥(z,a) , (2.21)

which is solved by wriling ¥(z, ) as

. 1
‘[’(:1’3, Ct‘) = Eaﬂ] e ‘Vm...nq (T) : (222)

The two independent constraints imposed by ¥ can now be writlen as

E-pl¥) =0 &p¥)=0 (2.23)
which are equivalent to
O Fraomgpn] =0 O Fy =0 (2.24)

respectively. The first equation is solved by Fy, ., = q0,, Ayiy...uy] and the second is then
the usual field equation for the (¢ — 1)’th rank antisymmetric tensor gauge poteniial A.
Observe that this analysis holds for d cven and d odd.

Because of the anticommulalion relations (2.16) the 4 term in the SO(2) constraint is

cancelled when the latter is writlen in the form of €q.(2.20) . In the path-integral approach

7



to quantization the £, variables have zero anticommutators. To sec how equivalent results
are nevertheless obtained in this approach we choose the gauge e = 1, = ¢ = 0 in
(2.13) and perform the fermion path-integral. The result is the following effective action

for z'(1):

1
Seyy = ] di{&p — %pz ~{g— g)f —idIn det[l + i(0;)7" f] + const.} . (2.25)
0

A careful evaluation of the determinant was given in [11]; there is a possible anomaly
contribution from the linear term in f; i.e. the “tadpole” in the diagrammatic expansion.
A quick, but non rigorous, method of calculating this diagram is to replace the encrgy sum
by an integral, at the same time introducing a regulator mass g for the resulting infrared

divergence. The result is then

i [ too g
ld[/; f(t)(”] [ 27!‘( I + iﬂ.) . (226)

w00

After ultraviolet regulation by a cutoff A the encrgy integral becomes

/A 2 top ol (2.27)
Joa2r(E+ip) 207 AT )

where the arbitrary integer k arises from a choice of branch of the logarithm appearing in

the evaluation of the integral. Hence the term linear in [ in the effective action is
i
{(—q + kd) / J(nydar . (2.28)
EAL
Under an SO(2) transformation

f— f+ig g £ gt . (2.29)

If g is connected to the identily, the C-S term is invariant provided that g(0) = g(1).

This periodicity implies thal there are global gauge transformations for which g = e27™¢

m € Z. For such translormations

1 ]
[ 10a— [ 1w -2mm (2.30)
J0 SO '
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and hence we obtain the quantizatlion condilion

g€l . (2.31)

The case for which ¢ = % {which is consisient only for d even) is special. Only in
this case is the SO(2) symmetry of (2.13) a genuine “internal” symmetry for which the .
Lagrangian, as against the action, is invariant. The ¢ = g— casc is also special in another
respect; when ¢ = 2 the action (2.13) has additional invariances. Firstly, the SO(2) invari-
ance is extended to O(2); quantum mechanically this corresponds to the invariance of the
equations for the g-—index antisymmetric tensor under the discrete duality transformation
F — xF(where * is the Ifodge dual). Sccondly, for ¢ = £ the action has a rigid conformal
invariance. This is also true for N > 2, 4 even, for which the (¢ — %) term is necessarily
absent. In terms of the conformal Killing vectors k# ol Minkowski spacetime, which satisly

k(pvy = %nwk"'p, the infinitesimal conformal transformations can be writlen as

szt = k* opu = —k" ypv — %Af’\?kﬂ.ﬂﬂ OAin = K, m) A
be = 2 k* S = ! k" AL k" bfi; = ;2 kY 2.32
e = Ee i 'l,b.' = }(’!lbl BN ,H.ll) fif - zgw[‘. F) LY ( ’ )

In the d=2 casc there is of course an infinite number of conformal Killing vectors.

Observe that it s precisely when ¢ = g that the equations (2.23) are con['orma.lly
invariant wave equations. This is an example of a property of a field theory that has a
counterpart in a similar property of the underlying point particle action. When ¢ # g— the
invariance of the action requires that k% = 0, which is satisfied by the Killing vectors
that generate the rigid Poincaré invariance of the particle action, and by the conformal
Killing vector that generates dilatations.

The extension of (2.13) to include a background gravitational ficld was given in [4]

(for ¢ = g—) where it was also shown that the background is necessarily flat for N > 2. In

terms of the variables of (2.14) , the action is
- cFag - 3 Z
5= [ a{anp, +i8 €0 — 06 (b — Jouelé’, €

9



- ' . { f d
i€ (P — sl € + 1 (G160 € — (g = 3))

| ] . ; »
“”“2"5 .q’w(f’u - %w;mb[fﬂ:fb])(f’v - %wvrd[gcaf ])} ) (2-33)

- . - ’- . - - b .
where A% = A¥e, with e the viclbein salislying e} e, M. = Guu-

We shall now investigale the possibility of an clectromagnetic background. We have
to add to (1.1) the N-extended supersymmetric generalization of the Lorentz coupling
Jdtz*A,. This is

Sy, = /dt (:k"z‘l,l — %c/\f‘/\f I",,,,) . (2.34)
Under the supersymmetry iransformations of (1.1) , which are (in the absence of a gravi-

tational background)

§z* = ioi Al A = —aip" op. =0

(2.35)
be = 23"(/),'0’,‘ 151/),' = (:Y,‘ - f,'jt']’.j 5];_,' = {) s
the action Sy has the variation
(SS[, = iag)\;‘(’l/)j/\f — 'Q[J,—A;)Fm, e %CG’J‘ A:I Af /\;(?p F#,, . (236)

For N =1 the first term vanishes identically and the second term by the Bianchi identity
OpFu) =0. For N > 2 the first term vanishes if and only il £, = 0. Thus an clectromag-
netic coupling is not possible for ¥ > 2. This was to he expected from the well-known
consistency problems with charged spin | ficlds.

Finally, we remark that the particle’s wave function is, a priori, complex. The world-
line time—-reversal invariance of the action implies the existence of an anliunitary operator

K that leaves the constraints invarianl. Tor the spin ]5 particle it was shown in {10] that
K|U) = |W¥) (2.37)

implies that ¥ is Majorana. On general grounds K? = &1 and (2.37) is consisient only

when K% = +1. As expected K2 = —1 whenever ¥ cannot be Majorana. The doubling

10



of ¥ in this case can thercfore be thought of as an example of Kramer’s degeneracy in

quantum mechanics. For general ¥, we can write K as

K= (@ U)K, (2.38)

where Kj is the (basis-dependent) complex conjugation operator and U is a umitary matrix
acting on H; with the property that U*l/ = £1. Thercfore for N odd K2 = +1 whereas
for N even K? = +1, necessarily. For N cven it is therclore always possible to require of
the wave function that it be real. In particular, this mcans that the antisymmetric tensors

discussed in this paper can always be chosen to be real.

3. N = 2 worldline supergravity in superspace

In this section we present the superspace foriulation of the N = 2 model, thereby
updating the results of [2] and gencralizing the N = 1 results of [10]. In flat superspace

the covariant derivalives are
D=1 ((‘),; — %é(’h) D=1 (r’)g - %FJEL) , (3.1)

which satisfy

{D,Dy=i0, D*=D?*=0 . (3.2)

In a general superspace we denole a superveclor Voin a coordinate basis by VM =

(v, v?,¢?) and in a tangent space basis by V1 = (V7 177 %) with the summation con-
vention

VAU, = VUL + VI - VTG (3.3)

The flat superspace supervielbein, ¥,7, therefore has the following form in standard

coordinates

a

=1 B'=0 FEl=0



. 1. .
£ = 5 B'=i FE,2 =0
i 0 1 2 o 1 .
.56' = "2'9 I'zé = 0 I'z” = —1 (3.4)

We take the tangent space group to be U(1), which acts by

6‘{‘4 - "?’3 LBA (3-5)

with
Ll =il L =il | (3.6)

and all others zero. With this structure it is easy to show that the imposition of standard

conventional constrainls implies thal a general superspace of this Lype 1s in fact flat;

T =-i (3.7)
with all other components of T, ;¢ vanishing. These constrainis arc invariant under the
super Weyl transformations

0 N ALY
Erg — Sty

]’/1]‘!1 — 67% - imq_ % EM”DI'S ) (3-8)

where § is a real scalar superficld.

Since the superspace is flat we could choose a gauge in which the supervielbein takes
the standard form (modulo moduli). Tn order Lo make contaci with the component for-
malism we instead make the partial gauge choice for which #,7 bas its superconformally

flat form, i.e. E, differs from F,f by a superconformal transformation with parameter

V. We then find L L.
Dy=V~:D Dy=V"iD
P ) (3.9)
Do=V~'o, + _E_V—z(m,-,) + DV D)

12



This gauge choice is preserved under a general superspace coordinate transformalion, with

parameter £4, provided that

DAB + CT B L P =1 (S =Vl6V) | (3.10)

where H ,2(S) is the infinitesimal form of the super Weyl transformation, iLe.

S§Eq = EadPH10(S) (3.11)

as can be derived from (3.8} . Onc finds

gl = - VTlEV = lnuf”
z. 2 (3.12)
I = —2-[.1)1, D;)e°

which implies that
5V = %[3, +iVTHDVD + DV D) . (3.13)

The action for a sct of d scalar superficlds ®# coupled Lo supergravity is given by

S=_2 / dLd?B D, % D75, (3.14)

which, in the superconformal gauge, is simply

§=-2 [ dtd?0 VIDEDD (3.15)

Integrating over 8 and 4 and eliminating the auxiliary ficld, which is the 98 component of

&, we obtain agreement with the component action upon making the identifications

e=V| U= —7]_2-vf)vf f= %[f), DjinV|

o" = PH| ¢ = 2av-ipak| | (3.16)

13



where the vertical bar indicates that the superfield is to be evaluated at § = 4 = 0. From
the equation for f we sce that the superspace integrand of the Chern-Simons form is
—glnV.

It is straightforward to couple the system to a non-trivial gravitational field in this

formalism; one simply replaces the flat Minkowski space metric 5,, by a general metric

9 (®) in (3.14) .

4. Massive antisymmetric tensor field equations from particle mechanics

If the background spacctime for the aclion (2.33) has isometrics, gencrated by the
Killing vectors k("r), then the action has corresponding rigid symmetries generated by the

Noether charges

Gy = ki) (@)pye - (1.1)
These symmelries can be gauged by adding to the action the term
S(; = [!ﬂ 1(,.)(;(,) . (’12)

Upon quantization the wave function musi then satisly the additional constraint

k"’(:r:)(')fl\lf(n:) =0 . (43)

This 1s equivalent o a formulation of field theory in a lower dimensional spacetime. The
simplest example occurs for a spacetime of the form (Minkowski)y x S!, in which case

G = pq is the charge associated with translations around the circle S*. The constraint

(4.3) becomes

s ¥lr)y =0 (4.4)

so that ¥ depends only on 2%, p = 0,..,d — 1, and the massless ficld equations in (d + 1)

dimensions reduce to massless field cquations of d-dimensional Minkowski space. This is

14



just the usual dimensional reduction, bul because U(1) is Abclian it is possible to modify
this procedure, as shown by Scherk and Schwarz [6]. In the context of particle mechanics

the Scherk-Schwarz mechanism operales by the addition to the action of the term

f d G +m) (4.5)

where m is an arbitrary constant. Taking G' = pg we find that the particle wave function

must satisfy

pa¥ =-mv¥ . (4.6)

In this case the massless ficld equations in (d + 1} dimensions (which are a consequence

of the other constrainis) will become massive ficld cquations in d dimensions*. Moreover,

since the little group for massless particles in (d + 1) dimensions equals that for massive
N

particles in d dimensions, a pure spin 5 massless field will always have just the right

number of components {or a pure spin % massive ficld in one lower dimension.

Since the action (1.1) is applicable to massless fields with spin > % only for d even,
this mechanism allows us to obtain massive ficlds of arbitrary spin tn odd dimcnsional
spacetimes only. For N = 2 there is no such resiriction, however, and we can obtain
massive antisymmetric tensor field equations for arbitrary d. The appropriate particle
action is just (2.13) with the addition of the term (1.5) . Rather than add {4.5) we can

simply solve the constraint by substituling (—m) for pg wherever it appears in the rest of

the action. In this way we arrive al the action
S = /dt{x p+i€-E+1(C 5(’.(;12 + m?) — (€ p — mQ)+

* This mechanism has been used previously in the context of other particle models by

Henneaux and Teilelboim [12]
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where { = 715(,\‘1i + iA8). The complex wave function salisfying the SO(2) constraint can

be written as

I im
—a™ .afr I,

4 g T+ mﬁa“"'auq_""m-unqq , (4.8)

where I and A are, a priori, also complex, and # is the anticommuting eigenvalue of ¢,

{BI¢ = (B|8. The constraint Q|¥) = 0 imposed by ¥ yickls

Fm-.-uq = qa[u; Aﬂg...uq] ' (’19)

which tells us that A is the gauge polential for F. The constraint @[W) = 0 then gives the

antisymmetric tensor generalization of the Proca equation

O Frgvgey —m Ay, =0 . (4.10)
The factor of 7 in (1.8) is now seen to be necessary in order that A may ultimately taken
to be real. There is presumably some variant on the time reversal identification constraint
K|¥) = |¥) that could be imposed on the wave function {¥), ab initio, so as to ensure that
A is real, without having Lo imposc it directly on .1 itsell] but we have not investigated
this point.

One question that may have occurred to the reader, concerning the general construc-
tion given above, is whether the addition of terms {o the action of the form (4.2) could
spoil symmetries that were present before their addition. T s readily checked for the ex-
ample above that this does not happen. In the general casc it is ensured by the fact that
the generators G,y commute with the other gencrators. In the next section we will want
to add generators that do nol commute, bul as long as we have a set of generators {¢;}

which close to form an algebra under the Poisson bracket,

{91, 9m}rB = fl10¥n (4.11)
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we can immediately write down a gauge invariant action*. To see this, consider a phase
(super)space with coordinates Y4 and lct © be the supersymplectic form on phase space.

Then the Poisson bracket is given by

{f,9}rp =040 " dpg (4.12)

with
Q0 = 64
(4.13)
Qap=—(—1)"Qp,4
The action
S = /dt[—— %}-"”nn,n’-" — u'¢i (4.14)
has the gauge invariance
§YA = uk'(¢:5n)szﬂf' but = —k! —umkn g (4.15)

It follows that the existence of a gauge invariant aclion is guaranteed once a set of con-
straints has been shown to form a closed algebra. What is not guarantced is that the
algebra of the quantum generators with respect to {(anti)commutation will be the same as
that of the classical generators with respect to the Poisson brackets. We shall encounter
examples where the classical and quantum algebras differ, bul provided no new generators

arise, and the algebra still closes, this canses no problems.

5. Chirality and self-duality

For d even a chirality constraint v, % = £W¥ can be imposed on a Dirac spinor ¥.

Quantization of the ¥ = 1 particle model leads to a Dirac equation for a non-chiral

* This construction is well-known. See for example [13]
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spinor, bul the mode! can be modified to incorporale a constrainl which yields chiral

wave-functions. Consider the classical quantity

Ay = (20) 5201 A (5.1)

Upon quantization we have

Ay — h3id0 0 = inty, (5.2)

To obtain a chirality constraint we should therefore add (o the action a term of the form
., d
[dt (DA +ih2) . (5.3)

Variation of the Lagrange multiplier g leads to the constramt Py =0, where

Py = A +ih% | (5.4)

This leads to the quantum mechanical constraini

é(n =0 . (5.5)

The Lagrange multiplier term (5.3) is not real, and indeed (1 £ ) is not hermitian
with respect to the Dirac scalar product (although for Buclidean signature this term would
be real and the corresponding constraint hermitian). However, this lack of reahity is in a
constraint term and does not preseni problems for the physical subspace.

The inclusion of the new constraint generates one further constraint, and the non-zero

Poisson brackets of the complete sel of constraint funclions are

[QaQ] rn - 201 [P+’ Q] rep — P2?Q [Q’ Q]PB =10

{P-I-?Q]PB = {a—?lQ ’ 3:224 [Qs@]f’ﬁ = {0, d > 4 ’ (56)
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where (} is a new supersymmetry gencrator,

.42
2t 2

0 = T (5.7)

and @ and II arc the original generators of supersymmetry and reparametrizations, re-
spectively. Of course, we should now add to the action a Lagrange multiplier for Q.

Upon quantization

~ 1
Q= BHyr | (5.8)
and the quantum algebra is, for all even d,
[P+, @1=Q [Ph,Ql=q {Q.Q}=0
Q*=0 Q*=-1 . (5.9)

For d > 4 there are thercfore quantum corrections to the classical algebra. The quantum
algebra is a non-compact N = 2 extended supersymmetry algebra with an internal O(1, 1)
symmetry group generaled by Pj.

In the N = 2 case, the analogue of the chirality constraint gives rise to (anti) self-dual
antisymmetric gauge ficld strength tensors. The N = 2 analogue of Ay is, in Lerms of the
complex ¢ variables introduced in seclion 2,

iﬂ

A2 B GE)_?—EA‘H...H"HL.JM &'”l.ufunéﬁu“.8”1 . (510)

Quantum-mechanically, Ay acting on an inhomogencous differential form annihilates all

but the n-form contribution. On an n-form F we have

Agh =i % I

: (5.11)

where * is the Hodge dual operator

T 'I' +
(*-F )_ru...ﬂn - ;jsvl...vn;zl...;enF“myn . (512)
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Thus in order to impose the (anti)sclf-dunality constraini,

F=+i"""%F (5.13)

we should add to the action the Lagrange multiplicr term
] diga(t)(Ap F ih%) (5.14)

where g3 is a new Lagrange multiplier. Clearly, it is only possible to impose reality and
self-duality simultancously in d = 2 mod 4 (Minkowski space-time) dimensions. As in the
N =1 case the new constraint generates yel further constraints. The quanium algebra
of these consiraints is most easily analysed in terms of differential forms. We have the
correspondences

Eﬂ - fixﬂ. £n — iﬂ_
Qed Qod

INHeodd*+dd=A Moda"i,—n , (5.15)

where d is the exterior derivative operator, i, denotes the interior product Lo be taken

with the basis vector 32 and dz”i, on a p-Torm w, gives pw,. The operator d* is the

adjoint of d with respect to the scalar product

n
(qr(‘),w(?)) =) /‘ifg,') Ax¥2) (5.16)

p=0

where the wave functions are inhomogencous forms,

2n
gl — Z \T!g,'.) ‘J’L’l) ap form . (5.17)

p=0

For 2n-dimensional Minkowski space

d* =xdx . (5.18)
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We introduce the operators 7, by

ipp-4n=1y on p forms
- 5.19
r { 0 on q-forms q¢ # p (5.19)

which have the following propertics

Ton—p - Tp =1 pd = —d*1,_ pd" = —drp . (5.20)
The sell-duality constraint is incorporaied by extending the N = 2 algcbra generated by
Q,Q, H and M to include the operator

P=1+m . (5.21)

The following additional opcrators are then generated
S| = Tnd —dm, S =r.d* —d'r,
Sy=1Id+dl, Sy =I1d* +d*1I,
K = Al + (dd*) gt + (d*Dlaey (5.22)

where I, is the projector onto p-forms. The complete algebra therefore has the generators

(H,M,P,K;Q,Q,S5:,51, 82, 58:). The non-zero (anti)commutation relations are
Q=4 [MQ=Q [M=-Q
[PQ] =25 [P, 8] =5, [P, 8q] = Sy
(P, Q] = 5 (P, 8] =35,
(M, $]=85  [M, Ss] =25,
(M, 8] =-8  [M, 5] =-58

(S, 8} =~-K  {5,,5}=K
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Q.5 =K {Q8)=FK . (5.23)

Thus there are six (real) odd gencrators. The subalgebra generated by S;, So, M, P and
K is an N = 4 supersymmelry algebra with an internal O(2) x O(1, 1) symmetry.

In the n =1 case, K cquals /I and §; coincides with @. The algebra, which is then
spanned by Q,Q, S1, 5y, M, P and I, is again an N = 1 algebra with an O(2) x 0(1,1)
internal symmetry.

For N > 2 the analoguc of A; and A, is

AN X vy v, (AETALT) (A AIT) (5.24)

For N even the imposition of the genecralized sell-dualily consiraint implies that the wave
function (in tensorial form} is sell-dual on cach block of n indices; for N odd the wave
function is, in addition, constrained to be chiral. We have not atlempted to work out the

full algebra of constraints in this case.
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