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Direct Simulation Method Based on BGK Equation 

Jun Li 

Department of Thermal Engineering, Tsinghua University, Beijing, China, 100084 

Abstract. A new particle simulation method is presented here based on the BGK equation, which is a good 
approximation to the Boltzmann equation near equilibrium. The main idea of this method is to track down the evolution 
of the distribution function due to intermolecular collisions along enormous molecular trajectories which are selected 
randomly when molecules reflect from boundary as in the DSMC method. The simple algorithmic structure of the DSMC 
method is employed but, besides position and velocity, each simulated molecule will carry two additional variables: one 
records the value of the distribution function and another records the number of real molecules represented by the related 
simulated molecule. The former is updated according to the Lagrangian description of the BGK equation and the latter is 
updated according to the former, after which the transitional macro-quantities defined for each cell are updated according 
to a special scheme which can make them evolve smoothly and finally converge to their solutions. This new method 
achieves its efficiency by avoiding generating random fractions during the intermolecular collision process and using the 
increments of molecular variables to update those transitional macro-quantities, which makes the new method have the 
feature that the total computational time will not increase with the decrease of the magnitude of the deviation from 
equilibrium. The proposed method is validated by comparison with the DSMC method as criterion.    

Keywords: micro gas flows, BGK equation, particle simulation method, DSMC method. 
PACS: 47.61.Fg, 47.15.gm, 47.45.Ab. 

INTRODUCTION 

In rarefied gas flows and flows in MEMS devices, the characteristic scales will be the same order as the molecular 
mean free path, making the Navier-Stokes equation invalid. These kinds of problems can be simulated by the DSMC 
method [1]. As a large number of random fractions are used, the results of DSMC simulations contain statistic noise, 
which makes the DSMC method time-consuming and almost intractable to very low velocity problems although it is 
very successful in the simulation of high velocity problems. To overcome the difficulty encountered by the DSMC 
method in low-velocity cases, many particle simulation methods including [2-8] among others had been proposed 
independently making modifications to the standard DSMC method and obtaining improvements of efficiency for 
low velocity cases. Some [4, 5, 8] of them are based on the BGK equation [9].  

Here, a new particle simulation method [10] based on the BGK equation is presented and will be referred to as 
DS-BGK method. As mentioned in the abstract, this new method retains the basic algorithmic structure of the 
DMSC method and so can have some advantages like simplicity, numerical stability and convenience for complex 
configurations. Some calculation results will be used to show the validity and the efficiency of the DS-BGK method.  

DIRECT SIMULATION METHOD BASED ON BGK EQUATION 

In the absence of external body force, the BGK equation can be written as a Lagrangian description:  

                ( )
j eq

j

df f f
c f f

dt t x
 

   
 

                            (1) 

In this paper, only single component gas will be considered and m  is the molecular mass. The simulation process 
is divided into a series of time steps t . The computational domain is divided into a number of cells and  mV  
denotes the volume of cell m  (used as a subscript). We estimate that the values of the time step and cell size used 
in the DS-BGK method should be the same as in the DSMC method. In order to ensure the simulation process is 
stable and avoid a time-averaging process for smooth results, the DS-BGK method will employ an enormous 
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number of simulated molecules but can still be efficient. In addition to its position and velocity, each simulated 
molecule l  carries two additional variables: lN  which means the number of real molecules represented by the 

simulated molecule l  and is used to construct a representative sample [ , , ]l l l allx c N  of tr
f , lF  which equals 

the representative value ( , , )tr
l lf t x c . The updating algorithm should satisfy the compatibility condition that the 

representative sample and the representative value are always related to the same distribution function and should 

make tr
f  converge to the solution of the BGK equation. The initial value of lF  equals (0, , )l lf x c  when the 

initial values of ,l lx c  are determined. The initial values of lN  for different simulated molecules are the same but 
will be changed to be different from each other in the following simulation process, through which the evolution of 
the distribution function due to intermolecular collisions is recorded for this new particle simulation method. During 
the simulation process, each simulated molecule will move uniformly and in a straight line until reflecting from the 
boundary and getting a new velocity randomly as in the DSMC method. lF  is updated along the straightforward 

trajectory according to Lagrangian description of BGK equation and lN  is updated to make /l lN F  constant 
when molecule moving inside the computational domain, which is based on the extrapolation of the 

acceptance-rejection method that if [ , , ]l l l allx c N  is a representative sample of 1f , 2 1[ , , ( / ) ]l l l l allx c N f f  can 

be used as a representative sample of 2f  and so satisfies the above compatibility condition.  

According to equation (1), lF  is updated along the trajectory of the simulated molecule l : 

                                   ( )l
eq l

dF
f F

dt
                                       (2) 

eq
f  should be updated after each t  according to , ,l l l

x c N  of those simulated molecules staying inside the 

same cell. Unfortunately, this scheme for updating 
eq

f , which is demanded by the BGK equation, cannot control 
statistical noise because the average number of simulated molecules staying inside each cell is still small although it 
is much larger than that used in the DSMC method.  

Adoption of A Transitional Maxwell Distribution Function  

As , ,eqeq eq
n u T  calculated by molecular transient information (including lx , lc  and lN ) after each time 

step contain large statistical noise, three transitional variables , ,
tr

tr tr
eqeq eq

n u T   are assigned to each cell to construct a 

transitional Maxwell distribution function 
2

3/ 2 ( )( ) exp( )
2 2

tr

eqtr tr

eq eq tr tr

eq eq

m m c u
f n

kT kT
 

 and those transitional 

variables can be taken as tentative values of their physical variables. , ,
tr

tr tr
eqeq eq

n u T  equal , ,eqeq eq
n u T  at the initial 

state of the simulation process and are updated after each time step according to a special principle (see Eq. (4)). As 
tr

eqf  is used in Eq. (2) in place of 
eq

f , it is desirable to prove that , ,
tr

tr tr
eqeq eq

n u T  equal , ,eqeq eq
n u T  after 

convergence, which will be discussed at the end of this section.  

 
FIGURE 1. A schematic model of the trajectory division for a certain molecule (left) and for a certain cell (right) 
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The trajectory of each simulated molecule is always straightforward and during a given time step, the trajectory of 
each simulated molecule is a short segment and may be divided into several parts (each part stays inside a cell, see 
Fig. 1 left). After employing tr

eqf , lF  is calculated for each of those parts and for a certain part (staying inside 

the cell m  and taking moving-time m lt  of the simulated molecule l ), ,
tr

eq mf  is constant and the formulation 

of m lF  can be written as follows after integration of equation (2) where 
eq

f  should be replaced by tr

eqf :  

                , ,( )exp( ), ,new tr old tr new old

l eq m l eq m m l m l l l m lF f F f t F F F t t                    (3) 

After updating lF  for each part (see Fig. 1 left), lN  is updated correspondingly to make /l lN F  constant.  

During the current t  and for each cell m  (see Fig. 1 right), some molecules will run inside this cell and their 

m lN  can be obtained easily according to m lF . Obviously, m lN  is the number increment of real molecules 

of class lc  associated with intermolecular collisions inside cell m  during the current time step. If we make a 
summation  over all those simulated molecules, then, m lN  means the number increment of real 
molecules of all existing classes associated with intermolecular collisions inside the same cell m  during the same 
time step and is expected (note: usually not) to equal zero as required by the conservation principle for the 
intermolecular collision process. So, if m lN  is positive, we should decrease ,

tr

eq mn  and then m lN  
will decrease at the next time step according to equation (2), and vice versa. It is an auto-regulation algorithm which 

can ensure that m lN  fluctuates near zero. Similarly, lm l
N mc  and 

2
/ 2lm lN mc  are related 

respectively to momentum increment and kinetic energy increment of real molecules of all existing classes 
associated with intermolecular collisions occurring inside the same cell and during the same time step and can be 

used to update ,
tr

eq mu  and ,
tr

eq mT . Now, the algorithms for updating , ,
tr

tr tr
eqeq eq

n u T  of cell m  are:  
,
,,

,

,,
, ,,
, ,

,

, 2 ,, , 2 , 2
, ,, , ,,

,

[ (3 / 2 ( ) / 2) / 2] ( ) /

tr old

eq m m m ltr new

eq m

m

tr old
tr old

tr new eq m leq m m m l
eq m

tr new

eq m m

tr old tr new
tr old tr old tr new

eq m l eq meq m m eq m m l eq m mtr new

eq m

n V N
n

V

n V u N c
u

n V

n V kT m u N mc n V m u
T

 


 


   







,
,

2
3 / 2tr new

eq m mn V k

   (4) 

Here, it should be pointed out that as a random fraction is used in the molecular reflection process on the 
boundary and so any possible representative trajectory can be selected according to its probability (see next section) 
during the simulation process, we can expect that the feature of all existing classes can represent the feature of all 
possible classes and so the summation over all existing classes in the DS-BGK method can be taken as equivalent to 
the integration over all possible classes in the description of a kinetic equation. It is obvious that those updating 

algorithms of equation (4) have the function of auto-regulation which can make m lN , lm l
N c  and 

2
/ 2lm lN mc  converge to zero and then the following equation is satisfied because the summation over all 

existing classes can be taken as equivalent to the integration over all possible classes as discussed above:  

( ) ( ) 0tr

eq kf f c dc 



                              (5) 

where 
2

1 2 3 4 51, ( , , ) ,c c       . As ( ) ( ) 0eq kf f c dc 



   is always satisfied by the original 

BGK equation, it is easy to prove that , ,
tr

tr tr
eqeq eq

n u T  equal , ,eqeq eq
n u T  after convergence where equation (5) is 

satisfied. For closed problem, equation (4) has another function in that it ensures an important definite condition:  
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(5) (4)

, , ,
1 1( ) ( )
2 2

converge converge converge converge initial initialeq eq
tr tr tr

l m eq m l m eq m l m eq m real

Domain Domain Domain Domain Domain Domain Domain

N V n N V n N V n N             (6) 

which means the total number represented by simulated molecules equals that of real molecules after convergence.  

Until now, only the updating schemes of , , ,l l l lx c F N  and , ,
tr

tr tr
eqeq eq

n u T  for the process occurring inside the 

computational domain have been introduced. In addition, lc  and lF  will change after molecular reflection from 
the boundary (see next section).  

Boundary Conditions 

In this section, the subscript l  is omitted for velocity variables. The selecting principle of the reflecting velocity 

rc  is the same as in the DSMC method. ic  is the incoming velocities, the subscript 2,3  is for the tangential 
velocity component and the subscript 1  is for the velocity component along the normal direction pointed into the 
flow domain which means that ,1r

c  is positive and ,1i
c  is negative. In the DS-BGK method, lF  is changed to 

the value of the distribution function Bf  at the boundary after molecule reflecting from boundary. So, Bf  should 

be recorded and updated after each time step so that the new value of lF  can be calculated according to Bf  after 

rc  being determined. Although lF  will be changed, lN  remains unchanged after reflection, which is consistent 
with the mass conservation principle of the reflection process and also satisfies the above compatibility condition.  

For different type of boundary conditions, ,1( 0)
B r

f c   has different forms. For CL boundary condition [11]:  

         

2 2
,2 ,2 ,3 ,3

,

2 2
,1 ,12,1 ,1

0

( 1 ) ( 1 )1 1exp[ ] exp[ ]    

2 1(1 )1               exp[ ] exp[ cos ]

r i r i

B CL

r inr in

n n n

c c c c
f a

c cc c
d

 

  



 
  

  
  

   
    

 
 

      (7) 

where , ,, ,/ 2 / , / 2 / ,( 1,2,3)r j i jr j wall i j wall
c c kT m c c kT m j   , , n   are the accommodation 

coefficients of the kinetic energy of the tangential velocity component and the normal velocity component, 
respectively. The factor a  can be determined by the mass conservation principle which demands that the number 

iN  of the incoming molecules equals the number rN  of the reflecting molecules. iN  can be estimated by tr

eqf  
of the adjacent cell of the boundary concerned and its formulation can be written as following: 

     ,1 ,1 ,12exp[ ( ) ] [1 ( )]
2 2 / 2 / 2 /

tr tr tr tr

eq eq eq eqtr

i eq
tr tr tr

eq eq eq

kT u u u
N n erf

m kT m kT m kT m




        
  

          (8) 

According to Eq. (7), rN  can be calculated: 

     
,1

2
, ,10

(2 / )
r

rr B CL r wall
c

N f c dc a kT m


                           (9) 

If rN  equals iN , then the factor a  is determined and ,B CL
f  is known for any reflecting velocity rc . lF  

will be updated to the value of ,B CL
f  at rc  after reflection from boundary. If the boundary is not static, the 

relative velocities should be used in the above equations to get the new value of lF . 

If we let 1n   , we will get Maxwell boundary condition. For specular reflection boundary condition, 

there is no need to update the value of Bf  at the boundary because lF  remains unchanged after reflection from 
boundary.  
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Calculation of Flux of Molecular Quantity on the Boundary Surface 

  As in the DSMC method, it is convenient for the DS-BGK method to calculate the flux ( )Q  of any quantity 

( )Q c  in unit time and across unit area of the boundary surface:  

1( ) [ ( ) ( )]
l i r l

l

Q N Q c Q c
t S

  
                        (10) 

where the summation is over all those simulated molecules reflecting from a given area S  during the time step 
t  and ( ), ( )r iQ c Q c  are the reflecting quantity and incoming quantity, respectively.  

Summary of the Algorithmic Structure 

In summary, the algorithm of the DS-BGK method proceeds as follows:  
1. Initialization. Generate many cells and simulated molecules and assign them with initial values.  
2. Each simulated molecule moves uniformly and in a straight line before encountering boundary. During each t , 
the trajectory may be divided into several parts (see Fig. 1 left), then lF  and lN  are updated according to 

equation (3) for each part. After each t , tr

eqf  of each cell (see Fig. 1 right) is updated according to equation (4). 

When encountering boundary, rc  is selected randomly and then lF  is updated as described above.  

3. After convergence, , ,
tr

tr tr
eqeq eq

n u T  can be used to output the final results.  

SIMULATION RESULTS OF THE DS-BGK METHOD 

Comparison of the DS-BGK Method with the DSMC Method 

Here, the DS-BGK method is verified by comparison with the DSMC method in a 2-D driven cavity gas flow. The 
Maxwell boundary condition and cell size and time step used in the DS-BGK method is the same as in the DSMC 
method and. The parameter   of the BGK equation is determined by BGK , so the momentum exchange should 
be simulated correctly by the DS-BGK method, which will be verified by the comparison of velocity distributions. 
Here, the DS-BGK method uses about 2000 molecules in each cell. As we can see, for Kn=0.063, the agreement of 
the DS-BGK method with the DSMC method is very good; for Kn=6.3 in the transitional regime, the agreement is 
still good overall although the difference between the two results is obvious in some regions.   

 
FIGURE 2. Velocity distributions by the DS-BGK method (dashed line) and the DSMC method (solid line), Kn=0.063. 

 
FIGURE 3. Velocity distributions by the DS-BGK method (dashed line) and the DSMC method (solid line), Kn=6.3. 
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Discussion about the Efficiency of the DS-BGK Method in Low-velocity Cases 

With respect to efficiency, the total computational time can be taken as the key parameter. In the above simulation 
where U=20m/s and Kn=0.063, the total computational time used by the DS-BGK method is about 7 minutes 
running on one CPU of Lenovo E43A (having usual capability) but the DSMC simulation takes about 30 hours using 
about 67 molecules in each cell on average and sampling about 3.4×106 times. When U decreases to only 0.1m/s 
(Kn keeps unchanged), the total computational time of the DS-BGK method is still about 7 minutes. As the total 
computational time of the DSMC method is usually inverse proportional to the square of Mach number if the 
computational time used for the convergent process is negligible, it will be very time-consuming for DSMC 
simulation in such a low-velocity case. The explanation for the high efficiency of the DS-BGK method is that it 
avoids generating random fractions during the intermolecular collision process and uses the increments (instead of 
the transient values) of molecular variables to update the transitional macro-quantities defined for each cell, which 
can reduce the statistical noise due to non-continuous events of molecules moving into or out of the cell. If we 
decrease the average number of simulated molecules per cell used by the DS-BGK method, the relative statistical 
scatter, namely the ratio of statistical scatter to useful information, will increase and the time-averaging process may 
become necessary for getting a smooth result. But, the influence of Mach number on the relative statistical scatter is 
negligible as shown in Fig. 4 where the evolution of the simulation processes (shown by a certain contour of u1) for 
this two test cases are given. As the transient result in Fig. 4 is smooth, the time-averaging process is avoided here.    

   
FIGURE 4. Evolution of a certain contour calculated by the DS-BGK method, Kn=0.063, U=20m/s (left) and U=0.1m/s (right). 

CONCLUSIONS 

A new particle simulation method based on the BGK equation is proposed here and named as DS-BGK method. It 
is verified by comparison with the DSMC method as criterion and efficient for low-velocity cases of gas flow 
problems. The physical quantity transportation process of the real molecules is represented by the movements of the 
simulated molecules with the help of molecular weightings in the DS-BGK method. It is therefore convenient for the 
DS-BGK method to employ a complicated and more realistic boundary condition, namely the CLL reflection model 
[12] which is a good application and extension of the CL reflection model [11].  

ACKNOWLEDGEMENTS 

The author would like to thank Prof. ZhengWei Wang of Tsinghua University for his support.  

REFERENCES 

1. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.  
2. Jing Fan, Ching Shen, Rarefied Gas Dynamics, (2), 245-252, 1999 and J. Comp. Phys., 167, 393-412, 2001. 
3. L. Pan, G. Liu, B. Khoo, B. Song, J. Micromech. Microeng., 10, 21-27, 2000.  
4. M. Macrossan, Rarefied Gas Dynamics, 426-433, 2000. 
5. M. Gallis, J. Torczynski, 34th AIAA Thermophysics conference, Denver, CO, 19-22, 2000. 
6. J. Chun, D. Koch, Phys. Fluids, 17, 107107, 2005.  
7. Homolle T. M. M., Hadjiconstantinou N. G., Phys. Fluids, 19, 041701, 2007.  
8. Shriram Ramanathan, Donald L. Koch, Phys. Fluids, 21, 033103, 2009.  
9. P. L. Bhatnagar, E. P. Gross and M. Krook, I, Phys. Rev., 94, 511-525, 1954. 
10. Jun Li, 2nd French-Chinese microfluid conference, Paris, 2009 and 4th TU-SNU-UT Joint Symposium, Univ. of Tokyo, 2010.  
11. C. Cercignani, M. Lampis, Transport Theory and Statistical Physics, 1(2), 101-114, 1971.  
12. R. G. Lord, Phys. Fluids A, 3(4), 706-710, 1991.   

288




