
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.DOI

A Particle Swarm Optimization with Lévy
Flight for Service Caching and Task
Offloading in Edge-Cloud Computing
TIELIANG GAO1, QIGUI TANG1, JIAO LI1, YI ZHANG1, YIQIU LI1, JINGYA ZHANG1
1Key Laboratory of Data Analysis and Financial Risk Prediction, Xinxiang University, Xinxiang, 453003, China

The research was supported in part by the National Natural Science Foundation of China (Grant No. 61902021, 61975187, 62072414), the
Key Science and Technology Program of Henan Province (Grant No. 222102210218, 212102210096, 212102210104), and the Soft
Science Research Project of Henan Province (Grant No. 222400410137).

ABSTRACT Edge-cloud computing is an efficient approach to address the high latency issue in mobile
cloud computing for service provisioning, by placing several computing resources close to end devices. To
improve the user satisfaction and the resource efficiency, this paper focuses on the task offloading and service
caching problem for providing services by edge-cloud computing. This paper formulates the problem as a
constrained discrete optimization problem, and proposes a hybrid heuristic method based on Particle Swarm
Optimization (PSO) to solve the problem in polynomial time. The proposed method, LMPSO, exploit PSO
to solve the service caching problem. To avoid PSO trapping into local optimization, LMPSO adds lévy
flight movement for particle updating to improve the diversity of particle. Given the service caching solution,
LMPSO uses a heuristic method with three stages for task offloading, where the first stage tries to make full
use of cloud resources, the second stage uses edge resources for satisfying requirements of latency-sensitive
tasks, and the last stage improves the overall performance of task executions by re-offloaded some tasks from
the cloud to edges. Simulated experiment results show that LMPSO has upto 156% better user satisfaction,
upto 57.9% higher resource efficiency, and upto 155% greater processing efficiency, in overall, compared
with other seven heuristic and meta-heuristic methods.

INDEX TERMS Edge-Cloud Computing, Particle Swarm Optimization, Service Caching, Task Offloading

I. INTRODUCTION

NOWADAYS, mobile and Internet of Thing (IoT) devices
can be seen everywhere, and their popularity is on

the rise with the increasing of user requirements and the
development of information and communication technology
[1]–[3]. As shown in Cisco Annual Internet Report [4], global
mobile subscribers will account for 71% of population, and
IoT devices will account for about half of global networked
devices, by 2023. The mobile and IoT users’ requirements
cannot be guaranteed only by cloud computing for service
delivery, due to the abundant variety and quantity of Internet
services and the high network latency of the cloud [5]. There-
fore, more and more service providers use edge computing
to improve the service quality, by placing some computing
resources close to user devices [6].

Due to the restricted space of edge computing centres
(edges for short), there are limited amount of computing
and storage resources in edges. Therefore, edge computing

cannot provide all services at a time. Thus, edge-cloud com-
puting is an efficient way to deliver both latency-sensitive and
resource-hungry services, by combining the advantages of
both edge computing and cloud computing [7]. In edge-cloud
computing, some services are deployed (cached) on an edge
for latency-sensitive requests, and the cloud can deliver all
services due to its “infinite” computing and storage resources.

There are two decisions must be made for service pro-
visioning by edge-cloud computing with high efficiency
and performance, service caching and task offloading. The
service caching is to decide which services are deployed
on edges. Task offloading decides the location where each
request task is served. These two decision-making problems
are interrelated. A task can be offloaded to an edge only when
its requested service is cached on the edge. In general, it is
better to cache services with more requests and offload more
requests into edges, as edges provide much lower network
latency than the cloud. But due to the limited resources on

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

edges, offloading more tasks to edges can result in an in-
creasing of the computing latency. Thus, the service caching
and task offloading strategies should be jointly designed
carefully for balancing the computing latency on edges and
the network latency on the cloud to improve the service
quality.

Unfortunately, the joint service caching and task offloading
problem is NP hard [8]. There mainly three kinds of methods
to address the problem, which are respectively heuristics,
meta-heuristics, and machine learning (ML). In general,
heuristics are is fast to provide solutions, but the solution
performance is limited due to their local search ideas. Meta-
heuristics can achieve better solutions than heuristics, ben-
efiting from their global search abilities, but they usually
consume more computing time [9]. ML-based methods learn
some patterns from the historical states of task executions,
and make caching and offloading decisions for subsequent
tasks based on learned patterns. ML-based methods may
achieve better performance than other two kinds of methods,
but they are too costly for the pattern learning (training).

Therefore, several researches used meta-heuristics, e.g.,
Genetic Algorithm (GA) [10], Particle Swarm Optimization
(PSO) [11], Whale Optimization Algorithm (WOA) [12], and
Cuckoo Search Algorithm (CSA) [13], for solving the service
caching and task offloading problem. This is mainly because
meta-heuristics usually achieve a better performance than
heuristics due to their global search abilities. Some works
exploited the hybrid of two meta-heuristics, e.g., PSO + GA
[14], which can achieve a better performance than each one.
While, these methods didn’t consider to integrate heuristic
local search strategy into a meta-heuristic for the joint service
caching and task offloading problem, even though it have
been used in other problems due to the good performance by
combining both advantages of heuristics and meta-heuristics
[15], [16].

Thus, this paper exploits a hybrid heuristic method by
combining a representative meta-heuristic algorithm, Particle
Swarm Optimization (PSO), and a heuristic algorithm for
joint service caching and task offloading. Specifically, the
proposed method, named LMPSO, employs PSO to achieve
a service caching, with the fitness evaluated by the user
satisfaction and resource efficiency. To achieve a task of-
floading solution given a service caching solution, LMPSO
uses a heuristic algorithm to improve the user satisfaction and
resource efficiency. To overcome the issue that PSO is easily
trapped into local optimization, LMPSO integrates lévy flight
scheme into particle movements to improve the the diversity
of particles. The contributions can be summarized as follows.

1) The joint service caching and task offloading problem
is modelled into a constrained discrete optimization
problem, to minimize the user satisfaction and resource
efficiency, for edge-cloud computing. In this paper,
the user satisfaction is quantified by the number of
tasks with the satisfaction of their requirements. The
resource efficiency is evaluated by the overall resource
utilization.

2) To solve the joint service caching and task offload-
ing problem in polynomial time, A hybrid heuristic
algorithm is designed, which is named as LMPSO.
LMPSO exploits PSO algorithm, and employs lévy
flight in particle moving to improve the performance
of PSO. In LMPSO, each particle position represents a
service caching solution, and the value in a dimension
is the edge servers that the corresponding service is
cached. Given a service caching solution, LMPSO uses
a heuristic method with three stages for task offloading.
The first stage is pre-offloading as many tasks as pos-
sible to the cloud, for making full use of the richness
of cloud resources. The second stage offloads remain
tasks to edges for executing latency-sensitive tasks. At
last stage, the heuristic method re-offloads tasks from
the cloud to edges to improve the overall performance
of task execution.

3) Extensive simulated experiments are conducted for
evaluating the performance of LMPSO, where param-
eters are set referring to existing works and the re-
ality. The experiment results show that LMPSO has
8.34%–156%, 1.00%–57.9%, and 7.91%–155% better
performance in user satisfaction, resource efficiency,
and processing efficiency, respectively, compared with
other seven heuristic and meta-heuristic methods, in
overall.

The rest of this paper was organized as follows. Section II
models the joint service caching and task offloading prob-
lem concerned in this paper, and Section III proposes the
heuristic algorithm to address the problem optimizing the
user satisfaction and resource efficiency. Section IV evaluates
the proposed heuristic algorithm by conducting simulated
experiments. Section V discusses the research works. And
finally, Section VI concludes the paper.

II. PROBLEM STATEMENT
A. SYSTEM MODEL
This paper considers an edge-cloud computing system con-
sisting of multiple edges and one cloud, as shown in Fig. 1.
Each edge is equipped with one or more edge servers (ESs).
There are multiple user devices having communication con-
nections with an edge, i.e., these devices are covered by the
edge. A user launches its requests by its device, and these
requests can be only processed by the cloud and the edge
covering the device. The cloud provides various types of
cloud servers (CSs). For each service, it can process request
tasks on an ES only when the service is cached on the ES.

In the system, there are E ESs. For optimizing the user
satisfaction, V CSs are rented from the cloud. nj , 1 ≤
j ≤ E + V are used to represent these ESs and CSs,
where nj , 1 ≤ j ≤ E are ESs. For ES/CS nj , it has ccj
computing capacity, csj storage space, and lj communication
channels, where each channel has bdj/b

u
j downlink/uplink

transmission capacity. The cloud can provide all kinds of
services due to its limitless storage space. Thus, for CSs,
nj , E + 1 ≤ j ≤ E + V , their storage spaces are set as

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

����������� 	
��� �����������������������
FIGURE 1. The edge-cloud computing system

infinite, i.e., csj = +∞, E + 1 ≤ j ≤ E + V . Usually, the
cloud provider equips each CS with one Ethernet card. Thus,
the number of communication channels of a CS is one, i.e.,
lj = 1, E + 1 ≤ j ≤ E + V .

Provider delivers S services (ak, 1 ≤ k ≤ S) for users
in the edge-cloud computing system. For the service ak, it
needs sk storage space for its deployment. To represent the
service caching solution, binary variables, xj,k, 1 ≤ j ≤
E, 1 ≤ k ≤ S, are defined to indicate whether a service is
cached on an ES. xj,k = 1 if service ak is cached on ES nj ,
and xj,k = 0 if not.

There are T request tasks (ti, 1 ≤ i ≤ T) needed to
be served in the system. The service required by ti is ari .
For task ti, it requires hi computing size for its completion.
The input and output data amounts of ti are gdi and gui ,
respectively. This research concerns hard deadline tasks. Task
ti must be finished within its deadline (di). If a task cannot be
finished within its deadline, the service provider has no profit
for processing the task, and thus rejects the task’s request.
Binary variables yi,j , 1 ≤ i ≤ T, 1 ≤ j ≤ E + V are used
to represent the task offloading solution. yi,j = 1 means ti is
offloaded to ES/CS nj , and yi,j = 0 means not. When a task
is offloaded to edges, it only can be offloaded to ESs that its
requested service is cached on. Thus,

yi,j ≤ xj,ri , 1 ≤ i ≤ T, 1 ≤ j ≤ E. (1)

B. TASK EXECUTION MODEL
When task ti is offloaded to ES/CS nj , i.e. yi,j = 1, the
time consumed by the transitions of its input and output
data are gdi /b

d
i and gui /b

u
i , respectively. The ES/CS needs

hi/c
c
j computing time for processing the task’s input data to

achieve the output data. When multiple tasks are offloaded
to one computing node (an ES or a CS), they compete for
the network and computing resources on the node. In real
world, the output data amount is much less than the input data
amount for a task. Therefore, there are two situations for a
node processing multiple tasks, which are that the bottlenecks
are network and computing resources, respectively. In the
first situation, the computing of a task can be started only

after finishing its input data transmission. Thus, the finish
time of a task can be calculated by

ftneti =

E+V∑
j=1

(yi,j · (ftni + hi/c
c
j + gui /b

u
j)),

1 ≤ i ≤ T, (2)

and

ftni =

E+V∑
j=1

(yi,j · (stni + gdi /b
d
j)), 1 ≤ i ≤ T, (3)

where ftneti is the finish time of task ti when the network
resource is bottleneck, and ftni and stni is the finish and
start time of the input data transmission of ti, respectively.
The network resource is available for transferring the input
data of ti only when all input data transmissions are finished
for all tasks that are allocated to the same communication
channel and started before ti. Thus, the start time of the input
data transmission for a task satisfies

zi,j,m · stni ≥ max
oii<oi

{zii,j,m · ftnii},

1 ≤ i ≤ T, 1 ≤ j ≤ E + V, 1 ≤ m ≤ lj , (4)

where oi ∈ {1, 2, ..., T} is used to indicate the processing
order of tasks offloaded to a computing node. oii < oi means
tii is processed before ti. zi,j,m is a binary variable to indi-
cate the communication channel allocation for ti. zi,j,m = 1
if ti is offloaded to nj and the mth channel is allocated to the
task for its input data transmission, and otherwise zi,j,m = 0.
Then Eq. (5) are satisfied. As two tasks cannot be processed
simultaneously on a channel or a computing node, Eq. (6)
must hold.

yi,j =

lj∑
m=1

zi,j,m, 1 ≤ i ≤ T, 1 ≤ j ≤ E + V. (5)

(i 6= ii)→ (oi 6= oii), 1 ≤ i, ii ≤ T. (6)

In the second situation that the computing resources is the
bottleneck, when ti is offloaded to nj , its input data transfer
has been complete before the computing resource is available
to it. In this case, the computing time of a task is started when
its previous task completes its computing. Thus, the finish
time of each task can be calculated by

ftcpui =

E+V∑
j=1

(yi,j · (max
oii<oi

{ftii − guii/buj }

+hi/c
c
j + gui /b

u
j)), 1 ≤ i ≤ T, (7)

where fti is the finish time of task ti, i.e., the time when its
output data transfer is complete. fti−gui /buj is the finish time
of ti’s computing when it is offloaded to nj .

Combining these two situations, the finish time of tasks
can be achieved by

fti = max{ftneti , ftcpui }, 1 ≤ i ≤ T. (8)

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

And the deadline constraints can be formulated as

fti ≤ di, 1 ≤ i ≤ T. (9)

Noticing that fti = 0 if ti is not offloaded to any computing
node, based on Eq. (2), (7), and (8). Thus, Eq. (9) also hold
for rejected tasks.

For a computing node, it is occupied until all tasks that of-
floaded to the node are finished, thus the amount of occupied
computing resources for ESs are respectively

ocj = ccj ·
T

max
i=1
{yi,j · fti}, 1 ≤ j ≤ E. (10)

But CSs charged in unit time, e.g., hour, in most of cloud
providers. The actual occupied time need to be rounded
up. Therefore, the occupied computing resources of CSs are
respectively

ocj = ccj ·
T

max
i=1
{dyi,j · ftie}, E + 1 ≤ j ≤ E + V. (11)

In each ES/CS, the amount of computing resources ac-
tually used for computing tasks is the accumulated size of
computing size required by tasks offloaded to the node, i.e.,

ucj =

T∑
i=1

(yi,j · hi), 1 ≤ j ≤ E + V. (12)

Thus, the computing resource utilization of each computing
node can be calculated by Eq. (13), and the overall computing
resource utilization in the system can be achieved by Eq. (14).

uj = ucj/ocj , 1 ≤ j ≤ E + V. (13)

U =

∑E+V
j=1 ucj∑E+V
j=1 ocj

. (14)

In the edge-cloud computing system, a task can be of-
floaded to only one computing node, thus, Eq. (15) hold.
In this paper, task redundancy execution is not considered
for performance improvement, as the redundancy consumes
extra resources, which results in a low resource efficiency.

E+V∑
j=1

yi,j ≤ 1, 1 ≤ i ≤ T. (15)

Then, the number of tasks accepted by the system for their
processing is

N =

T∑
i=1

E+V∑
j=1

yi,j . (16)

C. PROBLEM MODEL
This paper considers to optimize the user satisfaction and the
resource efficiency. The number of accepted tasks and the
computing resource utilization are used as the metrics for
quantifying these two optimization objectives, respectively.
The formulated model is also compatible with other metrics.
Based on previous formulations, the joint service caching and
task offloading problem can be modelled into

maximizing N + U, (17)

subject to:

Eq.(1)–(16), (18)
xj,k ∈ {0, 1}, 1 ≤ j ≤ E, 1 ≤ k ≤ S, (19)
zi,j,m ∈ {0, 1},

1 ≤ i ≤ T, 1 ≤ j ≤ E + V, 1 ≤ m ≤ lj , (20)
oi ∈ {1, 2, ..., T}, 1 ≤ i ≤ T.

Noticing that the utilization U is less than 1, the main ob-
jective is optimizing the user satisfaction. Decision variables
include xj,k, 1 ≤ j ≤ E, 1 ≤ k ≤ S, zi,j,m, 1 ≤ i ≤ T, 1 ≤
j ≤ E+V, 1 ≤ m ≤ lj , and oi, 1 ≤ i ≤ T . xj,k indicates the
service caching solution. zi,j,m represents the solutions of the
task offloading and the communication channel allocation.
oi denotes the task execution order in each computing node.
Due to the discreteness of decision variables, this optimiza-
tion problem is hard to solve. Therefore, a polynomial time
method is proposed to solve the problem, as illustrated in the
following section.

III. HYBRID HEURISTIC JOINT SERVICE CACHING AND
TASK OFFLOADING METHOD
This section presents LMPSO, the joint service caching and
task offloading method, based on PSO, in details. Similar
to PSO, LMPSO initializes the position of each particle
randomly, and repeats following three steps: 1) evaluating
the fitness for each particle, and updating the global best
position and local positions, 2) updating the position of
each particle as done in PSO, 3) updating the position of
each particle with Lévy Flight. Next, the encoding/decoding
method used by LMPSO is illustrated first, which is the
transform method between a particle position and the service
caching solution. Then, three repeated steps of LMPSO are
detailed, respectively.

A. ENCODING METHOD
LMPSO uses particle positions to represent service caching
solution. There a one-to-one relationship between services
and dimensions of each particle position. For caching S ser-
vices on E ESs, there are S dimensions for each particle po-
sition, where the position on a dimension represents ESs that
the corresponding service is cached on. For each dimension,
the position value is integer, and its range is [0, 2E], where
the jth bit is indicating whether the service is cached on ES
nj , by convert the position value to binary. For example, as
shown in Fig. 2, if there are 5 services (s1, s2, ..., s5) and
5 ESs (n1, n2, ..., n5), the number of dimensions for each
particle position is 10. A position of (2, 3, 5, 20, 30) means
that s1 is cached on n2 ((2)10=(00010)2), s2 is cached on n1
and n2, s3 is cached on n1 and n3, s4 is cached on n3 and
n5, and s5 is cached on n2, n3, n4 and n5.

B. STEP 1: FITNESS EVALUATION
The fitness of a particle is the optimization objective (17)
value of the joint service caching and task offloading solution
derived from its position. Based on above encoding/decoding

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

Position:

(in binary)

2

(00010)

3

(00011)

5

(00101)

20

(10100)

30

(11110)

Service: s1 s2 s3 s4 s5

ESs the service

cached on:
n2 n1, n2 n1, n3 n3, n5

n2, n3,

n4, n5

D
ecoding

E
ncoding

FIGURE 2. An example of encoding/decoding method

method, the position can be decoded into the service caching
solution for each particle. Given the service caching solution,
LMPSO exploits a heuristic task offloading method with
following three stages.

In the first stage, for tasks whose requirements can be sat-
isfied by the cloud, LMPSO pre-offloads them to the cloud.
In every time a new CS needed to be pre-rented, LMPSO
chooses the CS type with the best cost-performance ratio,
for optimizing the cost efficiency on the cloud. In this stage,
the abundance of cloud resources can be made full use for
satisfying requirements of network latency-insensitive tasks.

In the second stage, for tasks that cannot be finished on
the cloud, LMPSO offloads them to ESs, with the service
caching solution decoded by the particle position. In this
stage, edge resources with low network delay are exploited
for processing latency-sensitive tasks.

In the last stage, to improving the resource usage and the
task performance, LMPSO re-offloads tasks from CSs to ESs.
LMPSO exams each task pre-offloaded to the cloud. If the
task can be finished by an ES, then, LMPSO re-offloaded it
to the ES. In the end of the stage, for each CS, if all tasks that
are pre-offloaded to are re-offloaded to ESs, LMPSO cancels
the pre-rent of the CS.

Within each of these three stages, one of the simplest
scheduling method, First Fit (FF), is used to decide the com-
puting node, the communication channel, and the execution
order for each task. Any other scheduling method can be
easily integrated with LMPSO. The design of more efficient
scheduling methods is one of our future works.

Now, given a particle, a joint service caching and task
offloading solution can be gotten from its position. Based
on the solution, the number of accepted tasks, N , and the
overall computing resource utilization, U , can be calculated
according to Eq.(1)–(16). And thus, the fitness value can be
achieved for each particle.

C. STEP 2: PARTICLE MOVEMENT OF PSO
LMPSO conducts two kinds of movement for the position
updating of each particle, the movements of PSO and the
lévy flight scheme, which are respectively illustrated in this
subsection and the next subsection.

In PSO, the position of each particle is updated for moving
it towards its local best position and the global position with

a certain inertia. The updating of a particle in each iteration
step in PSO is as following.

velk = ω · velk + r1 · acc1 · (lbesti − pk)

+r2 · acc2 · (gbesti − pk), (21)
pk = pk + velk, (22)

k = 1, 2, ..., S,

where velk is the movement velocity in the kth dimension for
the particle. pk is the position in the kth dimension. ω is the
inertia weight of the particle. acc1 and acc2 are acceleration
coefficients for moving towards the local best position and
the global position, respectively. r1 and r2 are two random
numbers between 0 and 1.

D. STEP 3: PARTICLE MOVEMENT WITH LÉVY FLIGHT
Because PSO is easily trapped into a local best solution,
the lévy flight movement is added for updating the particle
positions, to improve the diversity of particles. In each it-
eration step, for every particle, after updating the position
using Eq. (21) and (21), LMPSO executes additional random
movement with a certain probability, based on lévy flight.
The additional updating of the position for each particle is
shown in Eq. (23).

pk =

 pk + levy · (r1 · acc1 · (lbesti − pk)
+r2 · acc2 · (gbesti − pk), if r < R

pk, else
k = 1, 2, ..., S. (23)

Where r is a random value in the range of [0, 1]. R is a
constant to indicate the probability of adding the lévy flight
movement for the particle’s updating. levy is a random value
following lévy flight distribution which is µ/|ν|−β . µ and ν
are random variables following Gaussian distributions with
zero mean. The standard deviation of ν is 1, and that of µ is

Γ(1 + β) · sin(π·β2)

β · Γ(1 + 1+β
2) · 2 β−1

2

, (24)

where Γ(•) is the Gamma function. β is the parameter of the
lévy flight distribution. In this paper, referring to [17], β is
set between 1 and 3 randomly.

IV. PERFORMANCE EVALUATION
In this section, the performance of LMPSO is evaluated by
conducting extensive simulated experiments, and the experi-
ment results are analysed.

A. EXPERIMENT DESIGN
In the simulated edge-cloud system, there are 1000 tasks
randomly requesting one of 100 services. For every task,
its required computing size is randomly set between 0.5–
1.2GHz, and the amount of its input data is in the range
of [5, 6]MB, referring to [18]. The deadline of each task
is set between 1 and 5 seconds. Each service requires [40,
80]GB storage space for its deployment, referring to [19].

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

The system includes 10 ESs and one CS type. Each ES is
configured with 20GHz computing capacity, 300GB storage
space, and 10 communication channels each with 60Mbps
transmission bandwidth. The configuration of the CS type is
5GHz computing capacity and 15Mbps. The parameters of
ESs and the CS type are set referring to [19].

LMPSO is compared with five heuristic methods, FF, FFD
(First Fit Decreasing), EDF (Earliest Deadline First), PSC
(Popularity-based Service Caching) [20], CEDC-A (Approx-
imation algorithm for Constrained Edge Data Caching) [21],
and two meta-heuristic methods, GA (Genetic Algorithm)
[10], [22] and PSO [11]. For CEDC-A, the accumulated slack
time is used as the quantitative indicator for the profit of
caching a service on an ES. PSO is same as LMPSO except
that PSO does not use the lévy flight movement, and uses FF
as the offloading decision maker. Similar to PSO, GA uses FF
for task offloading. The numbers of populations for LMPSO,
PSO and GA are all set as 100. The probabilities of mutation
and crossover are set as 0.01 and 0.5, respectively. Both
acceleration coefficients are set as 2.0 for PSO and LMPSO.
The inertia weight is linearly decreasing with iteration time
from 0.9 to 0.4.

Task scheduling methods are compared in the following
three aspects.

• User satisfaction. Three metrics are used for the quan-
tification, the number of finished tasks (N), the accumu-
lated computing size of finished tasks, and the amount
of input data processed by finished tasks.

• Resource Efficiency. One of the most popular metric,
resource utilization (U), is used for quantifying the
resource efficiency.

• Processing Efficiency. The load processed per unit time.
Two metrics are used, the computing size processed
per second and the amount of input data processed per
second.

The procedure of conducted experiment is first randomly
generating 100 simulated edge-cloud systems. Then, in each
generated system, values of all performance metrics are
measured for all methods, and each metric value of every
method is scaled by that of FF to get the relative differences
of these methods. In the following, the average value from
these 100 systems is reported for each metric.

At the end of this section, several experiments are con-
ducted for evaluating the impacts on the performance of
LMPSO by some parameters of the system and the method,
including the task size, the storage requirements of services,
the particle number of PSO, and the coefficient of the Lévy
Flight distribution.

B. USER SATISFACTION
Fig. 3, 4, and 5 give the metric values in user satisfaction, in
overall, in edges, and in the cloud, respectively. As shown in
Fig. 3, LMPSO can complete 11.3%–97.2 more tasks, pro-
cess 11.2%–98.7% more computing load and 8.34%–156%
more input data, in overall, compared with other methods.

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
fin

is
he

d
ta

sk
 n

um
be

r

User satisfaction in overall

(a) Relative number of finished tasks

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
fin

is
he

d
co

m
pu

tin
g

si
ze

User satisfaction in overall

(b) Relative computing size of finished tasks

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
pr

oc
es

se
d

da
ta

am

ou
nt

User satisfaction in overall

(c) Relative data amount processed by finished tasks

FIGURE 3. The overall user satisfactions achieved by various methods

There are mainly two improvements by LMPSO, the par-
ticle movement with lévy flight and the task offloading with
three stages. To quantify the improvement of the lévy flight
movement, the performance between PSO and PSO with lévy
flight movement (LPSO) are compared. For evaluating the
improvement of the three-stage offloading idea, each of GA,
PSO and LPSO is compared with itself integrated with the
three-stage offloading scheme (MGA, MPSO and LMPSO),
respectively. As shown in Fig. 6, the lévy flight movement
can improve 5.39% performance for PSO in the number of
finished tasks. The idea of the three-stage heuristic method
can improve about 11% performance in the finished task
number. These two improvements guarantee that LMPSO can
achieve a better user satisfaction than other methods.

The basic idea of the three-stage task offloading method
can result in a more tasks finished by the cloud. This is
because the first stage try to make full use of cloud resources
to finish as many tasks as possible. Therefore, in general,
LMPSO has a better user satisfaction in the cloud than in

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
Fi

ni
sh

ed
 ta

sk

nu
m

be
r

User satisfaction in edge

(a) Relative number of finished tasks

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
fi

ni
sh

ed
 c

om
pu

ti
ng

si

ze

User satisfaction in edge

(b) Relative computing size of finished tasks

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
pr

oc
es

se
d

da
ta

am

ou
nt

User satisfaction in edge

(c) Relative data amount processed by finished tasks

FIGURE 4. The user satisfactions achieved by various methods in edges

edges. For example, LMPSO finishes 18.8% more tasks in
the cloud, as shown in Fig. 5, while only 6.34% more tasks
in edges, as shown in Fig. 4, compared with FF. But there is
a contrary for CEDC-A. LMPSO can finish about 15 times
more tasks in edges while only 1.12% more in the cloud,
compared with CEDC-A. This is mainly because CEDC-A
processes too few tasks in edges, which leading to more tasks
having possibility to be processed by the cloud. In addition,
LMPSO re-offloads several tasks from the cloud to edges for
improving the resource usage of edge resources, which is
help for reducing the number of tasks offloaded to the cloud.

C. RESOURCE EFFICIENCY
As shown in Fig. 7, LMPSO has 1.00%–57.9% higher com-
puting resource utilization than other methods in overall,
which verifies the high resource efficiency of LMPSO. This
is also benefiting from two improvement schemes. As shown
in Fig. 10, the lévy flight movement improves 6.56% resource
efficiency for PSO, and the idea of the three-stage offloading
improves 1.00%–2.03% resource efficiency for GA, PSO and

0
0.2
0.4
0.6
0.8

1
1.2
1.4

R
el

at
iv

e
Fi

ni
sh

ed
 ta

sk

nu
m

be
r

User satisfaction in cloud

(a) Relative number of finished tasks

0
0.2
0.4
0.6
0.8

1
1.2
1.4

R
el

at
iv

e
fi

ni
sh

ed
 c

om
pu

ti
ng

si

ze

User satisfaction in cloud

(b) Relative computing size of finished tasks

0
0.2
0.4
0.6
0.8

1
1.2
1.4

R
el

at
iv

e
pr

oc
es

se
d

da
ta

am

ou
nt

User satisfaction in cloud

(c) Relative data amount processed by finished tasks

FIGURE 5. The user satisfactions achieved by various methods in the cloud

LPSO.
The computing resource utilization is the ratio of used

computing resource amount to the amount of computing
resources occupied for tasks’ computing and data transfers.
There are pipeline execution on each computing node that
multiple tasks are offloaded to. Thus, part of data transfers
are not consuming computing time, as the data transfer of
one task can be concurrently executed with the computing
of another task. A more tasks processed on a node lead to a
greater probability of more data don’t consuming computing
time for their transfers, and thus result in a high resource
efficiency. Thus, in general, LMPSO executes more tasks
with the same edge-cloud resources, and thus achieves a
better resource efficiency, compared with other methods.

D. PROCESSING EFFICIENCY
In general, the processing efficiency is decided by the
speedup of parallel execution for a distributed computing
system. Given a distributed system, an execution strategy
providing more finished tasks imply that it achieves a greater

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

0

0.2

0.4

0.6

0.8

1

1.2

PSO LPSO

R
el

at
iv

e
fi

ni
sh

ed
 ta

sk
 n

um
be

r
User satisfaction in overall

(a) By the lévy flight

0

0.2

0.4

0.6

0.8

1

1.2

GA MGA PSO MPSO LPSO LMPSO

R
el

at
iv

e
fi

ni
sh

ed
 ta

sk
 n

um
be

r

User satisfaction in overall

(b) By the multi-stage idea

FIGURE 6. The improvements by the lévy flight and the multi-stage idea on
the user satisfaction

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
re

so
ur

ce
 u

ti
li

za
ti

on

Resource efficiency in overall

FIGURE 7. The overall resource efficiencies achieved by various methods

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
re

so
ur

ce
 u

ti
li

za
ti

on

Resource efficiency in edge

FIGURE 8. The resource efficiencies achieved by various methods in edges

speedup. Thus, as LMPSO finishes the most tasks, it achieves
the greatest processing efficiency, compared with other meth-
ods. As shown in Fig. 11, 12 and 13, LMPSO has 10.9%–
98.5% faster computing rate and 7.91%–155% faster data
processing rate in overall, 3.41%–807% and 1.44%–802% in

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
re

so
ur

ce
 u

ti
li

za
ti

on

Resource efficiency in cloud

FIGURE 9. The resource efficiencies achieved by various methods in the
cloud

0

0.2

0.4

0.6

0.8

1

1.2

PSO LPSO
R

el
at

iv
e

re
so

ur
ce

 u
ti

li
za

ti
on

Resource efficiency in overall

(a) By the lévy flight

0

0.2

0.4

0.6

0.8

1

1.2

GA MGA PSO MPSO LPSO LMPSO

R
el

at
iv

e
re

so
ur

ce
 u

ti
li

za
ti

on

Resource efficiency in overall

(b) By the multi-stage idea

FIGURE 10. The improvements by the lévy flight and the multi-stage idea on
the resource efficiency

edges, 1.11%–28.3% and 1.07%–31.1% in the cloud.
In general, the processing efficiency in edges is better than

that in the cloud for a task offloading method. This is mainly
because the cloud has much poorer network performance
than edges. This leads to a much more data transfer latency
for task executions in the cloud than that in edges, and thus,
more time is used for waiting data transfer for offloaded
tasks to the cloud. And therefore, the processing efficiency is
poor if the data transfer has long latency. Thus, both service
caching and task offloading solutions largely determine the
processing efficiency. This is because they influences the
number of tasks offloaded to edges. Service caching solution
decides which tasks can be offloaded to edges. Task of-
floading solution decides which tasks are offloaded to edges
with limited edge resources. Therefore, this paper focuses on
joint service caching and task offloading strategy, which is
helpful for improving the processing efficiency, as proofed

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
co

m
pu

ti
ng

 r
at

e
Processing efficiency in overall

(a) Relative number of finished tasks

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
da

ta
 p

ro
ce

ss
in

g
ra

te

Processing efficiency in overall

(b) Relative computing size of finished tasks

FIGURE 11. The overall processing efficiencies achieved by various methods

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
co

m
pu

ti
ng

 r
at

e

Processing efficiency in edge

(a) Relative number of finished tasks

0
0.2
0.4
0.6
0.8

1
1.2

R
el

at
iv

e
da

ta
 p

ro
ce

ss
in

g
ra

te

Processing efficiency in edge

(b) Relative computing size of finished tasks

FIGURE 12. The processing efficiencies achieved by various methods in
edges

by experiment results.

E. PERFORMANCE BEHAVIOUR WITH VARYING
COEFFICIENTS

0
0.2
0.4
0.6
0.8

1
1.2
1.4

R
el

at
iv

e
co

m
pu

ti
ng

 r
at

e

Processing efficiency in cloud

(a) Relative number of finished tasks

0
0.2
0.4
0.6
0.8

1
1.2
1.4

R
el

at
iv

e
da

ta
 p

ro
ce

ss
in

g
ra

te

Processing efficiency in cloud

(b) Relative computing size of finished tasks

FIGURE 13. The processing efficiencies achieved by various methods in the
cloud

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6R
el

at
iv

e
fin

is
he

d
ta

sk
 n

um
be

r

The task size coefficient

FF
FFD
EDF
PSC
CEDC_A
GA
PSO
LMPSO

FIGURE 14. The performance changes with the size of tasks

a: Behaviour with Varying Task Size
Six groups of experiments are conducted for evaluating the
performance changes of various methods with varying size
of tasks. In the αth group of experiments, the computing size,
the input data amount, and the deadline of each task is set in
ranges of [0.5∗α, 0.5∗α+0.7]GHz, [5∗α, 5∗α+1]MB, and
[α, α+ 1]s, where α is also called as the task size coefficient.
The results are shown in Fig. 14. From the figure, it can be
seen that the performance of each method is stable as the task
size is increased. This proofs that our method is suitable for
both small and large tasks.

b: Behaviour with Varying Service Storage Requirement
To study on the performance variation with the storage
requirements of services, six groups of experiments are
conducted. In the λth experiment group, the storage space
required by a service is set as [10 ∗ λ, 10 ∗ λ+ 10]GB, and λ
is called as the required storage coefficient. As shown in the

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 1 2 3 4 5 6R
el

at
iv

e
fin

is
he

d
ta

sk
 n

um
be

r

The required storage coefficient

FF
FFD
EDF
PSC
CEDC_A
GA
PSO
LMPSO

FIGURE 15. The performance changes with the storage requirements of
services

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300R
el

at
iv

e
fi

ni
sh

ed
 ta

sk
 n

um
be

r

The number of particles

GA

PSO

LMPSO

FIGURE 16. The performance changes with the number of particles
(chromosomes)

experiment results, see Fig. 15, except PSC and CEDC_A,
all methods have few changes with the increase of storage
spaces required.

The performance of PSC and CEDC_A are increased with
the storage space required by services. This is mainly because
the number of services cached on ESs are decreased with
their required storage space, which decreases the number
of tasks offloaded to ESs, and thus reduces the room for
performance improvement by caching or offloading strategy.
In the extreme case, no service can be cached on ESs, and all
methods have comparable performance.

c: Behaviour with Varying Individual Number
Fig. 16 gives the performance achieved by LMPSO, PSO, and
GA with the increasing number of individuals from 50 to 300.
As shown in the figure, the performances of LMPSO, PSO,
and GA are almost no change with the number of particles
or chromosomes. This suggests that one needn’t take much
time or effort on tuning the number of individuals, when
exploiting PSO or GA based methods.

d: Behaviour with Varying Parameter of the Lévy Flight
Distribution
Four groups of experiments are conducted by setting the
coefficient (β) of the Lévy Flight distribution as [0, 2], [1,
3], [2, 4], and [3, 5], respectively. The results are shown
in Fig. 17. From these results, it can be seen than β has
almost no impact on the performance of LMPSO. This may
be because the Lévy Flight distribution provides large enough
steps for particle moving out of some local best positions, in

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3R
el

at
iv

e
fin

is
he

d
ta

sk
 n

um
be

r

The coefficient of Lévy Flight Distribution, (x, x+2)

FIGURE 17. The performance changes of LMPSO with coefficient (β) of the
Lévy Flight distribution. The coordinate value on the horizontal axis is x, which
means x ≤ β ≤ x+ 2.

any group of experiments. Therefore, it doesn’t take effort
to set the coefficient of the Lévy Flight distribution, when
applying LMPSO.

V. RELATED WORK
As the increasing of user demands, the cloud computing or
the edge computing alone cannot accept all of tasks requested
by various mobile and IoT devices. Therefore, several pub-
lished works focused on the edge-cloud computing to provide
services with more efficiency by task offloading. Liu et al.
[23] presented a method with the idea of earliest finish time
first, which reduces the amount of the data transfer by task re-
dundant executions, to optimize the finish time of a workflow.
Sang et al. [24] proposed a heuristic task offloading method
to optimize the user satisfaction with deadline constraints.
The heuristic methods usually take a little time but have
limited performance. Thus, some works used metaheuristic-
based offloading to achieve a better performance with time-
consuming at the expense of the global search ability. Za-
karyia et al. [25] used generic algorithm for optimizing the
overall execution time with deadline constraints. Wang et
al. [11] presented a PSO-based tasks offloading method for
device-edge-cloud cooperative computing to improve SLA
satisfaction. Some other works exploited machine learning
(ML) for task offloading. Xu et al. [26] designed a deep
reinforcement learning based method to optimize the service
latency for edge computing empowered Internet of vehicles.
Wang et al. [27] designed a neural model to learn both
offloading and time division decisions in each time slot for
minimizing the delay with deadline and energy constraints.
ML-based methods can provide an efficient offloading solu-
tion, but usually cost a lot of time for data training.

These above works deemed that an edge can provide all
services. But in real world, there is a limited storage space
for each edge, and an edge cannot support the deployment of
all services. Thus, the service caching problem needed also to
be studied for providing services by edge-cloud computing.

Zhao et al. [28], [29] studied on the optimization of the
makespan by task offloading concerning that each ES pro-
vided only part of services due to its limited storage space.
They transformed the problem to convex programming, and
used progressive rounding to make offloading decision for

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

each task. In each ES, they exploited earliest finish time
first to decide the order of task executions. Xia et al. [21]
proposed an Approximation algorithm for Constrained Edge
Data Caching (CEDC-A) for optimizing the overall data
access delay. CEDC-A iteratively cache a data on an ES
such that the caching provides the maximum profit quantified
according to data access latencies. Xia et al. [30] modelled
the caching problem into time-averaged optimization, and
used Lyapunov to solve the optimization. These two works
quantified performance by the network hop number, but in
reality, the performance does not have a positive relation with
the network hop number. Feng et al. [31] focused on the
data caching and computing offloading problem for minimize
the network cost with deadline constraints. They modelled
the problem as a mixed integer nonlinear program problem,
and solve its dual problem iteratively by Lagrange dual
decomposition.

Different from these above related works, this work pro-
poses to use the hybrid heuristic algorithm to solve the joint
service caching and task offloading problem, to optimize the
user satisfaction and the resource efficiency, for edge-cloud
computing. The proposed method exploits the global search
ability of PSO with the lévy flight movement, and uses a
three-stage heuristic approach to improve the cooperation
between edge and cloud computing.

VI. CONCLUSION
This research studies on the service caching and the task
offloading problems to improve the user satisfaction and the
resource efficiency for edge-cloud computing. Their joint
problem is formulated as a discrete optimization problem,
and a hybrid of PSO with the lévy flight movement and a
three-stage heuristic method for solving the problem. Simu-
lated experiment results verify the performance advantages
of the proposed hybrid heuristic method.

This paper focuses on the static caching of services on
edges, which means the caching replacement doesn’t con-
cerned during the service provisioning. When there is no
storage space for caching more services on an ES, it is
an option to replace a service by another new service to
improve the overall performance. It is a challenging work
for designing efficient caching replacement solution. If the
caching replacement solution is improper, it will waste a lot
of edge-cloud resources for replacing a service, leading to a
much low resource efficiency. Therefore, one of the future
works is to design caching replacement method with high
efficiency and effectiveness.

REFERENCES
[1] M. A. Al-Shareeda, M. Anbar, S. Manickam, and I. H. Hasbullah,

“Password-guessing attack-aware authentication scheme based on chinese
remainder theorem for 5g-enabled vehicular networks,” Applied Sciences,
vol. 12, no. 3, p. 1383, Jan 2022.

[2] M. A. Alazzawi, H. A. H. Al-behadili, M. N. S. Almalki, A. L. Challoob,
and M. A. Al-shareeda, “Id-ppa: Robust identity-based privacy-preserving
authentication scheme for a vehicular ad-hoc network,” in International
Conference on Advances in Cyber Security, 2020, p. 80–94.

[3] M. A. Al-Shareeda, M. Anbar, S. Manickam, and I. H. Hasbullah,
“Towards identity-based conditional privacy-preserving authentication
scheme for vehicular ad hoc networks,” IEEE Access, vol. 9, pp. 113 226–
113 238, 2021.

[4] Cisco Systems, Inc., “Cisco annual internet report (2018–2023) white
paper,” https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html, March
2020.

[5] B. Costa, J. Bachiega, L. R. de Carvalho, and A. P. F. Araujo, “Orches-
tration in fog computing: A comprehensive survey,” ACM Comput. Surv.,
vol. 55, no. 2, jan 2022.

[6] A. Shakarami, H. Shakarami, M. Ghobaei-Arani, E. Nikougoftar, and
M. Faraji-Mehmandar, “Resource provisioning in edge/fog computing: A
comprehensive and systematic review,” Journal of Systems Architecture,
vol. 122, p. 102362, 2022.

[7] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos,
A. Leivadeas, N. Athanasopoulos, N. Mitton, and S. Papavassiliou, “Task
offloading in edge and cloud computing: A survey on mathematical,
artificial intelligence and control theory solutions,” Computer Networks,
vol. 195, p. 108177, 2021.

[8] K. Wang, W. Chen, J. Li, Y. Yang, and L. Hanzo, “Joint task offloading and
caching for massive mimo-aided multi-tier computing networks,” IEEE
Transactions on Communications, vol. 70, no. 3, pp. 1820–1833, 2022.

[9] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N. Suganthan, “Task
scheduling in cloud computing based on meta-heuristics: Review, tax-
onomy, open challenges, and future trends,” Swarm and Evolutionary
Computation, vol. 62, p. 100841, 2021.

[10] N. Sarrafzade, R. Entezari-Maleki, and L. Sousa, “A genetic-based ap-
proach for service placement in fog computing,” The Journal of Super-
computing, vol. 78, p. 10854–10875, 2022.

[11] B. Wang, J. Cheng, J. Cao, C. Wang, and W. Huang, “Integer particle
swarm optimization based task scheduling for device-edge-cloud coop-
erative computing to improve sla satisfaction,” PeerJ Computer Science,
vol. 8, p. e893, 2022.

[12] M. Ghobaei-Arani and A. Shahidinejad, “A cost-efficient iot service
placement approach using whale optimization algorithm in fog computing
environment,” Expert Systems with Applications, vol. 200, p. 117012,
2022.

[13] C. Liu, J. Wang, L. Zhou, and A. Rezaeipanah, “Solving the multi-
objective problem of iot service placement in fog computing using cuckoo
search algorithm,” Neural Processing Letters, vol. 54, p. 1823–1854, 2022.

[14] M. Li, J. Zhang, B. Lin, and X. Chen, “Multioff: offloading support and
service deployment for multiple iot applications in mobile edge comput-
ing,” The Journal of Supercomputing (In Press), 2022.

[15] D. Zhang, C. Gu, H. Fang, C. Ji, and X. Zhang, “Multi-strategy hybrid
heuristic algorithm for single container weakly heterogeneous loading
problem,” Computers & Industrial Engineering, vol. 170, p. 108302, 2022.

[16] A. Bouaouda and Y. Sayouti, “Hybrid meta-heuristic algorithms for opti-
mal sizing of hybrid renewable energy system: A review of the state-of-
the-art,” Archives of Computational Methods in Engineering (In Press),
2022.

[17] X. li Lu and G. He, “Qpso algorithm based on lévy flight and its application
in fuzzy portfolio,” Applied Soft Computing, vol. 99, p. 106894, 2021.

[18] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, “Artificial intelligence
empowered edge computing and caching for internet of vehicles,” IEEE
Wireless Communications, vol. 26, no. 3, pp. 12–18, 2019.

[19] G. Zhang, S. Zhang, W. Zhang, Z. Shen, and L. Wang, “Joint service
caching, computation offloading and resource allocation in mobile edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 20, no. 8, pp. 5288–5300, 2021.

[20] X. Wei, J. Liu, Y. Wang, C. Tang, and Y. Hu, “Wireless edge caching
based on content similarity in dynamic environments,” Journal of Systems
Architecture, vol. 115, p. 102000, 2021.

[21] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H. Jin, and Q. He, “Con-
strained app data caching over edge server graphs in edge computing
environment,” IEEE Transactions on Services Computing (In Press), pp.
1–14, 2021.

[22] B. Wang, B. Lv, and Y. Song, “A hybrid genetic algorithm with integer
coding for task offloading in edge-cloud cooperative computing,” IAENG
International Journal of Computer Science, vol. 49, no. 2, pp. 503–510,
2022.

[23] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang, “Dependent
task placement and scheduling with function configuration in edge com-

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Gao et al.: A Particle Swarm Optimization with Lévy Flight for Task Offloading and Service Caching in Edge-Cloud Computing

puting,” in 2019 IEEE/ACM 27th International Symposium on Quality of
Service (IWQoS), 2019, pp. 1–10.

[24] Y. Sang, J. Cheng, B. Wang, and M. Chen, “A three-stage heuristic
task scheduling for optimizing the service level agreement satisfaction
in device-edge-cloud cooperative computing,” PeerJ Computer Science,
vol. 8, p. e851, 2022.

[25] S. A. Zakaryia, S. A. Ahmed, and M. K. Hussein, “Evolutionary offloading
in an edge environment,” Egyptian Informatics Journal, vol. 22, no. 3, pp.
257–267, 2021.

[26] X. Xu, Z. Fang, L. Qi, W. Dou, Q. He, and Y. Duan, “A deep reinforcement
learning-based distributed service off loading method for edge computing
empowered internet of vehicles (in chinese),” Chinese Journal of Comput-
ers, vol. 44, no. 12, pp. 2382–2405, 1 2021.

[27] X. Wang, Z. Ning, L. Guo, S. Guo, X. Gao, and G. Wang, “Online
learning for distributed computation offloading in wireless powered mobile
edge computing networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 8, pp. 1841–1855, 2022.

[28] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading dependent
tasks in mobile edge computing with service caching,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, 2020, pp. 1997–
2006.

[29] ——, “Offloading tasks with dependency and service caching in mobile
edge computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 11, pp. 2777–2792, 2021.

[30] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online
collaborative data caching in edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 281–294, 2021.

[31] H. Feng, S. Guo, L. Yang, and Y. Yang, “Collaborative data caching and
computation offloading for multi-service mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9408–9422,
2021.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192846

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

